R-07 Convex and Nonsmooth Analysis

Equivalence of two notions

Lemma $\operatorname{cl} f(x) \leq f(x), \forall x \in \mathbb{R}^n$. Lemma Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a function then the following are equivalent (i) $\operatorname{cl} f(x) = \liminf_{y \to x} f(y), \forall x \in \mathbb{R}^n$, (ii) epi(clf) = cl(epif). Proof (i) \Rightarrow (ii) Let $(x, r) \in epi(clf)$. Then $clf(x) \leq r$. Hence $\liminf_{y \to x} f(y) \le r$ that is, $\sup_{\delta > 0} \inf_{y \in B_{\delta}(x)} f(y) \le r.$ For $\delta = \frac{1}{k}$, there exists $y_k \in B_{\delta}(x)$ such that $f(y_k) \leq r + \frac{1}{k}$. Thus $(y_k, r + \frac{1}{\nu}) \in epif$. Letting $k \to \infty$ we get $y_k \to x$. Hence, $(x, r) \in$

 $(y_k, r + \frac{1}{k}) \in epif$. Letting $k \to \infty$ we get $y_k \to x$. Hence, (cl(epif). Thus, epi(clf) \subseteq cl(epif).

continued

Let $(x,r) \in cl(epif)$. Then there exists $(x_k, r_k) \in epif$ such that $(x_k, r_k) \rightarrow (x, r)$. As $f(x_k) \leq r_k$ we have $\operatorname{cl} f(x) = \liminf_{y \to x} f(y) \le \liminf_{k \to \infty} f(x_k) \le \liminf_{k \to \infty} r_k = r.$ $k \rightarrow \infty$ Hence, $(x, r) \in epi(clf)$, thus, $cl(epif) \subseteq epi(clf)$. (ii) \Rightarrow (i) Since epigraph of clf is closed, it follows that clf is lower semicontinuous. As $cl f(x) \leq f(x), \forall x \in \mathbb{R}^n$, we have $\operatorname{cl} f(x) \leq \liminf_{y \to x} \operatorname{cl} f(y) \leq \liminf_{y \to y} f(y).$ (1)As $(x, clf(x)) \in epi(clf) = cl(epif)$, there exists $(x_k, r_k) \in epif$ such that $(x_k, r_k) \rightarrow (x, \operatorname{cl} f(x))$. As $f(x_k) \leq r_k$ we have $\liminf_{y \to x} f(y) \le \liminf_{k \to \infty} f(x_k) \le \liminf_{k \to \infty} r_k = \mathrm{cl}f(x).$ (2) $k \rightarrow \infty$ From (1) and (2) it follows that $\operatorname{cl} f(x) = \liminf f(y), \forall x \in \mathbb{R}^n.$

$$y \rightarrow x$$