R-07 Convex and Nonsmooth Analysis

Relative interior operation does not distinguish ri*C*, *C* and cl*C Theorem* If *C* is a nonempty convex set in \mathbb{R}^n then

ri(riC) = riC = ri(clC).

Proof It is enough to prove ri(clC) = riC.

Since $C \subseteq clC$ and affC = aff(clC) it follows that $riC \subseteq ri(clC)$.

Let $y \in ri(c|C)$. Since $riC \neq \emptyset$ we can find $x' \in riC$.

If y = x' then $y \in riC$ and we are done. Let $y \neq x'$.

Since $x' \in riC \subseteq clC$ and $y \in ri(clC)$ by the stretching process there exists $x \in clC$ such that

$$[x, x'] \subseteq clC$$
 and $y \in]x, x'[$.

Now $x' \in \operatorname{ri} C$ and $x \in \operatorname{cl} C$ hence by absorption property $]x, x'] \subseteq \operatorname{ri} C$. This implies that $y \in]x, x'[\subseteq]x, x'] \subseteq \operatorname{ri} C$.

What if *C* is not convex?

Theorem If C is a nonempty convex set in \mathbb{R}^n then cl(riC) = clC = cl(clC).

Theorem If *C* is a nonempty convex set in \mathbb{R}^n then

$$ri(riC) = riC = ri(clC).$$

 $C = \mathbb{Q},$

 $intC = \emptyset,$ cl $C = \mathbb{R} = int(clC)$

Property of Relative Interior

Theorem Let C_1 and C_2 be two convex set in \mathbb{R}^n such that $riC_1 \cap riC_2 \neq \emptyset$. Then

i) $\operatorname{cl}(C_1 \cap C_2) = \operatorname{cl}C_1 \cap \operatorname{cl}C_2$,

ii) $\operatorname{ri}(C_1 \cap C_2) = \operatorname{ri}C_1 \cap \operatorname{ri}C_2$.

Proof We observe that $C_1 \cap C_2 \neq \emptyset$ as $\operatorname{ri} C_1 \cap \operatorname{ri} C_2 \neq \emptyset$.

i) Clearly, $C_1 \cap C_2 \subseteq clC_1 \cap clC_2$, which implies that

 $cl(\mathcal{C}_1 \cap \mathcal{C}_2) \subseteq cl\mathcal{C}_1 \cap cl\mathcal{C}_2.$

Let $x \in clC_1 \cap clC_2$. Since $riC_1 \cap riC_2 \neq \emptyset$ we can find $x' \in riC_1 \cap riC_2$. If x = x' then $x \in riC_1 \cap riC_2 \subseteq C_1 \cap C_2 \subseteq cl(C_1 \cap C_2)$ and we are done. Let $x \neq x'$. By absorption property

$$]x, x'] \subseteq \operatorname{ri} \mathcal{C}_1 \cap \operatorname{ri} \mathcal{C}_2.$$

Hence

$$x \in [x, x'] \subseteq cl(riC_1 \cap riC_2) \subseteq cl(C_1 \cap C_2).$$

Hence, $\operatorname{cl} C_1 \cap \operatorname{cl} C_2 \subseteq \operatorname{cl} (C_1 \cap C_2)$.

ii) By part i) applied to the sets riC_1 and riC_2 . $cl(riC_1 \cap riC_2) = cl(riC_1) \cap cl(riC_2) = clC_1 \cap clC_2$. Also,

$$\mathrm{cl}C_1 \cap \mathrm{cl}C_2 = \mathrm{cl}(C_1 \cap C_2).$$

Hence,

$$\operatorname{cl}(\operatorname{ri} C_1 \cap \operatorname{ri} C_2) = \operatorname{cl}(C_1 \cap C_2).$$

This implies that

 $ri(cl(riC_1 \cap riC_2)) = ri(cl(C_1 \cap C_2)).$ As ri(clA) = riA, for any set A we have $ri(riC_1 \cap riC_2) = ri(C_1 \cap C_2).$ As $ri(riC_1 \cap riC_2) \subseteq riC_1 \cap riC_2$ we have $ri(C_1 \cap C_2) \subseteq riC_1 \cap riC_2.$

Claim $\operatorname{ri} C_1 \cap \operatorname{ri} C_2 \subseteq \operatorname{ri} (C_1 \cap C_2)$

Let $y \in \operatorname{ri} C_1 \cap \operatorname{ri} C_2$. Let $x' \in \operatorname{ri} (C_1 \cap C_2)$. If y = x' then $y \in \operatorname{ri} (C_1 \cap C_2)$ and we are done. Let $y \neq x'$.

Since $x' \in C_1$ and $y \in riC_1$ there exists $u \in C_1$ such that

 $[u, x'] \subseteq C_1 \text{ and } y \in]u, x'[.$

Since $x' \in C_2$ and $y \in \operatorname{ri} C_2$ there exists $v \in C_2$ such that $[v, x'] \subseteq C_2$ and $y \in [v, x']$.

If $[v, x'] \subseteq [u, x']$ we choose x = v and if $[u, x'] \subseteq [v, x']$ we choose x = u. Hence,

 $[x, x'] \subseteq C_1 \cap C_2 \text{ and } y \in]x, x'[.$ As $x' \in \operatorname{ri}(C_1 \cap C_2)$ and $x \in C_1 \cap C_2$ by the absorption property on $C_1 \cap C_2$ we have $[x, x'] \subseteq \operatorname{ri}(C_1 \cap C_2).$ As $y \in]x, x'[$ it follows that $y \in \operatorname{ri}(C_1 \cap C_2).$

What if $riC_1 \cap riC_2 = \emptyset$?

Theorem Let C_1 and C_2 be two convex set in \mathbb{R}^n such that $riC_1 \cap riC_2 \neq \emptyset$. Then

i) $\operatorname{cl}(C_1 \cap C_2) = \operatorname{cl}C_1 \cap \operatorname{cl}C_2$, ii) $\operatorname{ri}(C_1 \cap C_2) = \operatorname{ri}C_1 \cap \operatorname{ri}C_2$.

i) $C_1 = [0,1]$ and $C_2 = \{0\}$ be two convex set in \mathbb{R} ri $C_1 \cap riC_2 = \emptyset$ as ri $C_1 = [0,1[,riC_2 = \{0\}]$. cl $(C_1 \cap C_2) = \emptyset$, cl $C_1 \cap clC_2 = \{0\}$.

ii) $C_1 = [0,1]$ and $C_2 = \{0\}$ be two convex set in \mathbb{R} ri $C_1 \cap riC_2 = \emptyset$ as ri $C_1 =]0,1[,riC_2 = \{0\}.$ ri $(C_1 \cap C_2) = \{0\}, riC_1 \cap riC_2 = \emptyset.$

Monotonicity again

Lemma If $A \subseteq B$ and affA = affB then $riA \subseteq riB$. Lemma If $A \subseteq B$ and $riA \cap riB \neq \emptyset$ then $riA \subseteq riB$. Proof We have $ri(A \cap B) = riA \cap riB$. As $A \cap B = A$ we have $riA = ri(A \cap B) = riA \cap riB$

 \subseteq ri*B*.

Properties of Relative Interior

Theorem If C_i , i = 1, 2, ..., k are convex sets in \mathbb{R}^{n_i} , i = 1, 2, ..., k then

 $\operatorname{ri}(C_1 \times C_2 \times \ldots \times C_k) = (\operatorname{ri}C_1) \times (\operatorname{ri}C_2) \times \cdots \times (\operatorname{ri}C_k).$

Theorem Let $A : \mathbb{R}^n \to \mathbb{R}^m$ be an affine map and C be a nonempty convex set in \mathbb{R}^n . Then

 $\operatorname{ri}[A(C)] = A[\operatorname{ri} C].$

If *D* is a convex set in \mathbb{R}^m such that $A^{-1}(\operatorname{ri} D) \neq \emptyset$ then ri $[A^{-1}(D)] = A^{-1}(\operatorname{ri} D)$

where $A^{-1}(D) = \{x \in \mathbb{R}^n : A(x) \in D\}.$

Proof First show that for a set S in \mathbb{R}^n

 $A(\mathrm{cl}S) \subseteq \mathrm{cl}(A(S)).$

Claim ri[A(C)] ⊆ A[riC].

$$A(C) \subseteq A(clC) = A(cl(riC))$$
$$\subseteq cl(A(riC)) \subseteq cl(A(C)).$$

Taking closure operation

$$cl(A(C)) = cl(A(riC))$$

which implies

$$\operatorname{ri}\left(\operatorname{cl}(A(C))\right) = \operatorname{ri}(\operatorname{cl}(A(\operatorname{ri} C))).$$

Hence

$$\operatorname{ri}(A(C)) = \operatorname{ri}(A(\operatorname{ri}C)) \subseteq A[\operatorname{ri}C].$$

Claim $A[\operatorname{ri}C] \subseteq \operatorname{ri}[A(C)].$
Let $w = A(y) \in A[\operatorname{ri}C].$
Choose $z' = A(x') \in \operatorname{ri}[A(C)].$
If $z' = w$ then we are done.
Let $z' \neq w$ then $x' \neq y$. Since $x' \in C, y \in \operatorname{ri}C$ by stretching process
there exists $x \in C$ such that $y \in]x, x'[$.

Since A is affine $A(y) \in [A(x), A(x')] = [z, z']$. Since $z' \in \operatorname{ri}[A(C)], z \in A(C)$ by absorption property it follows that $[z, z'] \subseteq \operatorname{ri}[A(C)]$ and hence $A(y) \in \operatorname{ri}[A(C)]$. ii) Do it yourself.

Corollary Let C_1 and C_2 be two convex set in \mathbb{R}^n and $\alpha_1, \alpha_2 \in \mathbb{R}$. Then

$$\operatorname{ri}(\alpha_1 C_1 + \alpha_2 C_2) = \alpha_1 \operatorname{ri} C_1 + \alpha_2 \operatorname{ri} C_2.$$

Note $\operatorname{ri}(C_1 - C_2) = \operatorname{ri}C_1 - \operatorname{ri}C_2$.

Note $0 \in \operatorname{ri}(\mathcal{C}_1 - \mathcal{C}_2) \Leftrightarrow 0 \in \operatorname{ri}\mathcal{C}_1 - \operatorname{ri}\mathcal{C}_2 \Leftrightarrow \operatorname{ri}\mathcal{C}_1 \cap \operatorname{ri}\mathcal{C}_2 \neq \emptyset$.