Department of Mathematics MPhil/PhD Coursework Examination

Topics in Analysis

(August 2023) Time: 3 hr Max. Marks: 70

Attempt FIVE questions in all. All symbols carry their usual meaning.

1. (a) State Browder's Theorem. Let

 $\mathcal{K} = \{ x \in C[0, 1] : 0 \le x(t) \le 1, x(0) = 0, x(1) = 1 \}, F : x(t) \mapsto tx(t).$

Then show that (a) $F(\mathcal{K}) \subset \mathcal{K}$, (b) F is non-expansive and (c) that no fixed point of F. Further, discuss the applicability of Browder's Theorem to this example. (7)

Let $K: [a,b] \times [a,b] \times \mathbb{R} \to \mathbb{R}$ be a continuous real function and assume there exists a constant N > 0 such that for any $t, \tau \in [a,b], z_1, z_2 \in \mathbb{R}, |K(t,\tau,z_1) - K(t,\tau,z_2)| \le N|z_1-z_2|$. Let $h \in C[a,b]$ be fixed. Find conditions on $\lambda \in \mathbb{R}$ such that the integral equation $x(t) = \lambda \int_a^t K(t,\tau) x(\tau) d\tau + h(\tau)$ has a unique solution in $x \in C[a,b]$.

Give examples of two algebras, one of which separates points and one which doesn't. Prove all your claims.

(5)

State Stone-Weierstrass's Theorem for an algebra of complex continuous functions defined on a compact set K. Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Let \mathcal{A} be the set of all functions of the form $f(e^{i\theta}) = \sum_{n=0}^{N} c_n e^{in\theta}$ where $N \in \mathbb{N}, c_n \in \mathbb{C}, \theta \in \mathbb{R}$. Determine which of the conditions of the above mentioned result are satisfied by \mathcal{A} . Further check whether or not the conclusion of the theorem holds? Give a reason in either case. (2+7)

Let $F: C[0,1] \to C[0,1]$ given by $(F(x))(t) = x(t) + \int_0^1 |x(st)|^2 ds$. Find the Frechet derivative of F at all those $x \in C[0,1]$ where it exists. Further, specify the domain and co-domain of F'(x) for each x and also of F'. (10)

- Let A be a bounded linear operator on a real Hilbert space H and define $F: H \to \mathbb{R}$ by $F(x) = \langle x, A^2x \rangle$. Find the Frechet derivative of F at $x_0 \in H$.

 (4)
- (a) Let f be defined on an open set Ω in the direct sum space $X = \sum_{i=1}^{n} \oplus X_{i}$ (where each X_{j} is a Banach space), and take values in a normed space Y, such that all partial derivatives $D_{j}f$ exist in Ω and are continuous at every point x_{0} in Ω . Show that f is Frechet differentiable at x_{0} and find an expression for the Frechet derivative of f at x_{0} . Illustrate this result with a non trivial example. (6+2)
 - (b) State a general implicit function theorem for normed spaces. Illustrate it with a non-trivial example in which both the underlying spaces are not of the type \mathbb{R}^n or \mathbb{C}^n .

- 5. (a) Define supp u for $u \in L^1_{loc}(\Omega)$ where $\Omega \subset \mathbb{R}^n$ is open. Show by an example that the supp u depends on the underlying set Ω . (3)
 - (b) Show that for appropriate functions f, g

$$supp(f*g) \subset \overline{supp\,f + supp\,g}.$$

(5)

(c) Let $f \in L^1_{loc}(\Omega)$, with $\Omega \subset \mathbb{R}^n$. Show that if $\int_{\Omega} f \phi = 0$ for every $\phi \in C_c^{\infty}(\Omega)$, then f = 0.

Let $\Omega \subset \mathbb{R}^N$ be open. When is a function $f \in L^1_{loc}(\Omega)$ said to be weakly differentiable? Show that for $\Omega=(-1,1)$ the functions (i) f(t)=|t| and (ii) $f(t) = 2 + t + t^2$ are weakly differentiable and find their weak derivative.

Show that if $f \in L^1_{loc}(\Omega)$ is weakly differentiable with weak derivative of f zero, then f = constant. (6)

7. Let $\Omega = (a,b) \subset \mathbb{R}$. Define the spaces $W^{1,p}(a,b), 1 \leq <\infty$. Show that these spaces are separable Banach spaces with respect to appropriate norms. Further, give two non-trivial examples of elements in $W^{1,p}(a,b)$. (14)