R-07 R-07
Convex and Nonsmooth Analysis

A Property of Closed convex Cone

Theorem A closed convex cone is the set of directions along which one **A Property of Closed convex Con**
Theorem A closed convex cone is the set of directions a
can go upto infinity from any point of the cone.
Proof Let K be a closed convex cone and $x \in K$. We nee
 $K = \{d \in \mathbb{R}^n : x + td \in K, \forall t$

Proof Let K be a closed convex cone and $x \in K$. We need to prove **Proof Let K** be a closed convex cone and $x \in K$. We ne
 $K = \{d \in \mathbb{R}^n : x + td \in K, \forall t > 0\}$.

For simplicity, let us represent the set on the right side

Let $d \in K$. Since K is a convex cone we have
 $x + td \in K, \forall t > 0$.

Conv

$$
K = \{d \in \mathbb{R}^n : x + td \in K, \forall t > 0\}.
$$

For simplicity, let us represent the set on the right side by A .

Let $d \in K$. Since K is a convex cone we have
 $x + td \in K$, $\forall t > 0$.

Conversely, let $d \in A$. Then $x + td \in K$, $\forall t > 0$. Hence,

$$
d \in \frac{1}{t}(K - x), \forall t > 0.
$$

$$
d \in K - \frac{1}{t}x, \forall t > 0.
$$

As K is closed we have

$$
d \in \mathrm{cl} K = K.
$$

Cone

Cone

Theorem A closed convex cone is the set of directions along

which one can go upto infinity from any point of the cone. **Cone**
Theorem A closed convex cone is the set of directions along
which one can go upto infinity from any point of the cone.
What if K is not closed?

What if K is not closed? $K \subseteq \{d \in \mathbb{R}^n : x + td \in K, \forall t > 0\}.$. Let $K = \text{int} \mathbb{R}^2_+$ then $A = \{d \in \mathbb{R}^n : x + td \in K, \forall t > 0\} = \mathbb{R}^2_+.$.

What if K is not convex?

 $K \supseteq \{d \in \mathbb{R}^n : x + td \in K, \forall t > 0\}.$. Let $K = \mathbb{R}_+^2 \cup (-\mathbb{R}_+^2)$ then $\bar{+}$) then $\binom{2}{+}$ then for $x = (1,1) \in K$ we have $A = \mathbb{R}^2_+$.

Asymptotic Cone

Let C be a nonempty closed convex set in \mathbb{R}^n . For $x \in C$ let

 $\alpha(x) := \{u \in \mathbb{R}^n : x + \iota u \in C, \nu \}$ $n \cdot r + td \in C$ $\forall t > 0$.

Asymptotic Cone

Let *C* be a nonempty closed convex set in \mathbb{R}^n . For $x \in C$ let
 $C_{\infty}(x) := \{d \in \mathbb{R}^n : x + td \in C, \forall t > 0\}.$

Theorem Let *C* be a nonempty closed convex set in \mathbb{R}^n and $x \in C$. Then
 $C_{\infty}(x)$ Theorem Let C be a nonempty closed convex set in \mathbb{R}^n and $x \in C$. Then **Asymptotic Cone**

et *C* be a nonempty closed convex set in \mathbb{R}^n . For $x \in C$ let
 $C_{\infty}(x) := \{d \in \mathbb{R}^n : x + td \in C, \forall t > 0\}.$
 heorem Let *C* be a nonempty closed convex set in \mathbb{R}^n and
 $C_{\infty}(x)$ is a closed

Asymptotic Cone

Let *C* be a nonempty closed convex set in \mathbb{R}^n . For $x \in C$ let
 $C_{\infty}(x) := \{d \in \mathbb{R}^n : x + td \in C, \forall t > 0\}$.

Theorem Let *C* be a nonempty closed convex set in \mathbb{R}^n and $x \in C$
 $C_{\infty}(x)$ is **Asymptotic Cone**

Let *C* be a nonempty closed convex set in \mathbb{R}^n . For $x \in C$ let
 $C_{\infty}(x) := \{d \in \mathbb{R}^n : x + td \in C, \forall t > 0\}$.

Theorem Let *C* be a nonempty closed convex set in \mathbb{R}^n and $x \in C$. Then
 $C_{\infty}(x$ have

 $x + td_k \in C$, $\forall t > 0$.

Taking limit as $k \to \infty$ we have

 $x + td \in clC$. $\forall t > 0$. As C is a closed set we have $d \in C_{\infty}(x)$. *Claim* $C_{\infty}(x)$ is a cone Let $d \in C_{\infty}(x)$ and $\lambda > 0$. As $d \in C_{\infty}(x)$ we have $x + td \in C$, $\forall t > 0$.

As $\lambda t > 0$ we have

 $x + t(\lambda d) \in C$, $\forall t > 0$.

Hence, $\lambda d \in C_{\infty}(x)$.

continued

Claim $C_{\infty}(x)$ is convex

Let $d_1, d_2 \in C_\infty(x)$. Hence, $x + td_1 \in C$, $x + td_2 \in C$, $\forall t > 0$.
As C is convex for $\lambda \in [0,1]$ we have

$$
\lambda(x + td_1) + (1 - \lambda)(x + td_2) \in C, \forall t > 0
$$

which implies that

$$
x + t(\lambda d_1 + (1 - \lambda)d_2) \in \mathcal{C}, \forall t > 0.
$$

Claim $C_{\infty}(x)$ is convex

Let $d_1, d_2 \in C_{\infty}(x)$. Hence, $x + td_1 \in C$, $x + td_2 \in C$, $\forall t > 0$.

As C is convex for $\lambda \in [0,1]$ we have
 $\lambda(x + td_1) + (1 - \lambda)(x + td_2) \in C$, $\forall t > 0$

which implies that
 $x + t(\lambda d_1 + (1 - \lambda)d_2) \in C$, \forall 0.
 > 0

..

and $x \in C$. The closed

Continued
\n**Continued**
\nLet
$$
d_1, d_2 \in C_{\infty}(x)
$$
. Hence, $x + td_1 \in C$, $x + td_2 \in C$, $\forall t > 0$.
\nAs C is convex for $\lambda \in [0,1]$ we have
\n
$$
\lambda(x + td_1) + (1 - \lambda)(x + td_2) \in C, \forall t > 0
$$
\nwhich implies that
\n
$$
x + t(\lambda d_1 + (1 - \lambda)d_2) \in C, \forall t > 0.
$$
\n**Theorem** Let C be a nonempty closed convex set in \mathbb{R}^n and $x \in C$. The closed convex cone $C_{\infty}(x)$ does not depend on $x \in C$.
\n**Proof** Let $x_1, x_2 \in C$, $x_1 \neq x_2$.
\nClaim $C_{\infty}(x_1) \subseteq C_{\infty}(x_2)$
\nLet $d \in C_{\infty}(x_1)$ and $t > 0$. Let $\varepsilon \in (0,1)$. As $d \in C_{\infty}(x_1)$ we have
\n
$$
x_1 + \frac{t}{\varepsilon}d \in C
$$
.

As C is convex we have

$$
\varepsilon \left(x_1 + \frac{t}{\varepsilon} d \right) + (1 - \varepsilon) x_2 \in C
$$

that is,

$$
\varepsilon x_1 + td + (1 - \varepsilon)x_2 \in \mathcal{C}.
$$

Taking limit as $\varepsilon \to 0 +$, and using the fact that C is closed we have $x_2 + td \in clC = C$

hence $d \in C_{\infty}(x_2)$.

Asymptotic/Recession Cone

Asymptotic/Recession Cone
The asymptotic, or recession cone of a closed convex set *C* is the
closed cone C_{∞} defined as
 $C_{\infty} := \{d \in \mathbb{R}^n : x + td \in C, \forall t > 0\}$ **Asymptotic/Recession Cone**
The asymptotic, or recession cone of a closed convex s
closed cone C_{∞} defined as
 $C_{\infty} := \{d \in \mathbb{R}^n : x + td \in C, \forall t > 0\}$
for any $x \in C$.

for any $x \in C$.

Asymptotic/Recession Cone

$$
C_{\infty} = \{ d \in \mathbb{R}^n : x + td \in C, \forall t > 0 \}
$$

$$
= \bigcap_{t > 0} \frac{c - x}{t}.
$$

Compactness of Asymptotic Cone

Theorem A closed convex set C is compact if and only if $C_{\infty} = \{0\}$.

Compactness of Asymptotic Cone
Theorem A closed convex set C is compact if and only if $C_{\infty} = \{0\}$.
Proof If C is bounded then $C_{\infty} = \{0\}$ as C cannot contain any nonzero
direction.
Conversely, let $C_{\infty} = \{0\}$. direction.

Compactness of Asymptotic Cone
 orem A closed convex set *C* is compact if and only if $C_{\infty} = \{0\}$.
 f If *C* is bounded then $C_{\infty} = \{0\}$ as *C* cannot contain any nonzero

conversely, let $C_{\infty} = \{0\}$. Supp **Compactness of Asymptotic Cone**

Theorem A closed convex set C is compact if and only if $C_{\infty} = \{0\}$.

Proof If C is bounded then $C_{\infty} = \{0\}$ as C cannot contain any nonzero

direction.

Conversely, let $C_{\infty} = \{0$

$$
||x_k|| \to +\infty, x_k \neq 0.
$$

Define $d_k = \frac{\lambda_k}{\|\mathbf{x}_k\|}$. As $\{d_k\}$ i $\frac{x_k}{x_k}$ As $\{d\}$ is boung $\|x_k\|$ **IMEXALLE SOMET ASSUMPT CORE**

convex set C is compact if and only if $C_{\infty} = \{0\}$.

Inded then $C_{\infty} = \{0\}$ as C cannot contain any nonzero

ort $C_{\infty} = \{0\}$. Suppose on the contrary C_{∞} is not bounded.

a seq **Compactness or Asymptotic Cone**

Theorem A closed convex set C is compact if and only if $C_{\infty} = \{0\}$.

Proof If C is bounded then $C_{\infty} = \{0\}$ as C cannot contain any nonzero

direction.

Conversely, let $C_{\infty} = \{0$ *em* A closed convex set *C* is compact if and only if C_{∞} =

If *C* is bounded then $C_{\infty} = \{0\}$ as *C* cannot contain

on.

bonversely, let $C_{\infty} = \{0\}$. Suppose on the contrary C_{∞} is is

there exists a

$$
\left(1 - \frac{t}{\|x_{k_l}\|}\right) x + \frac{t}{\|x_{k_l}\|} x_{k_l} \in C.
$$

Hence

$$
x + td = \lim_{l \to \infty} \left[\left(1 - \frac{t}{\|x_{k_l}\|} \right) x + \frac{t}{\|x_{k_l}\|} x_{k_l} \right] \in clC = C.
$$

Hence, $0 \neq d \in C_{\infty}$ which is a contradiction as $C_{\infty} = \{0\}$.

Nested Sequences

Nested Sequences

\n**Theorem** If
$$
t_1 < t_2
$$
 then $\frac{c-x}{t_1} \supseteq \frac{c-x}{t_2}$.

\n**Proof** Let $z \in \frac{c-x}{t_2}$. Then $z = \frac{y-x}{t_2}$ for some $y \in C$. Now

\n
$$
z = \frac{y-x}{t_2} = \frac{1}{t_1} \left(\frac{t_1(y-x)}{t_2} + x - x \right)
$$
\n
$$
= \frac{1}{t_1} \left(\frac{t_1}{t_2} y + \frac{(t_2 - t_1)}{t_2} x - x \right)
$$
\n
$$
= \frac{1}{t_1} (y' - x)
$$

where $y' = \frac{t_1}{t}y + \frac{(t_2 - t_1)}{t}x \in C$ a 2 \overline{t}_2 2^{-l_1} \vee \subset \cap \cap \subset \cap \cap మ as C is a convex set. Hence, ι_1 ι_2 .

Asymptotic Cone of Intersection of Convex Sets

Theorem If ${C_j}_{i \in I}$ is a family of closed convex sets such that $\bigcap_{i\in I}C_i\neq\emptyset$ then **iptotic Cone of Intersection of**
 $\{C_j\}_{j\in J}$ is a family of closed convex

i then
 $(\bigcap_{j\in J} C_j)_{\infty} = \bigcap_{j\in J} (C_j)_{\infty}$.
 $d \in (\bigcap_{j\in J} C_j)_{\infty}$. Then $x + td \in$
 $x + td \in C_j$ for $t > 0, j \in J$ wher

that $d \in (C_j)$, for $i \$

$$
\left(\bigcap_{j\in J}C_j\right)_{\infty}=\bigcap_{j\in J}\left(C_j\right)_{\infty}.
$$

Asymptotic Cone of Intersection of Convex Sets

Theorem If $\{C_j\}_{j \in J}$ is a family of closed convex sets such that
 $\bigcap_{j \in J} C_j \neq \emptyset$ then
 $\bigcap_{j \in J} C_j \big)_{\infty} = \bigcap_{j \in J} (C_j)_{\infty}$.

Proof Let $d \in \bigcap_{j \in J} C_j \big)_{\infty$

 $x + td \in C_i$ for $t > 0, j \in J$ where $x \in C_i$.

 $\left(\bigcap_{j\in J} C_j\right)_{\infty} = \bigcap_{j\in J} \left(\frac{C_j}{C_j}\right)_{\infty}.$
 Proof Let $d \in \left(\bigcap_{j\in J} C_j\right)_{\infty}$. Then $x + td \in \bigcap_{j\in J} C_j$ for $t > 0$, $x \in \bigcap_{j\in J} C_j$. Hence, $x + td \in C_j$ for $t > 0, j \in J$ where $x \in C_j$.

This implies that $d \in \left(\$ $d \in (C_i)$ for $j \in J$. Hence, $x + td \in C_j$ for $t > 0, j \in J$. Hence, $x + td \in \bigcap_{i \in I} C_i$ for $t > 0$ which implies that $d \in (\bigcap_{i \in I} C_i)_{\sim}.$

Asymptotic Cone and Affine Map

Theorem Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear operator. If C is a closed convex set in \mathbb{R}^n and $A(C)$ is closed then

$$
A(C_{\infty}) \subseteq [A(C)]_{\infty}.
$$

Asymptotic Cone and Affine Map

Theorem Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear operator. If *C* is a closed convex

set in \mathbb{R}^n and $A(C)$ is closed then
 $A(C_{\infty}) \subseteq [A(C)]_{\infty}$.

Proof Let $d \in A(C_{\infty})$. Then $d = A(p)$ **Asymptotic Cone and Affine Map**

Theorem Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear operator. If C is a closed convex

set in \mathbb{R}^n and $A(C)$ is closed then
 $A(C_\infty) \subseteq [A(C)]_\infty$.

Proof Let $d \in A(C_\infty)$. Then $d = A(p)$ whe $x + tp \in C$ for $t > 0$.

This implies that

$$
A(x + tp) \in A(C) \text{ for } t > 0.
$$

As \overline{A} is linear we have

$$
A(x) + tA(p) \in A(C) \text{ for } t > 0.
$$

Hence,

$$
y + td \in A(C) \text{ for } t > 0
$$

which implies that $d \in [A(C)]_{\infty}$.

What if A is not linear but affine? Give an example.

Give an example to show the containment is proper.

Asymptotic Cone and Affine Map

Theorem Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear operator. If D is a closed convex set in \mathbb{R}^m , with $A^{-1}(D) \neq \emptyset$ then **Asymptotic Cone and Aff**

Theorem Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear operator

set in \mathbb{R}^m , with $A^{-1}(D) \neq \emptyset$ then
 $[A^{-1}(D)]_{\infty} = A^{-1}(D_{\infty})$

Proof Do it yourself.

Theorem If for $j = 1, 2, ..., m$, C_j are close **Asymptotic Cone and Affine Map**

Theorem Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear operator. If D is a closed convex

set in \mathbb{R}^m , with $A^{-1}(D) \neq \emptyset$ then
 $[A^{-1}(D)]_{\infty} = A^{-1}(D_{\infty})$.

Proof Do it yourself.

Theorem

$$
[A^{-1}(D)]_{\infty} = A^{-1}(D_{\infty}).
$$

Theorem If for $j = 1, 2, ..., m$, C_j are closed convex sets in \mathbb{R}^{n_j} then

$$
(C_1 \times C_2 \times \cdots \times C_m)_{\infty} = (C_1)_{\infty} \times (C_2)_{\infty} \times \cdots \times (C_m)_{\infty}.
$$

Proof Do it yourself.

**Avanindra Pratap Singh
extreme points of a closed convex set with few** 1. Definition 2.3.1 of extreme points of a closed convex set with few examples; **2. Avanindra Pratap Singh**
2. Definition 2.3.1 of extreme points of a closed convex set with few
2. Characterization in terms of convex combinations;
3. Proof of the fact that $C \setminus \{x\}$ is a convex set if x is an extre **3. Proof of the fact that is a convex set with few**
3. Definition 2.3.1 of extreme points of a closed convex set with few
3. Characterization in terms of convex combinations;
3. Proof of the fact that $C \setminus \{x\}$ is a co **Avanindra Pratap Si**
1. Definition 2.3.1 of extreme points of a close
examples;
2. Characterization in terms of convex combir
3. Proof of the fact that $C \setminus \{x\}$ is a convex set
4. Example 2.3.2;
5. Prove that if *C* i **4.** Definition 2.3.1 of extreme points of a closed convex set with few examples;
2. Characterization in terms of convex combinations;
3. Proof of the fact that $C \setminus \{x\}$ is a convex set if x is an extreme point;
4. Exa **Avanindra Pratap Singh**

1. Definition 2.3.1 of extreme points of a closed convex set wit

examples;

2. Characterization in terms of convex combinations;

3. Proof of the fact that $C \{x\}$ is a convex set if x is an ex 1. Definition 2.3.1 of extreme points of a closed examples;
2. Characterization in terms of convex combinati
3. Proof of the fact that $C \setminus \{x\}$ is a convex set if x
4. Example 2.3.2;
5. Prove that if *C* is a convex co

-
-
-

examples;
2. Characterization in terms of convex combinations;
3. Proof of the fact that $C \setminus \{x\}$ is a convex set if x is an extreme point;
4. Example 2.3.2;
5. Prove that if C is a convex cone, then a nonzero $x \in C$ h 2. Characterization in terms of convex combir

3. Proof of the fact that $C \setminus \{x\}$ is a convex set

4. Example 2.3.2;

5. Prove that if C is a convex cone, then a

chance of being an extreme point;

6. Proposition 2.3 4. Example 2.3.2;
5. Prove that if *C* is a convex cone, then a nonzero $x \in C$ has no
chance of being an extreme point;
6. Proposition 2.3.3;
7. Statement and illustration of Theorem 2.3.4.;
8. Example 2.3.5.
Note: Provid

-
-

1. Definition 2.3.6 of face of a convex set;

Archana Yadav
of a convex set;
pint of a closed convex set if and only if {x} **Archana Yadav**
2. Definition 2.3.6 of face of a convex set;
2. Prove x is an extreme point of a closed convex set if and only if $\{x\}$
is a face of C;
3. Prove transmission of extremality; **Archana Yada**
 1. Definition 2.3.6 of face of a convex set;

2. Prove x is an extreme point of a closed

is a face of C;

3. Prove transmission of extremality;

4. Proposition 2.3.7; **Archana Yadav**
 1. Definition 2.3.6 of face of a convex set;

2. Prove x is an extreme point of a closed convex set if and

is a face of C;

3. Prove transmission of extremality;

4. Proposition 2.3.7;

5. Prove that i **Archana Yadav**

1. Definition 2.3.6 of face of a convex set;

2. Prove x is an extreme point of a closed conve:

is a face of C;

3. Prove transmission of extremality;

4. Proposition 2.3.7;

5. Prove that if F' is a f **Archana Y**
 1. Definition 2.3.6 of face of a convex s

2. Prove x is an extreme point of a clos

is a face of C;

3. Prove transmission of extremality;

4. Proposition 2.3.7;

5. Prove that if F' is a face of F , wh 1. Definition 2.3.6 of face of a convex set;
2. Prove x is an extreme point of a closed c
is a face of C ;
3. Prove transmission of extremality;
4. Proposition 2.3.7;
5. Prove that if F' is a face of F , which is its

1. Definition 2.3.6 of face of a convex set;

2. Prove x is an extreme point of a closed convex set if and only if $\{x\}$

is a face of C;

3. Prove transmission of extremality;

4. Proposition 2.3.7;

5. Prove that if **EXECT 1.** Definition 2.3.6 of face of a convex set;

2. Prove x is an extreme point of a closed convex set if and only if $\{x\}$

is a face of C;

3. Prove transmission of extremality;

4. Proposition 2.3.7;

5. Prove t 2. Prove x is an extreme point of a closed convex set if and only if $\{x \in \mathbb{R}^n : x \in \mathbb{R}^n : x \in \mathbb{R}^n : x \in \mathbb{R}^n \}$

3. Prove transmission of extremality;

4. Proposition 2.3.7;

5. Prove that if F' is a face of Is a face of *C*;

3. Prove transmission of extremality;

4. Proposition 2.3.7;

5. Prove that if F' is a face of F , which is itself a face of C , then F'

face of C ;

6. Justify the remark that relative interior 3. Prove transmission of extremality;
4. Proposition 2.3.7;
5. Prove that if F' is a face of F , which is itself a face of C , then F' is a
face of C ;
6. Justify the remark that relative interiors of a convex set 4. Proposition 2.3.7;

5. Prove that if F' is a face of F , which is itself a fa

face of C ;

6. Justify the remark that relative interiors of a

partition of C ;

7. Example of a set with no face of 1-dimension;

8

From the remark that relative interiors of a convex set C for a partition of C ;

7. Example of a set with no face of 1-dimension;

8. Definition 2.4.1 of supporting hyperplane;

9. Definition 2.4.2 of an exposed face

-
-
-

Veronica Khurana

1. State the properties of projection operator onto a subspace;

Veronica Khurana
2. Discuss projection operator operator onto a subspace;
2. Discuss projection operator on a closed convex set and establish
the existence and uniqueness of point of projection onto a closed
convex set; **Veronica Khurana**
1. State the properties of projection operator onto a subspace;
2. Discuss projection operator on a closed convex set and establish
the existence and uniqueness of point of projection onto a closed
conve **Veronica Khur

1.** State the properties of projection oper

2. Discuss projection operator on a close

the existence and uniqueness of point

convex set;

3. Theorem 3.1.1 with geometrical interp

4. Justification for Rem **Solution:**
 **State the properties of projection operator onto a subspace;

2. Discuss projection operator on a closed convex set and establish

the existence and uniqueness of point of projection onto a closed

convex set Veronica Khurana**

1. State the properties of projection operator onto a subspace

2. Discuss projection operator on a closed convex set and

the existence and uniqueness of point of projection onto

convex set;

3. Theor **Veronica Khurana**
1. State the properties of projection operator on
2. Discuss projection operator on a closed con-
the existence and uniqueness of point of proj
convex set;
3. Theorem 3.1.1 with geometrical interpretatio 1. State the properties of projection operator onto a subspace;
2. Discuss projection operator on a closed convex set and establish
the existence and uniqueness of point of projection onto a closed
convex set;
3. Theorem 3 the existence and uniqueness of point of projection onto a closed
convex set;
3. Theorem 3.1.1 with geometrical interpretation;
4. Justification for Remark 3.1.2;
5. Proposition 3.1.3;
6. Two consequences of Proposition 3.

-
-
-
-

Ashish Yadav
of a cone;
of polarity:

- 1. Definition 3.2.1 of polar of a cone;
-
-

Ashish Yadav
 2. Definition 3.2.1 of polar of a cone;

2. Order reversing property of polarity;

3. Example 3.2.2(a), (b);

4. Polar of the cones $K = \{(x_1, x_2, z): z \ge ||x||\}$ for l_1, l_2 and **Ashish Yadav**
 1. Definition 3.2.1 of polar of a cone;

2. Order reversing property of polarity;

3. Example 3.2.2(a), (b);

4. Polar of the cones $K = \{(x_1, x_2, z): z \ge ||x||\}$ fo

norms with figures; **4.** Definition 3.2.1 of polar of a cone;

2. Order reversing property of polarity;

3. Example 3.2.2(a), (b);

4. Polar of the cones $K = \{(x_1, x_2, z): z \ge ||x||\}$ for l_1, l_2 and l_∞

norms with figures;

5. Proposition **Ashish Yadav**

1. Definition 3.2.1 of polar of a cone;

2. Order reversing property of polarity;

3. Example 3.2.2(a), (b);

4. Polar of the cones $K = \{(x_1, x_2, z) : z \ge$

norms with figures;

5. Proposition 3.2.3;

6. Prop **Ashish Yadav**
1. Definition 3.2.1 of polar of a cone;
2. Order reversing property of polarity;
3. Example 3.2.2(a), (b);
4. Polar of the cones $K = \{(x_1, x_2, z): z \ge ||x$
norms with figures;
5. Proposition 3.2.3;
6. Properties **ASNISN YAGAV**
 1. Definition 3.2.1 of polar of a cone;
 2. Order reversing property of polarity;
 3. Example 3.2.2(a), (b);
 4. Polar of the cones $K = \{(x_1, x_2, z) : z \ge ||x||\}$ for l_1, l_2 ar

norms with figures;
 1. Definition 3.2.1 of polar of a cone;
2. Order reversing property of polarity;
3. Example 3.2.2(a), (b);
4. Polar of the cones $K = \{(x_1, x_2, z) : z \ge$
norms with figures;
5. Proposition 3.2.3;
6. Properties before Theorem 3. Example 3.2.2(a), (b);
4. Polar of the cones $K = \{(x_1, x_2, z) : z \ge ||x||\}$ for l_1, l_2 and l_∞
norms with figures;
5. Proposition 3.2.3;
6. Properties before Theorem 3.2.5;
7. Theorem 3.2.5.
Note: Provide figures wher

-
-
-

Bhawna

- 1. Theorem 4.1.1;
-
-
- **Bhawna**
1. Theorem 4.1.1;
2. Corollary 4.1.3;
3. Support function;
4. Concepts of weak and proper separation; **Bhawna**
1. Theorem 4.1.1;
2. Corollary 4.1.3;
3. Support function;
4. Concepts of weak and proper separation;
5. Statement and illustration of Theorem 4.1
- **Bhawna**
1. Theorem 4.1.1;
2. Corollary 4.1.3;
3. Support function;
4. Concepts of weak and proper separation;
5. Statement and illustration of Theorem 4.1.1. 5. Statement and the University of Theorem 4.1.1;
1. Statement and illustration:
1. Support function:
1. Statement and illustration of Theorem 4.1.1. 1. Theorem 4.1.1;
2. Corollary 4.1.3;
3. Support function;
4. Concepts of weak and proper separation;
5. Statement and illustration of Theorem 4.1.1.
Note: Provide figures wherever possible for clarity

Ruhi Sharma

- 1. Article 4.2(a)
- 2. Lemma 4.2.1;
-
- **Ruhi Sharma**
1. Article 4.2(a)
2. Lemma 4.2.1;
3. Remark 4.2.2;
4. Proposition 4.2.3; **1.** Article 4.2(a)
 Ruhi Sharma
 2. Lemma 4.2.1;
 3. Remark 4.2.2;
 4. Proposition 4.2.3;

1. Article 4.2(a)
2. Lemma 4.2.1;
3. Remark 4.2.2;
4. Proposition 4.2.3;
Note: Provide figures wherever possible for clarity

Rupleen Kaur Ahuja

- 1. Article 4.2(b);
-
-
- **Rupleen Kaur Ahuj**
1. Article 4.2(b);
2. Theorem 4.2.4;
3. Corollary 4.2.5;
4. Definition 4.2.6 of polyhedral sets; **Rupleen Kaur Ahuj**
1. Article 4.2(b);
2. Theorem 4.2.4;
3. Corollary 4.2.5;
4. Definition 4.2.6 of polyhedral sets;
5. Proposition 4.2.7; **4. Anticle 4.2(b);
2. Theorem 4.2.4;
2. Theorem 4.2.4;
3. Corollary 4.2.5;
4. Definition 4.2.6 of polyhedral sets;
5. Proposition 4.2.7; Rupleen Kaur Ahuja**
1. Article 4.2(b);
2. Theorem 4.2.4;
3. Corollary 4.2.5;
4. Definition 4.2.6 of polyhedral sets;
5. Proposition 4.2.7;
-

2. Theorem 4.2.4;
3. Corollary 4.2.5;
4. Definition 4.2.6 of polyhedral sets;
5. Proposition 4.2.7;
Note: Provide figures wherever possible for clarity

Ajit Kumar

- 1. Article 4.2(b);
-
-
- **Ajit Kumar**
1. Article 4.2(b);
2. Theorem 4.2.4;
3. Corollary 4.2.5;
4. Definition 4.2.6 of polyhedral sets; **Ajit Kumar**
1. Article 4.2(b);
2. Theorem 4.2.4;
3. Corollary 4.2.5;
4. Definition 4.2.6 of polyhedral sets;
5. Proposition 4.2.7; 4. Article 4.2(b);

2. Theorem 4.2.4;

3. Corollary 4.2.5;

4. Definition 4.2.6 of polyhedral sets;

5. Proposition 4.2.7; **Ajit Kumar**
1. Article 4.2(b);
2. Theorem 4.2.4;
3. Corollary 4.2.5;
4. Definition 4.2.6 of polyhedral sets;
5. Proposition 4.2.7;
-

2. Theorem 4.2.4;
3. Corollary 4.2.5;
4. Definition 4.2.6 of polyhedral sets;
5. Proposition 4.2.7;
Note: Provide figures wherever possible for clarity

- **Anant Singh
ce the concept in Article 5.1);** 1. Article 5.2 (After I introduce the concept in Article 5.1); **Anant Singh**
1. Article 5.2 (After I introduce the concept in Ar
2. Proposition 5.2.1;
3. Definition 5.2.3 of normal cone;
4. Proposition 5.2.4; **Anant Singh**
 3. Article 5.2 (After I introduce the concept in Article 5.1);

2. Proposition 5.2.1;

3. Definition 5.2.3 of normal cone;

4. Proposition 5.2.4;

5. Corollary 5.2.5; **Anant Singh**

1. Article 5.2 (After I introduce the concept in Ar

2. Proposition 5.2.1;

3. Definition 5.2.3 of normal cone;

4. Proposition 5.2.4;

5. Corollary 5.2.5;

6. Examples 5.2.6(a) and (b). **Anant Singh**
1. Article 5.2 (After I introduce the concept in
2. Proposition 5.2.1;
3. Definition 5.2.3 of normal cone;
4. Proposition 5.2.4;
5. Corollary 5.2.5;
6. Examples 5.2.6(a) and (b). **Anant Singh**
1. Article 5.2 (After I introduce the concept in Article 5.1);
2. Proposition 5.2.1;
3. Definition 5.2.3 of normal cone;
4. Proposition 5.2.4;
5. Corollary 5.2.5;
6. Examples 5.2.6(a) and (b).
-
-
-
-
-

3. Definition 5.2.3 of normal cone;
4. Proposition 5.2.4;
5. Corollary 5.2.5;
6. Examples 5.2.6(a) and (b).
Note: Provide figures wherever possible for clarity

- **Jitendra Singh
ne before Proposition 5.3.1;** 1. Properties of tangent cone before Proposition 5.3.1; **1. Properties of tangent cone before Proposition 5.3.1**
2. Proposition 5.3.1 (i)-(iv);
3. Proposition 5.3.3. **Solution:**
3. Properties of tangent cone before Proposition
3. Proposition 5.3.1 (i)-(iv);
3. Proposition 5.3.3. Solution of the Surfally of the Proposition 5.3.1;

2. Proposition 5.3.1 (i)-(iv);

3. Proposition 5.3.3.

Note: Provide figures wherever possible for clarity
-
-

Rohit Nageshwar

- 1. Definition 1.1.1;
-
- **Rohit Nageshwar**
1. Definition 1.1.1;
2. Proposition 1.1.2;
3. Definitions 1.1.3-1.1.5;
4. Proposition 1.1.6; **Rohit Nageshwar**
1. Definition 1.1.1;
2. Proposition 1.1.2;
3. Definitions 1.1.3-1.1.5;
4. Proposition 1.1.6;
5. Theorem 1.1.8; **Rohit Nageshwar**
 1. Definition 1.1.1;
 2. Proposition 1.1.2;
 3. Definitions 1.1.3-1.1.5;
 4. Proposition 1.1.6;
 5. Theorem 1.1.8;
 6. Proposition 1.1.9. Rohit Nageshwar
1. Definition 1.1.1;
2. Proposition 1.1.2;
3. Definitions 1.1.3-1.1.5;
4. Proposition 1.1.6;
5. Theorem 1.1.8;
6. Proposition 1.1.9. **Rohit Nageshwar**
 1. Definition 1.1.1;
 2. Proposition 1.1.2;
 3. Definitions 1.1.3-1.1.5;
 4. Proposition 1.1.6;
 5. Theorem 1.1.8;
 6. Proposition 1.1.9.
-
-
-

3. Definitions 1.1.3-1.1.5;
4. Proposition 1.1.6;
5. Theorem 1.1.8;
6. Proposition 1.1.9.
Note: Provide figures wherever possible for clarity

Himanshu Bhatt
ntinuity:

- 1. Proposition 1.2.1;
- **Himanshu Bhatt**
1. Proposition 1.2.1;
2. Notion of lower semicontinuity;
3. Proposition 1.2.2;
4. Definitions 1.2.3-1.2.4; **Himanshu Bhatt**
1. Proposition 1.2.1;
2. Notion of lower semicontinuity;
3. Proposition 1.2.2;
4. Definitions 1.2.3-1.2.4;
5. Proposition 1.2.5; **Himanshu Bhatt**
1. Proposition 1.2.1;
2. Notion of lower semicontinuity;
3. Proposition 1.2.2;
4. Definitions 1.2.3-1.2.4;
5. Proposition 1.2.5;
6. Proposition 1.2.6; **Himanshu Bhatt**
1. Proposition 1.2.1;
2. Notion of lower semicontinuity;
3. Proposition 1.2.2;
4. Definitions 1.2.3-1.2.4;
5. Proposition 1.2.5;
6. Proposition 1.2.6;
7. Notation 1.2.7. **Himanshu Bhatt**
1. Proposition 1.2.1;
2. Notion of lower semicontinuity;
3. Proposition 1.2.2;
4. Definitions 1.2.3-1.2.4;
5. Proposition 1.2.5;
6. Proposition 1.2.6;
7. Notation 1.2.7. THIMATISHE DITATE:
1. Proposition 1.2.1;
2. Notion of lower semicontinuity;
3. Proposition 1.2.2;
4. Definitions 1.2.3-1.2.4;
5. Proposition 1.2.5;
6. Proposition 1.2.6;
7. Notation 1.2.7.
-
-
-
-
-

4. Definitions 1.2.3-1.2.4;
5. Proposition 1.2.5;
6. Proposition 1.2.6;
7. Notation 1.2.7.
Note: Provide figures wherever possible for clarity

Mohit

- 1. Article 1.3(a);
-
- **Mohit**
1. Article 1.3(a);
2. Article 1.3(b);
3. Article 1.3(c);
4. Article 1.3(d).
- **Mohit**
1. Article 1.3(a);
2. Article 1.3(b);
3. Article 1.3(c);
4. Article 1.3(d). **Mohit**
1. Article 1.3(a);
2. Article 1.3(b);
3. Article 1.3(c);
4. Article 1.3(d).

1. Article 1.3(a);
2. Article 1.3(b);
3. Article 1.3(c);
4. Article 1.3(d).
Note: Provide figures wherever possible for clarity

Gurudatt Rao

- 1. Article 1.3(g);
-
- **Gurudatt Rao**

1. Article 1.3(g);

2. Theorem 1.3.1;

3. Proposition 2.1.1;

4. Proposition 2.1.2;
- **Gurudatt Rao**
1. Article 1.3(g);
2. Theorem 1.3.1;
3. Proposition 2.1.1;
4. Proposition 2.1.2;
5. Proposition 2.1.5;
- **Gurudatt Rao**

1. Article 1.3(g);

2. Theorem 1.3.1;

3. Proposition 2.1.1;

4. Proposition 2.1.2;

5. Proposition 2.1.5;

6. Proposition 2.1.6.
- **Gurudatt Rao**
1. Article 1.3(g);
2. Theorem 1.3.1;
3. Proposition 2.1.1;
4. Proposition 2.1.2;
5. Proposition 2.1.5;
6. Proposition 2.1.6. **Gurudatt Rao**
1. Article 1.3(g);
2. Theorem 1.3.1;
3. Proposition 2.1.1;
4. Proposition 2.1.2;
5. Proposition 2.1.5;
6. Proposition 2.1.6.

3. Proposition 2.1.1;
4. Proposition 2.1.2;
5. Proposition 2.1.5;
6. Proposition 2.1.6.
Note: Provide figures wherever possible for clarity

Majhar Alam

- 1. Definition 2.3.1;
-
-
- **Majhar Alam**
1. Definition 2.3.1;
2. Proposition 2.3.2;
3. Remark 2.3.3;
4. Properties before Remark 2.3.4; **Majhar Alam**
1. Definition 2.3.1;
2. Proposition 2.3.2;
3. Remark 2.3.3;
4. Properties before Remark 2.3.4;
5. Remark 2.3.4; Ma**jhar Alam**
1. Definition 2.3.1;
2. Proposition 2.3.2;
3. Remark 2.3.3;
4. Properties before Remark 2.3.4;
5. Remark 2.3.4;
6. Example 2.3.5. Ma**jhar Alam**
1. Definition 2.3.1;
2. Proposition 2.3.2;
3. Remark 2.3.3;
4. Properties before Remark 2.3.4;
5. Remark 2.3.4;
6. Example 2.3.5. Majhar Alam

1. Definition 2.3.1;

2. Proposition 2.3.2;

3. Remark 2.3.3;

4. Properties before Remark 2.3.4;

5. Remark 2.3.4;

6. Example 2.3.5.
-
-

3. Remark 2.3.3;
4. Properties before Remark 2.3.4;
5. Remark 2.3.4;
6. Example 2.3.5.
Note: Provide figures wherever possible for clarity

Monika

- 1. Lemma 3.1.1;
- **Monika**
1. Lemma 3.1.1;
2. Theorem 3.1.2;
3. Remark 3.1.3. **Monika**
1. Lemma 3.1.1;
2. Theorem 3.1.2;
3. Remark 3.1.3.
-

Monika
1. Lemma 3.1.1;
2. Theorem 3.1.2;
3. Remark 3.1.3.
Note: Provide figures wherever possible for clarity

Sachin Kumar **Sachin Kumar**
1. Theorem 3.1.5;
2. Theorem 4.1.1;
3. Definition 4.1.3;
4. Theorem 4.1.4. **Sachin Kumar**
1. Theorem 3.1.5;
2. Theorem 4.1.1;
3. Definition 4.1.3;
4. Theorem 4.1.4. **Sachin Kumar**
1. Theorem 3.1.5;
2. Theorem 4.1.1;
3. Definition 4.1.3;
4. Theorem 4.1.4.

- 1. Theorem 3.1.5;
-
-
-

Sachin Kumar
1. Theorem 4.1.1;
2. Theorem 4.1.1;
4. Theorem 4.1.4.
Note: Provide figures wherever possible for clarity