Department of Mathematics MPhil/PhD Coursework Examination Topics in Analysis

Time			
Tim	6.	-2	laws
	-	v	urs

(March 2019)

Attempt FIVE questions in all. All symbols carry their usual meaning.

Max. Marks: 70

- (a) State Banach's Fixed Point Theorem. Pick two hypotheses from the statement and show, with the help of examples, that these hypotheses cannot be weakened.
 - (b) Let $f:[0,b]\times\mathbb{R}\to\mathbb{R}$ be a continuous mapping satisfying $|f(s,t_1)-f(s,t_2)|\leq \lambda |t_1-t_2|$ where λ is a constant depending only on f. Show that the initial-value other wise show that the equation $x'(s)=f(s,x(s)), x(0)=\beta$ has a unique solution in C[0,b]. Hence or solution for every $g\in C[0,b]$.
- 2. (a) Let H be a real Hilbert space, M a closed subspace of H and $f: M \to M$ a non expansive mapping. Let $\{y_n\}$ be a sequence in M satisfying $\lim_{n\to\infty} \|F(y_n) y_n\| = 0$. If x_0 is a weak limit point of $\{y_n\}$ prove that x_0 must be a fixed point of F.
 - (b) State Browder's fixed point Theorem. Let $X = l^2$ with its usual norm and the mapping f be given by $f(x) = (1, x_1, x_2, x_3, \dots)$ where $x = (x_1, x_2, \dots) \in l^2$. Show that F has no fixed points and state, with justification, why Browder's Theorem does not yield a fixed point in this case? (1+4)
 - (c) Is the function $f:(0,1)\to L^\infty(0,1)$ Bochner integrable when (a) $f(t):=\chi_{(0,t)}$ (b) $f(t):=tx_0$ where x_0 is a fixed element of $L^\infty(0,1)$. Justify. (3+2)
- 3. (a) State the Stone Weierstrass Theorem. (1)
 - (b) Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Let \mathcal{A} be the set of all functions of the form $f(e^{i\theta}) = \sum_{n=0}^{N} c_n e^{in\theta}$ where $N \in \mathbb{N}, c_n \in \mathbb{C}, \theta \in \mathbb{R}$. Show that \mathcal{A} is an algebra which separates points of \mathbb{T} and vanishes at no point of \mathbb{T} . Further, show that $\int_0^{2\pi} f(e^{i\theta})e^{i\theta} d\theta = 0$ for $f \in \mathcal{A}$ and deduce that there are continuous functions on \mathbb{T} which are not in the uniform closure of \mathcal{A} . Is the Stone Weierstrass theorem applicable here? Give reasons. (7)
 - (c) For a mapping f: D → X where X is a normed space and D an open subset of X, explain the difference between the statements (a) f' is continuous at x (b) f'(x) is continuous. Prove that if f'(x) exists, then it is continuous and differentiable.
 (6).
- (a) Let g ∈ C[0, 1], α ∈ C be fixed. Define F : C[0, 1] → C[0, 1] by F(x) = αg · x, x ∈ C[0, 1] where · represents pointwise multiplication. Find the derivative of F.

- (c) Let $f: H \to \mathbb{R}$ where H is a Hilbert space and $a \in H$ be fixed. Define $f(x) := \langle a, x \rangle^2, x \in H$. Show that f is differentiable and find its derivative. (6)
- (i) Let z₁ = 3+3i, z₂ = −2i and z₃ = ∞. Compute the spherical distance between
 (a) z₁, z₂, (b) z₁, z₃ and (c) ½, ½. Does the spherical distance define a metric on the extended complex plane? Justify.
- (b) Show that if f is a meromorphic function in a domain D then it is continuous in D with respect to the spherical distance. (4)
- (c) What is meant by a C₀ sequence in a domain D? Illustrate with a non-trivial example. Further, show that a C₀ sequence of meromorphic functions has a limit function F. What can be said about the function F? Give statements only.
 (5)
- (a) When is a family of meromorphic functions called normal? Give a non-trivial example of a normal family of meromorphic functions.

 (3)
- (b) Show that a family of normal holomorphic functions which is locally uniformally bounded in a domain D is normal in D. State an analog of this result for a family of meromorphic functions. Check whether or not the family $\{f_{\epsilon}: 0 < \epsilon \leq 1\}$ where $f_{\epsilon}(z) = \frac{z}{(z+\epsilon)}$ is normal on the disc of radius 1 centered at 2? (4+1+3)
- (c) Define spherical derivative at a point z₀ ∈ D of a meromorphic function defined on a domain D. Illustrate this definition with a non-trivial example. State a characterisation for normality of a family of meromorphic maps in terms of the spherical derivatives of its members. (1+1+1)
- (a) State Montel's Theorem for normality of a family of meromorphic functions.

 Further, state the analog of this result for holomorphic functions. Illustrate one of these results.
 - (b) Let F be a normal family of holomorphic functions in a domain D satisfying min_{z∈σ} |f(z)| ≤ M ∀f ∈ F where σ is a bounded and closed subset of D and M is a positive number. Show that the family F is uniformly bounded on each bounded closed subset E of D.
 (4)
 - (c) Let $f_n(z) := 2^n z + 2^{2n} z^2$ and $g_n(z) = \frac{z}{(z \frac{1}{2^n})}$. What can you deduce about the normality of the families $\{f_n\}$ and $\{g_n\}$ in the domain $D = \{z : |z| < 2\}$. Justify. (2+2)
- (d) What is meant by a simply covered image domain (SCID) of a holomorphic function? Illustrate with an example. State a criterion for normality of holomorphic functions involving (SCID). (1+1+1)