R-07 Convex and Nonsmooth Analysis

A Property of Closed convex Cone

Theorem A closed convex cone is the set of directions along which one can go upto infinity from any point of the cone.

Proof Let *K* be a closed convex cone and $x \in K$. We need to prove

$$K = \{ d \in \mathbb{R}^n : x + td \in K, \forall t > 0 \}.$$

For simplicity, let us represent the set on the right side by A.

Let $d \in K$. Since K is a convex cone we have

 $x + td \in K, \forall t > 0.$

Conversely, let $d \in A$. Then $x + td \in K$, $\forall t > 0$. Hence,

$$d \in \frac{1}{t}(K-x), \forall t > 0.$$

As *K* is a cone we have

$$d \in K - \frac{1}{t}x, \forall t > 0.$$

As *K* is closed we have

$$d \in clK = K.$$

Cone

Theorem A closed convex cone is the set of directions along which one can go upto infinity from any point of the cone.

What if *K* is not closed? $K \subseteq \{d \in \mathbb{R}^n : x + td \in K, \forall t > 0\}.$ Let $K = int\mathbb{R}^2_+$ then $A = \{d \in \mathbb{R}^n : x + td \in K, \forall t > 0\} = \mathbb{R}^2_+.$

What if *K* is not convex?

 $K \supseteq \{ d \in \mathbb{R}^n : x + td \in K, \forall t > 0 \}.$ Let $K = \mathbb{R}^2_+ \cup (-\mathbb{R}^2_+)$ then for $x = (1,1) \in K$ we have $A = \mathbb{R}^2_+.$

Asymptotic Cone

Let C be a nonempty closed convex set in \mathbb{R}^n . For $x \in C$ let

 $C_{\infty}(x) := \{ d \in \mathbb{R}^n : x + td \in C, \forall t > 0 \}.$

Theorem Let *C* be a nonempty closed convex set in \mathbb{R}^n and $x \in C$. Then $C_{\infty}(x)$ is a closed convex cone.

Proof As $x \in C$ it is clear that $0 \in C_{\infty}(x)$.

Let $\{d_k\}$ be a sequence in $C_{\infty}(x)$ such that $d_k \to d$. As $d_k \in C_{\infty}(x)$ we have

 $x + td_k \in C, \forall t > 0.$

Taking limit as $k \to \infty$ we have

 $x + td \in clC, \forall t > 0.$ As *C* is a closed set we have $d \in C_{\infty}(x)$. Claim $C_{\infty}(x)$ is a cone Let $d \in C_{\infty}(x)$ and $\lambda > 0$. As $d \in C_{\infty}(x)$ we have $x + td \in C, \forall t > 0.$

As $\lambda t > 0$ we have

 $x + t(\lambda d) \in C, \forall t > 0.$

Hence, $\lambda d \in C_{\infty}(x)$.

continued

Claim $C_{\infty}(x)$ is convex

Let $d_1, d_2 \in C_{\infty}(x)$. Hence, $x + td_1 \in C, x + td_2 \in C, \forall t > 0$.

As *C* is convex for $\lambda \in [0,1]$ we have

$$\lambda(x+td_1)+(1-\lambda)(x+td_2)\in C, \forall t>0$$

which implies that

$$x + t(\lambda d_1 + (1 - \lambda)d_2) \in C, \forall t > 0.$$

Theorem Let *C* be a nonempty closed convex set in \mathbb{R}^n and $x \in C$. The closed convex cone $C_{\infty}(x)$ does not depend on $x \in C$.

Proof Let
$$x_1, x_2 \in C, x_1 \neq x_2$$
.
Claim $C_{\infty}(x_1) \subseteq C_{\infty}(x_2)$
Let $d \in C_{\infty}(x_1)$ and $t > 0$. Let $\varepsilon \in (0,1)$. As $d \in C_{\infty}(x_1)$ we have
 $x_1 + \frac{t}{\varepsilon} d \in C$.

As C is convex we have

$$\varepsilon \left(x_1 + \frac{t}{\varepsilon} d \right) + (1 - \varepsilon) x_2 \in C$$

that is,

$$\varepsilon x_1 + td + (1-\varepsilon)x_2 \in C.$$

Taking limit as $\varepsilon \to 0 +$, and using the fact that *C* is closed we have $x_2 + td \in clC = C$

hence $d \in C_{\infty}(x_2)$.

Asymptotic/Recession Cone

The asymptotic, or recession cone of a closed convex set C is the closed cone C_{∞} defined as

 $C_{\infty} := \{ d \in \mathbb{R}^n : x + td \in C, \forall t > 0 \}$

for any $x \in C$.

Asymptotic/Recession Cone

$$C_{\infty} = \{ d \in \mathbb{R}^n : x + td \in C, \forall t > 0 \}$$
$$= \bigcap_{t>0} \frac{C-x}{t}.$$

Compactness of Asymptotic Cone

Theorem A closed convex set C is compact if and only if $C_{\infty} = \{0\}$.

Proof If C is bounded then $C_{\infty} = \{0\}$ as C cannot contain any nonzero direction.

Conversely, let $C_{\infty} = \{0\}$. Suppose on the contrary C_{∞} is not bounded. Then there exists a sequence $\{x_k\} \subseteq C$ such that

$$||x_k|| \to +\infty, x_k \neq 0.$$

Define $d_k = \frac{x_k}{\|x_k\|}$. As $\{d_k\}$ is bounded we can extract a convergent subsequence $\{d_{k_l}\}$ such that $d_{k_l} \rightarrow d$ with $\|d\| = 1$. Given $x \in C$ and t > 0 take k large such that $\|x_k\| \ge t$. Then

$$\left(1-\frac{t}{\left\|x_{k_{l}}\right\|}\right)x+\frac{t}{\left\|x_{k_{l}}\right\|}x_{k_{l}}\in C.$$

Hence

$$x + td = \lim_{l \to \infty} \left[\left(1 - \frac{t}{\|x_{k_l}\|} \right) x + \frac{t}{\|x_{k_l}\|} x_{k_l} \right] \in clC = C.$$

Hence, $0 \neq d \in C_{\infty}$ which is a contradiction as $C_{\infty} = \{0\}$.

Nested Sequences

Theorem If
$$t_1 < t_2$$
 then $\frac{C-x}{t_1} \supseteq \frac{C-x}{t_2}$.
Proof Let $z \in \frac{C-x}{t_2}$. Then $z = \frac{y-x}{t_2}$ for some $y \in C$. Now
 $z = \frac{y-x}{t_2} = \frac{1}{t_1} \left(\frac{t_1(y-x)}{t_2} + x - x \right)$
 $= \frac{1}{t_1} \left(\frac{t_1}{t_2} y + \frac{(t_2-t_1)}{t_2} x - x \right)$
 $= \frac{1}{t_1} \left(y' - x \right)$

where $y' = \frac{t_1}{t_2}y + \frac{(t_2 - t_1)}{t_2}x \in C$ as C is a convex set. Hence, $z = \frac{1}{t_1}(y' - x) \in \frac{C - x}{t_1}.$

Asymptotic Cone of Intersection of Convex Sets

Theorem If $\{C_j\}_{j \in J}$ is a family of closed convex sets such that $\bigcap_{j \in J} C_j \neq \emptyset$ then

$$\left(\bigcap_{j\in J}C_{j}\right)_{\infty}=\bigcap_{j\in J}(C_{j})_{\infty}.$$

Proof Let $d \in (\bigcap_{j \in J} C_j)_{\infty}$. Then $x + td \in \bigcap_{j \in J} C_j$ for t > 0, $x \in \bigcap_{j \in J} C_j$. Hence,

 $x + td \in C_i$ for $t > 0, j \in J$ where $x \in C_i$.

This implies that $d \in (C_j)_{\infty}$ for $j \in J$. Hence, $d \in \bigcap_{j \in J} (C_j)_{\infty}$.

Conversely, let $d \in \bigcap_{j \in J} (C_j)_{\infty}$. Let $x \in \bigcap_{j \in J} C_j$. Then $x \in C_j$ and $d \in (C_j)_{\infty}$ for $j \in J$. Hence, $x + td \in C_j$ for $t > 0, j \in J$. Hence, $x + td \in \bigcap_{j \in J} C_j$ for t > 0which implies that $d \in (\bigcap_{i \in J} C_j)_{\infty}$.

Asymptotic Cone and Affine Map

Theorem Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear operator. If *C* is a closed convex set in \mathbb{R}^n and A(C) is closed then

$$A(\mathcal{C}_{\infty}) \subseteq [A(\mathcal{C})]_{\infty}.$$

Proof Let $d \in A(C_{\infty})$. Then d = A(p) where $p \in C_{\infty}$. Let $y \in A(C)$. Hence y = A(x) for some $x \in C$. Now $x \in C$, $p \in C_{\infty}$ implies that $x + tp \in C$ for t > 0.

This implies that

$$A(x + tp) \in A(C)$$
 for $t > 0$.

As A is linear we have

$$A(x) + tA(p) \in A(C) \text{ for } t > 0.$$

Hence,

$$y + td \in A(C)$$
 for $t > 0$

which implies that $d \in [A(C)]_{\infty}$.

What if A is not linear but affine? Give an example.

Give an example to show the containment is proper.

Asymptotic Cone and Affine Map

Theorem Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear operator. If D is a closed convex set in \mathbb{R}^m , with $A^{-1}(D) \neq \emptyset$ then

$$[A^{-1}(D)]_{\infty} = A^{-1}(D_{\infty}).$$

Proof Do it yourself.

Theorem If for j = 1, 2, ..., m, C_j are closed convex sets in \mathbb{R}^{n_j} then

$$(C_1 \times C_2 \times \cdots \times C_m)_{\infty} = (C_1)_{\infty} \times (C_2)_{\infty} \times \ldots \times (C_m)_{\infty}.$$

Proof Do it yourself.

Avanindra Pratap Singh

1. Definition 2.3.1 of extreme points of a closed convex set with few examples;

- 2. Characterization in terms of convex combinations;
- 3. Proof of the fact that $C \setminus \{x\}$ is a convex set if x is an extreme point;
- 4. Example 2.3.2;

5. Prove that if C is a convex cone, then a nonzero $x \in C$ has no chance of being an extreme point;

- 6. Proposition 2.3.3;
- 7. Statement and illustration of Theorem 2.3.4.;

8. Example 2.3.5.

Archana Yadav

1. Definition 2.3.6 of face of a convex set;

2. Prove x is an extreme point of a closed convex set if and only if $\{x\}$ is a face of C;

- 3. Prove transmission of extremality;
- 4. Proposition 2.3.7;

5. Prove that if F' is a face of F, which is itself a face of C, then F' is a face of C;

6. Justify the remark that relative interiors of a convex set C for a partition of C;

- 7. Example of a set with no face of 1-dimension;
- 8. Definition 2.4.1 of supporting hyperplane;
- 9. Definition 2.4.2 of an exposed face of a convex set;
- 10. Proposition 2.4.3.

Veronica Khurana

1. State the properties of projection operator onto a subspace;

2. Discuss projection operator on a closed convex set and establish the existence and uniqueness of point of projection onto a closed convex set;

- 3. Theorem 3.1.1 with geometrical interpretation;
- 4. Justification for Remark 3.1.2;
- 5. Proposition 3.1.3;
- 6. Two consequences of Proposition 3.1.3.

Ashish Yadav

- 1. Definition 3.2.1 of polar of a cone;
- 2. Order reversing property of polarity;
- 3. Example 3.2.2(a), (b);

4. Polar of the cones $K = \{(x_1, x_2, z): z \ge ||x||\}$ for l_1, l_2 and l_{∞} norms with figures;

- 5. Proposition 3.2.3;
- 6. Properties before Theorem 3.2.5;
- 7. Theorem 3.2.5.

Bhawna

- 1. Theorem 4.1.1;
- 2. Corollary 4.1.3;
- 3. Support function;
- 4. Concepts of weak and proper separation;
- 5. Statement and illustration of Theorem 4.1.1.

Ruhi Sharma

- 1. Article 4.2(a)
- 2. Lemma 4.2.1;
- 3. Remark 4.2.2;
- 4. Proposition 4.2.3;

Rupleen Kaur Ahuja

- 1. Article 4.2(b);
- 2. Theorem 4.2.4;
- 3. Corollary 4.2.5;
- 4. Definition 4.2.6 of polyhedral sets;
- 5. Proposition 4.2.7;

Ajit Kumar

- 1. Article 4.2(b);
- 2. Theorem 4.2.4;
- 3. Corollary 4.2.5;
- 4. Definition 4.2.6 of polyhedral sets;
- 5. Proposition 4.2.7;

Anant Singh

- 1. Article 5.2 (After I introduce the concept in Article 5.1);
- 2. Proposition 5.2.1;
- 3. Definition 5.2.3 of normal cone;
- 4. Proposition 5.2.4;
- 5. Corollary 5.2.5;
- 6. Examples 5.2.6(a) and (b).

Jitendra Singh

- 1. Properties of tangent cone before Proposition 5.3.1;
- 2. Proposition 5.3.1 (i)-(iv);
- 3. Proposition 5.3.3.

Rohit Nageshwar

- 1. Definition 1.1.1;
- 2. Proposition 1.1.2;
- 3. Definitions 1.1.3-1.1.5;
- 4. Proposition 1.1.6;
- 5. Theorem 1.1.8;
- 6. Proposition 1.1.9.

Himanshu Bhatt

- 1. Proposition 1.2.1;
- 2. Notion of lower semicontinuity;
- 3. Proposition 1.2.2;
- 4. Definitions 1.2.3-1.2.4;
- 5. Proposition 1.2.5;
- 6. Proposition 1.2.6;
- 7. Notation 1.2.7.

Mohit

- 1. Article 1.3(a);
- 2. Article 1.3(b);
- 3. Article 1.3(c);
- 4. Article 1.3(d).

Gurudatt Rao

- 1. Article 1.3(g);
- 2. Theorem 1.3.1;
- 3. Proposition 2.1.1;
- 4. Proposition 2.1.2;
- 5. Proposition 2.1.5;
- 6. Proposition 2.1.6.

Majhar Alam

- 1. Definition 2.3.1;
- 2. Proposition 2.3.2;
- 3. Remark 2.3.3;
- 4. Properties before Remark 2.3.4;
- 5. Remark 2.3.4;
- 6. Example 2.3.5.

Monika

- 1. Lemma 3.1.1;
- 2. Theorem 3.1.2;
- 3. Remark 3.1.3.

Sachin Kumar

- 1. Theorem 3.1.5;
- 2. Theorem 4.1.1;
- 3. Definition 4.1.3;
- 4. Theorem 4.1.4.