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A Property of Closed convex Cone
Theorem A closed convex cone is the set of directions along which one 
can go upto infinity from any point of the cone.
Proof Let be a closed convex cone and We need to prove

௡ .
For simplicity, let us represent the set on the right side by .
Let Since is a convex cone we have 

.
Conversely, let . Then . Hence,

ଵ

௧
, .

As K is a cone we have
ଵ

௧
, .

As is closed we have 



Cone
Theorem A closed convex cone is the set of directions along
which one can go upto infinity from any point of the cone.

What if is not closed?
௡ .

Let int ା
ଶ then
௡

ା
ଶ .

What if is not convex?
௡ .

Let ା
ଶ

ା
ଶ then

for ା
ଶ

𝑲

𝒙

𝑲



Asymptotic Cone 
Let be a nonempty closed convex set in ௡. For let

ஶ
௡ .

Theorem Let be a nonempty closed convex set in ௡ and Then
ஶ is a closed convex cone.

Proof As it is clear that ஶ

Let ௞ be a sequence in ஶ such that ௞ As ௞ ஶ we
have

௞ .
Taking limit as we have

, .
As is a closed set we have ஶ

Claim ஶ is a cone 
Let ஶ and As ஶ we have

, .
As we have

, .
Hence, ஶ . 



continued
Claim ஶ is convex
Let ଵ ଶ ஶ Hence, ଵ ଶ . 
As is convex for we have 

ଵ ଶ

which implies that
ଵ ଶ .

Theorem Let be a nonempty closed convex set in ௡ and . The closed
convex cone ஶ does not depend on .
Proof Let ଵ ଶ ଵ ଶ.
Claim ஶ ଵ ஶ ଶ

Let ஶ ଵ and . Let As ஶ ଵ we have

ଵ
௧

ఌ
.

As is convex we have

ଵ ଶ

that is, 
ଵ ଶ .

Taking limit as , and using the fact that is closed we have 
ଶ

hence ஶ ଶ .



Asymptotic/Recession Cone
The asymptotic, or recession cone of a closed convex set is the
closed cone defined as

for any 

ஶ



Asymptotic/Recession Cone

.

(𝟒, 𝟏)

(−𝟑, 𝟓)



Compactness of Asymptotic Cone
Theorem A closed convex set is compact if and only if ஶ .
Proof If is bounded then ஶ as cannot contain any nonzero
direction.

Conversely, let ஶ . Suppose on the contrary ஶ is not bounded.
Then there exists a sequence ௞ such that

௞ ௞

Define ௞
௫ೖ

௫ೖ
. As ௞ is bounded we can extract a convergent

subsequence ௞೗ such that ௞೗ with Given and
take large such that ௞ Then

௧

௫ೖ೗

௧

௫ೖ೗
௞೗ .

Hence

௟→ஶ ௞೗ ௞೗
௞೗

Hence, ஶ which is a contradiction as ஶ . 



Nested Sequences

Theorem If then 
భ మ

.

Proof Let
మ

. Then
మ

for some Now

where భ

మ

మ భ

మ
as is a convex set. Hence,

భ భ
.



Asymptotic Cone of Intersection of Convex Sets

Theorem If is a family of closed convex sets such that 

then

.

Proof Let . Then for ,
. Hence,

for where .

This implies that for . Hence, .

Conversely, let . Let . Then and       

for . Hence, for . Hence,

for 

which implies that .



Asymptotic Cone and Affine Map

Theorem Let be a linear operator. If is a closed convex 
set in and is closed then

.
Proof Let . Then where . Let
Hence for some Now , implies that

for .
This implies that 

for .
As is linear we have

for .
Hence,

for 
which implies that .
What if is not linear but affine? Give an example.
Give an example to show the containment is proper. 



Asymptotic Cone and Affine Map

Theorem Let be a linear operator. If is a closed convex 
set in with then

.
Proof Do it yourself.
Theorem If for are closed convex sets in  ೕ then

… .
Proof Do it yourself.
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