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Convex and Nonsmooth Analysis



A Property of Closed convex Cone

Theorem A closed convex cone is the set of directions along which one
can go upto infinity from any point of the cone.

Proof Let K be a closed convex cone and x € K. We need to prove
K={deR":x+4+td € K,Vt > 0}.
For simplicity, let us represent the set on the right side by A.
Let d € K. Since K is a convex cone we have
x+td € K,Vt > 0.
Conversely, letd € A. Then x + td € K,Vt > 0. Hence,

d €= (K —x),vt > 0.
As K is a cone we have
dEK—%x,Vt>O.

As K is closed we have
d € clKk =K.



Cone

Theorem A closed convex cone is the set of directions along
which one can go upto infinity from any point of the cone.

\

What if K is not closed?

KC{deR": x+td € K,Vt > 0O).
Let K = intRZ then K \4

A={d€e€R": x+td € K,Vt > 0} = R4.

What if K is not convex? \ i

K2{d€eR": x +td € K,Vt > 0}.
Let K = R% U (—R%) then K
forx = (1,1) € K we have A = R2.

\ %




Asymptotic Cone
Let C be a nonempty closed convex set in R™. For x € C let

Co(x):={d R " x+td € C,Vt > 0}.
Theorem Let C be a nonempty closed convex set in R™ and x € C. Then
Co(x) is a closed convex cone.
Proof As x € C itis clear that 0 € Cy, (x).

Let {d;} be a sequence in C,(x) such that d;, = d. As d;, € C,(x) we
have

x + td,, € C,Vt > 0.
Taking limit as k — oo we have
x +td € clC, Vt > 0.
As C is a closed set we have d € Co, (x).
Claim Cy (x) is a cone
letd € Coo(x) and A > 0.Asd € C,(x) we have
x+td e€C,Vt > 0.
As At > 0 we have
x+t(Ad) € C,Vt > 0.
Hence, Ad € C. (x).



continued
Claim Cy(x) is convex

Letd,,d, € C,(x).Hence, x +td, € C,x + td, € C,Vt > 0.
As C is convex for A € [0,1] we have
Ax+td)+ (A —-D(x+tdy,)) EC,VE>0
which implies that
x+t(Addy + (1 —A)d,) e C,Vt > 0.

Theorem Let C be a nonempty closed convex set in R™ and x € C. The closed
convex cone C, (x) does not depend on x € C.

Proof Let x1,x, € C,x1 # X5.
Claim Co (x1) € Coo(x5)
letd € Cn(xy) and t > 0. Let € € (0,1). Asd € Cy(x1) we have

X1 + éd e C.
As C is convex we have

t

s(xl +gd) +(1—-¢e)x, €C
that is,
ex; +td+ (1 —¢)x, €C.

Taking limit as € = 0 +, and using the fact that C is closed we have

X, +tdeclC=C
hence d € Cy(x,).



Asymptotic/Recession Cone
The asymptotic, or recession cone of a closed convex set C is the
closed cone C,, defined as

Co:={dER"x+td € C,Vt > 0}
forany x € C.




Asymptotic/Recession Cone

Co = {d €E R™: x + td € C,Vt > 0}
C—x
= Neso—

\

(=3,5)

|

(4,1)
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Compactness of Asymptotic Cone

Theorem A closed convex set C is compact if and only if C,, = {0}.

Proof If C is bounded then C, = {0} as C cannot contain any nonzero
direction.

Conversely, let C,, = {0}. Suppose on the contrary C, is not bounded.
Then there exists a sequence {x;} € C such that
lxk |l = +00,x;, # 0.

Define dj =ﬁ. As {d;} is bounded we can extract a convergent
k

subsequence {dkl} such that dy, —» d with ||d|| = 1. Given x € C and
t > 0 take k large such that ||x; || = t. Then

(1— ‘ )x+ Xy, € C.
|xkl| ”xkl”

x + td = lim [(1— ‘ )x+ ‘ xkl] € clC = C.
il AN (E7% (VAR

Hence, 0 # d € C,, which is a contradiction as C,, = {0}.

Hence




Nested Sequences

C—x - C—x

Theorem If t; < t, then :
tq %)

Proof Let z € Ct;x Then z = yt—_xfor somey € C. Now
2 2
Yy —x (tl(y—x) >
Z = = TX—X
%) ty %)
1 <t1 (t; — t1) )
=—|—y+ X—X
t1 \I2 %)
1 !
1 ' —x)
1
r _ b1 (t2—t1) :
where y' = Y+t ——XxE€ C as C is a convex set. Hence,
2 2

z=l(y’—x)e%.

t1 1



Asymptotic Cone of Intersection of Convex Sets

Theorem If {Cj}jE] is a family of closed convex sets such that
Nje; C; # O then

(Njes G, = Njes(G),.-
Proof Let d € (njE]Cj)oo . Then x+td € N for t>0,
x € e, Cj. Hence,

x + td € Cifort > 0,j € ] where x € (.
This implies that d € (Cj)oo forj € J. Hence, d € ﬂjE](Cj)oo.

Conversely, let d € ﬂjE](Cj)oo. Let x € Nj¢; (. Then x € (; and
d € (Cj)oo forj € J.Hence, x +td € C; fort > 0,j € J. Hence,
x+td €N Cfort >0

which implies that d € (ﬂjE] Cf)oo'



Asymptotic Cone and Affine Map

Theorem Let A: R™ — R™ be a linear operator. If C is a closed convex
setin R™ and A(C) is closed then

A(Co) & [A(C)] oo

Proof Let d € A(Cy). Then d = A(p) where p € C. Let y € A(C).
Hence y = A(x) forsomex € C.Now x € C,p € C,, implies that

x+tp€eCfort>0.
This implies that
A(x +tp) € A(C) fort > 0.
As A is linear we have
A(x) +tA(p) € A(C) fort > 0.
Hence,
y+td eA(C)fort >0
which implies that d € [A(C)].
What if A is not linear but affine? Give an example.
Give an example to show the containment is proper.



Asymptotic Cone and Affine Map

Theorem Let A: R™ — R™ be a linear operator. If D is a closed convex
setin R™, with A~1(D) # @ then
[A7'(D)]eo = A7 (Doo).
Proof Do it yourself.
Theorem If forj = 1,2, ...m, Cj are closed convex sets in R ™ then
(CLXCy XX Cr)oo = (C1)oo X (€3)e0 XoX (Cr) oo
Proof Do it yourself.
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