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PREFACE 

This is an expanded version of a course given for a number of years at the 
California Institute of Technology. It was designed for applied mathema-
tics students in the first and second years of graduate study; it appears to 
have been equally useful for students in engineering and physics. 

The presentation is intended to be self-contained but both the order 
chosen for the topics and the level adopted suppose previous experience 
with the elementary aspects of linear wave propagation. The aim is to 
cover all the major well-established ideas but, at the same time, to 
emphasize nonlinear theory from the outset and to introduce the very 
active research areas in this field. The material covered is outlined in detail 
in Chapter 1. The mathematical development of the subject is combined 
with considerable discussion of applications. For the most part previous 
detailed knowledge of a field of application is not assumed; the relevant 
physical ideas and derivation of basic equations are given in depth. The 
specific mathematical background required is familiarity with transform 
techniques, methods for the asymptotic expansion of integrals, solutions of 
standard boundary value problems and the related topics that are usually 
referred to collectively as "mathematical methods." 

Parts of the account are drawn from research supported over the last 
several years by the Office of Naval Research. It is a pleasure to express 
my gratitude to the people there, particularly to Leila Bram and Stuart 
Brodsky. 

My special thanks to Vivian Davies and Deborah Massey who typed the 
manuscript and cheerfully put up with my constant rewrites and changes. 

G. B. WHITHAM 

Pasadena, California 
December 1973 
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CHAPTER 1 

Introduction and General Outline 

Wave motion is one of the broadest scientific subjects and unusual in 
that it can be studied at any technical level. The behavior of water waves 
and the propagation characteristics of light and sound are familiar from 
everyday experience. Modern problems such as sonic booms or moving 
bottlenecks in traffic are necessarily of general interest. All these can be 
appreciated in a descriptive way without any technical knowledge. On the 
other hand they are also intensively studied by specialists, and almost any 
field of science or engineering involves some questions of wave motion. 

There has been a correspondingly rich development of mathematical 
concepts and techniques to understand the phenomena from the theoreti-
cal standpoint and to solve the problems that arise. The details in any 
particular application may be different and some topics will have their own 
unique twists, but a fairly general overall view has been developed. This 
book is an account of the underlying mathematical theory with emphasis 
on the unifying ideas and the main points that illuminate the behavior of 
waves. Most of the typical techniques for solving problems are presented, 
but these are not pursued beyond the point where they cease to give 
information about the nature of waves and become exercises in 
"mathematical methods," difficult and intriguing as these may be. This 
applies particularly to linear wave problems. Important and fundamental 
properties of linear theory which are basic to the understanding of waves 
must be covered. But one could then fill volumes with solutions and 
techniques for specific problems. This is not the purpose of the book. 
Although the basic material on linear waves is included, some previous 
experience with linear theory is assumed and the emphasis is on the 
conceptually more difficult nonlinear theory. The study of nonlinear waves 
started over a hundred years ago with the pioneering work of Stokes (1847, 
1848) and Riemann (1858), and it has proceeded at an accelerating pace, with 
considerable development in recent years. The purpose here is to give a 
unified treatment of this body of material. 

The mathematical ideas are liberally interspersed with discussion of 
1 
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2 INTRODUCTION AND GENERAL OUTLINE Chap . 1 

specific cases and specific physical fields. Particularly in nonlinear prob-
lems this is essential for stimulation and illumination of the correct 
mathematical arguments, and, in any case, it makes the subject more 
interesting. Many of these topics are related to some branch of fluid 
mechanics, or to examples such as traffic flow which are treated in 
analogous fashion. This is unavoidable, since the main ideas of nonlinear 
waves were developed in these subjects, although it doubtless also reflects 
personal interest and experience. But the account is not written specifically 
for fluid dynamicists. The ideas are presented in general, and topics for 
application or motivation are chosen with a general reader in mind. It is 
assumed that flood waves in rivers, waves in glaciers, traffic flow, sonic 
booms, blast waves, ocean waves from storms, and so on, are of universal 
interest. Other fields are not excluded, and detailed discussion is given, for 
example, of nonlinear optics and waves in various mechanical systems. On 
the whole, though, it seemed better in applications to concentrate in a 
nontrivial way on representative areas, rather than to present superficial 
applications to sets of equations merely quoted from every conceivable 
field. 

The book is divided into two parts, the first on hyperbolic waves and 
the second on dispersive waves. The distinction will be explained in the 
next section. In Part I the basic ideas are presented in Chapters 2, 5, 7, 
while in Part II they appear in Chapters 11, 14, 15, 17. The intervening 
chapters amplify the general ideas in specific contexts and may be read in 
full or sampled according to the reader's interests. It should also be 
possible to proceed directly to Part II from Chapter 2. 

1.1 The Two Main Classes of Wave Motion 

There appears to be no single precise definition of what exactly 
constitutes a wave. Various restrictive definitions can be given, but to 
cover the whole range of wave phenomena it seems preferable to be guided 
by the intuitive view that a wave is any recognizable signal that is 
transferred from one part of the medium to another with a recognizable 
velocity of propagation. The signal may be any feature of the disturbance, 
such as a maximum or an abrupt change in some quantity, provided that it 
can be clearly recognized and its location at any time can be determined. 
The signal may distort, change its magnitude, and change its velocity 
provided it is still recognizable. This may seem a little vague, but it turns 
out to be perfectly adequate and any attempt to be more precise appears to 
be too restrictive; different features are important in different types of 
wave. 
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Nevertheless, one can distinguish two main classes. The first is formu-
lated mathematically in terms of hyperbolic partial differential equations, 
and such waves will be referred to as hyperbolic. The second class cannot 
be characterized as easily, but since it starts from the simplest cases of 
dispersive waves in linear problems, we shall refer to the whole class as 
dispersive and slowly build up a more complete picture. The classes are not 
exclusive. There is some overlap in that certain wave motions exhibit both 
types of behavior, and there are certain exceptions that fit neither. 

The prototype for hyperbolic waves is often taken to be the wave 
equation 

9„ = c0
2VV (1.1) 

although the equation 

<pt + cQ<px = 0 (1.2) 

is, in fact, the simplest of all. As will be seen, there is a precise definition 
for hyperbolic equations which depends only on the form of the equations 
and is independent of whether explicit solutions can be obtained or not. 
On the other hand, the prototype for dispersive waves is based on a type of 
solution rather than a type of equation. A linear dispersive system is any 
system which admits solutions of the form 

<p = a cos (KX — ut), (1.3) 

where the frequency w is a definite real function of the wave number K and 
the function W(K) is determined by the particular system. The phase speed 
is then «(K)/K and the waves are usually said to be "dispersive" if this 
phase speed is not a constant but depends on K. The term refers to the fact 
that a more general solution will consist of the superposition of several 
modes like (1.3) with different K. [In the most general case a Fourier 
integral is developed from (1.3).] If the phase speed W/K is not the same for 
all K, that is, W¥=C0K where c0 is some constant, the modes with different K 

will propagate at different speeds; they will disperse. It is convenient to 
modify the definition slightly and say that (1.3) is dispersive if U'(K) is not 
constant, that is, CO"(K)^0. 

It should be noted that (1.3) is also a solution of the hyperbolic 
equation (1.2) with W = C0K, or of (1.1) with w= ±C0K. But these cases are 
excluded from the dispersive classification by the condition w"^0. How-
ever, it is not hard to find cases of genuine overlap in which the equations 
are hyperbolic and yet have solutions (1.3) with nontrivial dispersion 
relations W = W(K). One such example is the Klein-Gordon equation 

<P„-<*>« +<P = 0- (1.4) 
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It is hyperbolic and yet (1.3) is a solution with w2 = ic2+l. This dual 
behavior is limited to relatively few instances and should not be allowed to 
obscure the overall differences between the two main classes. It does 
perhaps contribute to a fairly common misunderstanding, particularly 
encouraged in mathematical books, that wave motion is synonymous with 
hyperbolic equations and (1.3) is a less sophisticated approach to the same 
thing. The true emphasis should probably be the other way round. Rich 
and various as the class of hyperbolic waves may be, it is probably fair to 
say that the majority of wave motions fall into the dispersive class. The 
most familiar of all, ocean waves, is a dispersive case governed by 
Laplace's equation with strange boundary conditions at the free surface! 

The first part of this book is devoted to hyperbolic waves and the 
second to dispersive waves. The theory of hyperbolic waves enters again 
into the study of dispersive waves in various curious ways, so the second 
part is not entirely independent of the first. The remainder of this chapter 
is an outline of the various themes, most of which are taken up in detail in 
the remainder of the book. The purpose is to introduce the material, but at 
the same time to give an overall view which is extracted from the detailed 
account. 

1.2 Hyperbolic Waves 

The wave equation (1.1) arises in acoustics, elasticity, and 
electromagnetism, and its basic properties and solutions were first devel-
oped in these areas of classical physics. In all cases, however, this is not 
the whole story. 

In acoustics, one starts with the equations for a compressible fluid. 
Even if viscosity and heat conduction are neglected, this is a set of 
nonlinear equations in the velocity vector u, the density p, and pressure/?. 
Acoustics refers to the approximate linear theory in which all the distur-
bances are assumed to be small perturbations to an ambient constant state 
in which u = 0, p = p0,P

=Po- The equations are linearized by retaining only 
first order terms in the small quantities u, p-p0,p—pQ, that is, all powers 
higher than the first and all products of small quantities are omitted. It can 
then be shown that each component of u and the perturbations p-p0, 
p-p0 satisfy the wave equation (1.1). Once this has been solved for the 
appropriate boundary conditions or initial conditions that provide the 
source of the sound, it is natural to ask various questions about how this 
solution relates to the original nonlinear equations. Even for such weak 
perturbations, are the linear results accurate and are any important qual-
itative features lost in the approximation? If the disturbances are not 
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weak, as in explosions or in the disturbances caused by high speed 
supersonic aircraft and missiles, what progress can be made directly on the 
original nonlinear equations? What are the modifying effects of viscosity 
and heat conduction? The answers to these questions in gas dynamics led 
to most of the fundamental ideas in nonlinear hyperbolic waves. The most 
outstanding new phenomenon of the nonlinear theory is the appearance of 
shock waves, which are abrupt jumps in pressure, density, and velocity: the 
blast waves of explosions and the sonic booms of high speed aircraft. But 
the whole intricate machinery of nonlinear hyperbolic equations had to be 
developed for their prediction, and a full understanding required analysis 
of the viscous effects and some aspects of kinetic theory. 

In this way a set of basic ideas became clear within the context of gas 
dynamics, although one should add that the investigation of more compli-
cated cases and the search for deeper understanding of the kinetic theory 
aspects, for example, are still active fields. The basic mathematical theory, 
developed in gas dynamics, is appropriate for any system governed by 
nonlinear hyperbolic equations, and it has been used and refined in many 
other fields. 

In elasticity, the classical wave theory is also obtained after lineariza-
tion. Even with the linear theory, the situation is more complicated 
because the system of equations leads to essentially two wave equations of 
the form (1.1) with two functions <p,, <p2 and two wave speeds, c,, c2, which 
are associated with the different modes of propagation for compression 
waves and shear waves. The two functions <p, and <p2 are coupled through 
the appropriate boundary conditions, and generally the problem is much 
more complicated than merely solving the wave equation (1.1). At a free 
surface of an elastic body, there is further complication in that surface 
waves, so-called Rayleigh waves, are possible; these are perhaps more akin 
to dispersive waves and travel at a speed different from C\ and c2. Because 
of these extra complications,, the nonlinear theory has not been developed 
as fully as in gas dynamics. 

In electromagnetism there is also the complication that while different 
components of the electric and magnetic fields satisfy (1.1), they are 
coupled by additional equations and by the boundary conditions. 
Although the classical Maxwell equations are posed in linear form from 
the outset, there is much present interest in "nonlinear optics," since 
devices such as lasers produce intense waves and various media react 
nonlinearly. 

The corresponding mathematical theme started from the study of 
solutions of (1.1). The one dimensional equation for plane waves, 

< P « - 4<PXX = 0, (1.5) 



6 INTRODUCTION AND GENERAL OUTLINE Chap. 1 

is particularly simple. It can be rewritten in terms of new variables 

a = x-c0t, fi = x + c0t, (1.6) 
as 

9 ^ - 0 . (1.7) 

This is immediately integrated to show that the general solution is 

=f(x-c0t) + g(x + c0t), (1.8) 

where / and g are arbitrary functions. 
The solution is a combination of two waves, one with shape described 

by the function / moving to the right with speed c0, and the other with 
shape g moving to the left with speed c0. It would be even simpler if there 
were only one wave. The required equation corresponds to factoring (1.5) 
as 

(5-*&)(5 + *&)»- 0 ('" 
and retaining only one of the factors. If we retain only 

<P, + co<px=0, (1.10) 
the general solution is 

<p=/(x-c0/). (1.11) 

This is the simplest hyperbolic wave problem. Although the classical 
problems led to (1.5), many wave motions have now been studied which do 
in fact lead to (1.10). Examples are flood waves, waves in glaciers, waves in 
traffic flow, and certain wave phenomena in chemical reactions. We shall 
start with these in Chapters 2 and 3. Just as in the classical problems, the 
original formulations lead to nonlinear equations and the simplest is 

<P, + C(<P)<P, = 0, (1.12) 

where the propagation speed c(<j>) is a function of the local disturbance <p. 
The study of this deceptively simple-looking equation will provide all the 
main concepts for nonlinear hyperbolic waves. We follow the ideas which 
were developed first in gas dynamics, but now we develop them in the 
simpler mathematical context. The main nonlinear feature is the breaking 
of waves into shock waves, and the corresponding mathematical theory is 
the theory of characteristics and the special treatment of shock waves. This 
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is all presented in detail in Chapter 2. The theory is then applied and 
supplemented in Chapter 3 in a full discussion of the topics of flood waves 
and similar waves noted earlier. 

The first order equation (1.12) is called quasi-linear in that it is 
nonlinear in 9 but is linear in the derivatives 9,, <px. The general nonlinear 
first order equation for <p(x,t) is any functional relation between 9, 9,, 9,. 
This more general case as well as the extension to first order equations in n 
independent variables is included in Chapter 2. 

In the framework of (1.12), shock waves appear as discontinuities in 9. 
However, the derivation of (1.12) usually involves approximations which 
are not strictly valid when shock waves arise. In gas dynamics the corresp-
onding approximation is the omission of viscous and heat conduction 
effects. Again, the same mathematical effects can be seen in examples 
simpler than gas dynamics, even though the appropriate ideas were first 
explored there. These effects are included in Chapters 2 and 3. The 
simplest case is the equation 

<P,+ «P<P, = "9«- (1-13) 

It was particularly stressed by Burgers (1948) as being the simplest one to 
combine typical nonlinearity with typical heat diffusion, and it is usually 
referred to as Burgers' equation. It was probably introduced first by 
Bateman (1915). It acquired even more interest when it was shown by 
Hopf (1950) and Cole (1951) that the general solution could be obtained 
explicitly. Various questions can be investigated in great detail on this 
typical example, and then used with confidence in other cases where the 
full solution is not available and one must resort to special or approximate 
methods. Chapter 4 is devoted to Burgers' equation and its solution. 

For two independent variables, usually the time and one space dimen-
sion, the general system corresponding to (1.12) is 

9M, du, 

for n unknowns u-,(x,t). (The usual convention is used that summation 
y'=l,...,n is to be understood for the repeated subscript j.) For linear 
systems, the matrices Ay, ay are independent of u, and the vector bt is a 
linear expression 

6 / - V * (1-15) 

in u; (1.5) can be written in this form. When Ay, atj, b, are functions of u 
but not of its derivatives, the system is quasi-linear. Chapter 5 starts with a 
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discussion of the conditions necessary for (1.14) to be hyperbolic (and 
hence to correspond to hyperbolic waves), and it then turns to the general 
theory of characteristics and shocks for such hyperbolic systems. 

Gas dynamics is the subject that provided the basis for this material 
and is its most fruitful physical context. Chapter 6 is a fairly detailed 
account of gas dynamics for both unsteady problems and supersonic flow. 
Problems of cylindrical and spherical explosions are included, since they 
also reduce to two independent variables. 

For genuine two or three dimensional problems, we turn in Chapter 7 
to a more comprehensive discussion of solutions of the wave equation 
(1.1). It is perhaps a novelty in a book on wave propagation to delay this 
so long, and to give such an extensive discussion of nonlinear effects first. 
This is due to an ordering based on the number of dimensions rather than 
the difficulty of the concepts or the availability of mathematical tech-
niques. Chapter 7 includes the aspects of solutions to (1.1) which reveal 
information about the nature of the wave motion involved and which offer 
the possibility of generalization to other wave systems. The prime example 
of this is the theory of geometrical optics, which extends to linear waves in 
nonhomogeneous media and is the basis for similar developments related 
to shock propagation in nonlinear problems. No attempt is made to give 
even a relatively brief account of the huge areas of diffraction and 
scattering theory, nor of the special features of elastic or electromagnetic 
waves. These are all too extensive to be adequately treated in a book that 
has such a broad range of topics already. 

Chapters 8 and 9 devoted to shock dynamics and propagation prob-
lems related to sonic booms build on all this material and show how it can 
be brought to bear on difficult nonlinear problems. In these two chapters, 
intuitive ideas and approximations based on physical arguments are used 
to surmount the mathematical difficulties. Although these problems are 
drawn from fluid mechanics, it is hoped that the results and the style of 
thinking will be useful in other fields. 

The final chapter on hyperbolic waves concerns those situations where 
waves of different orders are present simultaneously. A typical example is 
the equation 

y(<P,<-cl<Pxx) + <P, + <io<Px = 0- 0-16) 

This is hyperbolic with characteristic velocities ± c0 determined from the 
second order wave operator. Yet if TJ is small, the lower order wave 
operator <p, + a0<px = 0 should be a good approximation in some sense, and 
this predicts waves with speed a0. It turns out that both kinds of wave play 
important roles, and there are important interaction effects between the 
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two. The higher order waves carry the "first signal" with speed c0, but the 
"main disturbance" travels with the lower order waves at speed a0. In the 
nonlinear counterparts to (1.16) this has important bearing on properties of 
shocks and their structure. This general topic is taken up in Chapter 10. 

13 Dispersive Waves 

Dispersive waves are not classified as easily as hyperbolic waves. As 
explained in connection with (1.3), the discussion stems from certain types 
of oscillatory solution representing a train of waves. Such solutions are 
obtained from a variety of partial differential equations and even certain 
integral equations. One rapidly realizes that it is the dispersion relation, 
written 

U=W(K), (1.17) 

connecting the frequency co and the wave number K, which characterizes 
the problem. The source of this relation in the particular system of 
equations governing the problem is of subsidiary importance. Some of the 
typical examples are the beam equation 

<P„ + Y2<>W = 0, <O=±YK2, (1.18) 

the linear Korteweg-deVries equation 

<P, + co<px + i«pxxx = 0, W = C0K-I>K\ (1.19) 

and the linear Boussinesq equation 

< P „ - « V = 02<JW «=±a>c(l + j3V)~1 / 2 . (1.20) 

Equations 1.19 and 1.20 appear in the approximate theories of long water 
waves. The general equations for linear water waves require more detail to 
explain, but the upshot is a solution (1.3) for the displacement of the 
surface with 

w=±(gKtanhK/i)1/2, (1.21) 

where h is the undisturbed depth and g is the gravitational acceleration. 
Another example is the classical theory for the dispersive effects of 
electromagnetic waves in dielectrics; this leads to 

(W
2-,0

2)(co2-c0V) = co^, (1.22) 
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where c0 is the speed of light, v0 is the natural frequency of the oscillator, 
and vp is the plasma frequency. 

For linear problems, solutions more general than (1.3) are obtained by 
superposition to form Fourier integrals, such as 

<p= [C°F(K)cos(Kx-Wt)dK, (1.23) 
•'o 

where W(K) is the dispersion function (1.17) appropriate to the system. 
Formally, at least, this is a solution for arbitrary F(K), which is then chosen 
to fit the boundary or initial conditions, with use of the Fourier inversion 
theorem. 

The solution in (1.23) is a superposition of wavetrains of different 
wave numbers, each traveling with its own phase speed 

WU) 
C(K) ^ . (1.24) 

As time evolves, these different component modes "disperse," with the 
result that a single concentrated hump, for example, disperses into a whole 
oscillatory train. This process is studied by various asymptotic expansions 
of (1.23). The key concept that comes out of the analysis is that of the 
group velocity defined as 

C(K) = ^ . (1.25) 

The oscillatory train arising from (1.23) does not have constant wave-
length; the whole range of wave numbers K is still present. In a sense to be 
explained, the different values of wave number propagate through this 
oscillatory train and the speed of propagation is the group velocity (1.25). 
In a similar sense it is found that energy also propagates with the group 
velocity. For genuinely dispersive waves, the case Wcc K is excluded so that 
the phase velocity (1.24) and the group velocity (1.25) are not the same. 
And it is the group velocity which plays the dominant role in the propaga-
tion. 

In view of its great importance, and with an eye to nonuniform media 
and nonlinear waves, it is desirable to find direct ways of deriving the 
group velocity and its properties without the intermediary of the Fourier 
analysis. This can be done very simply on an intuitive basis, which can be 
justified later. Assume that the nonuniform oscillatory wave is described 
approximately in the form 

(p = acos0, (1.26) 
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where a and 0 are functions of x and /. The function 0(x,t) is the "phase" 
which measures the point in the cycle of cos0 between its extreme values 
of ± 1, and a(x,t) is the amplitude. The special uniform wavetrain has 

a = constant, 9 = KX — wt, U—W(K). (1-27) 

In the more general case, we define a local wave number k(x,t) and a local 
frequency w(x, t) by 

k(x,t) = ̂ , w(x,0 = - f . (1.28) 

Assume now that these are still related by the dispersion relation 

u=W(k). (1.29) 
This is then an equation for 9: 

f+^(£)-0, (,.30) 

and its solution determines the kinematic properties of the wavetrain. It is 
more convenient to eliminate 8 from (1.28) to obtain 

^ + ^ = 0 (131) 

and to work with the pair of relations (1.29) and (1.31). Replacing u by 
W(k) in (1.31), we have 

M + C ( * ) | | = 0 , (1-32) 

where C(k) is the group velocity defined in (1.25). This equation for k is 
just the simplest nonlinear hyperbolic equation given in (1.12)! It may be 
interpreted as a wave equation for the propagation of k with speed C(k). 
In this rather subtle way, hyperbolic phenomena are hidden in dispersive 
waves. This may be exploited to bring the methods of Part I to bear on 
dispersive wave problems. 

The more intuitive analysis of group velocity indicated here is readily 
extended to more dimensions and to nonuniform media where the exact 
solutions are either inconvenient or unobtainable. The results then usually 
may be justified directly as the first term in an asymptotic solution. These 
basic questions with emphasis on the understanding of group velocity 
arguments are studied in Chapter 11. 

Once the group velocity arguments are established, they provide a 
surprisingly simple yet powerful method for deducing the main features of 
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any linear dispersive system. A wide variety of such cases is given in 
Chapter 12. 

It is easy to show asymptotically from the Fourier integral (1.23) that 
energy ultimately propagates with the group velocity. For purposes of 
generalization, it is again important to have direct approaches to this basic 
result. Some of these are explained in Chapter 11, but until recently there 
was no wholly satisfactory approach. In the last few years, the problem has 
been resolved as an offshoot of the investigation of the corresponding 
questions for nonlinear waves. The nonlinear problems required a more 
powerful approach altogether, and eventually the possibility of using 
variational principles was realized. These appear to provide the correct 
tools for all these questions in both linear and nonlinear dispersive waves. 
Judging from its recent success, this variational approach has led to a 
completely fresh view of the subject. It is taken up for linear waves in 
preliminary fashion in Chapter 11 and the full nonlinear version is de-
scribed in Chapter 14. 

The intermediate Chapter 13 is on the subject of water waves. This is 
perhaps the most varied and fascinating of all the subjects in wave motion. 
It includes a wide range of natural phenomena in the oceans and rivers, 
and suitably interpreted it applies to gravity waves in the atmosphere and 
other fluids. It has provided the impetus and background for the devel -
opment of dispersive wave theory, with much the same role that gas 
dynamics has played for hyperbolic waves. In particular, the fundamental 
ideas for nonlinear dispersive waves originated in the study of water waves. 

1.4 Nonlinear Dispersion 

In 1847 Stokes showed that the surface elevation TJ in a plane wave-
train on deep water could be expanded in powers of the amplitude a as 

7] = a cos ( KX - ut) + { na2 cos 2 ( KX - wt) 

+ lK2a3cos3(KX-ut) + ---, (1.33) 

where 

o>2 = gK(\ + K2a2+--). (1.34) 

The linear result would be the first term in (1.33) in agreement with (1.3) 
and the dispersion relation would be 

w2 = gK, (1.35) 
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in agreement with (1.21) since one takes the limiting form K/J-»OO for deep 
water. There are two key ideas here. First, there exist periodic wavetrain 
solutions in which the dependent variables are functions of a phase 
0 = KX — ut, but the functions are no longer sinusoidal; (1.33) is the Fourier 
series expansion of the appropriate function r\{0). The second crucial idea 
is that the dispersion relation (1.34) also involves the amplitude. This 
introduces a qualitatively new feature and the nonlinear effects are not 
merely slight corrections. 

In 1895 Korteweg and deVries showed that long waves, in water of 
relatively shallow depth, could be described approximately by a nonlinear 
equation of the form 

V, + (c0+clri)t)x+vnxxx='0, (1.36) 

where CQ, c,, and v are constants. A linearization of this for very small 
amplitudes would drop the term cxip\x; the resulting linear equation has 
solutions 

i) = acos((tx — ut), 
(1.37) 

U = C0K — VK . 

One could improve on this by Stokes-type expansions in the amplitude. 
But one can do better: Korteweg and deVries showed that periodic 
solutions 

■n=f(9), 9 = KX-at 

of (1.36) could be found in closed form, and without further approxima-
tion, in terms of Jacobian elliptic functions. Since f{B) was found in terms 
of the elliptic function cnO, they named the solutions cnoidal waves. This 
work endorses the general conclusions of Stokes' work. First, the existence 
of periodic wavetrains is demonstrated explicitly. Second,/(fl) contains an 
arbitrary amplitude a, and the solution includes a specified dispersion 
relation between w, K, and a, the most important nonlinear effect being 
again the inclusion of the amplitude in this relation. 

But even more was found. One limit of cn0 (as the modulus tends to 
1) is the sech function. Either by taking this limit or directly from (1.36), 
the special solution 

1/2 

T, = flsech2j(-^) (x-Ut)V (1.38) 

( / = c 0 + j c , a (1.39) 
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may be established. In this limit the period has become infinite and (1.38) 
represents a single hump of positive elevation. It is the "solitary wave," 
discovered experimentally by Scott Russell (1844), and previously analyzed 
on an approximate basis by Boussinesq (1871) and Rayleigh (1876). The 
inclusion of the solitary wave with the periodic wavetrains in the same 
analysis was an important step. Equation 1.39 for the velocity of propaga-
tion U in terms of the amplitude is the remnant of the dispersion relation 
in this nonperiodic case. 

Although the equation originated in water waves, it was subsequently 
realized that the Korteweg-deVries equation is one of the simplest proto-
types that combines nonlinearity and dispersion. In this respect it is 
analogous to Burgers' equation, which combines nonlinearity with diffu-
sion. It has now been derived as a useful equation in other fields. 

In recent years other simple equations have been derived in various 
fields and also used as prototypes to develop and test ideas. Notable 
among these are the equation 

<p„-<p~+n<p)=o, (i.40) 

a natural generalization of the linear Klein-Gordon equation, and 

ty + * „ + |*fV-0, (1.41) 

a generalization of Schrodinger's equation. We return to comment on these 
later. 

First we must consider the question of how to build further on Stokes' 
general result, confirmed by many other examples, that the existence of 
periodic wavetrains is a typical feature of nonlinear dispersive systems. 
These solutions are the counterparts of (1.3) but one cannot proceed by 
simple Fourier superposition. However, the eventual description of many 
important results in linear theory is in terms of the group velocity for 
modulated wavetrains as described following (1.26). These ideas are not 
crucially dependent on the Fourier synthesis and a theory of nonlinear 
group velocities can be developed. The appropriate analysis can be put in a 
general, concise form using the variational techniques already referred to. 
The theory is given in Chapter 14. The dependence of the dispersion 
relation on the amplitude introduces a number of new phenomena (for 
example, there are two group velocities) and these are discussed in general 
terms in Chapter 15. In addition to the original problems of water waves, 
one of the main fields of application is the new, rapidly expanding field of 
nonlinear optics. A selection of applications to both fields is given in 
Chapter 16. 
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One of the most interesting topics in nonlinear optics is the self-
focusing of beams, and (1.41) arises in this context. Equation 1.40, particu-
larly in the so-called Sine-Gordon case of 

<P„-<P« + sin<p = 0, (1.42) 

arises in a number of areas. Both of these equations share with the 
Korteweg-deVries equation in having solitary wave solutions as limiting 
cases. Solitary waves were always of obvious interest, since they are strictly 
nonlinear phenomena with no counterparts in linear dispersive theory. But 
until recently little further was known. Now, stemming from the remark-
able work of Gardner,Greene, Kruskal, and Miura(1967)on the Korteweg-
deVries equation and Perring and Skyrme (1962) and Lamb (1967, 1971) 
on the Sine-Gordon equation, families of exact solutions representing 
interacting solitary waves have been found. The surprising result is that 
solitary waves retain their individuality under interaction and eventually 
emerge with their original shapes and speeds. These solutions are only one 
class obtained in a more general attack on the equations, with further 
results on the solutions for arbitrary initial conditions being fairly com-
plete. Zakharov and Shabat (1972) extended the methods of Gardner et al. 
to the cubic Schrodinger equation (1.41) and found similar results. An 
account of these important and ingenious investigations is given in Chapter 
17. 
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CHAPTER 2 

Waves and First Order Equations 

We start the detailed discussion of hyperbolic waves with a study of 
first order equations. As noted in Chapter 1, the simplest wave equation is 

p, + c0px = 0, c0 = constant. (2.1) 

When this equation arises, the dependent variable is usually the density of 
something so we now use the symbol p rather than the all-purpose symbol 
<p of the introduction. The general solution of (2.1) is p—f(x — c0t), where 
f(x) is an arbitrary function, and the solution of any particular problem 
consists merely of matching the function / t o initial or boundary values. It 
clearly describes a wave motion since an initial profile f(x) would be 
translated unchanged in shape a distance c0t to the right at time t. At two 
observation points a distance s apart, exactly the same disturbance would 
be recorded with a time delay of s/c0. 

Although this linear case is almost trivial, the nonlinear counterpart 

p, + c(p)Px = 0, (2.2) 

where c(p) is a given function of p, is certainly not and a study of it leads 
to most of the essential ideas for nonlinear hyperbolic waves. As remarked 
earlier, many of the classical examples of wave propagation are described 
by second or higher order equations such as the wave equation CQ V2q> = <p„, 
but a surprising number of physical problems do lead directly to (2.2) or 
extensions of it. Examples will be given after a preliminary discussion of 
the solution. Even in higher order problems, one often searches for special 
solutions or approximations that involve (2.2). 

2.1 Continuous Solutions 

One approach to the solution of (2.2) is to consider the function p(x,t) 
at each point of the (x,t) plane and to note that p, + c(p)px is the total 
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derivative of p along a curve which has slope 

dx 
dt 

'c(p) (2.3) 

at every point of it. For along any curve in the (x,t) plane, we may 
consider x and p to be functions of t, and the total derivative of p is 

<*P = 9p dx 9p 
dt dt dt 9x ' 

The total derivative notation should be sufficient to indicate when x and p 
are being treated as functions of t on a certain curve; the introduction of 
new symbols each time this is done eventually becomes confusing. We now 
consider a curve Q in the (x,t) plane which satisfies (2.3). Of course such a 
curve cannot be determined explicitly in advance since the defining equa-
tion (2.3) involves the unknown values of p on the curve. However, its 
consideration will lead us to a simultaneous determination of a possible 
curve Q, and the solution p on it. On Q we deduce from the total 
derivative relation and from (2.2) that 

f-0, f-cW. (2.4) 

We first observe that p remains constant on (2. It then follows that c(p) 
remains constant on Q, and therefore that the curve (3 must be a straight 
line in the (x,t) plane with slope c(p). Thus the general solution of (2.2) 
depends on the construction of a family of straight lines in the (x, t) plane, 
each line with slope c(p) corresponding to the value of p on it. This is easily 
done in any specific problem. 

Let us take for example the initial value problem 

P=/(*)> ' = 0, - oo<x<oo , 

and refer to the (x,t) diagram in Fig. 2.1. If one of the curves 6 intersects 
/ = 0 at x = f- then p=/(£) on the whole of that curve. The corresponding 
slope of the curve is c (/(£)), which we will denote by F(£); it is a known 
function of £ calculated from the function c(p) in the equation and the 
given initial function /(£). The equation of the curve then is 

This determines one typical curve and the value of p on it is /(£)• Allowing 
| to vary, we obtain the whole family: 

p - / ( 0 , c - F ( 0 - c ( / ( 0 ) (2.5) 



Sec 2.1 CONTINUOUS SOLUTIONS 21 

Fig. 2.1. Characteristic diagram for nonlinear waves. 

on 
*-«+/• ({) / . (2.6) 

We may now change the emphasis and use (2.5) and (2.6) as an 
analytic expression for the solution, free of the particular construction. 
That is, p is given by (2.5) where £(*, /) is defined implicitly by (2.6). Let us 
check that this gives the solution. From (2.5), 

P,=/'«)£„ p , - / m . 
and from the t and x derivatives of (2.6), 

0 - F ( { ) + { l + F'({)/}$, 

Therefore 

and we see that 

p, + c(p)px = 0 
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since c(p) = F(£). The initial condition p=f(x) is satisfied because £=x 
when / = 0. 

The curves used in the construction of the solution are the 
characteristic curves for this special problem. Similar characteristics play an 
important role in all problems involving hyperbolic differential equations. 
In general, characteristic curves do not have the property that the solution 
remains constant along them. This happens to be true in the special case of 
(2.2); it is not the defining property of characteristics. The general defini-
tions will be considered later, but it will be convenient now to refer to the 
curves defined by (2.3) as characteristics. 

The basic idea of wave propagation is that some recognizable feature 
of the disturbance moves with a finite velocity. For hyperbolic equations, 
the characteristics correspond to this idea. Each characteristic curve in 
(x, t) space represents a moving wavelet in x space, and the behavior of the 
solution on a characteristic curve corresponds to the idea that information 
is carried by that wavelet. The mathematical statement in (2.4) may be 
given this type of emphasis by saying that different values of p "propagate" 
with velocity e(p). Indeed, the solution at time t can be constructed by 
moving each point on the initial curve p=f(x) a distance c(p)t to the right; 
the distance moved is different for the different values of p. This is shown 
in Fig. 2.2 for the case c'(p) > 0; the corresponding time levels are indicated 
in Fig. 2.1. The dependence of c on p produces the typical nonlinear 
distortion of the wave as it propagates. When c'(p) > 0, higher values of p 
propagate faster than lower ones. When c'(p)<0, higher values of p 
propagate slower and the distortion has the opposite tendency to that 
shown in Fig. 2.2. For the linear case, c is constant and the profile is 
translated through a distance ct without any change of shape. 

It is immediately apparent from Fig. 2.2 that the discussion is far from 
complete. Any compressive part of the wave, where the propagation 
velocity is a decreasing function of x, ultimately "breaks" to give a 

Fig. 2.2. Breaking wave: successive profiles corresponding to the times 0, /,, tB, tj in Fig. 2.1. 
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triple-valued solution for p(x,t). The breaking starts at the time indicated 
by t = tB in Fig. 2.2, when the profile of p first develops an infinite slope. 
The analytic solution (2.7) confirms this and allows us to determine the 
breaking time tB. On any characteristic for which /"(£)< 0, Px and p, 
become infinite when 

Therefore breaking first occurs on the characteristic £=£B for which 
F'(£) < 0 and | F'(g)\ is a maximum; the time of first breaking is 

••-~rk)- ("> 
This development can also be followed in the (x,t) plane. A compressive 
part of the wave with F'(£)<0 has converging characteristics; since the 
characteristics are straight lines, they must eventually overlap to give a 
region where the solution is multivalued, as in Fig. 2.1. This region may be 
considered as a fold in the (x,t) plane made up of three sheets, with 
different values of p on each sheet. The boundary of the region is an 
envelope of characteristics. The family of characteristics is given by (2.6) 
with £ as parameter. The condition that two neighboring characteristics £, 
£+ 5£ intersect at a point (x,t) is that 

* - € + F ( € ) / 
and 

x = £+S£+F(£+S£)/ 

hold simultaneously. In the limit 5£-»0, these give 

x = £+F(£) ' and 0=1+ /*'(£)/ 

for the implicit equations of an envelope. The second of these relations 
shows that an envelope is formed in t >0 by those characteristics for which 
F'(£) < 0. The minimum value of t on the envelope occurs for the value of £ 
for which - F'(£) is maximum. This is the first time of breaking in 
agreement with (2.8). If F"(Q is continuous, the envelope has a cusp at 
t-tBy Z = £B, as shown in Fig. 2.1. 

An extreme case of breaking arises when the initial distribution has a 
discontinuous step with the value of c(p) behind the discontinuity greater 
than that ahead. If we have the initial functions 

/(*)=["" X > ° 
1 Pi, x<0 
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and 

F(x)=[ c> = c(pi)' x>0 

{ c2 = c(p2), x<0 

with c2>c,, then breaking occurs immediately. This is shown in Fig. 2.3 
for the case c'(p)>0, p2>px. The multivalued region starts right at the 
origin and is bounded by the characteristics x = c{t and x = c2t; the 
boundary is no longer a cusped envelope since F and its derivatives are not 
continuous. Nevertheless, the result may be considered as the limit of a 
series of smoothed-out steps, and the breaking point moves closer to the 
origin as the initial profile approaches the discontinuous step. 

On the other hand, if the initial step function is expansive with c2<cv 

there is a perfectly good continuous solution. It may be obtained as the 
limit of (2.5) and (2.6) in which all the values of F between c2 and cl are 
taken on characteristics through the origin | = 0 . This corresponds to a fan 
of characteristics in the (x,t) plane as in Fig. 2.4. Each member of the fan 
has a different slope F but the same £. The function F is a step function 
but we use all the values of F between c2 and c, on the face of the step and 
take them all to correspond to £=0. In the fan, the solution (2.5), (2.6) then 
reads 

c = F, x = Ft, for c 2 <F<c„ 

Fig. 2.3. Centered compression wave with overlap. 
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C = C2 < C | 

p 

p\ 

~PT 

C=C| 

P'Pz 

X 

P-Pl 

Fig. 2.4. Centered expansion wave. 

and by elimination of F we have the simple explicit solution for c: 

x 
c = 7 ' 

The complete solution for c is 

^ x ^ c2<-<cx. 

«1. 
^ x 

c i < y . 
X . X ^ 

y> ^2<7<c„ (2.9) 

c2, 7 < c 2 . 

The relation c = c(p) can be solved to determine p. For the compressive 
step, c2>cv the fan in the (x,t) plane is reversed to produce the overlap 
shown in Fig. 2.3. 

In most physical problems where this theory arises, p(x,t) is just the 
density of some medium and is inherently single-valued. Therefore when 
breaking occurs (2.2) must cease to be valid as a description of the physical 
problem. Even in cases such as water waves where a multivalued solution 
for the height of the surface could at least be interpreted, it is still found 
that (2.2) is inadequate to describe the process. Thus the situation is that 
some assumption or approximate relation in the formulation leading to 
(2.2) is no longer valid. In principle one must return to the physics of the 
problem, see what went wrong, and formulate an improved theory. How-
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ever, it turns out, as we shall see, that the foregoing solution can be saved 
by allowing discontinuities into the solution; there is then a single-valued 
solution with a simple jump discontinuity to replace the multivalued 
continuous solution. This requires some mathematical extension of what 
we mean by a "solution" to (2.2), since strictly speaking the derivatives of p 
will not exist at a discontinuity. It can be done through the concept of a 
"weak solution." But it is important to appreciate that the real issue is not 
just a mathematical question of extending the solution of (2.2). The 
breakdown of the continuous solution is associated with the breakdown of 
some approximate relation in the physics, and the two aspects must be 
considered together. It is found, for example, that there are several possible 
families of discontinuous solutions, all satisfactory mathematically; the 
nonuniqueness can be resolved only by appeal to the physics. 

Clearly then, we cannot proceed further without discussion of some 
physical problems. The prototype is the nonlinear theory of waves in a gas 
and the formation of shock waves. When viscosity and heat conduction are 
ignored, the equations of gas dynamics have breaking solutions similar to 
the preceding ones. As the gradients become steep, just before breaking, 
the effects of viscosity and heat conduction are no longer negligible. These 
effects can be included to give an improved theory and waves no longer 
break in that theory. There is a thin region, a shock wave, in which 
viscosity and heat conduction are crucially important; outside the shock 
wave, viscosity and heat conduction may still be neglected. The flow 
variables change rapidly in the shock. This shock region is idealized into a 
discontinuity in the "extended" inviscid theory, and only shock conditions 
relating the jumps of the flow variables across the discontinuity need to be 
added to the inviscid theory. 

We will study all these various aspects in detail. However, gas dynam-
ics is not the simplest example, since it involves higher order equations, 
and we shall discuss the essential ideas first in the context of the simpler 
first order problems. It should be remembered, though, that these ideas 
were developed for gas dynamics, and we are reversing the chronological 
order. The basic ideas were elucidated by Poisson (1807), Stokes (1848), 
Riemann (1858), Earnshaw (1858), Rankine (1870), Hugoniot (1889), 
Rayleigh (1910), Taylor (1910)—a most impressive list. The time required 
indicates that putting the different aspects together was quite a compli-
cated affair. 

2.2 Kinematic Waves 

In many problems of wave propagation there is a continuous distribu-
tion of either material or some state of the medium, and (for a one 
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dimensional problem) we can define a density p(x, t) per unit length and a 
flux q(x,t) per unit time. We can then define a flow velocity v(x,t) by 

q 
v= —. 

P 
Assuming that the material (or state) is conserved, we can stipulate that the 
rate of change of the total amount of it in any section x, >x >x2 must be 
balanced by the net inflow across x} and x2. That is, 

jtj%{x,t)dx + q{Xl,t)-q{x2,t)=Q. (2.10) 

If p(x,t) has continuous derivatives, we may take the limit as xl-*x2 and 
obtain the conservation equation 

3p dq 

£+vx=°- <2-») 
The simplest wave problems arise when it is reasonable, on either theoreti-
cal or empirical grounds, to postulate (in a first approximation!) a func-
tional relation between q and p. If this is written as 

V-Q(P), (2.12) 

(2.11) and (2.12) form a complete system. On substitution we have 

p, + c(p)px = 0 (2.13) 
where 

c(p) = Q'(p). (2.14) 

This leads to our (2.2) and a typical solution is given by (2.5) to (2.6). The 
breaking requires us to reconsider both the mathematical assumption that 
p and q have derivatives and the physical assumption that q=Q(p) is a 
good approximation. To fix ideas for the further development of the theory 
some specific examples are noted briefly here. We shall return to them in 
Chapter 3 for a more detailed discussion after the theoretical ideas are 
complete. 

An amusing case (which is also important) concerns traffic flow. It is 
reasonable to suppose that some essential features of fairly heavy traffic 
flow may be obtained by treating a stream of traffic as a continuum with 
an observable density p(x,t), equal to the number of cars per unit length, 
and a flow q(x,t), equal to the number of cars crossing the position x per 
unit time. For a stretch of highway with no entries or exits, cars are 
conserved! So we stipulate (2.10). For traffic it also seems reasonable to 
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argue that the traffic flow q is determined primarily by the local density p 
and to propose (2.12) as a first approximation. Such functional relations 
have been studied and documented to some extent by traffic engineers. We 
can then apply the theory. But it is clear in this case that when breaking 
occurs there is no lack of possible explanations for some breakdown in the 
formulation. Certainly the assumption q = Q(p) is a very simplified view of 
a very complicated phenomenon. For example, if the density is changing 
rapidly (as it is near breaking), one expects the drivers to react to more 
than the local density and one also expects that there will be a time lag 
before they respond adequately to the changing conditions. One might also 
question the continuum assumption itself. 

Another example is flood waves in long rivers. Here p is replaced by 
the cross-sectional area of the channel, A, and this varies with x and t as 
the level of the river rises. If q is the volume flux across the section, then 
(2.10) between A and q expresses the conservation of water. Although the 
fluid flow is extremely complicated, it seems reasonable to start with a 
functional relation q = Q(A) as a first approximation to express the in-
crease in flow as the level rises. Such relations have been plotted from 
empirical observations on various rivers. But it is again clear that this 
assumption is an oversimplification which may well have to be corrected if 
troubles arise in the theory. 

A similar example, proposed and studied extensively by Nye (1960), is 
the example of glacier flow. The flow velocity is expected to increase with 
the thickness of the ice, and it seems reasonable to assume a functional 
dependence between the two. 

In chromatography and in similar exchange processes studied in 
problems of chemical engineering, the same theory arises. The formulation 
is a little more complicated. The situation is that a fluid carrying dissolved 
substances or particles or ions flows through a fixed bed and the material 
being carried is partially adsorbed on the fixed solid material in the bed. 
The fluid flow is idealized to have a constant velocity V. Then if pf is the 
density of the material carried in the fluid, and ps is the density deposited 
on the solid, 

P=P/+Ps> <l=VPj-

Hence the conservation equation (2.11) reads 

£(P/ +P,) + £ (F P / )=O. 

A second relation concerns the rate of deposition on the solid bed. The 
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exchange equation 

— = k^A-ps)pj-kjps(B-Pj) 

is apparently the simplest equation with the required properties. The first 
term represents deposition from the fluid to the solid at a rate proportional 
to the amount in the fluid, but limited by the amount already on the solid 
up to a capacity A. The second term is the reverse transfer from the solid 
to the fluid. (In some processes, the second term is just proportional to ps; 
this is the limit ZJ—>oo, k2B finite.) In equilibrium, the right hand side of 
the equation vanishes and ps is a definite function of pf. In slowly varying 
conditions, with relatively large reaction rates fc, and k2, we may take a 
first approximation in which the right hand side still vanishes ("quasi-
equilibrium") and we have 

_ A
 k#f 

P* k2B + {kx-k2)p/ 

Thus ps is a function of pf; hence q is a function of p. When changes 
become rapid, just before breaking, the term dps/dt in the rate equation 
can no longer be neglected. 

As a different type of example, the concept of group velocity can be 
fitted into this general scheme. In linear dispersive waves, as already noted 
following (1.26), there are oscillatory solutions with a local wave number 
k(x,i) and a local frequency u{x,t). Thus k is the density of the waves— 
the number of wave crests per unit length—and w is the flux—number of 
wave crests crossing the position x per unit time. If we expect that wave 
crests will be conserved in the propagation, we have, in differential form, 
the conservation equation 

— + — =n 

dt dx 

In addition, k and « are related by the dispersion relation 

« = w(A:). Hence 

dk , ,,, s.dk n _ + w ( * ) _ = 0 . 

We have a wave propagation for the variations of the local wave number 
of the "carrier" wavetrain, and the propagation velocity is du/dk. This is 
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the group velocity. These ideas will be considered in full detail in the later 
discussion of dispersive waves. 

The wave problems listed here depend primarily on the conservation 
equation (2.11), and for this reason they were given the name kinematic 
waves (Lighthill and Whitham, 1955) in contrast to the usual acoustic or 
elastic waves which depend strongly on how the acceleration is determined 
through the laws of dynamics. 

After this review of some of the physical problems, we return to the 
study of breaking and shock waves in order to complete the theory. 
Further details of the physical problems are pursued in Chapter 3. 

23 Shock Waves 

When breaking occurs we question the assumption q=Q(p) in (2.12) 
and also the differentiability of p and q in (2.11). But, provided the 
continuum assumption is adequate, we still insist on the conservation 
equation (2.10). 

Consider first the mathematical question of whether discontinuities 
are possible. Certainly a simple jump discontinuity in p and in q is feasible 
as far as (2.10) is concerned; all the expressions in (2.10) have a meaning. 
Does (2.10) provide any restriction? To answer this, suppose there is a 
discontinuity at x = s(t) and that JC, and x2 are chosen so that xx>s{i) 
>x2. Suppose p and q and their first derivatives are continuous in x, >x 
>s(t) and ins(t)>x>x2, and have finite limits as x^s(t) from above and 
below. Then (2.10) may be written 

q(x2,t)-q{xx,t) = -j-{jx p(x,t)dx+—f^p(x,t)dx 

= p(s-,t)s-p(s+,t)s+ / p,(x,t)dx+ I p,(x,t)dx, 
Jx2 MO 

where p(s~,t), p(s+,t) are the value of p(x,t) as x-*s(t) from below and 
above, respectively, and s = ds/dt. Since p, is bounded in each of the 
intervals separately, the integrals tend to zero in the limit as xx-+s*, 
x2-+s~. Therefore 

q(s-,t)-q(s + ,t) = {p(s-,t)-p(s + ,t)}s. 

A conventional notation is to use a subscript 1 for the values ahead of the 
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shock and a subscript 2 for values behind. Then if U is the shock velocity, 
s, 

<72-?i = f/(P2-Pi)- (2-15) 

The condition may also be written in the form 

-U[p) + [q]=0, (2.16) 

where the brackets indicate the jump in the quantity. This form gives a 
nice correspondence between the shock condition and the differential 
equation (2.11), the correspondence being 

±~-U[ }, ±~[ ]• (2.17) 

We can now extend our solutions of (2.10) to allow such discontinui-
ties. In any continuous part of the solution, (2.11) will still be satisfied and 
the assumption (2.12) may be retained. Since q=Q{p) in the continuous 
parts, we have q2= Qi.Pi) and qx — Q(px) on the two sides of any shock, and 
the shock condition (2.15) may be written 

^Q(P2)-Q(PI) ( 2 1 8 ) 

P2-P1 

The problem then reduces to fitting shock discontinuities into the solution 
(2.5), (2.6) in such a way that (2.18) is satisfied and multivalued solutions 
are avoided. 

The simplest case is the problem 

p**px, c ^ p , ) ^ * : , , x>0, 

p=*p2, c = c(p2) = c2, x<0, 

with c2>e,. The breaking solution was indicated in Fig. 2.3. Now a 
single-valued solution is possible which is just a shock moving with velocity 
(2.18): 

p=pv x>Ut, 

p = p2, x<Ut. 

This is represented schematically in Fig. 2.5. 
A popular way to derive the shock condition is to view this particular 

solution from a frame of reference in which the shock is at rest, as shown 

r = 0, 
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P=Pz 
q = q2=Q(/>2) 

P'Pt 

q = q, =Q(/J|) 

Fig. 2.5. Flow quantities for moving shock. 

P^Pz 
q = q 2 - U / 9 2 

P*P[ 
q = q, -Up, 

Fig. 2.6. Flow quantities relative to stationary shock. 

in Fig. 2.6. The relative flows become <7, - Upx and q2— Up2. The conserva-
tion law may be stated immediately in the form 

<jr,-C/p, = <72-£/p2, 

and (2.15) follows. 
Before proceeding with the general problem of shock fitting, we 

consider the alternative view that the differential equation (2.11) is 
adequate but that the assumed relation (2.12) is insufficient. 

2.4 Shock Structure 

As a particular case, we need to find and examine a more accurate 
description of the simple discontinuous solution represented in Fig. 2.5. 
This is the problem of finding the "shock structure." 

In many problems of kinematic waves, it would be a better approxi-
mation to suppose that q is a function of the density gradient px as well as 
p. A simple assumption is to take 

q=iQ(p)-vpx (2.19) 

where v is a constant. In traffic flow, for example, we may argue that 
drivers will reduce their speed to account for an increasing density ahead, 
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and conversely. This argument would propose a positive value for v, and 
we see below that the sign is important. If v is small, in some suitable 
dimensionless measure, (2.12) is a good approximation provided px is not 
relatively large. At breaking, px becomes large and the correction term 
becomes crucial, however small v may be. Now in this formulation, 
consider continuous solutions. From (2.11) and (2.19), they satisfy 

P, + c(p)px = pp„, C( P ) = (2 '(P)- (2.20) 

The term c(p)px in (2.20) leads to steepening and breaking. On the 
other hand, the term vpxx introduces diffusion typical of the heat equation 

P, = VPXX-

For the heat equation, the solution of the initial step function problem 

p = p{, x>0, ) (=Q 

p = p2, x<0, j 

is 
. P\~Pi rx/v^> _»i 

p = p2+—— / e f dl 
\m •'-oo 

This represents a smoothed-out step approaching values p,, p2 as x-»± oo, 
and with slope decreasing like (v()~1/2. The two opposite tendencies of 
nonlinear steepening and diffusion are combined in (2.20). The signifi-
cance of p>0 can be seen from the heat equation; solutions are unstable if 
r<0 . 

We now look within the framework of this more accurate theory for 
the solution to replace the one shown in Fig. 2.5. One obvious idea is to 
look for a steady profile solution in which 

p = p(X), X-x-Ut, 

where U is a constant still to be determined. Then from (2.20), 

{c(p)-U}Px = ppxx. 
Integrating once, we have 

Q(p)-Up + A=rpx, (2.21) 

where A is a constant of integration. An implicit relation for p(X) is 
obtained in the form 

H d(> (2.22) 
Q(p)-Up + A' 
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but the qualitative behavior is more readily seen directly from (2.21). We 
are interested in the possibility of a solution which tends to constant states 
p-»Pi as X-* + oo, p-*p2 as X-* — oo. If such a solution exists with p*-»0 
as X-*± oo, the arbitrary parameters U,A must satisfy 

Q(Pl)-UPl + A = Q(p2)-Up2 + A=0. 
In particular, 

U= *V V *V U . (2.23) 
P2-P1 

In such a solution, the relation between the velocity U and the two states 
at ± oo is exactly the same as in the shock condition! 

The values pv p2 are zeros of Q(fi)~ Up + A, and in general they are 
simple zeros. As p-+pt or p2 in (2.22), the integral diverges and X-> ± 00 as 
required. If Q(p)— Up + A<0 between the two zeros, and if v is positive, 
we have px < 0 and the solution is as shown in Fig. 2.7 with p increasing 
monotonically from p, at +00 to p2 at -00. If Q(p)— Up + A >0 and 
p>0, the solution increases from p2 at — 00 to p, at + 00. It is clear from 
(2.21) that if pi,p2 are kept fixed (so that U,A are fixed), a change in v can 
be absorbed by a change in the X scale. As r-»0, the profile in Fig. 2.7 is 
compressed in the X direction and tends in the limit to a step function 
increasing p from p, to p2 and traveling with the velocity given by (2.23). 
This is exactly the discontinuous shock solution seen in Fig. 2.5. For small 
nonzero v the shock is a rapid but continuous increase taking place over a 
narrow region. The breaking due to the nonlinearity is balanced by the 
diffusion in this narrow region to give a steady profile. 

One very important point is the sign of the change in p. A continuous 
wave carrying an increase of p will break forward and require a shock with 
p2>px if c'(p)>0; it will break backward and require a shock with p2<Pi 
if c'(p)<0. The shock structure given by (2.21) must agree. As remarked 
above, v is always positive for stability, so the direction of increase of p 
depends on the sign of Q(p)— Up + A between the two zeros p, and p2. But 

P'-Pz 

P'P\ 

Fig. 2.7. Shock structure. 
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c'(p) = Q"(p). Hence when c'(p)>0, Q(p)- Up + A<0 between zeros and 
the solution is as seen in Fig. 2.7 with p2>P\ as required. If c'(p)<0, the 
step is reversed and p2<Pi- The breaking argument and the shock struc-
ture agree. 

In the special case of a quadratic expression for Q(p), taken as 

0(p) = ap2 + /3p + Y, (2.24) 

the integral in (2.22) is easily evaluated. The sign of a determines the sign 
of c'(p)= Q"(p) and we consider a>0, for definiteness. We may write 

Q- Up + A = -a(p-pl)(p2-p), 
where 

£/=/?+a(p,+p2), A=apiP2-y. 

Then (2.22) becomes 

X f dp i p2-p 
log . (2.25) 

- / = " J « ( P - P I ) ( P 2 - P ) «(P2-Pt) P~Pi 

As X-* oo, p~*pj exponentially, and as X^> — oo, p-*p2 exponentially. 
There is no precise thickness to the transition region, but we can introduce 
various measures of the scale, such as the length over which 90% of the 
change occurs or (p2 —Pi) divided by the maximum slope \px\. Clearly all 
such measures of thickness are proportional to 

(2.26) 
«(P2~Pi) 

If this is small compared with other typical lengths in the problem, the 
rapid shock transition is satisfactorily approximated by a discontinuity. We 
confirm that the thickness tends to zero as ?->0 for fixed px,p2, but it also 
should be noted that sufficiently weak shocks with (p2 — Pi)/pt-*0 ulti-
mately become thick for fixed v, however small. For weak shocks Q(p) can 
always be approximated by a suitable quadratic over the range p, to p2, so 
that (2.25) applies. Even for moderately strong shocks it is a good overall 
approximation to the shape. 

The shock structure is only one special solution of (2.20), but from it 
we might expect in general that when v-*0 in some suitable nondimen-
sional form, solutions of (2.20) tend to solutions of 

Pt + c(p)px = 0 
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together with discontinuous shocks satisfying 

v_Q{Pi)-Q(Px) 
Pi~P\ 

This is true when the solutions are compared at fixed (x,t) with J»->0. 
However, the fact that the shock transition becomes very wide as (p2

_Pi)/ 
p,-»0, for fixed v, means that in any problem where the shocks ultimately 
tend to zero strength as /-»oo, there may be some final stage with 
extremely weak shocks when the discontinuous theory will be invalid. This 
is often a very uninteresting stage, since the shocks must be very weak. 

Otherwise, we can say that the two alternative ways of improving on 
the unacceptable multivalued solutions agree. The use of discontinuous 
shocks is the easier analytically and can be carried further in more 
complicated problems. 

Confirmation in more detail would require some explicit solutions of 
(2.20) which involve shocks of varying strength. Although solutions are not 
known for a general Q(p), it turns out that (2.20) can be solved explicitly 
when Q{p) is once again a quadratic in p. If (2.20) is multiplied by c'(p), it 
may be written 

c, + ccx = vc'(P)Pxx 

= vcxx-vc"(p)pl. (2.27) 

If Q(p) is quadratic, c(p) is linear in p, then c"(p) = 0 and we have 

c, + ccx = vcxx. (2.28) 

This is Burgers' equation and it can be solved explicitly. The main results 
are given in Chapter 4. For the present, we accept the evidence for 
pursuing discontinuous solutions of (2.2) bearing in mind that for ex-
tremely weak shocks it will not be appropriate. For the extremely weak 
shocks, Q(p) can be approximated by a quadratic and Burgers' equation 
can be used. 

The arguments in this section depend strongly on »->0. As noted 
previously, this is required for stability of the problem. Interesting cases of 
instability do occur, however, in traffic flow and flood waves. They are 
discussed in Chapter 3. 

2.5 Weak Shock Waves 

In a number of situations the shocks are weak in that (p2-Pi)/Pi is 
small, but they are not so extremely weak that they may no longer be 
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treated as discontinuities. It is useful to note some approximations for such 
cases. 

The shock velocity 

„ e ( p 2 ) - e ( p i ) 
P2-P1 

tends to the characteristic velocity 

in the limit as the shock strength (p2-Pi)/Pi-»0. For weak shocks the 
expression for the shock velocity U may be expanded in a Taylor series in 
(p2-Pi)/Pi a s 

U- 0'(P.) + \ (p2-p, )e"(p,) + 0 ( P 2 - P l )
2 . 

The propagation velocity c(p^) =* Q'(p^) may also be expanded as 

c(p2) = c(P l) + (P2-P,)e"(p,) + 0 (p 2 -p , ) 2 . 
Therefore 

^ ( c . + c^ + O ^ - p , ) 2 , (2.29) 

where c, = cipi) and c2 = c(p^). To this approximation, the shock velocity is 
the mean of the characteristic velocities on the two sides of it. In the (x, t) 
plane the shock curve bisects the angle between the characteristics which 
meet on the shock. This property is useful for sketching in the shocks, but 
it also simplifies the analytic determination of shock positions. Clearly the 
relation is exact when Q(p) is a quadratic. 

2.6 Breaking Condition 

A continuous wave breaks and requires a shock if and only if the 
propagation velocity c decreases as x increases. Therefore when the shock 
is included we have 

c2>U>Cl, (2.30) 

where all velocities are measured positive in the direction of x increasing 
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and the subscript 1 refers to the value of c just ahead of the shock (i.e., 
greater value of x) and the subscript 2 refers to the value of c just behind 
the shock. A shock produces an increase in c, and it is supersonic viewed 
from ahead and subsonic viewed from behind. As regards the jump 
condition alone, it would be feasible to fit in discontinuities with c2<cv 

However, shocks with c2<cx could never be formed from a continuous 
wave and they are never required; they are excluded from consideration 
for this reason. 

One question about this argument is the point that the solution 
represented in Fig. 2.5 might be set up with e2<c, (by some complicated 
but probably highly unrealistic device). Of course we have already noted in 
(2.9) and in Fig. 2.6 a satisfactory continuous solution for such initial 
conditions. Still, to be particularly awkward, one might insist that Fig. 2.5 
gives an alternative solution. The answer is that this proposed solution is 
unstable. That is, small perturbations would change the flow into some-
thing quite different—the expansion fan solution of (2.9). This is a 
"disintegration argument" which is complementary to the "formation 
argument." The instability will not be considered in detail in this chapter 
since the formation argument is convincing and unambiguous. For higher 
order equations the shock formation becomes harder to study and the 
instability arguments sometimes give an easier method to decide whether a 
particular shock satisfying the shock conditions is really possible. 

For gas dynamic shocks, the inequality corresponding to (2.30) is 
equivalent to the condition that the entropy of the gas increases as the gas 
passes through the shock. The entropy condition was the first argument for 
the irreversibility of shock waves, that is, that the shock transition goes only 
one way. However, conditions like (2.30) are more general. In some 
problems there is no obvious counterpart to entropy; in others, such as 
magnetogasdynamics, the entropy condition does not rule out some inad-
missible shocks. 

An alternative view of these criteria is that any acceptable discon-
tinuous shock must have a satisfactory shock structure when described by 
more accurate equations. This is a more satisfactory point of view, since it 
appeals to a more realistic description of the phenomenon. However, the 
analysis may become prohibitive and one often resorts to the indirect 
arguments in the framework of the simpler theory. 

This alternative approach was checked in the discussion of shock 
structure in Section 2.4. When c'(p)>0we found only a shock structure for 
p2>P\\ since c'(p)>0, this is equivalent to c2>cx. When c'(p)<0, we 
found p2<Pi, but the change in sign of c'(p) means that c2>cv Since 
c(p)= Q'(p), the shock velocity lies between the values c, and c2 by Rolle's 
theorem. 
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2.7 Note on Conservation Laws and Weak Solutions 

Mathematically, the composite solution composed of continuously 
differentiable parts satisfying 

9p 9 G ( P ) 

i+^r-° < 2 - 3 1 > 
together with jump discontinuities satisfying 

-U[p) + [Q(p)}=0 (2.32) 

can be considered a weak solution of (2.31). Briefly, the idea is as follows. 
Associate with (2.31) the equation 

-fJ{p+, + Q(p)tx}dxdt-0, (2.33) 
R 

where R is an arbitrary rectangle in the (x,t) plane, and <J> is an arbitrary 
"test" function with continuous first derivatives in R and <f>=0 on the 
boundary of R. If p and Q(p) are continuously differentiable, (2.31) and 
(2.33) are equivalent. On the one hand, if (2.31) is multiplied by <j> and 
integrated over R, we may deduce (2.33) after integration by parts. On the 
other hand, integration by parts on (2.33) leads to 

/ / 
9p 9 0 ( P ) , 

and, since this must hold for all arbitrary continuous <j>, (2.31) follows. 
However, (2.33) allows more general possibilities, since the admissible 
functions p(x,t) need not have derivatives. Functions p(x,t) which satisfy 
(2.33) for all test functions <f> are called "weak solutions" of (2.31). 

We now investigate what this extended meaning of solution has 
achieved. Consider the possibility of a weak solution p(x,t), that is, one 
satisfying (2.33), which is continuously differentiable in two parts /?, and 
R2 of R, but with a simple jump discontinuity across the dividing 
boundary, S, between /?, and R2. We may integrate by parts in each of the 
separate regions /?,, R2, and deduce from (2.33) that 

R, v > R2
 V I 

+ [ {[p)l+[Q(p)]m}<t>os = 0, 
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where (l,m) is the normal to 5 and [p], [Q(p)] denote the jumps across 5. 
The line integral on S consists of the two contributions from the boundary 
terms of /?, and R2 obtained in the integration by parts. Since this equation 
must hold for all test functions </>, we deduce that (2.31) holds inside each 
of the regions R^ and R2, but in addition we deduce 

[p]l+[Q(p)]m = 0 on S. 

This is the shock condition (2.32), since U= — l/m. Thus weak solutions of 
this type would satisfy (2.31) at points of continuity and allow jump 
discontinuities satisfying the shock condition. Just what we want! 

At first sight, the weak solution concept appears to bypass the more 
involved and less precise discussion of the real physical processes. But it is 
not really so. Corresponding to the differential equation 

S+.(,>£-o 
there are an infinite number of conservation equations 

9/Yp) dg(p) 

J W + J r W , 0 (234) 
Any choice which satisfies 

* ' ( P ) - / ' ( P M P ) (2-35) 

will do. For differentiable functions p(x,t), these are all equivalent. How-
ever, their integrated forms are not equivalent and lead to different jump 
conditions. The weak solution of (2.34) will require the shock condition 

- W ( p ) ] + U ( p ) ] = 0 ; (2.36) 

different choices of / and g lead to different relations between pv p2, and 
U. Therefore a discussion of the physical processes is still necessary in 
order to pick out which weak solution is relevant to the particular physical 
problem at hand. 

From the differential equation 2.34 we can propose a candidate for a 
conservation equation in integrated form: 

^Q(p)dx+[g(p))';-0. (2.37) 

But whether this holds for nondifferentiable p can be decided only by 
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returning to the original formulation of the problem. In Section 2.2 we 
argued in the correct order: first (2.10) then (2.11). The reverse order, 
going from an equivalent partial differential equation to an integrated 
form, introduces the lack of uniqueness. 

If (2.37) is the true conservation equation, then (2.36) may be deduced 
as the shock condition by the same argument that was used in Section 2.3. 
Thus the correct choice of weak solution is made on the basis of which 
quantities are really conserved across the shock. In view of the lack of 
uniqueness and possible confusion, it is felt that the weak solution concept 
is not particularly valuable in this context and it is better to stress that 
physical problems are first formulated in the basic integrated forms from 
which both the partial differential equations and the appropriate jump 
conditions follow. 

A looser form of the weak solution idea is sometimes useful in a 
preliminary look at a problem. If, for example, we ask whether (2.34) might 
admit moving discontinuities as part of the solution, we might try 

/ ( p ) - / o ( * ) t f ( * - W ) + / i . 

g(p)=g0(x)H(x-Ut)+glt 

where H(x) is the Heaviside step function and / „ g, are continuous 
functions. On substitution in the equation we obtain 8 function terms 

(-Uf0 + gQ)8(x-Ut) 

plus less singular terms. We deduce that 

- Uf0+g0=0, 

and this is the shock condition (2.36), since f0=[f], g0
=[g]- This does not 

avoid the lack of uniqueness, of course, and it also uses 8 functions in a 
slightly dubious way. The use of 8 functions in nonlinear problems usually 
is excluded because there is no satisfactory meaning to powers and 
products of such generalized functions; we have retained an artificial 
linearity by expressing /(p) and g(p) separately, rather than using a single 
expression for p. Of course, the justification of the 8 function argument is 
via the weak solution. 

In contrast, consider the same question of the possibility of moving 
discontinuities for (2.20) written in the form 

9p 3g(p) 3V 
dt dx V dx2' 
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If p and Q(p) are expressed in terms of H(x- Ut), the term d2p/dx2 will 
have a term [p]fi'(* - Ut) and there is no other term as singular as 
S'(x - Ut) to balance it. We conclude that [p] = 0 and that discontinuities 
are not possible. This is clearly a useful tool for a preliminary assessment. 

2.8 Shock Fitting; Quadratic Q(p) 

After discussion of these various points of view we now turn to the 
analytic problem of fitting discontinuous shocks satisfying 

into the continuous solution 

g(p2)~g(Pl) 
Pi-Pi 

P=f(0, 

(2.38) 

(2.39) 

Any multivalued part of the wave profile must be replaced by an 
appropriate discontinuity, as shown in Fig. 2.8.* The correct position for 
the discontinuity may be determined by the followng ingenious argument. 
Both the multivalued curve and the discontinuous curve satisfy conserva-
tion. Therefore fpdx under each curve must be the same; hence the 
discontinuity must cut off lobes of equal area, shown shaded in Fig. 2.8. 

Fig. 2.8. Equal area construction for the position of the shock in a breaking wave. 

♦The figure is drawn for the case c'(p)>0 but all the formulas in this section are correct for 
either case. 
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This determination, although quite general, is not in a convenient 
form for analytic work. The general case gets complicated and it is 
worthwhile to do a special case first. The special case is again a quadratic 
expression for g(p). This includes the case of weak disturbances about a 
value p = p0, since Q(p) can then be approximated by 

Q=Q(PO) + Q'(PO)(P-PO) + JQ"(PO)(P-PO)2> 

and for this reason it has considerable generality. 
We consider 

Q(p) = ap2 + pp+y. 
Then 

c(p) = (2'(p)=2ap + /? 

and the shock velocity (2.38) becomes 

U--k('l + C2)> I 
2 

where c, - cipj, c2 = c(pj. 
The simplicity of this case is that the whole problem can be written in 

terms of c. The continuous solution is 

(2.40) 
x-t + F(S)t, 

and shocks must be fitted in such that 

tf-j(c, + c 2 ) - i { F ( € , ) + F(€2)}, (2.41) 

where £, and £2 are the values of £ on the two sides of the shock. Since p 
and c are linearly related, the conservation of p implies conservation of c; 
that is, fcdx is conserved in the solution. Therefore for this special case 
the shock construction for the (p,x) curve in Fig. 2.8 applies equally well to 
the (c,x) curve. 

It is convenient to note for future reference that this solution in terms 
of c solves the equation 

c, + ccx = 0, (2.42) 

with weak solutions chosen to satisfy the conservation law 

c, + ( ic 2 ) J t -0 (2.43) 
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c 

Fig. 2.9. Equal area construction: (a) on the initial profile; (6) on the transformed breaking 
profile. 

so that the shock condition is 

= 2;(c, + c2). (2.44) 

Equation 2.42 is true for general Q(p), since it is c'(p) times p, + c(p)px = Q; 
(2.44) is always a possible weak solution, but it is the correct choice only 
when Q(p) is quadratic or approximated by a quadratic since it is only in 
that case that the integrated form of (2.43) holds across discontinuities. 

The shock construction can now be combined with the continuous 
solution (2.40). Since we now work with c the awkward distinction between 
the two cases c'(p) ^ 0 does not arise. According to (2.40) the solution at 
time t is obtained from the initial profile c = F(£) by translating each point 
a distance F(g)t to the right, as shown in Fig. 2.9. The shock cuts out the 

Fig. 2.10. The (x,t) diagram associated with the shock construction in Fig. 2.9. 
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part corresponding to £2>£>£]. If the discontinuity line in Fig. 2.9b is 
also mapped back as in Fig. 2.9a, it is a straight line chord between the 
points !=£] and £ = £2 on the curve F(£). Moreover, since areas are 
preserved under the mapping, the equal area property still holds in Fig. 
2.9a; the chord on the F curve cuts off lobes of equal area. The shock 
determination can then be described entirely on the fixed /*(£) curve by 
drawing all the chords with the equal area property. The pairs £=£p £=£2 

at the ends of each chord relate characteristics which meet on the shock. 
The (x,t) plane is shown in Fig. 2.10. The equal area property can be 
written analytically as 

\ { f«,) + F(Z2) } (*,-&) = jfV(0di, (2.45) 

since the left hand side is the area under the chord and the right hand side 
is the area under the F curve. If the shock is at x = s(t) at time /, we also 
have 

sW-tt + FitJt (2.46) 

* ( / ) - & + *■(&)* (2.47) 

from the second of (2.40). The three equations (2.45)-(2.47) determine the 
three functions s(t), £,(/)> and £2(f). The determination of s(t) is implicit 
involving the two additional functions £,(/) and £2(f) which determine the 
characteristics meeting the shock at time t. The values of c on the two sides 
of the shock are c, = F^) and c2 = Fity, the values of p are obtained from 
c. 

Since the shock determination (2.45)-(2.47) was obtained geometri-
cally, it is interesting to check directly that it does indeed satisfy the shock 
condition (2.41). We may write this verification as an independent deriva-
tion of the result in (2.45). We have to find three functions s(f), £,(/), l2(0 
which satisfy (2.46), (2.47), and 

i ( 0 - | { ^ ( € i ) + n«2)}- (2-48) 

(Dots denote t derivatives.) From (2.46) and (2.47), we have 

' " " / ■ « , ) - / ( « , ) • ( 2 4 9 ) 
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i ( / ) = {l + /F'(£,)}£, + / U ) , 

Ht)-{l + tF'(i2)}t2 + F(t2). 

If we take the mean of these last two expressions for s in order to preserve 
symmetry, substitute for / from (2.49), and then substitute in (2.48), we 
obtain 

= F(!,)£1-JF(£2)£2. 

This may be integrated to (2.45); the constant of integration may be 
dropped since the starting point of the shock, £, = £2, must be a solution. 

The expression (2.49) for the time can be used to follow the develop-
ment of the shock. Since t>0, all the relevant chords in Fig. 2.9a must 
have negative slope. Since ^>^2 by the choice of notation, F(£j)>-F(£,), 
that is, c2>C| as we decided from the breaking condition. The earliest time 
for the shock corresponds to the steepest chord. This is the limit when the 
chord is tangent at the point of inflexion £=£fl, say. Then F(£,) = F(£2) so 
the shock starts with zero strength and the time is 

This all fits with the conditions for the first point of breaking discussed in 
(2.8). For an F curve like Fig. 2.9a, the chords tend to the horizontal as 
/-»oo, with F ^ - F d , ) - ^ ; hence c2-c,-»0 and the shock strength tends 
to zero as /-*oo. 

Single Hump. 

To study the shock in detail, we suppose first that F(£) is equal to a 
constant c0 outside the range 0<£<L, and F(i-)>c0 in the range. Equation 
2.45 may be written as 

i{Fa,)+Fa2)-2c0}a1-i2)=^,{FU)-co}^-

As time goes on, £, increases and eventually exceeds L. At this stage 

46 

and 
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F(£,) = c0 and the shock is moving into the constant region c-c0. The 
function £,(f) can then be eliminated, for we have 

Therefore 

\{F{i2)-c0)
2t = £[F(t)-c0)dt. 

At this stage, the shock position and the value of c just behind the shock 
are given by 

s(t)-i2 + F(l2)t, 
(2.50) 

c-F(t2), 
where |2(r) satisfies 

\{F(i2)-c0)
2t-£{F(t)-c0)dt. 

As /-*oo, we have £2-»0 an<* F(&2)->c0; hence the equation for £2(/) 
takes the limiting form 

2 
where 

T{m)-<o}V-4, 

>*-/" [F{t)-c0)dt 

is the area of the hump above the undisturbed value c0. We have £2—»0, 

F(£2)~c0+ ^JlA/t . Therefore the asymptotic formulas for 5(0 and c in 
(2.50) are 

s~c0t + V2At , 

at the shock. The shock curve is asymptotically parabolic and the shock 
strength (c — c^)/c0 tends to zero like t~1^2. 

The solution behind the shock is given by (2.40) with 0 < £ < £2. Since 
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Fig. 2.11. The asymptotic triangular wave. 

£2-»0 as /-*0, all the relevant values of | also tend to zero and the 
asymptotic form is 

c~-, c0t<x<c0t + V2At . (2.52) 

The asymptotic solution and the corresponding (x, t) diagram are shown in 
Fig. 2.11. Notice that the details of the initial distribution are lost; only 

A= I { F(£) — c0) d% appears in the ultimate asymptotic behavior. 
•'o 

N Wave. 

Other problems can be worked out in a similar way. One important 
case is when F(£) has a positive and a negative phase about an undisturbed 
value c0, as in Fig. 2.12. There are now two shocks, corresponding to the 
two compression phases at the front and at the back where /"'(£) < 0. The 
families of chords for each are shown in the figure. As f-»oo, the pair 
(£2, £i) for the front shock approach (0, oo), whereas for the rear shock, 
(£2,£,) approach ( - oo,0). Asymptotically the front shock is 

s~c0t+y/2At 



Fig. 2.12. Shock construction for an N wave. 

C M 

Co-. 
Cot -> /28t 

Cot+V^At x 

Fig. 2.13. The asymptotic N wave. 

49 
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and the jump of c is 

Chap. 2 

2A 

where A is the area of the F curve above c - c0. The rear shock has 

x~c0t~V2Bt , 

where B is the area below c = c0. The solution between the shocks is again 
asymptotically 

c0t-V2Bi <x<cnt + V2At (2.53) 

The asymptotic form and the (x,i) diagram are shown in Fig. 2.13. 
Because of the shape of the wave profile, it is known as the N wave. 

Periodic Wave. 

Another interesting problem is that of an initial distribution 

2w| 
c = F(£) —c^ + a sin -r—. 

A 
(2.54) 

In this case, the shock equations (2.45)-(2.47) simplify considerably for all 
times t. Consider one period 0 < £ < A as in Fig. 2.14. Relation 2.45 
becomes 

( € , " €2) sin J ({, +fc) cos J (€ , -€ 2 ) - ^ sin J « , - € 2 ) sin J (€ ,+{ , ) , 

^ 

° £ 9 
_ j i_ 

Fig. 2.14. Shock construction for a periodic wave. 



Sec 2.8 SHOCK FITTING; QUADRATIC Q(p) 51 

and the relevant choice is the trivial one 

sin =0 , that is, £, + £2 = X. 
A 

From the difference and sum of (2.46) and (2.47), we have 

« l " « 2 
/ = 

2as in | (£ , -£ 2 ) 

s = c0t+-, 

respectively. The discontinuity in c at the shock is 

. 2TT£, . 2TT£2 

2 — c, = asin —r asm —r— 
A A 

c 

If we introduce 

we have 

= 2asin ! • ( £ , - £ 2 ) . 

r - A * 
2wa sin#' 

A 
2 ! * - c 0 / + ^ , (2.55) 

c2 c i 2a . „ 
co co 

The shock has constant velocity c0 and this result could have been deduced 
in advance from the symmetry of the problem. The shock starts with zero 
strength corresponding to 0 = 0 at time t = \/2tta. It reaches a maximum 
strength of 2 a / c 0 for Q = m/2, t-\/Aa, and decays ultimately with 9-*-n, 
t-*oo, 

- L ~ ^ - . (2.56) 
Cn Cnt 
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x-c0t 

Fig. 2.15. Asymptotic form of a periodic wave. 

It is interesting that the final decay formula does not even depend 
explicitly on the amplitude a. However, the condition for its applicability is 
f»\/a. For any periodic F(£), sinusoidal or not, £, -£2-»A as f-»oo; hence 
from (2.49) 

HQ-FUr) X c-,-c, 
c0t c 0 c 0 

Between successive shocks, the solution for c is linear in x with slope \/t 
as before, and the asymptotic form of the entire profile is the sawtooth 
shown in Fig. 2.15. 

Confluence of Shocks. 

When a number of shocks are produced it is possible in general for 
one of them to overtake the shock ahead; they then combine and continue 
as a single shock. This is also described by our shock solution. Consider 
the F curve in Fig. 2.16. Two shocks are formed corresponding to the 
points of inflexion P and Q with families of equal area chords typified by 
PXP2 and QXQ2. As time goes on the points Q{ and P2 approach each other 
until the stage in Fig. 2.166 is reached where a common chord cuts off 
lobes of equal area for both humps. At this stage the characteristics 
corresponding to P2 and Q[ are the same, and therefore the shocks have 
just combined into one as shown in the (*,/) diagram Fig. 2.17. All the 
characteristics between Q2 and P{ have now been absorbed by one or 
other of the shocks; a single shock proceeds using chords P'X'Q2" as in Fig. 
2.16c, counting only total areas above and below the chord in the equal 
area construction. 



Fig. 2.16. Construction for merging shocks. 

05 Q', Q, Q, P* P2 P, P[ P," 

Oi 

Fig. 2.17. The (x,i) diagram for merging shocks corresponding to Figs. 2.16. 
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2.9 Shock Fitting; General Q(p) 

For the general dependence of q on p, the shock determination can be 
put into an analytic form similar to (2.45)-{2.47). The complication is the 
nonlinear relation between c and p, so that the construction in Fig. 2.8 is 
correct for p but not for c. Accordingly, we must work with p. But if we 
then plot (p,x) curves similar to Fig. 2.9, the discontinuity line does not 
map into a straight chord because the translation is proportional to c and 
not to p. Thus the mapping back onto the initial curve is no particular 
advantage. 

However, we can proceed as follows. Introduce the function £(p), 
which is the inverse of 

P - / U ) , 

and introduce also the function X(p,t), which is the inverse of the function 
p = p(x,t) in the multivalued solution. That is, we fix attention on a 
particular value of p and note where it is now, X(p,t), and where it was 
initially, £(p). From the equation for the characteristics we have 

*(p, / ) -c(p)f + « p ) . (2.57) 

Consider the shock at s(i) and let p, and p2 be the values ahead and 
behind the shock, respectively. The equal area construction in Fig. 2.8 may 
be written 

(PlX(p,t)dp=(pl-p2)s({). 

[This is true for either case c'(p) % 0. We always take p, to be the value 
ahead of the shock and p2 to be the value behind. If c'(p)>0, then p2>Pi; 
if c'(p)<0, then p2<Pi-] Hence from (2.57), 

f"{c(p)t + Z(p)}dp=(Pl-p2)s(t). 

Since c(p)=Q'(p), this may be written 

(qi-«2)t-(Pi-p2Mt)--rt(p)dp. (2.58) 
jp2 

The right hand side can be integrated by parts and rewritten as 

-Piii+p£i+ft P(£)^-
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The shock position s(t) is given by 

j ( 0 - € i + c,f, 
(2.59) 

*( ' )=*2+<v; 

these may be solved for s(t) and t and substituted in (2.58). Finally, (2.58) 
becomes 

{ ( f t - «,) -(P2C2-PXC,)} | ^ = jf'prffc (2.60) 

where p, ?, and c are all to be evaluated as functions of £ through the 
relations 

P - / ( 0 . «-<?(/(«)). *-C' ( / («) (2.60 

and subscripts indicate values for £=£, and £=£2- (This makes it a little 
clearer than using /(£) for p, F(£) for c and introducing a new symbol for q 
as a function of £.] Equations 2.59 and 2.60 give three relations for s(t), 
£,(/), £2(/). Again it may be verified directly by differentiation that the 
shock condition 

. ft~?i s= 
Pi~ Pi 

is satisfied. When q is quadratic in p, it is easily verified that (2.60) reduces 
to (2.45). The problems like a single hump or an N wave can be analyzed 
as before and are qualitatively similar. The asymptotic formulas (2.51), 
(2.52), and (2.53) still apply with the modification that 

A=c'(Po)l (p-Po)dt, 

and B is changed similarly. The expressions for p may be deduced from 
those for c, since the disturbance is weak in the asymptotic limit and 
P ~ P O ~ ( C - C Q ) / C ' ( P O )

 t o fifSt order. 

2.10 Note on Linearized Theory 

When disturbances are weak, nonlinear equations are often 
"linearized" by neglecting all but the first order powers of the perturba-
tions. For weak disturbances with ( c - c 0 ) / c 0 « l , the equation 

c, + ccx «■ 0 
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would be linearized to 

As noted earlier the solution of this equation is c — c0=f(x-c0t). The 
breaking effect and the formation of shocks are completely absent, yet we 
see from Figs. 2.11, 2.13, and 2.15 that these become crucial after a 
sufficient time, however weak the initial disturbance may be. Thus it is clear 
from comparison of the answers that the linearized approximation cannot 
be uniformly valid as f-»oo. 

This may also be seen directly, by looking at the linear theory as the 
first term in a naive expansion in powers of a small parameter. Suppose « 
measures the maximum initial value of (c - c0)/c0, and a solution is sought 
in the form 

c = c0 + icl(x,t) + t2c2(x,t) + 

When this expansion is substituted in c, + ccx — 0 and coefficients of «" are 
equated to zero, we have a hierarchy of equations starting with 

cu + c0clx = Q, 

c2l + c0c2x = — clclx, 

These are easily solved successively since at each step we have 

<j>, + cQ<i>x = Q>(x,t), 

where $ is known from the previous step. If we introduce the characteristic 
coordinate y = x — c0t, this may be written 

(d-±) =*(y + c0t,t). 
\ dt ly-const. 

Therefore 

0 . f'<t>(y + coT,r)dT + <l>(y). 

The initial condition on c may be written 

c = c0+eP(x) atf = 0, 
and it is satisfied by 

cx = P{x), cn = 0 (n>\) at/ = 0. 
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Hence the complementary functions V(y) are zero in the solutions for the 
c„, n>\. The first three c„ are found to be 

ci-P(y), 

c2=-tP(y)P'(y), 

c,= ^(P2P')'. 

It is clear that in general cn will contain a term of the form t"~lRn(y). 
Therefore the successive terms in the assumed series for c are of order 
€nt"~\ and the series is not uniformly valid as t—>co. 

The failure of the linearized theory, brought out strongly in the 
solution for the higher order terms, is that it approximates the characteris-
tics as lines x — c0t = constant. The slight inclination of the true 
characteristic lines, relative to each other, accumulates to a large dis-
placement as /-»oo. The correct solution may be written as a telescoping 
function: 

c = c0 + eP(x-ct), 

= c0+eP(x-[c0+eP]t), 

and so on. The naive perturbation expansion can then be obtained by an 
inadvisable use of Taylor series! 

2.11 Other Boundary Conditions; The Signaling Problem 

The solution for the initial value problem has been given in great 
detail. Other boundary value problems can be solved in similar fashion. It 
is clear from the characteristic form (2.4) that the solution is determined 
once the value of p is given on any curve that intersects each characteristic 
once. Such a boundary value provides the initial conditions for integrating 
the two ordinary equations in (2.4) along the characteristic through that 
point. In principle, this is repeated at each point of the boundary curve to 
build up the solution in the whole region covered by the characteristics 
through the boundary curve. If the curve intersects characteristics twice, as 
does curve ABC in Fig. 2.18, the data can only be posed on AB or BC, 
otherwise the integration starting from AB, say, will conflict with the data 
on arrival at BC. Since the characteristics may depend on the solution, the 
region covered and the admissibility of the boundary curve cannot always 
be decided in advance. 
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Fig. 2.18. Characteristics and initial data. 

A standard boundary value problem is the so-called signaling problem 
for which 

p = p0 forxX), / = 0, 

p = g(/) for/>0, x = 0, 

and the solution is required in x>0, t>0. Of course, this problem only 
arises in the case c=Q'(p)>0. The (x,t) diagram is shown in Fig. 2.19. 
Characteristics start from the positive x axis and the positive / axis. Those 
from the / axis have p = p0, c = c(p0) = c0 and are straight lines x~c0t 
= constant. Thus they predict 

(2.62) P = Po> c = co in x>Cr.t. 

For the characteristics starting from the / axis, let a typical one start at 
t — r. Then 

P = S ( T ) . 
(2.63) 

* - G ( T ) ( / - T ) , 

t = r 

Fig. 2.19. The (x,l) diagram for the signaling problem. 



Sec 2.11 OTHER BOUNDARY CONDITIONS; THE SIGNALING PROBLEM 59 

where G(T) = C{ g(r)}. This gives the solution implicitly in terms of r(x,t). 
The solution can be related to the solution of the initial value problem 

in two ways. The first method is to note that the two solutions agree if 

! = - T G ( T ) , / ( O - g ( r ) , F ( £ ) = C ( T ) . (2.64) 

This corresponds to continuing the characteristic through / = T, X = 0, back 
to the x axis and denoting the point of intersection as x = £; in this way the 
signaling problem is formulated as an initial value problem. The alterna-
tive method is to interchange the roles of x and /, and of q and p; in the 
formulas, dp/dq- \/c will appear in place of dq/dp = c. 

Any multivalued overlap in the solution (2.63) has to be resolved by 
shocks. If G(0 + )>co, there will be an overlap immediately since the first 
characteristic x = tG(0 + ) of the disturbed region is ahead of the last 
characteristic x = c0t of the undisturbed region. In that case a shock of 
finite strength will start from the origin. The shock determination can be 
taken from the results for the initial value problem using either of the 
above methods, or it can be developed independently. If characteristics 
T,(r) and r2(t) meet the shock at the time t, then from (2.63), 

* ( 0 - ( ' - T , ) C „ <:, = <;(!-,), 
(2.65) 

s(t) = (t-T2)c2, C 2 = G ( T 2 ) , 

and the formula corresponding to (2.60) may be written 

{(<li-p2<:->)c\-(<i\-p\<:\)c2}-—— = -) q(r)dT. (2.66) 

Equations 2.65 and 2.66 provide the three implicit equations for the 
functions rt(t), r2(t), s(t). The most important case is that of a front shock 
formed at the origin [i.e., G(0+)>co] and propagating into the undis-
turbed region. Then we have Pi=p0, C^CQ, ?, = <70'

 a n d Ti can be 
eliminated from (2.65) and (2.66). At the same time we drop the subscript 2 
and reduce the shock relation (2.66) to 

{ (q~9o) ~ (p-Po)c}(t-r) - - C{q(r') -q0) dr'. (2.67) 
•'o 

Here p, q, and c are functions of T determined from 

P - S ( ' ) , ? - G ( * ( T ) ) , c=Q'(g(r)); 

they are all known functions of each other and when one is prescribed as a 



60 WAVES AND FIRST ORDER EQUATIONS Chap. 2 

function of T the others follow. Equations 2.63 determine the solution in 
the disturbed region behind the shock; (2.67) determines the appropriate 
value T ( 0 at the shock and on substitution in (2.63) we have both the 
position of the shock and the value of p just behind it. 

In the initial motion of the shock, the value of T(/) in (2.67) is small 
and we have 

{ U ~ f t ) - ( f t - P o k ) ( / - T ) = - (<?,-<?0)T + 0 ( T 2 ) , 

where p,-, qt, and c, are the initial values on x = 0; that is, p, = g(0 + ), and so 
on. Therefore 

I (p,-pokJ 

From (2.63), the shock position is 

x={t-r)ci+0{t1) 

Pi'Po 

The shock starts with velocity (<7, — <70)/(p, — p0), and this result can be seen 
directly from the shock condition. If g(r) remains constant and equal to p,, 
this is exact for all t and the solution is a shock of constant velocity 
separating the two uniform regions p = p0 and p = pr 

If g(r) returns to p0, the shock ultimately decays. For a single positive 
phase with g(r) returning to p0 at T = T, the asymptotic behavior corre-
sponds to T-»r, /-»oo, p-*p0 in (2.67). In this limit, (2.67) becomes 

1 i c^ 
2 C ' ( P O ) ( P - P O ) ' ~ J {?(T')-9o}<fr'. 

and the expression for the shock position in (2.63) becomes 

x~c0t+c'(p0)(p-p0)t. 

Therefore at the shock we have 
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where T 

A=c'(p0)( {q-q0)dr. 

In the region behind the shock, 

c ~ - , c0t<x<c0t+v2At, 

(c-c0) 1 x-c0t 
P P ° ~ c'(p0) ~c'(Po) t • 

(2.69) 

These results are very similar to those for the initial value problem. Other 
cases may be studied in the same way. If the positive phase is followed by 
a negative phase, there is a second shock whose asymptotic behavior is 
given by (2.68) with the modifications that A is replaced by the corre-
sponding integral over the negative phase and the signs are changed 
appropriately. The ultimate form is an N wave with the formulas (2.69) 
extended back to the rear shock. 

2.12 More General Quasi-Linear Equations 

The general quasi-linear equation of first order is linear in p, and px 

but may also have an undifferentiated term. The coefficients of p,, px and 
the undifferentiated term may be any functions of p, x, t. If the coefficient 
of p, is nonzero, the equation may be divided by this quantity and written 
in the form 

p, + cpx = b, (2.70) 

where b and c are functions of p, x, and t. Such equations can again be 
reduced to the integration of ordinary differential equations along 
characteristic curves by writing (2.70) in the characteristic form 

dp dr 
-£ = b(p,x,t), ^ = c(p,x,t). (2.71) 

In particular the initial value problem with initial data 

p=f(x), t = 0 

is solved by integrating the coupled ordinary differential equations in 
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(2.71) subject to the initial conditions 

P=/(£), * - & at/ = 0. 

Each choice of £ leads to the determination of the characteristic through 
x = £ and the value of p along it. The solution in a whole region is obtained 
by varying the parameter £. 

When b^O, p is not constant along the characteristics and generally 
the characteristics are not straight lines. But the method of determination 
is qualitatively the same. Again waves may break with the characteristics 
overlapping in the (x,t) plane. Again the multivalued solutions may be 
avoided by including suitable discontinuities. 

Some interesting cases concerning breaking arise and we will consider 
two examples here. 

Damped Waves. 

Consider as a first example the case 

ct + ccx + ac = 0, (2.72) 

where a is a positive constant. In characteristic form it is written 

dc dx ,~ _«v 
_ - - « , _ = c. (2.73) 

If we take the initial value problem, the first equation may be integrated to 

c = e-"f(0- (2.74) 
Then the second equation is 

■e-a%i), 
dt 

and we require x = £ at t = 0. The solution is 

x = Z+^^-M). (2.75) 
a 

The nonlinearity gives the typical distortion of the wave profile, but 
simultaneously the wave is damped due to the presence of the un-
differentiated term in the equation. 
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Consider now the question of breaking. This is most easily investi-
gated by seeing whether the characteristic curves (2.75) have an envelope. 
An envelope of these curves satisfies the derivative of (2.75) with respect to 
the parameter £: 

0 = l + - ^ ^ / ' ( £ ) . (2.76) 
a 

Since a > 0, / > 0, this is possible if and only if 

m)<-a. (2.77) 

Thus breaking occurs if and only if the initial curve has a large enough 
negative slope; the damping may prevent breaking if the compressive 
phase is not steep enough. 

Although the appropriate equations are more complicated than those 
just considered (see Chapter 3), this type of inequality determines whether 
the tidal variation propagating up a river will be strong enough to produce 
breaking into a bore, or whether the friction will dominate. For most rivers 
the frictional effects dominate. However, those famous rivers that have a 
bore have high enough tides at the mouth and additional reinforcement 
from rapid narrowing of the river to overcome the various frictional 
effects. This theory has been discussed and applied by Abbott (1956). It 
will be referred to again in Section 5.7. 

Waves Produced by a Moving Source. 

If b is independent of p in (2.70), it may be interpreted as an external 
source of the fluid. A particularly interesting case is when the source 
distribution moves with constant velocity V. There is a recent example, in 
the more complicated context of magnetogasdynamics, where a wave 
motion is produced by applying a moving force to the fluid (Hoffman, 
1967). We can examine some of the qualitative effects in our simple model. 

We take 

b = B(x-Vt), 

where V is constant and B(x) is a positive function tending rapidly to zero 
as |x|->oo. We assume that p has a constant value p = p0 at r = 0. If 
co = c ( P o ) > t n e r e a r e important differences depending on whether the source 
moves supersonically with V>c0 or subsonically with V<c0. 

The surprising result is that a supersonic source need not produce a 
shock, whereas a subsonic source always does. This can be seen quite 
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simply by looking for a steady profile solution with 

P = p(X), X = x-Vt. (2.78) 

Since we are only looking at models anyway, with the aim of showing 
qualitative effects, let us take the special case 

c, + ccx = B(x-Vt). (2.79) 

Then in the steady profile solution 

(c-V)cx-B{X), 

HV-c)2-HV-c0)
2=-rB(y)dy. 

Jx 

In the supersonic case, V > c0, the solution for c is 

c=V-^V-CQf-2^B{y)dy^ . (2.80) 

If 

F - c 0 > | 2 j _ B{y)dy} , (2.81) 

(2.80) is a satisfactory single-valued solution for all X and no shock is 
required. The criterion (2.81) is an inequality between the speed V— c0 and 
the total source strength 

(X B{y)dy. 
•* — on 

We can get a feeling for the result by the following argument. If the 
source moves with a large supersonic speed, the only shock that could keep 
up with it would be strong. But if the source is relatively small, a strong 
shock cannot be produced and is not required. 

When the inequality (2.81) does not hold, (2.80) breaks down for 
X < A'Q, where 

1/2 v~cH2QHy)dy) 
At X = X0, c = V and transients from the starting conditions can and do 
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overtake the wave. The solution cannot be completed without a detailed 
discussion of the transients. Similarly, in the subsonic case the solution 
cannot be established without full discussion of the transients. In both 
these cases shocks are found to occur. A detailed discussion is given by 
Hoffman (1967). 

2.13 Nonlinear First Order Equations 

The discussion of quasi-linear equations has raised many questions 
that require further consideration. Before proceeding, however, we note 
briefly that similar constructions using characteristics go through in the 
general case of fully nonlinear first order equations. These results will also 
be needed later. 

It will be useful to have the characteristic form for an equation 
in n independent variables (*, , . . . ,xj . We consider, then, a function 
<J>(x,,...,x„) which satisfies a differential equation 

#(p,<M)=0, (2.82) 

where p and x denote the vectors with components ;>, and x(, i=\,...,n, 
and 

,,-i£. (2.83) 

We may motivate the characteristic form by asking whether there are 
curves in x space with special properties akin to the characteristics of the 
quasi-linear equations. Any curve 6 in x space may be written in para-
metric form 

x = x(A). 

The total derivative of <j> along the curve S is* 

</</> 3<£ dxj dxj 
d\=~dx~~d\=:pj7\' 

Is there a choice of the direction vector dXj/dX which has special signifi-
cance for the solution of (2.82)? In the quasi-linear case where we have 

•We use the summation convention that a repeated subscript is automatically summed over 
1 , . . . , * . 



66 WAVES AND FIRST ORDER EQUATIONS Chap. 2 

H = Cj(4>, \)pj - b(<j>, x), we choose 

dxj 

so that d$/d\ = CjPj\ we then use the equation to obtain 

d<}> 

d\=bi*>x)-

But generally the pt cannot be eliminated in the expression for d$/d\ 
whatever the choice of the dxj/d\. We do not have an ordinary differen-
tial equation for <p alone; the />,. are involved. However, consider in 
addition the total derivatives of the /?, on Q. We have 

K d\\hx,) dxfixj d\' K ' 

and the x( derivative of (2.82) yields 

_ 9 ^ 8 / / + 3/f 9i+a/f=0 ( 2 g 5 ) 

dxfiXj dpj 3<j> dXj dXj 

Comparing the two, we see the special advantage in choosing curves G 
defined by 

dXj = 9// 

d\ 3/7,. ' 

For in that case (2.84) may be calculated from (2.85) as 

(2.86) 

dp, dH dH ,-g-x 
d\ = -p^--dx-r ( 1 8 7 ) 

Then if we add 

(2.86)-(2-88) are a complete set of (2«+ 1) ordinary differential equations 
for determining a "characteristic curve" x,(A) and the values of 4> and />, 
along it. In principle, the solution in a whole region can be obtained by 
integrating these characteristic equations along the characteristics covering 
the region. 



Sec 2.13 NONLINEAR FIRST ORDER EQUATIONS 67 

In the special case of the quasi-linear equation, H =c,(4>,x)/>,- 6«>,x), 
(2.86) and (2.88) reduce to 

dx, 

d<f> 

which may be solved independently of (2.87). In the earlier discussion one 
of the xt was the time /, the corresponding c, was unity and the parameter X 
was / itself. 



CHAPTER 3 

Specific Problems 

In this chapter the basic ideas developed so far are applied in more 
detail to the particular cases raised in Section 2.2. At the same time, the 
general ideas can be taken further on the basis of specific sets of equations. 

3.1 Traffic Flow 

The application of these ideas to traffic flow was formulated and 
discussed independently by Lighthill and Whitham (1955) and Richards 
(1956). It is clear in this case that the flow velocity 

must be a decreasing function of p which starts from a finite maximum 
value at p = 0 and decreases to zero as p—>Pj, the value for which the cars 
are bumper to bumper. Thus Q(p) is zero at both p = 0 and p = pj, and has a 
maximum value qm at some intermediate density pm. It has the general 
convex form shown in Fig. 3.1. Actual observations of traffic flow indicate 
that typical values for a single lane are py~225 vehicles per mile, pm~80 
vehicles per mile, <7m~1500 vehicles per hour. It appears to be roughly 
correct to multiply these values by the number of lanes for multilane 
highways. It is interesting that, according to these figures, the maximum 
flow rate qm is attained at a low velocity in the neighborhood of 20 miles 
per hour. 

The propagation velocity for the waves is 

C(P) = Q'(P)=V(P)+PV'(P)-

Since K'(p)<0, the propagation velocity is less than the car velocity; waves 
propagate backward through the stream of traffic and drivers are warned 
of disturbances ahead. The velocity c is the slope of the (q, p) curve so the 
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Q 

Pm P) P 

Fig. 3.1. Flow-density curve in traffic flow. 

waves move forward or backward relative to the road depending on 
whether p<pm or p>pm. At the maximum flow rate, p = pm, the waves are 
stationary relative to the road, so the propagation velocity relative to the 
cars is then the same as qm/pm~20 mph. 

Near p = Pj, we can make a rough estimate on the basis of a simple 
reaction time argument. If we assume that a driver and his car take a time 
8 to react to any change ahead, then the gap between cars should be kept 
at VS for safety. If h is the headway, defined as the distance between the 
front ends of successive cars, and L is the typical car length, this leads to 

s • 

Since h = 1 /p, L=l/pj, we have 

K(p) = f ( f - l ) , C?(p) = f(p,-P). 

One should probably interpret this as an estimate of the slope of the Q(p) 
curve at py, rather than as a realistic prediction of a linear dependence on 
p. In any event, it gives c,= - L/S for the propagation velocity there. In 
the traffic flow context 8 is usually estimated in the range 0.5-1.5 sec, 
although in other circumstances the human reaction time can be much 
faster. With L = 20 ft, 8= 1 sec, we have cy 14 mph. 

Greenberg (1959) found a good fit with data for the Lincoln Tunnel in 
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New York by taking 

Q(p) = ap l o g - , 
P 

with a =17.2 mph, py = 228 vpm (vehicles per mile). For this formula, the 
relative propagation velocity V— c is equal to the constant value a at all 
densities. The values of pm and qm are pm = 83 vpm, qm = 1430 vph (vehicles 
per hour). The logarithmic formula does not give a finite value for V as 
p->0, but the theory would be on dubious ground for very light traffic so 
this point alone is not important. With a finite maximum V and a finite 
V'(p), we have c-» V as p->0, so one should expect V— c to decrease at the 
lighter densities. 

Since Q(p) is convex with Q"(p)<0, c itself is always a decreasing 
function of p. This means that a local increase of density propagates as 
shown in Fig. 3.2 with a shock forming at the back. Individual cars move 
faster than the waves, so that a driver enters such a local density increase 
from behind; he must decelerate rapidly through the shock but speeds up 
only slowly as he leaves the congestion. This seems to accord with 
experience. The details can be analyzed by the theory of Chapter 2. In 
particular the final asymptotic behavior is the triangular wave which is the 
last profile in Fig. 3.2. The length of the wave increases like tl/2 and the 
shock decays like t~1^2. The actual analytic expressions are 

c ~ - p-Po" 
c'(Po)' 

for c0t—V2Bt <x<c0t, 

where 

B = \c'(p0)\f
X (p-Po)dx. 

t =0 t = ti t = t , t = t3 

Fig. 3.2. Breaking wave in traffic flow. 
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The shock is at 

x = c0t-V2Bi, 

and the jumps of c and p at the shock are 

V 2B 1 ^\lB 

Traffic Light Problem. 

A more complicated problem is the analysis of the flow at a traffic 
light. We construct the characteristics in the (x,t) diagram. These are lines 
of constant density and their slopes c(p) determine the corresponding 
values of p on them. So the problem is solved once the (x,t) diagram has 
been obtained. 

Suppose first that the red period of the light is long enough to allow 
the incoming traffic to flow freely at some value Pj<pm. Then we may start 
with characteristics of slope c(p,) intersecting the / axis in the interval AB 
in Fig. 3.3; AB is part of a green period. [The (x,t) diagram is plotted with 
x vertical and t horizontal since this is the usual practice in the references 
on traffic flow.] Just below the red period BC, the cars are stationary with 
p — py, hence the characteristics have the negative slope c(pj). The line of 
separation between the stopped queue at the traffic light and the free flow 
must be a shock BP, and from the shock condition its velocity is 

9(ft) 
Pj-Pi' 

distance 

Fig. 3.3. Wave diagram for an efficient traffic light. 
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When the light turns green at C, the leading cars can go at the maximum 
speed since p = 0 ahead of them. (The finite acceleration could be allowed 
for roughly by extending the effective red period.) This is represented by 
the characteristic CS with maximum slope c(0). Between CS and CP we 
have an expansion fan with all values of c being taken. Exactly at the 
intersection CQ, the slope c must be zero. But this corresponds to the 
maximum q — qm. Therefore we have the interesting result that q attains its 
maximum value right at the traffic light. The shock BPQR is weakened by 
the expansion fan and ultimately accelerates through the intersection, 
provided the green period is long enough. The criterion for whether the 
shock gets through is easily established. The total incoming flow for the 
time BQ is (tr+ ts)qt where tr is the red period BC and ts is the part of the 
green period before the shock gets through. The flow across the intersec-
tion in this time is tsqm. These two must be equal; therefore 

For the shock to get through and the light to operate freely, the green 
period must exceed this critical value. 

If the shock does not get through, the flow never becomes free and the 
notorious traffic crawl develops. It is perhaps sufficient to show the 
corresponding (x,t) diagram Fig. 3.4 without comment! 

Higher Order Effects; Diffusion and Response Time. 

There are two obvious additional effects one may wish to include in 
the theory. One was mentioned in Section 2.4: the dependence of q on px 

as well as p. This introduces in a rough way the drivers' awareness of 
conditions ahead, and it produces a diffusion of the waves. The simplest 
assumption with the correct qualitative behavior is 

q=Q(p)~"Px, v=V(p)-^px, (3.1) 

and one does not have much basis for any more complicated choice. 
The second effect is the time lag in the response of the driver and of 

his car to any changes in the flow conditions. One way to introduce this 
effect is to consider the expression for v in (3.1) as a desired velocity which 
the driver accelerates toward; therefore the equation 

v, + vvx=-±{v-V(p) + lpx} (3.2) 
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Fig. 3.4. Wave diagram for the slow crawl at an overcrowded traffic light. 

may be introduced for the acceleration. The coefficient T is a measure of 
the response time and is akin to the quantity 5 mentioned earlier. Equation 
3.2 is to be solved together with the conservation equation 

p, + (Pv)x = 0. (3.3) 

When v, r are both small in a suitable nondimensional measure, (3.2) is 
approximated by v= V(p), and we have the simpler theory. With the 
higher order terms included in (3.2), we expect shocks to appear as smooth 
steps and so on. This is true on the whole, but the situation turns out to be 
more complicated. 

It is always helpful to get a first feel for a nonlinear equation by 
looking at the linearized theory, even though the linearization may have its 
own shortcomings, as we discussed in Section 2.10. If (3.2) and (3.3) are 
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linearized for small perturbations about p = p0, v = v0= V(p0), by substitut-
ing 

P = Po + r< v = v0+w, 

and retaining only first powers of r and w, we have 

r, + vQrx + p0wx=0. 

The kinematic wave speed is 

c0=PoV'{p0)+V{Po); 

hence ^'(Po)= " ( ^ o - co)/Po- Introducing this expression and then 
eliminating w, we have 

9 r ^ 3r 32r / 3 . 3 \2 ,-A. 

¥ + c ° 3 l = 'i7~TU + t^r (3"4) 

When v = T = 0, we have the linearized approximation to the kinematic 
waves: r=f(x~c0t). The term proportional to v introduces typical diffu-
sion of the heat equation type. The effect of the finite response time T is 
more complicated, but a quick insight can be gained as follows. In the 
basic wave motion governed by the left hand side, r—f{x — c0t), so that / 
derivatives are approximately equal to - c0 multiplied by x derivatives: 

If this approximation is used in the right hand side of (3.4), the equation 
reduces to 

a7 + c o ^ = { " - K - c o ) T } — . (3.6) 

There is a combined diffusion when 

but instability if 
V>(v0-c0)

2r (3.7) 

v<(v0-c0)
2r. (3.8) 
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This is reasonable; for stability a driver should look far enough ahead to 
make up for his response time. 

The stability criterion can be verified directly from the complete 
equation (3.4) in the traditional way. There are exponential solutions of 
(3.4) with 

razeikx-iU, 

provided that 

T ( U - D 0 & ) +i(u-c0k)-pk2 = 0. 

The exponential solutions will be stable provided 9 « < 0 for both of the 
roots w. It is easily verified that the requirement for this is (3.7), so the 
result of the approximate procedure is confirmed and extended to all 
wavelengths. 

Higher Order Waves. 

It is important to note that the right hand side of (3.4) is itself a wave 
operator and we may write the equation as 

dr ^ dr ( 9 . 3 W 3 _,_ 3 \ , 1 Q , 

where 

C+=V0+VJ>/T , c _ = u 0 - V ^ / i 

It would be expected therefore that waves traveling with speeds c + and c _ 
also play some role. It would be premature to go deeply into this question 
at this stage, but one remark has great significance in interpreting the 
stability condition. We shall see later in our discussion of higher order 
equations that the propagation speeds in the highest order derivatives 
always determine the fastest and slowest signals. Thus in the present case 
however small r may be provided it is nonzero, the fastest signal travels 
with speed c+ and the slowest with speed c_. It is clear therefore that the 
approximation 

could only make sense if 
!+<»tr° <3"> 
c_ <c0<c+. (3.12) 
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But this is exactly the stability criterion (3.7). So the flow is stable only if 
(3.12) holds, and then it is appropriate to approximate (3.9) by (3.11) for 
small T. There is a nice correspondence between stability and wave 
interaction. 

Equation 3.9 arises in several applications and a full discussion is 
given in Chapter 10. 

Shock Structure. 

The more complicated form of the higher order corrections introduces 
a new possibility in the shock structure. For the simple diffusion term used 
in Section 2.4 with v > 0, a continuous shock structure was obtained. We 
shall see now that this is not always the case when there are additional 
higher terms. We look for a steady profile solution of (3.2)—(3.3) with 

p = p(Ar), v = c(X), X = x-Ut, 

where U is the constant translational velocity. Equation 3.3 becomes 

-UPx + (vp)x=0 (3.13) 

and may be integrated to 

p(U-v) = A, (3.14) 

where A is a constant. Equation 3.2 becomes 

TP(v-U)vx + rPx + Pv-Q(p)=0. (3.15) 

Since v= U-A/p, this may be reduced to 

i"-^APx=Q(p)-pU+A. (3.16) 

For T = 0, it is the same as (2.21), as it should be. For T ^ O , the possibility 
that v — A 2r/p2 may vanish introduces the new effects. 

As before we are interested in solution curves between p, at X = + oo 
and p2 at X = -oo. These values will be zeros of the right hand side of 
(3.16). For traffic flow c'(p)= (?"(p)<0, so p2<Pi and the right hand side 
of (3.16) is positive for p2<p<pt. If v- A2i /p2 remains positive in this 
range, then px>0 and we have a smooth profile as in Fig. 3.5. In view of 
(3.14), the condition for v-A2r/p2 to remain positive may be written 

v>(v-U)2r, that is, D - V ^ A <U<v+W/^. (3.17) 
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p] P.Pl A 

£±1 

X X 

Fig. 3.5. Continuous shock structure. Fig. 3.6. Shock structure with an inner dis-
continuity. 

This is similar in form to the linearized stability criterion (3.7) with v0 

replaced by the local velocity v and c0 replaced by the shock velocity U. 
We might also interpret it in a way similar to (3.12) as a warning of 
possible complications if a shock tries to violate the higher order signal 
speeds. However, it is not necessarily an unstable situation. The conditions 
for the uniform states at ± oo to be stable are 

V^VPJT <c1<t)I + Vp7T , v2-y/vjr <C2<V2+VP/T . (3.18) 

It is possible, in general, for these to be satisfied and yet (3.17) to be 
violated. When this is the case, v- A\/p2 changes sign in the profile, as in 
Fig. 3.6, and a single-valued continuous profile is no longer possible. 

In most problems of shock structure, when the profile turns back on 
itself in this way, it is rectified by fitting in an appropriate discontinuity. 
The situation again corresponds, strictly speaking, to a breakdown of the 
assumptions for the particular level of description, but the introduction of 
a discontinuity, provided it corresponds to a valid integrated form of the basic 
equations, avoids an explicit discussion of yet higher order effects. In the 
case of (3.2) and (3.3), it is not clear which conservation forms are 
appropriate for the discontinuity conditions nor what additional effects 
should be introduced. One expects a discontinuous profile shown by the 
full curve in Fig. 3.6, but the precise determination of the discontinuity is 
not clear for this case. In other cases discussed later the details can be 
completed. The point to stress here is that the discontinuities in the simple 
theory using 

P,-MP)P,=O 

may be only partially resolved into continuous transitions in a more 
accurate formulation. 

p-p\ 

■-. P>Pz 
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A Note on Car-following Theories. 

Considerable work has been done on discrete models where the 
motion of the nth car in a line of cars is prescribed in terms of the motion 
of the other cars. [See, for example, Newell (1961) and the earlier re-
ferences given there.] If the position of the nth car is sn(t) at time t, the 
assumed laws of motion usually take the form 

sn(t + A) = G{sn_i(t)-sn(t)}, (3.19) 

between velocity sn and headway hn = sn_, - s„ with a time lag A to account 
for the driver response time. If G{hn) is chosen to be linear in hn, or if the 
equation is linearized to study fluctuations about a uniform state, solutions 
can be obtained by Laplace transforms. In general, however, one must 
appeal to computer studies. 

This type of model takes a more rigid view of how each individual car 
moves, so it is narrower in scope than the continuum theory, where the 
whole complicated behavior of the individuals is lumped together in the 
function Q(p) and the parameters v and T. But each model leads to a 
particular form for these quantities, which may be helpful in interpreting 
observational data. Moreover, such models may lead to additional effects 
that cannot be seen in the continuum theory. 

To see the correspondence of the particular car-following model in 
(3.19) with the continuum theory, we first note the relation of G(h) to 
Q{p). In a uniform stream with equal spacing n, the velocities in (3.19) are 
all equal and are given by the relation t; = G(h). Since h = 1 / p, v = q/p, the 
function Q(p) in the corresponding continuum equations is 

If empirical or other information is known about G(h), it may be trans-
ferred to information about Q(p) near p = pr Of course at lower densities 
Q(p) will be affected more by cars overtaking and changing lanes. 

The wave propagation described by (3.19), in which the motion of a 
lead car is transmitted successively back through the stream, should be a 
typical finite difference version of the earlier continuum results with this 
choice of Q(p). The finite difference form of (3.19) also introduces higher 
order effects equivalent to those in (3.2) and we can make a detailed 
comparison. If we let 

f .O- i .C) . v . , (0 -*„ (0 -MO, (3.20) 
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(3.19) is equivalent to the pair of equations 

vn(t + A) = G(hn), (3.21) 

^ = ^ - . ( 0 - ^ ( 0 - (3-22) 

In this form we introduce continuous functions v(x,t) and h{x,t) such that 

» ( V ) = «„('), (3.23) 

^ • f W O , (3.24) 
and obtain corresponding partial differential equations in the approxima-
tions of small A and small hn. Equation 3.21 may be written 

O{J(,(/ + A),/ + A}-(?{*(*„+ I*,,/) }-

and it may be approximated by 

v+ (©, + t» x )A- C(A) + ^AC'C*)*,, (3.25) 

where the functions are evaluated at x = s„(t) and the errors are of order 
A2, h1. Equation 3.22 may be written 

^ 2 •rJ"°(*—i'0-»(v0 

and approximated by 

h, + vhx = hvx a t x = J " " ' *". (3.26) 

The error in (3.26) is rA/rrf order in h [due to the centering of h at the 
midpoint (sH_l + s„)/2], so the equation is correct to both first and second 
orders. In terms of p= l/h, V(p)=G(h), (3.25H3.26) become 

v+(Vl + vvx)A=V(p) + ^^-^-Px, (3.27) 

P, + (pv)x = 0. (3.28) 
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To lowest order in A and h, we would have 

v=V(p), p, + (pv)x = 0, 

which is just the kinematic theory. The differencing has been arranged so 
that the next order corrections leave the conservation equation (3.28) 
unchanged. 

Equations 3.27 and 3.28 are identical with (3.2) and (3.3) if we take 

T = A, „ = - I K ' ( P ) . 

Since V-c= -pV'(p), the stability criterion (3.7) may be written 

2p2 | r (p) |A<l , 

or, equivalently, 

2G'(h)A<l. 

This is exactly the condition found in the car-following theories (Chandler, 
Herman, and Montroll, 1958; Kometani and Sasaki, 1958). Similarly the 
shock structures discussed earlier on the basis of (3.2) should be close to 
those discussed by Newell (1961) on the basis of (3.19). 

An effect that cannot be covered by the continuum theory is the 
actual collision of cars. In a queue described by (3.19), this occurs if 
sn-\~sn e v e r drops to the car length L. In the special case 

i„(/ + A ) - o { * . _ , ( / ) - * . ( / ) - £ } , 

which can be solved by Laplace transforms, it may be shown that the 
criterion for avoiding collision is 

« A < - ; 
e 

this is slightly more stringent than the stability criterion 2aA < 1 found 
above. The analysis would take us too far afield and the reader is referred 
to the discussion of local stability in the paper by Herman, Montroll, Potts, 
and Rothery (1959). 

3.2 Flood Waves 

For flood waves, the "density" in the sense of the general theory 
presented in Chapter 2 is the cross-sectional area of the riverbed, A (x,t), at 
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position x along the river at time t. If the volume flow across the section is 
q(x,t) per unit time, the conservation equation is 

d fx' 
-jtjx A(x,t)dx + q(xl,t)-q(x2,t)=0, 

or, in differentiated form, 

£ + ff-<X (3.29) 
Flow in a river is obviously so complicated that any flow model for the 
second relation between q and A must be extremely approximate, giving 
only qualitative effects and general order of magnitude results for propaga-
tion speeds, wave profiles, and so on. However, observations during slow 
changes in the river level may be used also to establish the dependence of 
depth and the area A on the flow q. These provide empirical curves for the 
function 

q=Q(A,x) (3.30) 
in steady flows. This relation can be combined with (3.29) to give a first 
approximation for unsteady flows which vary slowly. Then A (x, t) satisfies 

3/ U 3x 3 * ' K ' 

We have again the theory discussed in Chapter 2 with the propagation 
velocity 

3£ = I3£ 
dA b 3A • Ki ' 

[The second form introduces the breadth b and depth h, and dA = bdh.] 
This is the Kleitz-Seddon formula for flood waves, apparently established 
first by Kleitz (1858, unpublished) and thoroughly discussed and used 
effectively by Seddon (1900). 

Empirical relations for (3.30) can be viewed against simple theoretical 
models. The relation is an expression of the balance between the frictional 
force of the river bed and the gravitational force. In theoretical models, the 
frictional force is usually assumed to be proportional to v2, where t> is the 
average velocity 

<7 
V=A' 

and also proportional to the wetted perimeter P of the cross-section at 
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position x. This force is then expressed as pQCjPv2 per unit length of river, 
where p0 is the density of water and Cf is a friction coefficient. The 
gravitational force is p0gA sin a per unit length, where a is the angle of 
inclination of the surface of the river. Hence 

.4 A gsina 
P Cf ' (3.33) 

gsina 

The wetted perimeter P is a function of A, and Cf may also be allowed to 
depend on A. For broad rivers P varies little with the depth of the river 
and may be taken to be constant. If Cf and a are also taken to be 
constants, (3.33) gives the Chezy law 

vccAl/2, QacAy2. 

Then the propagation velocity 

d 1 A \ . * dv 3 
c=-.{vA) = v + A — = -v. 

More generally, P and Cf are functions of A, and power law dependences 
for these give vccA", Q<xA1+" with other values for n. For example, a 
triangular cross-section gives P ccAi/2 and leads to « = i ; Manning's law 
Cf&A ~ l / 3 leads to n — \. For all these power laws the propagation velocity 
is 

c=(\ + n)v. 

As expected, flood waves move faster than the fluid but the propagation 
velocity may not be very much greater than the fluid velocity. 

Seddon turns the calculation around and uses his observations of the 
propagation velocity to deduce the effective shape of the bed, that is, the 
dependence of P on A. This is a valuable idea in all kinematic wave 
problems: use observations of the propagation velocity c to infer the q-p 
relation. 

If the dependence of Q on x is omitted, (3.31) reduces to 

A, + c{A)Ax = 0, 

and the general solution may be taken from Chapter 2 with shocks fitted in 
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as discontinuities satisfying 

U = 
A2-Ax 

For the power laws suggested (and this is also borne out by observations), 
c(A) is an increasing function of A; hence waves due to an increase in 
height break forward, and shocks carry an increase in height, A2>A{. 

Higher Order Effects. 

As in the other examples discussed, a more accurate treatment of the 
relation between q and A than that expressed in (3.30) involves higher 
derivatives. In unsteady flow the frictional and gravitational forces do not 
balance exactly and their difference is proportional to the acceleration of 
the fluid; the difference between the slope of the water surface and the 
slope of the bottom also makes a contribution. 

It will be valuable to express the equations in conservation form so 
that, when necessary, appropriate discontinuity conditions can also be 
deduced. For simplicity, we consider the case of a broad rectangular 
channel of constant inclination a and work with the depth h and mean 
velocity v as basic variables in place of A and q. The conservation of fluid 
for unit breadth can then be written 

d_ 
dt JXl 

fX'hdx + [hv]X
x[ = 0, (3.34) 

and we need to add a more detailed formulation of the conservation of 
momentum. The appropriate equation in hydraulic theory is 

d_ fx 

dtJX2 
hvdx+lfiv2]^^^ —gh2cosa 

= f 'ghsinadx- f 'cfv
2dx. (3.35) 

Jx, Jx, J 

Apart from the common factors p0 (the constant density of water) and the 
breadth b which have been cancelled through, the five terms in this 
equation are, respectively, (1) the rate of increase of momentum in the 
section x2<x<xv (2) the net transport of momentum across x, and x2, (3) 
the net total pressure force acting across x, and x2, (4) the component of 
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the gravitational force down the incline, and (5) the frictional effects of the 
bottom. The pressure term requires some comment perhaps. In hydraulic 
theory the dependence of the velocity on the coordinate y normal to the 
bed is averaged out to v(x,t) and the fluid acceleration in the.y direction is 
neglected. The latter assumption means that the pressure satisfies a 
hydrostatic law 

Hence 

dp 
g- = -Pogcosa. 

p-p0
=(h-y)Po8cosa 

and the total contribution of the perturbed pressure integrated over a cross 
section of the river is 

•'o 

h j 

P -Po) <ty = -zh2p0gb cos a; 2 

this is the origin of the third term in (3.35). 
Equations 3.34 and 3.35 are the two conservation equations for h and 

v. If h and v are assumed to be continuously differentiable, we may take 
the limit x,-.x2-»0 to obtain partial differential equations for h and v. It 
will be a minor saving in writing to introduce g' = g cos a and the slope 
5 = tana. The equations for h and v are then 

h, + (hv)x = 0, 

(3.36) 
{hv), + [hv2+^g'h2^ =g'hS-Cfv

2. 

We may also use the first equation to simplify the second and take the 
equivalent pair 

h, + vhx+hvx = 0, 
(3.37) 

vt + wx + g'hx = g'S-Cf^. 

The kinematic wave approximation to (3.37) neglects the left hand 
side of the second equation and takes 

h, + (hv)x = 0, » - ( % - ) >*X/1- ( 3 3 g ) 



Sec 3.2 FLOOD WAVES 85 

In this kinematic theory, discontinuous shocks must satisfy the shock 
condition 

£/= V ' • (3.39) 
h2-h, 

Stability; Roll Waves. 

We now consider the consequences of the additional terms in (3.37). 
For simplicity, S and Cj are assumed to be constant. As in the traffic flow 
problem, we look first at the linearized form of the equations for small 
perturbations about a constant state V^VQ, h^hg, where 

C,j-=g'S. (3.40) 

If we substitute 
o>=»0+w, A = A0+TJ 

and neglect all but the first powers of w and ij, we have 

V, + o0vx + h0wx~0, 

w. + t V ^ + ^ + ^ S ^ - ^ j - O . 

We may then eliminate w and write the single equation for ij in the form 

where 

' - - t P o + V i 7 ^ , c _ = t > 0 - V ^ , c 0 - - ^ . (3.42) 

The equation is now the same as in the earlier discussion of (3.4) and (3.9), 
with appropriate changes in the expressions for c+, c_, and c0. Accord-
ingly, the stability condition is 

c_<c 0 <c + , (3.43) 

and this also ensures that the lower order approximation 

3ij chi 

¥ + c 0 ^ - 0 (3.44) 
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Fig. 3.7. Roll waves. 

does not violate the characteristic condition. Equation 3.44 is the linearized 
version of (3.38), of course. 

The stability conditions may also be written, using (3.42), as 

t>0<2V7v 

or, again, from (3.40) as 

S<4Cf. 

For rivers, o0 is usually much less than Vg'/i0 , but spillways from dams 
and other man-made conduits easily exceed the critical values. The result-
ing flow is not necessarily completely chaotic and without structure. In 
favorable circumstances, it takes the form of "roll waves," as shown in Fig. 
3.7, with a periodic structure of discontinuous bores separated by smooth 
profiles. Early observational data and photographs of the phenomenon 
were obtained by Cornish in 1905 and are beautifully described in his 
classic book (Cornish, 1934), which summarizes his observations of waves 
in sand and water. The most specific data refer to a stone conduit in the 
Alps (the Griinnbach, Merligen) with a slope of 1 in 14. On an occasion 
when the mean depth was approximately 3 in., the mean flow velocity was 
estimated as 10 ft/sec and the whole roll wave pattern moved downstream 
at an average speed of 13.5 ft/sec. For these figures the Froude number 

t>0/Vg'/i0 is 3.5, considerably in excess of the critical value of 2. These 
values would give $/Cf= 12.5 and lead to CywO.006. 

Jeffreys (1925) proposed the instability argument and noted that for 
smooth cement channels (for which he performed experiments) the friction 
coefficient is C^O.0025; this value of Cj agrees with current values. For 
the latter value, uniform flows should become unstable when the slope S 
exceeds 1 in 100. Jeffreys found his own experiments on the production of 
roll waves inconclusive, but he felt that long channels with slopes con-
siderably in excess of 1 in 100 were needed. Much later Dressier (1949) 
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took up the subject and showed how to construct nonlinear solutions of 
(3.36), with appropriate jump conditions, to describe the roll wave pattern. 
The details will be indicated after the question of steady profile waves for 
the stable case has been considered. 

Monoclinal Flood Wave. 

The structure of the shocks arising in the kinematic theory (3.38 and 
3.39) is particularly important in the flood wave problem, since in reality 
the shock thickness is of the order of 50 miles! It is obtained as usual by 
searching for steady profile solutions in a more detailed description which, 
in this case, is provided by (3.37). We look for solutions with 

h = h(X), v = v(X), X = x-Ut. 

The equations may be written 

l°-u)7k+*7Z'*s-cJT- (3-45) 

h(U-v) = B, (3.46) 

where the continuity equation has been integrated to (3.46) and B is the 
constant of integration. The uniform states (A,,0|) at X= oo satisfy 

*s-cr£'*s-cri'*> M 

hl{U-vl) = h2(U-v2) = B. 

If we express all flow quantities in terms of /i, and h2, we have 

f f -TTS'A i . t>2
2=fg'A2, (3.47) 

^ =(C^' (348) 

The last of these is exactly the shock condition governing discontinuities in 
the kinematic theory (3.39). This is the usual pattern and we expect the 
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solutions of (3.45) and (3.46) to provide the structure of these kinematic 
shocks. 

When v is eliminated from (3.45) and (3.46), the equation for h{X) 
takes the form 

dh (B-Uh)2Cf-g'h>S 

dX g'h3-B2 ' * ' 

Since the numerator must vanish for h = hl and h = h2, these two values 
must be roots of the cubic. Then the third root is 

H-C4 *' 
S g'h^ 

h{h2 

(hl/2 + hl
2/

2)2 

Since H<hl,h2, and the solution has h between A, and h2, this third root 
h = H is never a value taken in the solution considered. 

Equation 3.50 may now be written 

dh_ ci{h2-h){h-hi){h-H) 

~d~X~ S h>-B2/g> ' ( 3 ' 5 1 ) 

and the behavior of the solution depends critically on the sign of the 
denominator h3-B2/g' and its possible change of sign in the profile. 
From (3.46), 

g'h3-B2 = g'h3-(U-v)2h2 

= h2{g'h-(U-v)2}; 

hence the sign is positive or negative depending on whether 

U ^v+Vg^h . 

[From (3.48), B >0; therefore from (3.46), U>v and U is always greater 

than v — vg'h .] 

When h2-^hv we see from (3.49) that 

IT 3 / * 5 » 1.1/2 3 
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Fig. 3.8. Structure of the monoclinal flood wave. 

In the stable case, Ju, <t>, +Vg'A, ; thus for weak waves we start the 
integral curve of (3.51) from h — ht, X<= oo, with the denominator in (3.51) 
positive. Accordingly, hx < 0, h increases, g'h3 - B2 remains positive and 
we have a smooth profile as shown in Fig. 3.8. This is the so-called mono-
clinal flood wave. The fact that h2> A, is required for this profile agrees 
with the tendency of breaking of the kinematic waves, since this is a prob-
lem with c'(h) > 0. A smooth profile of this type will continue to hold for 
the range of shock velocities. 

- y - < l / < c , + V ? V (3.52) 

From (3.47) and (3.49) it is easily shown that this is the range 

J V ' * ^+{1+4(S/Cff
2},/2 

M < 2(S/C,)l/2 

But (3.52) is the more significant form, in view of the physical interpreta-
tion of the velocities. The shock moves faster than the lower order waves 
but slower than the higher order waves in the flow ahead. 

When 

fi + V*7^ <U<v2+VJT2 , 

the denominator in (3.51) changes sign in the profile and the integral curve 

Fig. 3.9. Structure of the monoclinal flood wave with an inner discontinuity. 

K 
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turns back on itself as in Fig. 3.9. A single-valued profile is recovered by 
fitting in a discontinuity as indicated. In contrast with the case of traffic 
flow, basic conservation equations in integrated form, (3.34) and (3.35), are 
known, and these apply whether the solution has discontinuities or not. If 
the same procedure developed in Section 2.3 is used on these,* the 
appropriate jump conditions at a discontinuity located at x = s(t) are 

-s[h] + [hv]=0, (3.53) 

■s[hv] + hv2+±g'h2 = 0. (3.54) 

It should be especially noted that the right hand side of (3.35) makes no 
contribution in the final limit JC,-»JC2. These discontinuity conditions go 
along with the equations (3.36), just as (3.39) goes along with (3.38). One 
must be careful to pair correctly the equations and shock conditions at 
each level of description. In a change of the level of description, both the 
equations and shock conditions change in number. The discontinuities 
described by (3.53) and (3.54) are in reality the turbulent bores familiar in 
water wave theory as "hydraulic jumps" or breakers on a beach. 

In the present context, the proposal is to fit a discontinuity satisfying 
(3.53) and (3.54) into the steady profile solution of (3.36); hence it will also 
have the velocity U. In view of (3.46) any discontinuity between branches 
of the profile [including the lines h = hl and h = h2 as possible solutions of 
(3.51)] will automatically have h(U-v) continuous to satisfy (3.53). The 
second requirement (3.54) determines where it should be placed. The 
condition (3.54) requires 

hv(v-U) + ±g'h2 

to be continuous. From (3.46), this can be modified into 

B2 j . 1 '1.2 

should be continuous. If the discontinuity is chosen to take the profile 
from h = /», to a point h = h* on the upper branch as shown in Fig. 3.9, the 

* Here to complete the physical problem we are requiring results from the later mathematical 
development in Chapters 5 and 10, but it seems better to include them here, with a minimum 
of explanation, rather than delaying completion of the solution. 
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that is, 

requirement is 

— + ̂ gh - — + -ghv 

h* { i + 8gy g ^} ' / 2 - i 
A, 2 

This can be expressed in terms of hx and h2 using (3.48). It can be verified 
that it meets the requirements (1) that g' / i*3-B2>0 so that h = h* is on 
the upper branch, and (2) that h* <h2 provided S<4Cf. 

The overall conclusion, then, is that the original discontinuity of the 
kinematic theory (3.38 and 3.39) is resolved into a smooth profile when 
viewed from the more detailed description (3.36), provided (3.52) is satis-
fied. For stronger shocks that violate (3.52), some discontinuity remains 
and corresponds to a shock discontinuity in the solution of (3.36). Further 
interpretations of the significance of (3.52) will be given (see Chapter 10) 
after the theory of characteristics and shocks for higher order systems has 
been developed in detail. 

The roll wave patterns referred to earlier are obtained by piecing 
together smooth sections satisfying (3.50) with discontinuous bores satisfy-
ing (3.53) and (3.54). It may be shown that g'h3 — B2 must change sign in 
the profile but the smooth parts are kept monotonic by demanding that the 
numerator of (3.50) also vanish at the critical depth. This requirement 
relates the two parameters B and U; one or the other may be kept as a 
basic parameter in the family of solutions and is determined by the total 
volume flow. For further details, reference should be made to Dressler's 
(1949) paper. 

33 Glaciers 

Nye (1960,1963) has pointed out that these ideas on flood waves 
apply equally to the study of waves on glaciers and has developed the 
particular aspects that are most important there. He refers to Finsterwalder 
(1907) for the first studies of wave motion on glaciers and to independent 
formulations by Weertman (1958). 

In view of the difficulties of collecting data on the flow curves for 
glaciers, due to both the inaccessibility and the slowness of the flow, more 
reliance is placed on semitheoretical derivations. These consider in more 
detail the shearing motion in two dimensional steady flow down a constant 
slope. Let u(y) be the velocity of the layer at a distancey from the ground 
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and let r(y) be the shearing stress. For ice it seems to be appropriate to 
take the stress-strain relation as 

„ f = r«, (3.55) 

where «s=;3 or 4. (Newtonian viscosity would be the case n — \.) In 
addition, ice slips in its bed according to the approximate law 

™(0) = Tm(0), (3.56) 

where m « \ { n + 1)«2. On the layer between/ a n d / + Sy, the difference in 
shearing stress must balance the gravitational force. If a is the angle of the 
slope and p is the density of ice, we have 

SJ= -pSygsina. 
That is, 

-j- = -pgsma. (3.57) 
dy 

Since T vanishes at the surface y = h, the solution for r is 

T = (h-y)pgsina. 

Then, integrating (3.55) with boundary condition (3.56), we have 

(PBsina)m
h-+lipgs^l h _ y r l ] 

v fi n+1 l ' 

The flow per unit breadth is 

g*(/0= ("udy 

_ (pgsma)mh'" + i
 t (pgsmafh^2 

v n + 2 

For order of magnitude purposes, one may take 

Q*(h)cchN, 

with N roughly in the range 3 to 5. The propagation speed is 

ah 

where v is the average velocity Q*/h. Thus the waves move about three to 
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five times faster than the average flow velocity. Typical velocities are of the 
order of 10 to 100 meters per year. 

Various problems can be solved using the results and ideas of Chapter 
2. An interesting question considered by Nye is the effect of periodic 
accumulation and evaporation of the ice; depending on the period, this 
may refer either to seasonal or climatic changes. To do this a prescribed 
source term f(x,t) is added to the continuity equation; that is, one takes 

h, + q;=f(x,t), q* = Q*(h,x). (3.60) 

The consequences are determined from integration of the characteristic 
equations 

§-/U0-G?(M), 

The main result is that parts of the glacier may be very sensitive, and 
relatively rapid local changes can be triggered by the source term. 

3.4 Chemical Exchange Processes; Chromatography; Sedimentation 
in Rivers 

The formulation of equations for exchange processes between a solid 
bed and a fluid flowing through it was given in Section 2.2. The exchange 
may involve particles or ions of some substance, or it may be heat 
exchange between the solid bed and the fluid. Another instance is sediment 
transport in rivers. 

The equations coupling the density pf in the fluid and the density ps 
on the solid are 

£ ( P / + p , ) + A ( K p / ) = 0, (3.61) 

*-lf = kx{A-Ps)pf-k2ps{B-pf). (3.62) 

For relatively slow changes in the densities and relatively high reaction 
rates klt k2, the second equation is taken in the approximate quasi-
equilibrium form in which the dpjdt is neglected and 
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When this relation is substituted into (3.61), we have 

9p/ v 9P/ 

Thus the density changes propagate downstream at the rate 

and 

„,/ , k.k2AB 
*'(P/)-- — j . (3.66) 

{ M + (*,-*2)P/} 
If the densities concerned are small this is approximately 

k2B 
c-k^kTBv- <1 6 7> 

The propagation speed depends on the reaction rates involved, being 
slower for substances with larger attraction toward the solid. If a mixture 
of substances is present in the fluid at the entrance of the column and the 
components have different reactions rates, they will travel down the 
column at different speeds. In this way the column can be used to separate 
the mixture into bands of the individual components. If they are also 
colored, a spectrum is formed. This is the basic process of chroma-
tography. The nonlinear effects produce heavier concentrations at the 
beginning or end of a band depending on the sign of c'(pj). Of course, the 
nonlinear equations for a single component apply only after the separation 
has taken place. 

The shock structure and other aspects can be studied from the full 
equations 3.61 and 3.62. It is remarkable in this case that the full equations 
can be transformed (exactly) into a linear equation. This was shown by 
Thomas (1944). First, a moving coordinate system 

. x x 
r-t--p, a = -

is introduced; the equations then take the form 

** + !*-(> 
9° * ' (3.68) 

9p, 
— = aP/-Bps-ypspf. 
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The first equation is solved identically by 

P/=<k> P , - " * . . (3-69) 

and the second equation provides an equation for \p: 

*OT + aV<T + Wo + Y ^ T = 0. (3.70) 

If we now make the nonlinear transformation 

7*- log* (3.71) 
we deduce 

X„ + «XT + /?X„=0; (3.72) 

the nonlinear transformation eliminates the nonlinear term. In terms of the 
original variables the transformation is 

1 Xi X/"*" ' X x ,» _,■. 
p,= , p,= , (3.73) 

' y X YX 
Xt,+ Yxxl + (<* + P)x, + PYxx = 0. (3.74) 

The linear equation can be solved in general by transform methods so 
that in this case the solutions of the approximate equation (3.64), including 
shocks when necessary, may be compared in detail with the exact solution. 
This has been investigated extensively by Goldstein (1953) and Goldstein 
and Murray (1959). The exact solution endorses the views and methods for 
including discontinuous shocks in solutions of (3.64). The details are not 
given here since Burgers' equation is simpler to deal with and provides the 
same endorsement. Some of the relevant analysis will appear in Chapter 10 
in a different connection. 

For exchange processes, a = klA and fi=*k2B are both positive. For 
these signs, the uniform state is always stable. This may be checked by 
considering perturbations in (3.74). We note that the lower order waves 
travel at a speed 

C °~a + j3' 

while the wave speeds given by the higher order terms are c_—0 and 
c+=V. Thus for a>0, /J>0, the stability criterion c_<c0<c+ is satis-
fied. 



CHAPTER 4 

Burgers' Equation 

The simplest equation combining both nonlinear propagation effects 
and diffusive effects is Burgers' equation 

C, + CCX = PCXX. (4.1) 

In (2.28) we saw that this is an exact equation for waves described by 

p, + qx = 0, q=Q(p)-PPx, (4.2) 

in the case that Q(p) is a quadratic function of p. In general, if the two 
effects are important in a problem, there is usually some way of extracting 
(4.1) either as a precise approximation or as a useful basis for rough 
estimates. 

For a general Q(p) in (4.2), for example, the equation may be written 

c, + ccx = vcxx - vc"{p)p2
x, (4.3) 

where c(p)=Q'(p) as usual. The ratio of vc"(p)px to vcxx is of the order of 
the amplitude of the disturbance, and we therefore expect that (4.1) is a 
good approximation for small amplitude. We are then assuming that 
omission of this particular small amplitude term does not produce ac-
cumulating errors (as f->oo, say) which eventually lead to nonuniform 
validity. We know, in contrast, that to linearize the left hand side by 
ct + c0cx, where c0 is some constant unperturbed value, would be disastrous 
in this respect. But as a check, we may verify that in the shock structure 
solution (see Section 2.4), where the diffusion terms are greatest, the term 
pc"(p)px remains of smaller order than vcxx in the strength of the shock. 
This kind of argument can be made the basis of formal perturbation 
expansions in terms of appropriate precisely defined small parameters. On 
the other hand, the fact that the terms retained in (4.1) represent identifi-
able and important phenomena, whereas the term vc"(p)px appears more as 
a mathematical nuisance, leads one to suggest (4.1) as a useful overall 
description even beyond the range of strict validity. 
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In a similar fashion, Burgers' equation is relevant in higher order 
systems such as (3.2)-(3.3), when nonlinear propagation is combined with 
diffusion. Of course it is limited to the stable range and to parts of the 
solution where the lower order waves are dominant. The appropriate form 
is easily recognized and again can usually be substantiated by more formal 
procedures. In the case of (3.2)-(3.3), we know from (3.6) that the effective 
diffusivity is v* = v — (t>0 - C0)

2T and we would use (4.1) with this value. 
Indeed, (3.6) is the fully linearized Burgers' equation for this system. 

Our general purpose now is to show that the exact solution of Burgers' 
equation endorses the ideas regarding shocks that were developed in 
Chapter 2. That is, we want to confirm that as »>-*0 (in appropriate 
dimensionless form) the solutions of (4.1) reduce to solutions of 

c, + ccx-0, (4.4) 

with discontinuous shocks which satisfy 

U-\{cx + c2), c2>U>cx, (4.5) 

and the shocks are located at the positions determined in Section 2.8. 

4.1 The Cole-Hopf Transformation 

Independently, Cole (1951) and Hopf (1950) noted the remarkable 
result that (4.1) may be reduced to the linear heat equation by the 
nonlinear transformation 

c = _ 2 r — . (4.6) 

This is similar to Thomas' earlier transformation of the exchange equations 
described in Section 3.4. It is again convenient to do the transformation in 
two steps. First introduce 

so that (4.1) may be integrated to 

Then introduce 

yp= — 2i»log<p 
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to obtain 

<P, = >"PXX- (4-7) 

The nonlinear transformation just eliminates the nonlinear term. The 
general solution of the heat equation (4.7) is well known and can be 
handled by a variety of methods. 

The basic problem considered in Chapter 2 is the initial value prob-
lem: 

c = F{x) at/ = 0. 

This transforms through (4.6) into the initial value problem 

9- * ( * ) -exp { - ^ j fV (T , )d i , } f / = 0, (4.8) 

for the heat equation. The solution for cp is 

? - - = = - I t( l )»xp(- ( , ' ' ' l ) W (4.9) j *,„e*p{- 4w 
** — QO V 

Therefore, from (4.6), the solution for c is 

c(x>t)=±=«L_2 f (4.10) 

•* — QO 

where 

G(T,;X,0 = / V ( T , ' ) ^ ' + - ^ 2 7 L L . (4.11) 

4.2 Behavior as f —>0 

The behavior of the exact solution (4.10) is now considered as J>-»0 
while x, t and F(x) are held fixed. [Strictly speaking this means we consider 
a family of solutions with v = €v0 and take the limit as e-»0, holding 
v0,x,t,F(x) fixed.] As v-*Q, the dominant contributions to the integrals in 
(4.10) come from the neighborhood of the stationary points of G. A 
stationary point is where 

9 G = F ( T ; ) _ ^ = 0 ( 4 1 2 ) 

07} t 
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Let ij = £(;c,0 be such a point; that is, t(x,t) is defined as a solution of 

F(t)-!*~—0. (4.13) 

The contribution from the neighborhood of a stationary point, TJ = £, in an 
integral 

IS 

- * 

4irr -c(«)/2'. 

this is the standard formula of the method of steepest descents. 
Suppose first that there is only one stationary point £(x,t) which 

satisfies (4.13). Then 

f °° LJLe-o/2^_^_A\-^L^ e-o«)/2. ( 4 14) 

, - C « ) / 2 r 

G"(0 ' " ' 

and in (4.10) we have 

c ~ ^ , (4.16) 

where £(•*,/) is defined by (4.13). This asymptotic solution may be rewrit-
ten 

c = F{Z) 
4.17) 

It is exactly the solution of (4.4) which was discussed in (2.5) and (2.6); the 
stationary point £(x,t) becomes the characteristic variable. 

However, we saw that in some cases (4.17) gives a multivalued 
solution after a sufficient time, and discontinuities must be introduced. Yet 
the solution (4.10) for Burgers' equation is clearly single-valued and 
continuous for all /. The explanation is that when this stage is reached 
there are two stationary points that satisfy (4.13), and the foregoing 
analysis of the asymptotic behavior requires modification. If the two 
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stationary points are denoted by £, and £2 with £,>£2> there will be 
contributions as shown in (4.14) and (4.15) from both £, and £2. Therefore 
the dominant behavior will be included if we take 

^ i { C ' ' ( ^ ) } ~ ' / ^ " C U , ) / 2 , ' + ^ i { G ' ' ( « 2 ) } " 1 / 2 ^ C U 2 ) / 2 ' 

° {G"(Zl)}-,/2e-G(i<)/2•' + {G"(Z2)}-,/2e-Gii>)/2•' ' ( 4 '*8 ) 

When Gf^J^Gdj), the accentuation by the small denominator v in the 
exponents makes one or the other of the terms overwhelmingly large as 
v-+0. If G(£,)<G(£2), we have 

c — ; 

ifG(£,)>G(S2), 

c . 
t 

In each case (4.17) applies with either £, or £2 for £. But the choice is now 
unambiguous. Both £, and £2 are functions of (x,t); the criterion G(£,)£ 
G(£2) will determine the appropriate choice of £, or £2 for given (x,t). The 
changeover from £, to £2 will occur at those (x,t) for which 

c«,)-c«2). 
From (4.11), this is when 

J o % W + i ^ = / o W w + ^ ^ . (4-19) 

Since £, and | 2 both satisfy (4.13), the condition may be written 

I{Fai) + FU2)}(|1-|2) = jTV(7,')^'. (4.20) 

This is exactly the shock determination obtained in (2.45). The changeover 
in the choice of terms in (4.18) leads to the discontinuity in c(x,t) in the 
limit r—>0. All the details of Section 2.8 can be confirmed similarly. We 
conclude that solutions of Burgers' equation approach those described by 
(4.4) and (4.5) as v-+0. 

In reality v is fixed, but it is relatively small and we expect that the 
limit solution for v—>0 will often be a good approximation. For this 
argument, since v is a dimensional quantity, we have to introduce a 
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nondimensional measure of v by comparing it with some other quantity of 
the same dimension. This is not hard to do. In the single hump problem, 
for example, where F{x) is as shown in Fig. 2.9, we may introduce the 
parameter 

A=C {F{x)-c0)dx. (4.21) 

The dimensions of A and v are both L2/ T, so that 

R=4- (4-22) 
2v 

is a dimensionless number, and by "v small" we mean / ?»1 . If the length 
of the hump is L, the number R measures the ratio of the nonlinear term 
(c — c0)cx to the diffusion term vcxx, in those regions where the x scale for the 
derivatives is L. (Inside shocks, for example, the x scale is of smaller order.) 
It will be convenient to refer to R as the Reynolds number, following the 
practice in viscous flow. 

Even with the meaning of "small v" decided, there are distinctions 
between the limit solution r-»0 and the solution for fixed small v. As we 
saw in (2.26), the shock thickness tends to infinity if the strength tends to 
zero. Therefore for fixed R, even if it is large, any solution that includes 
shock formation or a shock decaying as ?-»oo will not always be well 
approximated by the discontinuity theory in these regions. As regards a 
shock formation region, the precise details are not usually important; one 
just wants a good estimate of where it forms, without details of the profile, 
and this is provided by the discontinuity theory. The effects of diffusion on 
decaying shocks as /—>oo is of more interest. We will explore these 
questions through typical examples in the following sections. 

4 J Shock Structure 

The shock structure for (4.1) satisfies 

- Ucx + ccx = vcxx, X=x— Ut. 
Hence 

If c—>cl,c2 as A"->± oo, 

1 i 
jC2-Uc+C=vcx. 

U~\(ci + c2), C=\Clc2, 
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and the equation may be written 

(c-cx){c2-c) = -2vcx. 
The solution is 

X 2 , c2-c 
— = log ; 
v c2 — cx c — Cj 

this agrees with (2.25), since c = 2ap + /? for quadratic Q(p). Solving for c, 
we have 

c = Cl + -2— , tf.-iy^. (4.23) 
l + e x p - ^ 7 - L ( x - t / r ) 

One can study how an initial step diffuses into this steady profile by 
taking 

F{x)J
 c-' *>0' 

[ c2>c{, x<0, 

in (4.10)-{4.11). The solution may be put in the form 

c2-c, c. + c2 , 
c = c, + ^rj- , U--+-J-1. (4.24) 

1 + Aexp 2 , ' ( x - t / r ) 2r 
where 

J(x-c2t)/Virt 

(4.25) 

For fixed x/r in the-range cl<x/t<c2, h->l as /-»oo, and the solution 
approaches (4.23). 

4.4 Single Hump 

A special solution with a single hump may be obtained by taking 

F(x) = c0 + A8(x) (4.26) 

as the initial condition. The parameter A agrees with (4.21) and the 
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Reynolds number is R = A/2v. The constant c0 may be omitted without 
loss of generality, since the substitution 

c = c0+c, x = c0l + x (4.27) 

in Burgers' equation reduces it to 

Z, +&*"*** (4-28) 

Thus omission of c0 is equivalent to viewing the solution from a frame of 
reference moving with velocity c0. Accordingly we consider only 

F(x) = A8(x). (4.29) 

The lower limit in the integral in (4.11) is arbitrary since it cancels out 
in (4.10). Therefore we may choose it to be 0+ and include the 8 function 
for TJ < 0 but not for T\ > 0. Then 

, —Tt—• T » > 0 ' 

—, A, „<0 . 

The integrals in the numerator of (4.10) may be evaluated and those in the 
denominator written in terms of the complementary error function. The 
result is 

c(*,/)-Vf _ ^ —, * - £ . (4.30) 
V ^ + ( e * - l ) f e-{1dS 2v' 

x/V4vi 

The similarity form of the solution, that is, 

-VM^rv). 
could have been predicted by dimensional arguments. The only dimen-
sional parameters in the problem, A and v, both have dimensions L2/ T; 
there is no separate length and time with which to scale x and / separately. 

As R-+0 we would expect the diffusion to dominate over the non-
linearity. For /?«1 the denominator in (4.30) is Vir + O(R), uniformly in 
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x,t,v; hence c may be approximated by 

c(x,t) = y ^ Re-*2'*" 

-e-*1'*". (4.31) 

This is the source solution of the heat equation c, = vcxx, so the expectation 
is verified. 

To discuss the behavior for large R it is convenient to introduce the 
similarity variable z = x/V2At and to write (4.30) as 

: = Y ^ - g(z,R), 

g(z,R) = ±——t e- — — , (4.32) 
2VR Vj+(eR-\)( e^K 

JTVR 

z — 

zVR 

X 

"lAt 

We now discuss the behavior of g as R-+<x> for different ranges of z. In all 
cases, eR — \ may be approximated by eR and we may use 

1 e (4.33) 
2VR Vv+e*[ e~f2rff 

JZVR 

If z < 0, the integral tends to 

therefore g-»0 at least like I/VR . If z >0, the integral becomes small and 
we use the asymptotic expansion 

e ^dl^-z— asTj-^oo. 

Therefore 

8 ; = — - — , *>0, *->«>. (4.34) 



Sec 4.4 SINGLE HUMP 105 

If 0 < z < 1, we have 

g~z, 0 < z < l , R->oo, (4.35) 

whereas if z > 1, g-»0 as i?-»oo. Thus g->0 except in 0<z < 1, and in that 
range g~z. In the original variables, the result reads 

( - inO<Jc<V2^7, 

( 0 outside. 

This is the appropriate solution of (4.4) with a shock at x = V2At . The 

shock velocity is U= VA/2t , and c jumps from zero to \flAJ t , so the 
shock condition (4.5) is satisfied. 

The same expression (with e0=0 to fit our assumption here) appeared 
in (2.52) for the ultimate behavior of the solution of (4.4) for a general 
single hump. That was asymptotic in a different sense; it was the behavior 
as r-»oo within the description provided by (4.4). For a S function initial 
condition, it is valid immediately. 

The shock is located at z = 1, and for large but finite R (4.34) shows a 
rapid transition from exponentially small values in z > 1 to g~z in z < 1. In 
the transition layer zssl, (4.34) may be approximated by 

1 

l+2V^Re2RU-" 

In the original variables this would give 

2A 1 

(4.36) 

V* 
1+expi^yM ( t _ ^ ) + , l o g M 

(4.37) 

It agrees with the shock protne (4.23), with c2-cx = VlA/t and the shock 
located at x = V2At to first order. From (4.36), the transition layer is of 
thickness 0(R ~l) around z = 1. 

There is another (weaker) transition layer at z = 0 to smooth out the 
discontinuity in derivative between g~0 in z < 0 to g~z in 0 < z < 1. It is 
clear from (4.33) that this transition layer occurs for 

z = 0 ( / ? - ' / 2 ) , 
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and for these values (4.33) may be approximated by 

8^ 
2VR f 

ZVR 

Jtf 
(4.38) 

In the original variables we have 

~VT e -x2 /4w 

Jx/VAvt 

(4.39) 

The form of the solution for large R is shown in Fig. 4.1, where 

g{z)=*cVt/2A is plotted against z. As /?->oo the shock layer becomes a 
discontinuity in c and the transition layer at x = 0 becomes a discontinuity 
in cx. In the scaled variables g and z, the profile is independent of /. 
Therefore if the value of R provided by the initial condition is large, the 
shock remains relatively thin and the discontinuity theory of (4.4) is a good 
approximation for all t. This is true even though the shock strength is 

proportional to v2A/t and tends to zero as /-»oo. 
A significant point in this connection is that the area under the profile 

remains constant even with diffusion included, since 

d_ 
dt /_' cdx = 1 2 = 0. 

Hence the "effective" Reynolds number defined as 

1 — f cdx 
2v J-n 

(t/2A)l /Z 

x (2At r ' / 2 

R-|/z R" 

Fig. 4.1. Triangular wave solution of Burgers' equation. 
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remains constant for all /. The next example will show that the more usual 
situation is for diffusion to take over ultimately in the final decay, and that 
the single hump is exceptional in this respect. 

4.5 WWave 

The final examples we consider are more easily derived by choosing 
appropriate solutions for <p to satisfy the heat equation (4.7) and then 
substituting in (4.6) to obtain c. As a rough qualitative guide to the 
appropriate choice, the profile for c will be something like <px. Thus for the 
single hump we could have taken the solution of <p corresponding to an 
initial step function. To obtain an TV wave for c, we choose the source 
solution of the heat equation for <p: 

<p=i+Vf< - x 2 /4« 

From (4.6), the corresponding solution for c is 

c = 

2"<P* x Va/7 e-
xl/4" 

<P ,-*7«" 

(4.40) 

(4.41) 

Since <p has a S function behavior as /-»0, this is a little hard to interpret as 
an initial value problem on c. However, for any t > 0 it has the form shown 
in Fig. 4.2, with a positive and negative phase, and we may take the profile 
at any t = t0 > 0 to be the initial profile. It should be typical of all N wave 
solutions. 

(1 /2A) I / E c 

x(2Atr , / z 

Fig. 4.2. N wave solution of Burgers' equation. 
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The area under the positive phase of the profile is 

r00 oo 
I cdx = -2p[\og<p]0 

= 2vlogl\+yi ). (4.42) 

The magnitude of the area of the negative phase is the same. Thus in 
marked contrast with the previous case, the area of the positive phase 
tends to zero as /-»oo. If the value of (4.42) at the initial time /0 is denoted 
by A, we may introduce a Reynolds number 

■VT « 0 = £ = l o g [ l + V f I- (4-43) 

But as time goes on the effective Reynolds number will be 

R(t) = ±;fJ'cdx = \ogll + yf\ (4.44) 

and this tends to zero as /->oo. If /?0»1, we may expect the "inviscid 
theory" of (4.4)-(4.5) to be a good approximation for some time, but as 
/->oo, /?(/)->0 and the diffusion term will eventually become dominant. 
This is different from the previous example in which the effective Reynolds 
number defined in the same way remains equal to the initial Reynolds 
number. We now verify the details. 

In terms of R0 and t0, a = t0(e
R°- l)2; hence (4.41) may be written 

C - T U + V T " -V-j-} ■ (4-45) 
H~ g«V4r, 

"V/0 c*"-l , 
For /?0»1 (corresponding to t0<£.a), it may be approximated by 

£ J l + - i / j - e<*72^-i)*oj (4.46) x 
c-

for all x and t. Now for fixed / and /?0-»oo, 

f - , -VIA! <X<V2~A1 , 

I 0, \x\>V2Al. 
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This is exactly the inviscid solution. However, for any fixed a and v we see 
directly from (4.41) [and it may be verified also from (4.46)] that 

c _ i y £ e-*
2/4» as/-+oo. (4.47) 

This is the dipole solution of the heat equation. The diffusion dominates 
the nonlinear term in the final decay. It should be remembered, though, 
that this final period of decay is for extremely large times; the inviscid 
theory is adequate for most of the interesting range. 

4.6 Periodic Wave 

A periodic solution may be obtained by taking for q> a distribution of 
heat sources spaced a distance A apart. Then 

T - ( 4 , w ) - " X « p ( - ! i ^ - | . (4.48) 
n— —oo V 

2 {(x-n\)/t)exp{-{x-n\)2/4vl} 

C*-2P—-—- as • (4.49) 
9 2«P{-(*-"*)V4»*} 

When A2/4w» 1, the exponential with the minimum value of (x - nXf/Avt 
will dominate over all the others. Therefore the term with n-m will 
dominate for (m - i)A < x < (m + J)A, and (4.49) is approximately 

x — mX 
c •—, 

(JW-l)x<,<(m+I)x. 

This is a sawtooth wave with a periodic set of shocks a distance X apart, 
and c jumps from -X/2t to A/2/ at each shock. The result agrees with 
(2.56). 

To study the final decay, A2/4w«l, we may use an alternative form 
of the solution. The expression (4.48) is periodic in x, and in the interval 
-A /2<x<A/2 , 

<p-+8(x) as f-*0. 
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The initial condition can be expanded in a Fourier series as 

1 I , , - , r \ lirnx *(* ) =x 1 + 2 2 c o s ' 
i 

and the corresponding solution of the heat equation for <p is 

HH, | > ( - ^ , ) C O S 2 f i } . (4.50) 

It may be verified directly that this is the Fourier series of (4.48). In this 
form 

lvyx 

9 

— ^ « e x p 
l v 

1 + 2|>p(-

4ir2n2 \ . lirnx 
~ X2 " h A 

4ir2n2 \ lirnx 

~ x2 T o s x 

(4.51) 

When vt/X » 1 , the term with n= 1 dominates the series and we have 

8i7r / 4it2vt\ ■ lirx , . „ > 
c ^ _ e x p ^ _ _ _ j s i n _ _ (4.5 2 ) 

This is a solution of ct — vcxx, and again the diffusion dominates in the 
ultimate decay. 

4.7 Confluence of Shocks 

When a shock overtakes another shock, they merge into a single shock 
of increased strength as described for the inviscid solution (J»—»0) on the F 
curve in Fig 2.16. It is possible to give a simple solution of Burgers' 
equation that describes this process for arbitrary v. 

The solution for a single shock is given in (4.23) and the correspond-
ing expression for <p may be written in the form 

9-Z.+/2, fj = ^[--t + t~bjj- <4-53> 

In (4.23), the parameters bx, b2 which locate the initial position of the 
shock are taken to be zero. The expressions/,, f2 are clearly solutions of 
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the heat equation (4.7). The expression for c is 

2vtpx c , / , + c 2 / 2 

<P / 1+ /2 
(4.54) 

For c2>cx,fx dominates as x-> + oo and we have c-tc^, f2 dominates as 
x-» - 00 to give c-*c2. The center of the shock is where / , =/2, that is, 
x=Hci + c2)t. 

Now since any fj is a solution of the heat equation, we may clearly 
add further terms in (4.53) and generate more general solutions of Burgers' 
equation. Such solutions represent interacting shocks. We consider the case 

<P=/ i + /2+ /3> bx = b2=0, 63 = 
c3 c2 

c = 
C l / l + C2/2 + C3/3 

/1 + /2+/3 
c 3 > c 2 > C i > 0 . 

(4.55) 

If v is reasonably small, we can recognize shock transitions between the 
states c„ c2, c3 by noting in which regions the corresponding / dominates. 
At / = 0, / , dominates in 0 < x, f2 in - 1< x < 0, /3 in x < - 1. Thus we have 
a shock transition from c, to c2 centered at x = 0, and one from c2 to c3 

centered at x= - 1. For />0, the regions in which c — ci,c=ic2,c — c3 can 
be found in the same way and the result is shown in Fig 4.3. For early 
times the transition from c, to c2 occurs where/, =/2 on 

x = -t; (4.56) 

Fig. 4.3. Merging shocks. 
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the transition from c2 to c3 occurs for/2=/3 on 

■t-l. (4.57) 
c2 + c3 

Since i(c2 + c3)> {(c^ + c^, the second shock overtakes the first at the 
point (x*, t*) determined by (4.56) and (4.57). At this point 

/ 1 - / 2 - / 3 . 

For t>t*, there is no longer any region where f2 dominates and the 
continuing solution describes a single shock transition between c, and c3, 
moving with velocity i(c, + c3) on the path 

£ i±£l( / - f ) (4.58) 

determined by / , =/3. 



CHAPTER 5 

Hyperbolic Systems 

The next step in the development of the theory of hyperbolic waves is 
to see how the ideas and methods established so far can be extended and 
amplified for the study of higher order systems. Some preliminary remarks 
have been made in the discussion of the various modifying effects on a 
single basic wave motion, but the questions relating directly to the possi-
bilities of a number of different wave modes in a system have been 
touched upon only in passing. We now enter into the general discussion of 
these questions. 

Many physical problems lead to the formulation of a quasi-linear 
system of first order equations; such equations are linear in the first 
derivatives of the dependent variables, but the coefficients may be func-
tions of the dependent variables. When these equations describe wave 
motion, a good understanding of many of the issues can be developed 
from the study of plane waves. Accordingly, we start with the case of two 
independent variables. The two variables are often the time and one space 
variable so we denote them by t and x and use corresponding terminology, 
but the discussion applies to any two-variable system. If the dependent 
variables are ut(x,t), i- \,...,n, the general quasi-linear first order system 
is 

diij duj 

where the matrices A, a, and the vector b may be functions of «,,...,«„, as 
well as x and t. (Here and throughout summation over a repeated subscript 
is automatic unless otherwise indicated.) 

In this chapter we establish the conditions for (5.1) to be hyperbolic 
and discuss some of the general consequences. Some brief comments on 
the situation for more space dimensions are made, but the case of more 
dimensions is developed primarily in the context of specific problems and 
considerable use is made of the fact that any small region of a two or three 
dimensional wave behaves locally as if it were plane. 
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5.1 Characteristics and Classification 

The key to the solution of a single first order equation as described in 
Chapter 2 was the use of the family of characteristic curves in the (x,t) 
plane; along each characteristic curve the partial differential equation 
could be reduced to an ordinary differential equation. In some cases the 
solution could then be found analytically. But at worst the partial differen-
tial equation could be reduced to a set of ordinary differential equations 
for stepwise numerical integration. In either event, one could proceed to 
build up the solution by successive "local" considerations of small regions; 
the whole solution did not need to be calculated at once. This, of course, 
corresponds to the simple ideas of wave phenomena; in any small time 
increment the behavior at a point can be influenced only by points near 
enough for their waves to arrive in time. For the system (5.1), we ask 
whether such local calculations are possible. If they are, the system is 
hyperbolic and a suitable precise definition will be framed. 

In general, any one of the equations in (5.1) has different combina-
tions of duj/dt and auj/ax for each M.. That is, it couples information 
about the rates of change of the different «• in different directions; one 
cannot deduce information about the increments of all the Uj for a step in 
any single direction. But we are at liberty to manipulate the n equations in 
(5.1) to see whether this information can be obtained from some combina-
tion of them. We therefore consider the linear combination 

H^+a^)+/A=0' (5-2) 
where the vector 1 is a function of x,t,u, and investigate whether 1 can be 
chosen so that (5.2) takes the form 

/ aut du, \ 

^ i r + a ^ ) + / ^ - a (5-3) 

If this is possible, (5.3) provides a relation between the directional deriva-
tives of all the Uj in the single direction (a,/?). When this is the case, it will 
be valuable to introduce curves in the (x,t) plane defined by the vector 
field (a,/J). If x = X(rj), t=T(j\) is the parametric representation of a 
typical member of this family, the total derivative of M, on the curve is 

du, dii: 9w, 
-TL = T'-TL+X'1r. 
art dt ax 
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Without loss of generality, we may take 

O - A " ( T J ) , j 8 - r (T , ) , 
and write (5.3) as 

du: 

The conditions for (5.2) to be in the form (5.4) are 

ljAiJ=mjT', Ifl^rrijX', 

and we may eliminate the rrij to give 

/ , ( ^ ' - a ( / r ) = 0 . (5.5) 

These are n equations for the multipliers /, and the direction (A", 7"). Since 
they are homogeneous in the /,, a necessary and sufficient condition for a 
nontrivial solution is that the determinant 

M,*'-«,r|=o. (5.6) 

This is a condition on the direction of the curve. Such a curve is said to be 
a characteristic and the corresponding equation (5.4) is said to be in 
characteristic form. 

Each equation in characteristic form provides only one relation be-
tween the n derivatives of M. along the corresponding characteristic curve. 
To proceed with a local construction of the solution in some small region, 
we shall see below that n independent equations in characteristic form are 
needed. This is the basis for the definition of a hyperbolic system. 

First, however, a relatively mild but important restriction on the 
systems to be included in the definition must be noted. The restriction 
concerns the coefficient matrices A and a. It is not hard to see that either 
one, or even both, may be singular in simple situations. If the determinant 
|/J(y| = 0, then T' — O is a solution of (5.6) and the x direction is 
characteristic; if 1̂ 1 = 0, then A" = 0 is a solution and the t direction is 
characteristic. Clearly, it may be acceptable for the axes to be characteris-
tics, and these possibilities should be included in the discussion. Yet in 
some cases where both matrices are singular, the systems are so degenerate 
that they must be excluded. The two situations can be distinguished by 
checking whether a rotation of the axes cures the difficulty or not. If the 
trouble is merely that the original axes coincide with characteristics, a 
rotation of the axes will lead to a new system with nonsingular matrices. A 
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rotation of the axes in (5.1) replaces the original matrices by a linear 
combination of them. Therefore the appropriate condition is that 

|A4, + ^ 1 * 0 , (5.7) 

for some A, /x, not both zero, and we do not need to carry out the 
transformation explicitly. If (5.7) can never be satisfied, we have the 
degenerate case that must be excluded. In that case, all directions are 
formally characteristic and the discussion is spurious. On the basis of 
examples given in the next section, it appears that systems which are so 
degenerate are unnecessarily large and can be reduced to smaller systems 
with coefficients that satisfy (5.7). 

With this restriction the following definition is introduced. 

Definition. A system (5.1), satisfying (5.7), is hyperbolic if n linearly 
independent real vectors lw, k= 1,...,«, can be found such that 

//*){^.a(*)-a(/./?
(*)}=0 (5.8) 

for each k, and the corresponding directions {a'*',^'''} are real with 
aw

2+0<*>Vo. 
It should be noted that the emphasis is on there being n independent 

vectors lw, and it is not important that the corresponding directions 
(aw,Pw) be distinct. If the directions are distinct so that there are n 
different families of characteristics, the system is said to be totally hyper-
bolic; but we shall have little use for this term. As we shall see below it is 
possible for (5.6) to have less than n different solutions and yet n inde-
pendent vectors I can be found. 

Special Case Aij=8ij. 

In many problems, the system (5.1) appears in the special form 

du, 3", 

ir+^+*'-°- (5-9) 

where the A matrix is the unit matrix. In other cases one could transform 
the system to this form by multiplying by A~\ after a change of 
coordinates if the original matrix A is singular. It is seldom worthwhile to 
do this reduction in detail, but we may, when convenient, refer to this form 
without loss of generality. It is clear from (5.6) that in this form T'=£0, so 
characteristic curves will never have the direction of the x axis. We can 
therefore parametrize a characteristic curve by t itself and describe the 
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curve by x = X(t). The linear combination 

3M, 9M, 

takes the characteristic form 

/ , -^ + /,&,-0 o n ^ - = c, (5.10) 

provided that 

l^'ljc (5.11) 

In particular, the characteristic velocity c must satisfy 

k-rfffl-0- (5-12) 

The possible roots c are the eigenvalues of the matrix and the vectors 1 are 
the left eigenvectors. 

Two results follow from standard theorems in linear algebra: 

The eigenvectors 1 corresponding to different eigenvalues c are 
linearly independent. Hence the system is hyperbolic if (5.12) has n different 
real roots c. 

If atj is a real symmetric matrix, then all the roots of (5.12) are real 
and n independent real eigenvectors can be found. Hence the system is 
hyperbolic if a is real and symmetric. 

5.2 Examples of Classification 

Before proceeding with the use of the equations in characteristic form 
and with the further properties of characteristics, a few examples will 
illustrate the ideas and show some of the peculiarities that may arise in the 
classification of systems. 

Example 1. First consider the wave equation 

M«-■)"<** = °-

This can be written as a system by introducing ux = t>, ut = w and writing 

v,-wx=0, 

w,-yvx = 0. 
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The linear combination 

li(v,-wx)+ I2(w,-yvx)-0 

takes the characteristic form 

li(o, + cvx) + l2(w, + cwx)~0, 
provided 

- Y ' 2 = c / i > 

- / , - c / 2 . 

There are nontrivial solutions when c2= y. If y >0, we may take 

C = + V 7 , /,= - V V , / 2 - l ; 

c - - V y , / , - + Vy, / 2 - l . 

The two vectors I are linearly independent, hence the system is hyperbolic. 
If y<0 there are no real characteristic forms; in fact, the equation is the 
prototype of elliptic equations. 

Example 2. The heat equation 

is equivalent to the system 

ux-v = 0. 

It is clear that the combination 

lM-vx) + l2(ux-v)~0 

can be in characteristic form only if /, = 0. Thus the only solution is 
I = (0,1) or a scalar multiple of this. Since there is only one vector 1 for the 
second order system, it is not hyperbolic. If we check the general formal-
ism, (5.6) reduces this case to 

X' T =0, that is, r 2 = 0. 
-T 0 

Thus the x axis is a double characteristic, but there is only one 
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characteristic form for it: 

« - t>=0. 

Example 3. The simplest second order hyperbolic equation is 

an equivalent system is 

K,-t) = 0, 

In this case both matrices A and a are singular but (5.7) is satisfied and 
there is no trouble. Equation 5.6 is 

X' 0 

0 -T 
= 0, that is, X T ' = 0. 

Both the / axis and x axis are characteristics, and the original equations are 
already in characteristic form. 

Example 4. Consider now 

If we introduce ux = v, ut = w, as in Example 1, the extra undifferentiated 
term in u prevents the completely obvious elimination of u and might 
suggest keeping three equations. If we choose 

W^-O-O, 

u, — w = 0, 

w,-yvx + u = 0, 

as an equivalent system, we have the trouble that both matrices A and a 
are singular, and so are all linear combinations of them. Equation 5.6 is 

r 
X' 

0 

0 

0 

y r 

0 

0 

X' 

= 0 
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and is clearly satisfied for all values of (A", 7"). However, this system is 
excluded by (5.7). 

At least in the case Y > 0 , we can implement the suggestion noted 
earlier that the system is probably too big and can be reduced. We can 
spot the reduction by writing the equation as 

_3_ 
dt 

V^ ^+v-y±y+u.o. 
Then the introduction of 

<p = u, + Vy ux 

leads to the second order system 

<p( - Vy <px + u - 0, 

w, + Vy ux — qp = 0. 

This has nonsingular coefficients. In fact it is already in characteristic 
form, and there are just two characteristics. 

Example 5. An alternative system that might be proposed for the 
equation 

is 

u, - w = 0, 

v,-wx = 0, 

w, — yvx + u = 0. 

This differs from Example 4 in that the equation v, - wx — 0, obtained by 
eliminating u, has been substituted for ux - v = 0. Now A is the unit matrix 
and we should have no trouble. The condition (5.6) is found to be 

X' 

0 

0 

0 
X' 

yr 

0 
T 

X' 

= 0, that is, A" (A" 2 -y r 2 )=0 . 

Two of the roots X'= ± V^ T are clearly the characteristics of the original 
equation, but why has an extra characteristic A" = 0 arisen? The system is 
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not too large as a system, but it is no longer equivalent to the original 
equation. It is in fact equivalent to 

The extra characteristic corresponds to the extra / derivative. 

Example 6. The system 

u, + C(u,v)ux = 0, 

v, + C(u,v)vx = u, 

is clearly an example with one characteristic on which dx/dt=C, but with 
two independent characteristic forms. Hence it is hyperbolic. 

Example 7. The system 
u, + C(u)ux = 0, 

v, + C(u)vx + C(u)vux = 0, 

occurs in dispersive waves. The only possible characteristic form is the first 
equation as it stands. Hence the system is not hyperbolic. Yet because of 
the exceptional case that the first equation can be solved independently of 
the second, we can integrate the first equation along the characteristics 
dx/dt = C. Then once u is known in a whole region , ux can be calculated 
and the second equation can be integrated along the same characteristics 
to find v. For these purposes it is like a hyperbolic system with a double 
characteristic, yet formally it would be classified as parabolic. 

In Examples 2 to 7 the classification is not completely straightforward. 
We now add a few nonlinear examples where there is no problem in the 
classification but they are typical and rather well known. We list pertinent 
information with a minimum of explanation. 

Example 8: Gas Dynamics. In the compressible inviscid flow of gas 
with velocity u, pressure p, density p, and entropy S, the equations (see 
Chapter 6) are 

p, + upx + pux = 0, 

S, + uSx = 0, 
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wherep=p(p,S). The characteristic equations are 

dp
 -L. du n dx 

— ± p a — = U on — = « ± a , 
dt r dt dt 

dS n dx 
-— = 0 on — = u, 
dt dt 

where a2 = (^p/^p)s~consum- For a gas with constant specific heats 
p = Kpyes/c" and a2 = yp/p. 

Example 9: River Waves and Shallow Water Theory. The equations 
were given in (3.37); the characteristic forms are 

Example 9'. The reduced kinematic approximation (3.38) has a 
single characteristic form 

f =0 onf ^ f i ^ ' V . 
dt dt 2 \ Cf 

Example 10: Magnetogasdynamics. For a conducting gas in a mag-
netic field the equations (using standard notation) are sometimes taken to 
be 

p, + upx + pux = 0, 

p(u, + uux)+px=jB, 

KPt + «Px) ~ Z~T 7 (ft + uPx) = 
7 - l w ^ ' 7 - 1 pKn rx/ a' 

B, + Ex = 0, 

^oE, + ^Bx+j = 0, 
r 

where j = o(E- uB). The characteristic velocities are ±(e0/i)_ 1 / ' 2 , u±a,u. 

Example 10'. When the conductivity a is very high the following 
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reduced set may be derived and is often used as an adequate approxima-
tion: 

p, + upx + pux = 0, 

B, + uBx + Bux = Q, 

p(ul + uux)+px+±BBx = 0, 

The characteristic velocities are now u±(a2+ B2/np)1/2, u, u. 

Example 11: Nonlinear Effects for Electromagnetic Waves. In a simple 
but probably unrealistic formulation of the effects in nonlinear optics, one 
may take 

dt dx ' 

l£ + IM=o 
dt ft dx 

with D — D{E). The characteristic equations are 

dB . 1 dE n dx . t „ ̂  
- r - ± ——r~r~=0 o n — = ± c ( £ ) 
dt c(E) dt dt K ' 

where c(E) = { nD'(E)}~i/2. Dispersive effects usually make the relation 
D = D(E) inadequate. 

Example 12: Nonlinear Elastic Waves in a Bar. The one dimensional 
equation for waves in a bar may be formulated in terms of the displace-
ment £(*,/) of a section initially at position x and the stress o(x,t), as 

where p0 is the initial density in the unstrained state. If the strain e = | x and 
velocity u = £, are introduced, the equivalent pair 

PxPi-0***0' 

e,-ux = 0, 
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may be used. The linear theory takes aoce, but nonlinear effects may be 
included by taking a as a more general function a = a(€). The characteristic 
velocities are ± {o'(e)/p0}

i/2. For the appropriate choices of a(e), there are 
interesting effects in the wave propagation; in particular, it is a little 
surprising perhaps to find that shocks are produced in the unloading phase 
of a disturbance. An account is included in Courant and Friedrichs (1948, 
p. 235). 

53 Riemann Invariants 

Each equation in characteristic form introduces a particular linear 
combination of the derivatives. For simplicity we consider the reduced 
form (5.10), where the linear combination concerned is Ijdujdt. In a linear 
problem, the vector 1 is independent of u so that a new variable r=lu, 
simplifies the form of the equation to 

%+f(x,t,u)-0. 

In nonlinear problems, however, I may depend on u and it is not always 
possible to achieve this form. It would be necessary to find X and r such 
that 

Ijdu^Xdr, 
or, equivalently, 

(Here x and t are held fixed; the differential dr refers only to changes in u.) 
This is a special case of Pfaff's problem for the integrability of differential 
forms. For w = 2 we may eliminate r and find an equation for \ which 
clearly has a solution. For n > 2, however, elimination of both A and r from 
(5.13) gives conditions on the /, which must be satisfied for this to be 
possible. 

For a hyperbolic system, the n characteristic equations take a particu-
larly simple form if it should turn out that a variable rk can be introduced 
corresponding to each differential form //̂ rfw,. Then the functions rk can 
be used as new variables in place of the w, and the characteristic equations 
can be written as 

— + / f c ( x , / , r ) - 0 o n -- ^ + / , ( * , / , r ) = 0 o n ^ = c,(x,/,r). (5.14) 
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This can always be done for linear problems, and in that case the fk are 
linear in r. For nonlinear problems it can be done when n = 2, but it may 
not be possible for n > 2. 

Such variables were introduced by Riemann in his work on plane 
waves in gas dynamics, a case with n = 2. In that particular case (see 
Section 6.7), the fk are zero so that rx and r2 are constant on their 
respective characteristics; the functions r, and r2 are then called Riemann 
invariants. In general, we might call the rk Riemann variables. 

5.4 Stepwise Integration Using Characteristics 

Insight into the structure of solutions of hyperbolic equations, such as 
the correct number of boundary conditions and the domain of depen-
dence, can be obtained by imagining a construction of the solution at 
successive small time increments. For simplicity, it will be assumed that the 
characteristic equations can be put in the form (5.14), but the qualitative 
features apply to the general case. 

Consider the mixed initial and boundary value problem in x>0, t>0, 
with data prescribed onx = 0 and f = 0. If we take any point P in the (x, t) 
plane, and if Qk is a neighboring point on the /cth characteristic through P, 
(5.14) can be approximated to first order by 

rk(P)-rk{Qk)+fk(Qk){t(P)-t(Qk))=0, (5.15) 

x(P)-x(Qk) = ck(Qk){t(P)-t(Qk)}, (5.16) 

with an obvious notation for the values of quantities at P and at Qk. If 
these relations are used for all n characteristics, and if the values at the Qk 

are all known, (5.15) gives n equations for the rk at P. If some of the ck are 
the same, some of the Qk will coincide, but this does not matter provided 
there are the full complement of n different equations (5.15). 

We now use this construction repeatedly, as shown in Fig. 5.1. The 
sketch is for three characteristics, with c ,>c2>0>c3 . Take first the point 
P at the first time increment t(P) = &t. The point is taken with sufficiently 
large x(P) for the characteristics PQi,PQ2,PQ3 to intersect the positive x 
axis as shown. In all cases t(Qk) = 0. If all the rk are known initially as 
functions of x for /=0, then each ck is known as a function of x; hence for 
a chosen x(P), (5.16) determines x(Qk) for each k. Then rk(Qk),fk(Qk) are 
calculated from the initial values of rk, and (5.15) determines rk(P). This 
can be repeated for various points P on the line t = ht provided that they 
are to the right of the point W, defined by the characteristic segment OW 
through the origin with the fastest velocity cv 
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0 q3 Pf 

Fig. 5.1. Stepwise construction of solutions using characteristics. 

Pi * 

These calculations can be repeated at successive time steps. For 
example, at P' the values of rk are determined in terms of the values 
QvQi'Qi which were determined at the previous step. Thus in principle 
the solution in the triangular region to the right of the characteristic OW 
can be determined from the given values of all the rk on / = 0, JC>0. It is 
also clear that the values at P' will depend only on the data between P{ 
and P3 on the x axis, where P'P[ and P'P3 are the characteristics 
corresponding to the fastest and slowest speeds, respectively. The segment 
P{P3 is the domain of dependence of P'. The domain of dependence shows 
the wave character of the solution; signals propagate with speeds ct,c2,c3 

and waves from the points between P[ and P3 are the only ones that can 
reach P' in time. 

For the full initial value problem, with rk given on/ = 0, — oo < x < oo, 
it is clear that the solution can be constructed in t>0 and it is unique. 
Provided the solution is stable (a question that we do not go into here), this 
problem is well-posed. 

But we return to the mixed problem with data given on : = 0 only for 
x>0 , and the remaining information made up by data on JC=0, ?>0. 
Consider a point p on / = A/, but to the left of W, so that the two positive 
characteristics intersect the t axis at qx,qv The value r3(p) is still deter-
mined from the data at q3 on the x axis. In fact, p can be taken on the t 
axis and r3 is still determined from the data on the x axis. Thus r3 cannot 
be prescribed on x = 0. To determine r,(/>) and r2(p), the values of rvr2,r3 

will be required at qx and qv On x=0, r3 is calculated not prescribed, but 
clearly ry and r2 must be given. At later time steps this is repeated. For 
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example, at/>' the value of r3 is determined from q'3; rvr2 are determined 
from q\,q'2, and rx,r2 must be given at these points. Thus the well-posed 
problem is 

rx,r2,r3 given at t = 0,x>0, 

rx,r2 given on x=0,f>0. 

The data on x = 0 only affect the solution to the left of the 
"wavefront" OWW. Of course equivalent data may be posed and, in 
general,any three conditions on f = 0 and any two conditions o n x = 0 will 
be correct. The only exception is that on x = 0 the two conditions must not 
determine r3, since this is determined by the initial data. 

The results here can be generalized to n equations and other boundary 
values. From the stepwise construction it is clear that the number of 
boundary conditions should be equal to the number of characteristics pointing 
into the region. The direction along a characteristic must be defined in 
order to make "pointing in" unambiguous. When t is time the direction 
usually is chosen as / increasing; but / increasing, or x increasing, or even 
some function of them increasing, will all lead to well-posed problems 
provided the direction once chosen is used consistently. 

Detailed proofs of existence and uniqueness may be based on itera-
tions of the integral equations which express the value at a point as an 
integral over its characteristic triangle (e.g., P'P\P'3 for P' in Fig. 5.1). The 
whole procedure is similar to the Picard iteration for ordinary differential 
equations. Reference may be made to Courant and Hilbert (1962, p. 476). 

In nonlinear problems the characteristic speeds ck are functions of u; 
hence the number of data posed on any boundary can change with the 
data. 

5.5 Discontinuous Derivatives 

In the preceding construction of the solution it is clear that the 
characteristics carry information from the boundaries into the region 
concerned. Physically, the characteristics correspond to waves propagating 
with the velocities ck. In a general way, one expects from the construction 
that any abrupt change in the data on a boundary will produce corre-
sponding abrupt changes propagating on the characteristics through those 
boundary points. If the abrupt change is taken to be a discontinuity in 
some of the derivatives of u, the vague idea becomes precise and the 
expectation is that discontinuities propagate along characteristics. The 
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appropriate results can be shown directly from the equations. The argu-
ments will be given for simple jump discontinuities in the first derivatives 
of the Uj. Higher derivatives and other singularities can be handled simi-
larly. 

Let £(x,t) = Q be a smooth curve separating two regions in each of 
which u is continuously differentiable. Suppose that the wy are continuous 
as £->0 ± and that 9«y/ dt, duj/ dx have finite limits as £-»0 ± . If |(x, t) is a 
sufficiently smooth function, we can introduce a new local coordinate 
system £(*,/)> y(x,t), and write (5.1) as 

(Ay£, + a£x) -g | + (Avi\, + a0rix) — + b, = 0. (5.17) 

These equations hold in each of the regions £ > 0 and £ < 0. By hypothesis, 

U,.(0 + )T)) = W / . (0 - ,7 ? ) ; (5.18) 

hence 

9W,(0 + ,T,) 9M, (0 - ,T , ) 

9TJ 9TJ 
(5.19) 

This means that the tangential derivatives are continuous across | = 0 , and 
only the normal derivatives related to 9w,/9£ may jump. The limits of 
(5.17) are finite as £->0±, and the coefficients are all continuous. There-
fore taking the difference of the limits on the two sides, we have 

(Aytt + afix) 
ty 
H 

= 0, 

where 

9M, 

91 

Accordingly, the jumps [9u,/9£] are zero unless 

(5.20) 

(5.21) 

on £=0. If the curve £(x,t) = 0 is described in the alternative form 
x = X(-q), t=T(-q), then 

(S„ljoc { * ' ( „ ) , - r (T,)}. 
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Hence (5.21) is the same as (5.6), and we have the result that discontinuities 
in the first derivatives of u can occur only on characteristics. 

According to this, propagating discontinuities are ruled out if the 
system has no characteristics, and in such a case any discontinuity in the 
boundary data will be immediately resolved in the solution. On the other 
hand, the existence of characteristics is not a sufficient guarantee that 
discontinuities can occur. The equations provide further restrictions on the 
[3w,/3£] and if the system is not fully hyperbolic, these may be stringent 
enough to require [3M,/3 | ] = 0. If the system is hyperbolic, however, the 
additional relations do not exclude discontinuities; they provide instead 
equations that determine the variations of the magnitudes of the discon-
tinuities as they propagate along the characteristics. 

If (5.21) is satisfied and a particular characteristic is chosen, the 
equations in (5.20) give a number of relations between the quantities 
[3M,-/ 3 i] on that characteristic. The number will depend on the rank of the 
coefficient matrix in (5.20). The simplest case is when there are « - l 
relations, so that all the jumps [3w,/3£] are determined in terms of one of 
them, or, more symmetrically, 

3«, 
= oLp (5.22) 

where L is any nontrivial solution of 

(Aoi + a^jL^O, (5.23) 

and a is undetermined at this stage. If the rank of the matrix is r, there will 
be n — r independent solutions of (5.23) and a corresponding number of 
terms in (5.22) with n — r parameters a. 

Additional information may be obtained by taking the £ derivative of 
(5.17) and considering the difference of the limits as £—>0±. The result 
takes the general form 

(Aoi + a0ix) —{ PHI 
H2 ♦ « ( * J 

• to, ■ 

U =o, (5-24) 

where £, is linear in the first argument and at most quadratic in the 
second. Although in the main, these equations give information on the 
jumps of the second derivatives [3 2 M, /3 | 2 ] across £=0, the fact that the 
matrix 

AiA + au^ 
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is singular means that certain linear combinations of the Et vanish. These 
provide further relations to be satisfied by the [3uy/d£]. The number of 
them will be n — r (where r is again the rank of the matrix), and this is just 
the degree of arbitrariness remaining after solving (5.20). These relations, 
then, provide equations for the o's introduced in (5.22). 

The details become fairly complicated so we pursue them further only 
for the case of discontinuities at a wavefront propagating into a region of 
constant uniform state. This includes all the important features and is, in 
any case, the main application of the discontinuity analysis. We shall also 
take the system to be in the reduced form (5.9). 

5.6 Expansion Near a Wavefront 

We consider the system (5.9) in the case that it admits constant solu-
tions Uj = u/0). This requires u<0> to satisfy 

6,(u<°>) = 0. (5.25) 

Also, to simplify formulas, we take the bt to be independent of (x, t). For the 
reduced form (5.9), the characteristics can neber be in the direction of the x 
axis, so we may use t itself as a parameter on the wavefront and write the 
equation of the wavefront in the form of* = X{t). Instead of calculating the 
limits of the derivatives from the equations, it is particularly convenient in 
the wavefront problem to use the equivalent procedure of expanding solu-
tions in powers of 

If the first derivatives are discontinuous the appropriate form is 

K,=«;°\ *>o, 

«,-M;0)+u;i)(0£+i«,<2)(0$2+.-., i<o. 
Then 

= -«,<'>(/), (5.28) 

(5.26) 

(5.27) 

**1 
dt 

>X(t)u}»(t), 
6u 

j 

dx 

and the higher derivatives are related to the other coefficients similarly. 
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The power series version is a convenient way of seeing the extension 
to include other singularities. If the mth derivatives are the first ones to be 
discontinuous, the power series beyond uj0) start with the terms in £m, and 
one could also include singularities which correspond to expansions in 
fractional powers of |£| or in log |£|. The questions of convergence are not 
really at issue here; we are using formal power series as a device to 
calculate derivatives which could also be obtained by taking the 
appropriate limits in the equations. 

The coefficients in (5.27) are obtained by substituting the series in 
(5.9) and equating the successive terms in powers of £ to zero. If the ai} are 
functions of x, t, u, they must be expanded in powers of £ with coefficients 
depending on t. That is, 

where the superscript zero means that the arguments of the corresponding 
function are x**X(i), t and u = u(C>). However, in writing the resulting 
equations for the ujm\t), the superscript zero will be omitted in the 
interests of clarity. From the substitution in (5.9), we have 

ai,u/ , )-cu/ , )»0, (5.30) 

and so on, where c denotes X. These correspond of course to (5.20) and 
(5.24). 

From (5.30), we deduce first that the velocity X => c must satisfy 

K - d y - 0 , (5-32) 

and the wavefront must be one of the characteristics. If we take the case 
that the rank of the matrix in (5.30) is n-1, we have 

u<»-oLy, (5.33) 

where Lj is any nontrivial solution of 

( ^ - c S ^ Z ^ O . (5.34) 
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There is also a nontrivial eigenvector 1 which satisfies 

{,("„-c8„)=0. (5.35) 

[It is this left eigenvector that arises in the characteristic form (5.10).] If 
this is applied to (5.31), the terms in uj2) are eliminated and we have 

Finally, substituting the expressions for ujX) from (5.33), we have an 
equation of the form 

liLi^ + Qo2+Po = 0, (5.37) 

where /,L„ Q, and P are all known functions of /. 
For hyperbolic systems it may be shown that IjL^O. In other cases, 

however, one might have /,£, = 0, Q = 0, P¥=0, and have to conclude that 
0 = 0; that is, discontinuities are impossible. For example, the sytem 

u, — v = 0, 

v,~ux = 0, 

which is equivalent to the heat equation with i and x interchanged to fit 
the canonical form (5.9), has the curves x = constant as a double 
characteristic. But 1 = (1,0), L = (0,1), Q = 0, P= — 1, so that discontinuities 
are impossible. 

For hyperbolic systems, (5.37) may be reduced to 

^ + qo2+pa = 0. (5.38) 

This is a Riccati equation which can be solved explicity to find the 
variations of a [and hence the ujl)] along the wavefront. 

If the original system is linear, the a0 are independent of u and the 
quadratic term is absent. The solution is 

o(t) = a(0)e-^'\ Pl(t)~ ('p(t')dt', (5.39) 

where a(0) is determined by the initial conditions. We observe, in particu-
lar, that discontinuities can only appear in the solution as a consequence of 
corresponding discontinuities in the boundary or initial conditions. 
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Moreover, once introduced, they can not disappear in a finite time. 
For nonlinear systems with q=£0 in (5.38), the equation may be 

rewritten as 

i,m-<-°-
and the solution is 

i = £7^+e'"i') f'l(0e-'"U)dt'. (5.40) 
o o(0) Jo 

Again, discontinuities once generated cannot disappear at a finite time; 
they may decay to zero strength as f-»oo. However, a new possibility in the 
nonlinear case is that a-*oo for finite t. This occurrence will depend on the 
signs of p{t),q(t), and on the magnitude of o(0). Suppose, for instance, that 
the equation reads 

f - m 2 - ^ , (5.41) 

where n,p, are positive constants and a(0) = a0>0. If o0<n/v, the right 
hand side of (5.41) is negative initially so that a starts to decrease. But then 
the right hand side remains negative and so a continues to decrease. 
Ultimately, o->0 like e-*" as f-»oo. However, if a0>n/p, the reverse is 
true and a continually increases. Eventually, the term va2 dominates and 
leads to a-*oo infinite time. The explicit solution is 

" o0-(o0-tL/r)ei" 

If a0—H/P>0, o-»oo as 

f-Ulog °° . (5.43) 

This predicts the nonlinear breaking of the wavefront, and after this 
time a shock wave, with discontinuities in the functions «, themselves, must 
be introduced. Although this breaking discussion and a criterion such as 
(5.43) is limited to the special form of wave with a discontinuous deriva-
tive, it is extremely valuable because it is always possible to carry out this 
calculation explicitly. The functions />(/), q(t) appearing in (5.38) depend 
only on the coefficients av,b(. It is not necessary to find the solution in a 
whole region of the (x,t) plane before the information can be obtained. A 
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continuous profile does not have to behave in precisely the same way, but 
one gets a rough estimate of the magnitude of the derivatives required to 
produce a breaking wave and an estimate of the time of breaking. In 
general, it may not be possible to find explicit solutions for continuous 
profiles to determine the criteria exactly for those cases. 

5.7 An Example from River Flow 

As an interesting application of the wavefront expansion, we consider 
the river flow equations discussed in Section 3.2. They are 

h, + vhx + hvx = 0, 

2 (5.44) 
v, + wx + g'hx = g'S-Cf-^ 

The uniform flow has constant values h=*hQ, v = v0, with g'S = CyV0
2/h0, 

and the wavefront has constant speed in this case so we take i-x-ct. 
Behind the wavefront the flow variables are expanded as 

h = h0+£hl(t) + ±t2h2(t) + ---, 

v=v0 + &l(t) + ±S2v2(t)+----

These are substituted in (5.44) and the terms in successive powers of £ give 

( O Q - C ) / ! ^ V l = 0 ' 

g'/i, + (t50-c)u, = 0; 

dhx 
(vQ-c)h2 + h0v2+ —jj- + 2 D I / I I = 0 , 

(5.45) 

dv, „ / 2c, h. \ 

g'h2 + {Vo-c)v2+ — + *? + *'s( — - ^ - j - 0 ; 

(5.46) 

and so on. From the first two we have 

v 2 
(c-v0) =g'h0, (5.47) 

so the propagation speed is 

c = v0±Vg7h0; (5.48) 
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we also have 

©,= 7 • (5.49) 
"o 

The relation (5.47) allows us to eliminate h2 and v2 from (5.46). The 
resulting equation is 

Finally, eliminating vl by use of (5.49), we have 

dhi 3 , .tfs, I 3«0 \ h. 

-j-+i<'->>i+i<'-*('"t)i-°- <"°> 
The quanti ty hx(t) is the value of the derivative hx at the wavefront. 

W e now consider various special cases. 

Shallow Water Waves. 

In the usual shallow water theory the slope and friction terms are 
absent from (5.44); (5.50) becomes 

A 3 , A? 

Downstream waves, with c = v0+ V gh0 , break if / i , < 0 ; upstream waves, 

with c = v0- vgh0 , break if / i , > 0 . 

F/oo*/ Waves. 

For flood waves going downstream, c = u 0 + vg'hQ and (5.50) reads 

fifr 2 V An V, V- — h ^=" K- (5.5D 

If v0/vg'hQ > 2 , the linear term indicates an exponential increase for A, 
of either sign. This corresponds to the instability of the steady flow under 
these conditions and checks with the result deduced from (3.41). If 
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<2, the linear term shows exponential decrease corresponding 
to stability. However, if /2,(0)<0 and 

dh1/dt<0 and A,-* —00 in a finite time. This corresponds to nonlinear 
breaking at the wavefront, and a bore will be formed at the head of the 
wave. This checks with the analysis in Section 3.2 where it was shown that 
a sufficiently strong flood wave would be headed by a bore. 

Tidal Bores. 

For a wave propagating upstream, c = v0- vg'h0 , and (5.50) reduces 
to 

dt 2\/h0 ' v0\ 2 ^ ) ' 

A wave with positive ht will break if 

M.)>f£Y^-(,+i_a4 (5.52) 

The existence of a minimum value of /i,(0) which must be exceeded 
for bore formation is particularly interesting in view of the well-known 
observation that only relatively few rivers, with sufficiently high tidal 
variation at their mouths, develop tidal bores. The analysis here is limited 
to a wavefront, whereas the appropriate case for tidal bores would be an 
initially smooth sinusoidal variation. However, it has the usual virtues of 
analytic results; one can see the dependence on the various parameters 
explicitly, one can predict the asymptotic behavior for large values of x 
and t, and so on! The continuous case, which cannot be solved analyti-
cally, might require extensive numerical computations to establish clear 
criteria. Thus the present approach provides valuable estimates. In fact, 
Abbott (1956), who used this type of analysis and applied it in detail to the 
river Severn, found remarkably good agreement with observations. (Actu-
ally, Abbott developed his work in terms of high frequency approxima-
tions, but the two approaches are mathematically equivalent. Moreover, 
there is no gain in justification; the tidal variation is "low frequency" and 



Sec 5.7 AN EXAMPLE FROM RIVER FLOW 137 

one has to argue that only high frequency effects contribute toward 
breaking.) 

It is important, however, to extend (5.52) to include nonuniform flow 
and topography in the undisturbed state of the river. The narrowing of the 
river upstream is particularly crucial in making the actual estimates, since 
it favors breaking and is needed to offset the usually overpowering damp-
ing of the frictional forces. The details can be found in Abbott's paper. 

To apply the wavefront results we use the maximum rate of change in 
the tidal variation to determine /^(O). If the tidal variation at the mouth of 
the river is 

h = h0+asinu>t, 

the maximum value of ht is aw. In the discontinuity analysis the initial 

value of ht at the wavefront is (Vg'/i0 -«01/1,(0). Therefore we choose 

For the uniform channel, (5.52) would predict bore formation if 

The formula can be written in various forms using g'S= Cjvl/h^, and the 
least sensitive is probably 

«,>fCJl-~^)(l + I-M. (5.53) 

For rivers v0/vg'h0 is fairly small, so the right hand side can be 
approximated by the first factor. For the typical values of v0 = 5 ft/sec, 
Cf=0.006, this leads to unattainable values of the order of 100 ft for a. The 
effects of narrowing and other factors bring the value down considerably, 
although exceptionally high tides and rapidly changing topography are 
necessary. That is why very few rivers have bores. For the river Severn, 
Abbott finds that with all nonuniform effects included the required value 
of the tidal range 2a is 39.4 ft. The spring tides have an average range of 
41.4 ft while the neap tides have an average range of 22.2 ft. Thus Abbott 
predicts that bore formation should occur for about 4 days around the 
times of the highest tides. This appears to be borne out by observations. 
His predictions of the distance upstream at which the bore forms and of its 
maximum height appear to be in fair agreement. 
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5.8 Shock Waves 

The situation as regards the breaking of waves and the introduction of 
shock waves is very much the same as in the case of a single quasi-linear 
equation. Some solutions which are initially single valued, and even 
continuous, will develop multivalued regions: waves will break. This is 
again interpreted as an inadequacy of the assumptions leading to (5.1), but 
the appropriate saving features can be well approximated by allowing 
discontinuities in u. 

We again take the view that in formulating the differential equations, 
there will have been an earlier stage where the equations were in integrated 
form 

JlQtdx + lgAZ+f'^dx-O, (5.54) 

where ft, g,, ht are various quantities of physical interest in the problem. 
For example, in problems of mechanics /• and gt could be the density and 
flux of mass, or the density and flux of momentum, or the density and flux 
of energy. The quantity /i, allows for a distributed source term, such as a 
body force in the momentum equation. Equation 5.54 is a conservation 
equation for the physical quantity concerned (mass, momentum, energy, 
etc.). 

The densities /• will be functions of (x,t) and of n basic variables 
u = («,,...,«„); in general, there will be n equations (5.54) in the statement 
of the appropriate physical laws. Various simplifying assumptions will then 
be made to relate the g,, A, to x, t, u. At the first level of approximation, the 
g, and hj will just be functions of x, t, u. If u has continuous first 
derivatives, (5.54) may then be written in the differentiated form 

This is a differential equation in conservation form. 
If discontinuities in u are to be included, the integrated form (5.54) 

must be used and the dependence of g, and /i, on u left open at first. If a 
discontinuous shock occurs at x = s(t), exactly the same argument given in 
Section 2.3 gives the shock conditions 

-U[f,] + [ g,] =0, i = l,...,«, (5.56) 

where U is the shock velocity s(t). We then argue that in the continuous 
parts of the solution on the two sides of the shock, it is still a good 
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approximation to take 

& = &(*,'>«)> A,- = A,(jc,f,ii). 

Therefore (5.56) is applied with the same functional dependence of g, on u. 
As in Chapter 2, a more accurate choice of the g, will involve derivatives of 
u, and the shocks will be smoothed out into thin regions of rapid change. 
However, the discontinuity treatment is simpler and usually is adequate. 

The formal mathematical definition of weak solutions of (5.55), leading 
to the jump conditions (5.56), follows closely the discussion in Section 2.7. 
Evaluating the derivatives in (5.55), we see that it is a case of the system 
(5.1) in which 

A'~to,' fl»=V (5-57) 

The discussion of weak solutions is applicable only to these special cases. 
Moreover the important warning about nonuniqueness must be empha-
sized. In typical cases, starting from the relevant system (5.1), it will be 
possible to find more than n different equations in the conservation form 
(5.55). Shock conditions (5.56) from a choice of any n of them will be 
satisfactory mathematically, but only those n equations that correspond to 
the original physical statements in (5.54) will give the correct solutions for 
the problem. A good example of this nonuniqueness occurs in gas dyna-
mics (see Chapter 6). In view of the nonuniqueness, the connection with 
the physical laws is stressed here. 

5.9 Systems with More Than Two Independent Variables 

We comment briefly on the situation for quasi-linear equations with m 
independent variables where m > 2. The system may be written 

du. 
aS^p + bt-Q, «-l, . . . ,n, (5.58) 

where the dependent variables u} are functions of the m independent 
variables x\x2,...,xm, and the summation extends over v= \,...,m, as well 
as j—!,...,«. The analogs of the characteristic curves for m = 2 are 
characteristic surfaces in the m - 1 dimensional x space. They may be 
introduced somewhat as before and some of their properties are similar. 
However, they are very much more limited in their usefulness for con-
structing solutions. 



140 HYPERBOLIC SYSTEMS Chap. 5 

The limitation arises because it would be too much to expect, in 
general, that one could find linear combinations of the equations in (5.58) 
such that the directional derivatives of each H have the same direction. 
The restrictions on the system or on the solutions would make them far too 
special. So the analog in this case has to be that the directions involved 
should lie in an m - 1 dimensional surface element. If the appropriate 
linear combination is 

du, 
W j ^ + 'A-O, (5.59) 

the directional derivative for w, is /,«,•*. If the surface element belongs to a 
surface 5(x) = constant, the normal vector is dS/dx", and the orthogonal-
ity requirement is 

K ^ r = 0 , ; - l , . . . , n . (5.60) 

The condition for 1 to be nontrivial is that the determinant 

3S 
a" 3* ' 

= 0. (5.61) 

Surfaces with this property are characteristic surfaces. Again the system will 
be hyperbolic if n independent equations of the form (5.59) can be found 
with this property. Usually these will correspond to n different 
characteristic surfaces, but this is not necessary provided that the full 
complement of n vectors I can be found. However, these choices do not 
simplify the solution to the same extent as in the case m = 2, since we are 
still left with m — 1 coupled directions within each surface. 

In view of this, the main property of characteristic surfaces for wave 
propagation problems is that they carry singularities in the solution and, in 
particular, describe wavefronts. In close analogy with the approach in 
Section 5.5, let S(x) = 0 be a surface across which the Uj are continuous but 
the dttj/dx' are allowed to have simple jump discontinuities. From the 
continuity of the up all the tangential derivatives must be continuous; 
hence only the normal derivatives can be discontinuous. If the surface 
S = 0 is imbedded in a family of surfaces S = constant, so that S can be 
used as a local coordinate supplemented by any choice of the other n — 1 
coordinates, the discontinuous derivatives are dUj/dS. Then closely follow-
ing the argument for m = 2, we deduce that 

, 3S 
a'jdx' ds 

= 0. (5.62) 
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Therefore discontinuities can only occur on surfaces which satisfy 

^ | - a (5.63) 

This is the same as (5.61) and defines the characteristic surfaces. Equations 
5.62 and 5.63 are the generalizations of (5.20) and (5.21). As before, further 
relations can then be derived for the jumps [duj/dS]. 

5.10 Second Order Equations 

Second order linear equations taking the form 

appear frequently, and even in the case of two independent variables it is 
usually more convenient to leave them in this form than to work with a 
first order system. Indeed, we saw an indication in Section 5.2 that there 
may be some problem in finding a satisfactory equivalent system, unless of 
course (5.64) was derived from one. 

There are many approaches to the classification of (5.64). In the 
context of wave propagation, the possibility of wavefronts carrying discon-
tinuities in derivatives is an important question, and it provides the 
simplest link to show consistency with the discussion of first order systems. 
Obviously, in those cases where (5.64) does come from a reasonable 
equivalent system the definitions of hyperbolicity should agree. A detailed 
proof of consistency is not attempted here, but the choice of this approach 
shows the close connection. 

Consider, then, the possibility of jump discontinuities in the second 
derivatives of <p. If these occur across a surface S(\)=0, while <p and 
9<JP/8JC, remain continuous, we may introduce local coordinates based on 
S(x)=0 as before and deduce that d2<p/dS2 is discontinuous but the other 
second order derivatives remain continuous. Then, taking the difference of 
the limits of (5.64) on the two sides of S = 0, we have 

A M M 
VdX; dXj 

a 2
y 

9S2 = 0. (5.65) 

A necessary condition for [d2tp/dS2]¥=0 is 

"4ir°- (5-66) 
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It can be shown that discontinuities in the first derivatives or even in «p 
itself (since the equation is linear) must also be restricted to such surfaces. 
But the arguments require more careful discussion, including the question 
of what exactly is meant by solution, and they are postponed until they are 
needed in Section 7.7. 

The classification now depends on the quadratic form Aytfo. At any 
point x, it may be reduced by means of a linear transformation to the form 

«itf+•••+«*£ (5-67) 

If all the a, are the same sign, there is clearly no solution of (5.66); the 
equat ion is elliptic at such a point . If some of the at are zero, it is parabolic; 
in the usual case, one of the a, is zero and the remainder have the same 
sign. If the a,- are nonzero, bu t not all of the same sign, we have the 
hyperbolic case. In applicat ions it appears that the only hyperbolic cases 
that arise have m — 1 of the a, with the same sign and jus t one with the 
opposite sign. A n explanation of this is that surfaces described by (5.66) 
have peculiar geometrical properties otherwise, and, for example, could not 
represent the simple intuitive picture of an expanding wavefront. Accor-
dingly the term hyperbolic is restricted to this case. 

T o free the classification from its reliance on the discontinuity analy-
sis, one merely notes that the linear transformation required to reduce the 
quadra t ic form A/fife to (5.67) may also be used to generate a local 
coordinate t ransformation which reduces the leading term in (5.64) to the 
form 

32<p d\ 
1 a*,2 m zxl 

This is independent of any question of discontinuities and the classifica-
tion proceeds as before on the signs of the a, in the leading term. 

The discussion here has necessarily been kept brief on those questions 
which will not arise directly in the later work. Further reference may be 
made to the many excellent texts on the general theory of partial differen-
tial equations, such as Courant and Hilbert (1962) or Petrovsky (1954). 



CHAPTER 6 

Gas Dynamics 

As explained in Chapter 1, many of the basic ideas for hyperbolic 
waves and, particularly, the elucidation of shock phenomena came from 
gas dynamics. This chapter is a discussion of waves and shocks in gas 
dynamics. It provides a natural illustration of the general ideas developed 
in the last chapter and adds the sort of amplification and extension that 
can only be shown on specific problems. But gas dynamics is of course an 
important and interesting subject for its own sake, so this chapter is 
presented as a thorough introduction, not just as an illustration of the 
mathematical theory. Further specialized topics are taken up in later 
chapters, and all the material combined provides a broad coverage of gas 
dynamics. However, the reader interested only in the general development 
of wave theory may skim this chapter. 

6.1 Equations of Motion 

The equations of motion for a compressible fluid are derived by 
writing the equations of conservation of mass, momentum, and energy for 
an arbitrary volume of the fluid. Each of these brings in the corresponding 
variables to describe the balance. The description of mass flow requires 
two quantities: the density p(x,f) and the velocity vector u(x,f) at any point 
x at time /. Momentum requires additional quantities to describe the forces 
acting on the fluid. There may be a body force, usually gravity, acting on 
all the fluid in any volume. This is denoted by a vector F(x,/) per unit 
mass, and for gravity would be g times the unit vector in the vertical 
direction. There are also stresses acting across the boundary of any volume 
of fluid. The stress acting on any small element of area of the boundary 
surface is taken to be proportional to that area. In general, it depends also 
on the orientation of that surface element. Therefore the force per unit 
area will be a function of position x, time t, and the unit vector I normal to 
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the surface element. A standard argument, which will be detailed later, 
shows that the »'th component pt of the stress may be written as a 

Pi=PjJj (summed overy), (6.1) 

where the quantities/>y((x,/) depend only on the position x and time t. Since 
Pi and /,. are vectors, the components pyt form a tensor, and it is referred to 
as the stress tensor at (x, /). The component pJt is the z'th component of the 
force per unit area on an element of area whose normal is in the y'th 
direction. 

The energy equation introduces still further quantities. The fluid has 
internal energy due to the thermal agitation of the molecules. In the 
continuum theory it is specified as a quantity e{\, t) per unit mass. There is 
also heat flow across the boundary and this will be denoted by a vector 
q(x, /) per unit surface area. 

We are now in a position to write down the conservation equations, 
although they will not yet provide a complete system since there are more 
unknowns than equations. We consider a fixed arbitrary volume V of the 
region occupied by fluid and write down the net balance for that region, 
bearing in mind the transport of the fluid across the boundary surface S. 
For the conservation of mass the rate of change of the total mass in V, 

[pdV, 

is balanced by the flow across S. If I denotes the outward normal to S, the 
normal component of velocity across 5 is l-Uj. Hence 

ily
pdv+fs

pl*dS=°- (62) 

In similar fashion, the equation for the net balance of the /th com-
ponent of momentum is 

ft fyPutdV+ JfaljUj-p^dS-frtdV. (6.3) 

The first term is the rate of change of momentum inside V, the second 
term is the transport of momentum carried across the boundary by the 
flow, the third term is the rate of change of momentum produced by the 
stress Pj acting across the surface S, and the right hand side is the 
momentum created inside V by the body forces. 

The total energy density per unit volume consists of the kinetic energy 
\puf of the macroscopic motion plus the internal energy pe of the molecu-
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lar motion. For energy balance we have 

j-f j^puf + pe)jdV+ Js{(pu} + pe)lJuJ-piui + lJqJ]dS= f^dV. 

(6.4) 

The first term in the surface integral is again the contribution from bodily 
transport across the boundary, the second term is the rate of working by 
the stress />, at the boundary, and the third term is the loss or gain of heat 
by conduction across the boundary. The right hand side is the rate of 
working by the body forces. 

If discontinuities are allowed in the flow quantities, these integral 
forms will be needed. For one dimensional problems, the volume integrals 
become integrals over x, from x2 to xt, say, and the surface integrals 
reduce to the differences of the integrands at x2 and xx; they take the form 
quoted in (5.54) for the treatment of shock waves. In large regions of the 
fluid, however, the quantities will be continuously differentiable and we 
may take the limit as the volume V shrinks to zero in order to obtain the 
corresponding differential equations. In (6.2)-(6-4) the time derivatives 
may be taken inside the volume integrals, since V is independent of t, and 
the surface integrals can be converted into volume integrals using the 
divergence theorem: 

for any continuously differentiable vector cy. and any reasonably smooth V. 
Thus (6.2) may be rewritten as 

l[d£+-£x-w}dv=°- («) 
Since the integrand is continuous and (6.6) is true for arbitrarily small V, 
we deduce that 

£ + ^(p",)=0. (6.7) 

[If it were nonzero at any point, it would have the same sign in some small 
volume V, by continuity, and (6.6) would be violated.] If (6.1) is accepted 
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for the moment, (6.3) and (6.4) lead in a similar way to 

a7 ^ + d7. ^PU'UJ~PJ^ = pF" (6-8) 

and 

^[-pu? + pej + — M-pu? + pe]uj-pJiui + qJ\ ~pF,u,. (6.9) 

The usual argument to establish (6.1) is in fact a first approximation 
to (6.3). If the maximum dimension of V is d, then the volume V is 0(d3). 
Any volume integral with continuous integrand is then 0(d3), by the mean 
value theorem. The first surface integral in (6.3) is equal to the correspond-
ing volume integral by the divergence theorem (6.5) and hence is also 
0(d\ Therefore (6.3) shows that 

(PidS=0(di) (6.10) 
Js 

for all S. The relation given in (6.1) is clearly sufficient, since the diver-
gence theorem may then be used to show that (6.10) is satisfied. To show 
that it is also necessary, we first define quantities/^, fory'=l,2,3, as the 
values of />, when the area element is perpendicular to the xx, x2, and x3 

axes, respectively. We then apply (6.10) to the special case of a small 
tetrahedron with three faces normal to the three coordinates axes. If the 
fourth face has unit normal I and area AS, the areas of the other three 
faces are the projections ^AS'./jAS'.^AS. Then (6.10) shows that 

PimS=ptilAS+p2il2AS+p,il^S + 0(di), 

where/>,(!) and the/?,, are evaluated at appropriate mean value points in the 
corresponding faces. In the limit, as d—>0, we have 

P$)~Pull+P2il2+P3il3> 

in agreement with (6.1). This is a rather inelegant proof but apparently 
there is no way to change it essentially. 

In connection with conservation equations, it is natural to ask whether 
the conservation of angular momentum adds anything new. For the x3 

component of angular momentum, we would have 

-fr(X\P»2- xlPu\) + - g ^ {(xlPu2 ~ X2PU\)UJr~ (XiPji - X2Pji)} 

= xlpF2-x2pFl, (6.11) 
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with similar expressions for the other components. When (6.8) is substi-
tuted in (6.11) most of the terms cancel and we are left with 

P\2=P2V 

Thus angular momentum leads to the symmetry of the stress tensor: 

Pfi-Pv (6-12) 

It is valuable information, but it is a subsidiary equation compared with 
the others. 

Equations 6.7-6.9 provide five equations for the fourteen quantities 
p, u^p^, qt, e. To complete the system various additional relations are posed 
between the flow variables. 

6.2 The Kinetic Theory View 

It adds to the understanding of the various terms in the conservation 
equations 6.7-6.9 to note what they represent from a molecular viewpoint. 
The molecules have a whole distribution of velocities, and the flow 
quantities are related to the distribution function /(x, v, /), which is defined 
so that 

/(x, v, /) dx, dx2 dxidvldv2dv3 

is the probable number of molecules in a volume element dxxdx2dxi 

centered at x, in a velocity range dvldv2dv3 centered at v. Then the density 
and macroscopic velocity u are defined by 

/

OO /•&> 

mfd\, pw,= I mvjdv, (6.13) 
- 0 0 ■ ' - O O 

where m is the mass of a molecule and }d\ denotes the triple integral over 
all values of vuv2,vy The total flux of the /'th component of momentum 
across a surface with normal 1 is 

/
OO 

mv^vjfdy. (6.14) 
- 00 

If we set v = u + c, so that c measures the difference of the molecular 
velocity from the mean u defined in (6.13), this may be expanded to 

( /•OO /-OO - O O , . 0 0 \ 

U/ttj I mfdc+Ujj mCjfdc+Ujj mcjdc+ I mCjCjdc). 
• ' - O O • ' - 0 0 • ' - O O • ' - 0 0 ' 
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From the definition of c as the deviation from the mean, the middle terms 
vanish and we have 

ij^pupj +1 °° mctcjfdej. (6.15) 

In a perfect gas where intermolecular forces are limited to relatively 
instantaneous "collisions" between the molecules, this is the only contribu-
tion to the surface integral in (6.3) and we see that 

/

oo 

mCtCjfdc. (6.16) 
- 0 0 

This agrees with the form in (6.1) and shows that the stress tensor is 

/

oo 

mc,Cjfde; (6.17) 
- 00 

the symmetry (6.12) is immediate. Thus the stress contribution in (6.3) may 
be interpreted as the additional momentum flux by the motion of the 
molecules relative to the mean. 

Each molecule has translational kinetic energy \mvf. The molecules 
may also have vibrational or rotational energy but, for the present, we take 
the case of a monatomic gas for which these additional forms of energy 
are absent. The total energy per unit volume is then 

f°° \mvffdv= \p"t+ f jmcffdc (6.18) 

Therefore the internal energy term in the volume integral in (6.4) may be 
interpretated as the additional energy of the molecular motion relative to 
the mean, and we have 

pe= r \mc}fdc. (6.19) 
"' — 00 

The energy flux across an element of surface with normal I is 

/

OO 1 

-mvfljVjfdv. 
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In terms of the quantities already defined, this can be broken down into 

lj{pufuj + peuj -pjM + qj), (6.20) 
where 

qr f0 \mcfcjfdc. (6.21) 
J-no z 

By comparing with (6.4), we see that (6.20) agrees with the energy flux in 
(6.4), and the heat conduction q is interpreted as the transfer of excess 
molecular energy by molecular motion. 

Even for the discussion of an ideal gas, it is important to include the 
vibrational and rotational energy possessed by diatomic and more complicated 
molecules. This energy should be added to the expression in (6.19) and 
there will be a corresponding contribution in the heat flux vector (6.21). A 
basic result in statistical mechanics is that the different forms of energy 
reach an equilibrium value with equal contributions from each degree of 
freedom. This will allow us to generalize (6.19), when necessary, without 
going into details. 

These interpretations of stress, internal energy, and heat conduction in 
terms of the random molecular motion show that the various quantities 
introduced in (6.7)-{6.9) are not just a rather ad hoc choice representing 
any important effects we can think of, but they follow a consistent scheme 
using higher and higher moments of the velocity distribution / . Indeed in 
kinetic theory proper, a basic equation is proposed for / and then the 
conservation equations (6.7)-(6.9) are deduced as consequences of it. The 
equation for / is usually taken as the Boltzmann equation or some 
approximation to it. 

We return now to the continuum equations. 

63 Equations Neglecting Viscosity, Heat Conduction, and Relaxation 
Effects 

For a gas in equilibrium in the absence of body forces, we have the 
following: 

1. The stress on any element of area is normal to the area and 
independent of its orientation. Hence 

Pjt=-P8ji, (6-22) 
where p is the scalar pressure. 
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2. The heat conduction 

gj = 0. (6.23) 

3. The internal energy is a definite function 

e = e(p,p) (6.24) 

of the pressure and density. The form of this function is established by 
experiment and various thermodynamic arguments. 

When the gas is nonuniform and in motion, none of these is strictly 
true. However, provided time and space derivatives are not too large, they 
are still good approximations for many purposes. With them the basic 
conservation equations become a complete set for the five flow quantities 
p,p,ur They are 

l + A^.o, (6.25) 

^(i^ + pe)+S.\ji^ + ft+p)^.pF,u,. (6.27) 

When these equations predict shocks or other regions of high gradients the 
assumptions may need to be improved. 

The first assumption, (6.22), corresponds to neglecting viscous effects 
and would be improved in the Navier-Stokes approximation by adding 
terms linear in the velocity gradients 3w//3x,. The second assumption, 
(6.23), neglects heat conduction and would be improved by taking q 
proportional to the temperature gradient. The appropriate forms for the 
Navier-Stokes equations are 

Pji=-p$ji-il*\ ( S M S - S <"8) 

where fi and X are the coefficients of viscosity and heat conduction, 
respectively. The temperature T is related to p and p by the equation of 
state of the gas. 
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The third assumption in (6.24) assumes that the gas is in local 
thermodynamic equilibrium. In changing flows the internal energy is 
always tending toward the equilibrium for the new conditions, but there is 
a time lag, particularly in the adjustment of the rotational and vibrational 
energy. This is a so-called relaxation effect and the typical time lag is 
referred to as the relaxation time. This is an interesting but rather special 
topic so the details are postponed and given as an example in Chapter 10. 

6.4 Thermodynamic Relations 

We could just take the view that e(p,p) in (6.24) is some empirical 
function that is given to us. However, the arguments developed in 
thermodynamics not only provide us with formulas but suggest the impor-
tant quantities to consider. It is appropriate to note here only the 
mathematical steps we require, and refer the reader to the numerous 
standard texts for motivation and a study of the deeper significance of the 
issues. 

The differential form 

de+Pd[-J (6.30) 

plays a fundamental role. It arises first in considering the consequences 
when a small amount of energy is added to unit mass of the gas. If the 
energy is added relatively slowly so that there is no violent change in the 
pressure, the work done in expanding the volume 1/p by d(l/p) is 
pd{\/p). The rest of the energy must go into increasing the internal energy 
by de. In these circumstances (6.30) is equal to the amount of energy 
added. But in any event, for given e(p,p) it is a differential form in two 
variables p, p. By Pfaffs theorem, this always has an integrating factor, so 
that there exist functions T(p,p) and S(p,p) such that 

TdS-de+pdt-Y (6.31) 

This simple mathematical statement acquires its deep significance from the 
fact that T is the absolute temperature and 5 is the entropy. 

In more complicated systems, other thermodynamic variables (such as 
the concentration of different phases of the substance) appear besides p 
and p. Then the differential form corresponding to (6.30) involves more 
than two variables. On purely mathematical grounds one can no longer 
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claim that there is always an integrating factor to relate it to a perfect 
differential. However, the basis of thermodynamics is that this will always 
be so for all real physical systems, and, moreover, the integrating factor 
will always be the absolute temperature. 

The mathematical step in (6.31) seems to introduce T and S as 
subsidiary derived quantities from a given e(p,p). But they play an equally 
fundamental role, and (6.31) should be viewed more as a relation between 
equally important quantities. 

Ideal Gas. 

Under normal conditions most gases obey the ideal gas law 

p-QipT, (6.32) 

where '31 is a constant. When that is the case, we can write (6.31) as 

dS=^-d(&logp). 

It follows that de/T must be a perfect differential and therefore e is a 
function of T alone: 

e = e(T). (6.33) 

It is interesting that (6.33) can be deduced from the assumption (6.32), but 
actually (6.33) is more fundamental. 

Equations 6.32 and 6.33 describe an ideal gas. In the equations of 
motion it is convenient to express e as a function of p and p. We see that 
for an ideal gas e is a function of p/p. The form of this function could be 
left open, but in fact a rather simple formula covers a wide range of 
phenomena in gas dynamics. It arises in considerations of the specific 
heats. 

Specific Heats. 

When heat is added slowly to unit mass of gas, it may be distributed 
between internal energy and volume change in various ways, provided that 
the sum in (6.30) is equal to the heat added. A specific heat is defined as 
the ratio of the heat added per unit mass to the temperature change. If the 
fluid is kept at a constant volume, the heat added goes entirely into 
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internal energy; hence 

de = cvdT, (6.34) 

where cv is the specific heat at constant volume. Alternatively, if the 
pressure is kept constant, and the fluid is allowed to expand, we have from 
(6.30) 

dle + £\-cpdT, (6.35) 

where cp is the specific heat at constant pressure. The quantity e+p/p 
which appears here and also, significantly, in the flux term in (6.27), is the 
enthalpy 

h = e+-. (6.36) 
P 

From (6.32) and (6.33), we see that for an ideal gas e,h,cv, and cp are 
functions of the temperature alone. 

Ideal Gas with Constant Specific Heats. 

It is found empirically, however, that it is a good approximation to 
take the specific heats constant over large ranges of temperature. Hence 

e = cvT, h = cpT. (6.37) 

Since the difference of these is p/p, the gas law (6.32) follows with 

If the ratio of the specific heats y = cp/cv is introduced, we have 

cp = ycv, <&=(y-l)cv, 

y—lp' y—lp' p<3l 

From these the entropy relation (6.31) becomes 

(6.38) 

(dp dp\ 
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hence 

p 
S = c„ log-- + constant, 

or, alternatively, 

p = KPies/c% (6.39) 
where K is a constant. 

An ideal gas with constant specific heats is sometimes referred to as a 
polytropic gas. 

Kinetic Theory. 

Some of these relations have a simple kinetic theory interpretation 
which is worth noting. First, the temperature T measures the average 
kinetic energy per molecule in the translational motion of the molecules. It 
is normalized so that this energy is \kT, where k is Boltzmann's constant. 
For an ideal monatomic gas, this is the whole of the internal energy, so 
that 

e=-kTn, 

where n is the number of molecules per unit mass. Thus the expression for 
e as a linear function of T is essentially an identity in this case. 

In equilibrium, the expression in (6.17) for the pJt must reduce to 
—pSjj. Therefore the pressure may be related to the molecular motion by 
the formula 

P=z~2Pii=3J_ mcttdc-

But the translational energy (6.19) involves one half of the same integral 
and is equal to §kTnp; hence we must have 

p = knpT. (6.40) 

This is the ideal gas law with <3l = kn. The number of molecules per unit 
mass is Avogadro's number N divided by the molecular weight of the gas. 
Hence the constant §1 used here is the universal gas constant kN divided 
by the molecular weight of the gas. 

When the molecules have other forms of internal energy, such as 
vibrational or rotational energy, it is a basic principle of kinetic theory 
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that, in equilibrium, the average energy in each degree of freedom is the 
same. The temperature is defined so that the energy per molecule is \kT 
for each degree of freedom. Thus it is \kT for the three translational 
degrees of freedom. When there are a degrees of freedom the average 
energy per molecule is {akT. Therefore the average energy per unit mass is 

e^~akTn. (6.41) 

The relation for p is unchanged, since p is related to the translational part 
of the energy. Combining these various results, we have 

e=}ra<5lT, h = l}ra + \\<&T, p = <&pT, (6.42) 

and we deduce that 

c c = ^ a & , c, = ( ± a + l ) & , Y - l + f - (6-43) 

These agree in form with the expression obtained earlier for an ideal gas 
with constant specific heats, but they have the extra feature that formulas 
for cv, cp, and y are included. 

For a monatomic gas, a = 3, y = 5/3. For a diatomic gas including two 
rotational degrees of freedom, a = 5, y = 1.4; this is a good approximation 
for air. 

6.5 Alternative Forms of the Equations of Motion 

The conservation forms of (6.25)-(6.27) correspond to the integrated 
forms (6.2)-(6.4) and will be needed for the treatment of shocks. But for 
other purposes the equations may be simplified. It is convenient to intro-
duce the operator 

Dt~ dt Jdxj 

for the time derivative following an individual particle. The mass equation 
(6.25) may be written 

Dp 3w, 
Z » + ^ = 0 ; (6.44) 
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from (6.25), the p derivatives can be eliminated in (6.26) to give 

p-D7+^rpFi- (645) 

The energy equation (6.27) can be written in various forms. First, using the 
two other equations, we can reduce it to 

De 9M/ 
p f + ^ - 0 . (6.46) 

Then, from (6.44), an alternative form is 

De P DP 
Dt p2 Dt = 0, 

and, from the thermodynamic relation (6.31), this reduces to 

7 - ^ - 0 . (6.47) 

That is to say, the entropy remains constant following a particle. Flows 
satisfying (6.47) are usually called adiabatic. 

It should be stressed that the arguments leading to (6.47) are purely 
mathematical manipulations of the conservation equations. One could, in 
principle, have been led to introduce an "interesting quantity S(p,p)" in 
this way, without any prior knowledge of thermodynamics. It is reassuring 
to have the results here on that basis. The discussions of (6.31) in 
thermodynamics refer to infinitely slow reversible changes, and we might 
appear to be using them unjustifiably outside that context. However, once 
the assumptions that pJi=-pSJi and e = e(p,p) are adopted, the rest is 
mathematics and consequences such as (6.47) follow without any restric-
tion to slow flows in the thermodynamic sense. 

Since the expression for S in terms of p and p may be solved in 
principle as p=p(p,S), we may use 

Dt 
\ r I S" constant 

as an equivalent form of (6.47). The quantity a will subsequently be 
identified as the sound speed. 

Unless the conservation form of the equation is particularly required, 
it is usual to work with (6.44), (6.45), and either (6.47) or (6.48). It will be 
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convenient to collect them together for future reference: 

M.o or £ - . ' £ - 0 . 
For a polytropic gas 

e = £ S = c > g £ , « > - ^ . (6.50) 
Y - l p' ~ "« ° p ' ' p 

The entropy equation shows simply that the entropy remains constant 
on each particle path. In general, it may take different values on different 
particle paths. However, if the fluid is initially at rest with uniform entropy 
S0, it follows that 5 = S0 on each particle path and hence remains uniform 
in the motion. Such flows are called isentropic. When this is the case, p is a 
function of p alone, and the equations reduce to the first two in (6.49). For 
a polytropic gas 

p = icpy. 

This argument requires modification when shocks or other discon-
tinuities are present. The differential equations, and in particular the 
entropy equation, apply only to regions where the functions are differenti-
able. Across a surface of discontinuity the entropy jumps, and in general 
the amount of the jump will vary with time and position as the surface 
propagates. Thus an initially isentropic flow may not remain so after a 
shock passes through. This will be discussed in detail in Section 6.10. 

6.6 Acoustics 

The first information on wave propagation in gas dynamics is pro-
vided by the theory of acoustics, which refers to the linearized theory of 
small disturbances about an equilibrium state. The simplest case arises 
when body forces are neglected and the equilibrium state is taken to have 
constant values p-p0, p = p0, « = 0. If the initial disturbance also has 
uniform entropy, the motion remains isentropic and we may take p =*p(p). 
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Then for small perturbations 

P-Po^a&P-Po) (651) 
to first order, where 

a2
0=p'(p0). (6.52) 

Relation 6.51 may be viewed as the solution of the linearized form of the 
third equation in (6.49), and we turn to the linearization of the first two. 

To first order in the small quantities (p-p^/Po> (p~Po)/Po> u/ao> 
and their derivatives, we have 

dp 3", 
£+9.^-0. (6.53) 

9M, dp 

(Here and elsewhere, when the unperturbed state is constant the deriva-
tives are left in terms of original quantities to save writing or the prolifera-
tion of subscripts, but they are transposed into derivatives of the perturba-
tions as the need arises.) 

From (6.54), 

H-*-M-&±jf'</-*>* dXj p0. 

where arbitrary functions w/0)(x) arise in the integration. It is usually 
appropriate in acoustics to take the functions w/0)(x) to be zero; this is so, 
for example, if u, - 0 initially or if the waves move out into a region at rest. 
Then the vector u is the gradient of a scalar. If we introduce the velocity 
potential 9 defined by u = V(p, we have 

3<p dtp p 0 3<p 

*"av '-'o--*ar. ' -*--;gar' (6-55) 

and (6.54) is satisfied identically. The equation for <p is obtained by 
substitution of these expressions in (6.53); the result is the wave equation 

»«-«o**« (6-56) 

for «p, with a0 as the propagation speed. It may be noted also that all the 
perturbations in (6.55) satisfy the wave equation. 
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For one dimensional waves (6.56) may be solved immediately to give 

<p=f(x-a0t) + g(x + a0t), 

where / and g are arbitrary functions; the corresponding expressions for u 
andp—p0 are 

u=f(x-a0t) + g'(x + a0t), 

(6.57) 
P-~ =f(x - a0t) - g'(x + aQt). 
Po"o 

The functions / and g are chosen to fit initial or boundary conditions. We 
defer the discussion of specific examples because the full nonlinear equa-
tions for plane waves are tractable, and some of the linearized results can 
be seen as approximations to exact solutions. Two and three dimensional 
solutions of the wave equation are considered in Chapter 7. 

Practically any problem of acoustics takes place in the presence of a 
gravitational field and, as a consequence, the unperturbed state is not 
uniform. In problems of propagation over large distances in the at-
mosphere or in the ocean, these effects may be crucially important and 
produce amplification and refraction of the sound waves. Even when the 
preceeding theory is adequate, it is not so much that the whole gravita-
tional term pg is negligible, but rather that its perturbed value may be small 
compared with other perturbation terms. The undisturbed pressure and 
density must satisfy 

- ^ = -Pog, (6-58) 

where z is the vertical coordinate. Since the changes of pressure and the 
accelerations in sound waves may be extremely small, the two terms in 
(6.58) may be the largest terms in the vertical momentum equation. But the 
point is that they balance each other, and their further effects in the 
perturbation equations may be negligible. We consider the case of vertical 
propagation of plane waves in detail. If we set p=p0(z)+pl, p = p0(z) + pv 

u = (0,0, w), in (6.49) and neglect quadratic terms and higher order terms in 
Pi,Pi, w, we have 

pu + wp'0 + p0wz = 0, 

Pow,+Po+Piz,= ~PoB-Pig, (6.59) 

Pi, + wPo~ ao(Pu + wPo) = °-



160 GAS DYNAMICS Chap. 6 

The equilibrium entropy distribution is not uniform, in general, so that 
entropy changes must be included and a2 is defined as in (6.48). 

From (6.58), the variations of the equilibrium quantities take place 
over a length scale L of the order of al/g. If /?, = O(cp0) and A is a typical 
wavelength in the perturbations, 

*-<T\ 'HX) 
While \/L may be 10~4, the amplitude e may easily be as low as 10~4 or 
lower, so the ambient gradients p'0 may be greater than the gradients pXz 

produced by the sound waves. However, the terms p'0 and — p0g in (6.59) 
cancel, and the remaining terms are all proportional to c. The terms 
P\g,wp'0,wp'o, have an additional factor X/L. Therefore, unless the propa-
gation is over distances comparable with L, the nonuniform effects would 
be small. Rather than make further estimates it is simplest to look at some 
exact solutions of (6.59). 

By routine elimination of px and p, in (6.59), and further use of (6.58), 
we find 

2 (Po«o)' 
Po 

This equation is hyperbolic and the characteristic velocities are ± a0(z). In 
the case of variable atmosphere, a0 is still the sound speed in this precise 
sense. For a polytropic gas, al = yp0/p0, so that (Pod2,)'= yp'0= - yp0g. 
Hence the equation reduces to 

^„ = alw!2-ygwz. 

Isothermal Equilibrium. 

For constant equilibrium temperature, a\ is constant and (6.58) gives 
an exponential atmosphere 

ftr0 a\ 

Po(z) = Po(0)e->/H, H=~J1 = ^-

The equation for w has periodic solutions 
w = Aez/2Hcos(kz-ut), 
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The variation of amplitude is small provided z<H, and « ^a^k provided 
A 2 / / / 2 < 1 . This solution confirms the previous estimates. 

Connective Equilibrium. 

In convective equilibrium, the entropy is constant and pccpy. From 
(6.58), 

1 dPo = al dPo = 2 ^ o = _ 
p0 dz p0 dz y—i°dz 

hence 

a
2 ( r ) = a

2 ( 0 ) - ( Y - l ) ^ . 

Of course this distribution is realistic only below the height ao(0)/(y - l)g. 
Solutions for w can be obtained in terms of Bessel functions (Lamb, 1932, 
p. 546), and similar conclusions about the effects of nonuniformity may be 
reached. 

Some questions concerning the refraction of nonplanar waves will be 
considered in Section 7.7; other aspects can be found in Lamb (1932, pp. 
547-561). 

6.7 Nonlinear Plane Waves 

We now consider the exact nonlinear equations for one dimensional 
flows in the case that body forces can be neglected. Since the interest is 
now in large pressure changes, gravitational effects can be wholly neg-
lected for many applications. 

The equations in (6.49) reduce to 

p, + upx + pux = 0, (6.60) 

p( u, + uux)+Px = 0, (6.61) 

S, + uSx=0, (6.62) 

where p(p,S) is a known function, and the last equation can also be 
written as 

p, + upx-a
2{p, + upx)=Q, (6.63) 
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where 

\ r / S « constant 

To study nonlinear waves the equations are manipulated into 
characteristic form, following the procedure described in Section 5.1. 
Rather than quote formulas, it is quicker to develop the characteristic 
equations directly from (6.60)-(6.63). We note first that (6.62) is already in 
characteristic form, with a characteristic velocity u. Hence 

- j - = 0 on characteristics — = w. (6.65) 

These characteristic curves are the particle paths, and S remains constant 
on each one of them. 

The other two families of characteristics are most conveniently found 
using (6.60), (6.61), and (6.63). It is sufficient to take the linear combina-
tion: /, times (6.60) and l2 times (6.61) added to (6.63). After rearrange-
ment this combination is 

/>, + (« + l2)px + p/2( u, + uux) + pltux + (/, - a2) (p, + upx) = 0. 

The choice /, = l2 — 0 corresponds to the characteristic form already found 
in (6.65). After that case is eliminated, it is clear from comparison of the 
terms inp and p that the only possible characteristic equations with l2¥=0 
require the p derivatives to be absent altogether: /, = a2. Then it is observed 
from the/? and u derivatives that we require l2 = lx/l2. The conclusion is 
that /, = a2, l2=±a, and the required combinations are 

p, + (u±a)px±pa{u,+ (u±a)ux} =0. (6.66) 

The full set of characteristic equations can be written 

4> . du n — +pa— = 0 
dt y dt 

dp du n 

-di-pali=0 

dt 

„ dx on C+:-j- = u + a, 

~ dx 
on C_ : — = u - a, 

dt 

n dx 
on P:—r — u. 

dt 

(6.67) 

(6.68) 

(6.69) 

The characteristics C+ and C_ represent points moving with velocity ± a 
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relative to the local velocity u of the fluid. These are the sound waves and 
a as defined in (6.64) is identified as the nonlinear sound speed. 

In the linearized theory, these equations are approximated as 

dp . du n 

* du n 

dt 

on 

on 

on 

r dx _n 

r dx - „ 

':f-* 
and may be integrated immediately to 

(/> -Po) + Poaou = F(x ~ V)> 

(p-Po)-PoaoM=G(-"c + aoO. (6-70) 

5 - S 0 = / / ( r ) . 

If entropy changes are absent these agree with the solution in (6.57). 
In the nonlinear theory the defining relations for the characteristics 

depend on the solution yet to be found, and the integration is not 
straightforward. 

For isentropic flow 5 = constant everywhere, so that (6.69) can be 
dropped. Moreover, p =p(p), a2=p'(p), so that the first two characteristic 
equations can be written 

/ 

/ 

a(p)dp dx h u = constant on C\ : — = u + a, 
p + dt 

a(p) dp dx 
u — constant onC_ : — = H-a. p ~ dt 

These are the Riemann invariants. For a polytropic gas 

p = Kpy, a2 = Kypy~\ 

and the Riemann invariants are 

ra±M = constanton -^- — u±a. (6.71) 
y-\ dt v ' 
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6.8 Simple Waves 

If, in addition to being isentropic, the flow has one of the Riemann 
invariants constant throughout, the solution is enormously simplified. It 
corresponds to wave motion in one direction only and in the linear theory 
would correspond to either f or G = 0 in (6.70). As a basic model to 
illustrate how this type of "simple wave" may be produced, consider the 
waves produced by the prescribed motion of a piston in the end of a long 
tube. Figure 6.1 is the (x,t) diagram. Provided shocks do not appear to 
violate deductions from the differential equations, it may be argued that 
the flow must be a simple wave. For clarity, the argument is presented for 
a poly tropic gas, but the extension to the more general form is obvious. 

The gas is assumed to be at rest with a uniform state « = 0, a = a0, 
S = S^ in x > 0 at / = 0, and it is assumed provisionally that shocks are not 
formed. Since the piston is itself a particle path, it is clear that all particle 
paths originate on the x axis in the uniform region. From (6.69), 5 remains 
constant on any particle path P, and hence it is equal to its initial value S0. 
But the initial value is the same on every particle path. Therefore 

S=S 0 (6.72) 

throughout the flow. Since the flow is then isentropic, we may use (6.71) 
for the other two families of characteristics. 

The C_ characteristics have a lower value of dx/dt than the particle 
paths, and therefore they all start on the x axis in the uniform region (see 
Fig. 6.1). On each of them 

•7 2an 

_ i L . a _ M = _ L (6.73) 
y-\ y - 1 

x = o 0 t 

u-O, a = o 0 , S = S 0 « 

Fig. 6.1. Expansion wave produced by withdrawing piston. 
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because this Riemann invariant is constant on each of them, and we have 
inserted the initial value from the region « = 0, a = a0. Again, since the 
initial value is the same on every one, we have deduced that the Riemann 
invariant (6.73) is the same constant throughout. These are the arguments 
to establish that the solution is a simple wave. We now turn to the other 
characteristic equation in (6.71) to determine the remaining details of the 
solution. 

For those C+ that originate on the x axis, (6.73) also holds with the 
opposite sign. Hence « = 0, a = a0 in the region covered by these C+. We 
deduce that the original uniform conditions apply in the region ahead of 
the characteristic C°, which separates those C+ meeting the x axis from 
those meeting the piston. Since we are assuming the flow is continuous 
with no shocks, we have u = 0, a = a0 ahead of and o n C j . Hence C+ is 
given by 

For those C+ that meet the piston, we use (6.71) with the positive signs: 

• + u = constant on each C+ : - j - = u + a. 
y - 1 + dt 

In view of (6.73), which holds everywhere, this may be reduced to 

u-constant on each C+ :-j- = a0-\—-—u. (6.74) 

The value of u on each one will be different, depending on where it meets 
the piston, but we see in general that the family of positive characteristics 
will be a family of straight lines, each having a slope a0+{(y + l)/2}u 
corresponding to the value of u that it carries. 

The boundary condition on the piston is that the fluid velocity is 
equal to the piston velocity. Therefore if the piston path is given by 
x = X(t), the boundary condition is 

u = X(t) on x = X(t). (6.75) 

For a C+ that intersects the piston path at time T, it follows that u = X(r) 
along it, and then from (6.74) that its equation is 

x-X(r) + {a0+-£l-X(T)\(t-r). (6.76) 
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Thus the solution is 

M - ^ ( T ) , a = a0+^-X(r), S=S0 , (6.77) 

with r(x,t) determined implicitly from (6.76). 
Since the C+ are straight lines with slope dx/dt increasing with u, it is 

clear that the characteristics will overlap if u ever increases on the piston; 
that is, X(T) > 0 for any T. This is the typical nonlinear breaking described 
in Fig. 2.1 and it shows that shocks will be formed in such cases. If u 
increases, so do a, p, and p, so that breaking occurs and shocks appear in 
compressive parts of the disturbance. When shocks appear, we shall need to 
reexamine the arguments leading to (6.72) and (6.73) as well as discuss 
appropriate shock conditions. 

For expansion waves the solution in (6.76) and (6.77) is complete. The 
limiting case in which the piston is suddenly withdrawn with velocity - V 
is of special interest. There is a uniform region with 

u=-V, a = a0-^-V (6.78) 

next to the piston, and the adjustment to this from the initial undisturbed 
region is through a centered fan of characteristics as shown in Fig. 6.2. In 
the fan, since all the characteristics meet the piston at x = / = 0, they are 
given by 

x=(a0+-^-u\t, -V<u<0. 

All the values of u between 0 and - V are taken instantaneously at the 
origin, but each value leads to a different member of the fan. Solving this 

Fig. 6.2. Centered expansion fan. 
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relation for u and adding the expression for a from (6.73), we have 

y+l\a0t )• 

If the piston is pushed forward with positive velocity V, the fan is reversed 
and forms a multivalued region, which can be envisaged as a fold in the 
(x,t) plane (compare Fig. 2.3). It corresponds of course to immediate 
breaking and must be replaced by a shock. 

For other problems the simple wave argument applies in general near 
the front of any disturbance propagating into a uniform state. There is a 
region in which particle paths and one set of characteristics originate in the 
uniform state ahead, so that it is isentropic and one Riemann invariant is 
constant. The other family of characteristics "carries" the disturbance; on 
each of them, flow quantities remain constant and each of them is a 
straight line. The simple wave region extends as far back as the first 
particle path from the nonuniform region. Figure 6.1 applies with the 
piston path replaced by this bounding characteristic. The occurrence of 
such simple wave regions adjacent to uniform regions is well illustrated in 
the initial value problem of Section 6.12. 

6.9 Simple Waves as Kinematic Waves 

In Section 2.2 we saw that the continuity equation 

P, + 9„=0 (6.80) 

together with a functional relation q=Q(p) leads to the simplest nonlinear 
waves. The simple waves discussed here can be viewed in this light. 
Whereas in gas dynamics there are three basic equations for the three 
quantities/>, p, u, the special simple wave argument uses the two integrals 

S = 5„, - - « = r. 
y - 1 Y - 1 

This means that two of the equations may be eliminated and any two of p, 

Y+l V 
2 a0 

<1. (6.79) 
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p, u can be expressed as functions of the third. We are then reduced to one 
equation, which may be taken in conservation form, and we have a 
functional relation between the flux and the density. 

For example, if we choose to express all quantities in terms of p, the 
condition for isentropic flow provides the relation 

,=Po(7o)' 
and the Riemann invariant provides the relation 

2a 2ao 
u=V(p) = 

y - 1 Y - l 

-£te) (6.81) 

We may then take the mass conservation as the final equation to determine 
p. It is in the form (6.80) with q = pu. Therefore the kinematic wave 
formulation is to take (6.80) and 

q-Q(p)-pV(p), (6.82) 

with the V(p) given in (6.81). In this case the function Q(p) is obtained 
from the other two differential equations rather than being proposed as 
part of the original formulation of the problem. But the analysis may be 
continued as in the kinematic theory. The equation for p is 

p, + c(p)Px = 0, c(p) = Q'(p), 
and we verify that 

c(p) = Q'(p)=V{p)+PV'(p) 

~V(p) + a(p) 

from the above relations. The conclusion, in agreement with the first 
derivation, is that flow quantities remain constant on characteristics and 
the characteristic velocity is u + a. 

This is essentially the approach used by Earnshaw (1858) in one of the 
earliest derivations of the solution. He assumed isentropic flow from the 
outset and wrote the equations as 

P, + "P, + P«* = °> 

* 4 . f l 2 ( p ) n u, + uux + —-—pJt = 0. 
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Then, based on the observation that a linearized acoustic wave moving to 
the right has u — a0(p - Po)/p0, he considered the possibility of exact solu-
tions with u = V(p). The equations reduce to 

P, + (V+pV')px = 0, 

a2 
(Pl+Vpx)V'+^Px=0. 

Therefore, for consistency, 

r-±2-. 
p 

and the common form of the equation is 

p, + (V±a)px = 0. 

The choice of the upper sign leads to 

r(p)= f ^ * - T Z T { « ( P ) - « O } P Y - l 

and agrees with the above. Riemann (1858) gave the deeper argument 
presented in the last section. 

The choice of p as the working variable brings the description closest 
to the description in Chapter 2, but the formulas are simpler in terms of u. 
We can transfer freely between the two by means of (6.81). In terms of u 
the basic equation is 

and we have 

«, + fa0+^-MJMx = 0, (6.83) 

Y - l a = a0+—— u, S=S0, 

to determine p and p. The propagation speed is 

( \ J . Y + 1 
c(u) = a0+ - y - « • 

The solution of (6.83) is then found as before. For the piston problem, in 
particular, the solution is given by (6.76) and (6.77). 
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In the simple wave solution, at least, waves break in exactly the way 
described in Chapter 2, and the solution has to be completed by the 
introduction of shock waves. 

6.10 Shock Waves 

When waves break, realistic solutions are recovered by fitting in 
discontinuities, and we do this with the same general point of view 
developed in Chapter 2. In the region where breaking occurs, derivatives 
become large and, strictly speaking, the assumptions in (6.22)-(6.24) be-
come inadequate there. But the real behavior usually can be closely 
approximated by introducing discontinuities satisfying the appropriate 
shock conditions and retaining (6.22)-(6.24) in continuous parts of the 
flow. Subsequently the detailed shock structure can be examined by 
including the effects of viscosity and heat conductivity. 

As noted earlier, the simple wave arguments leading to the integrals 

la 2a0 

Y - l Y - 1 

have to be reexamined once shocks are formed, and we have to return to 
the complete system of three equations for the discussion of discontinui-
ties. 

The shock conditions are derived by the arguments presented in 
Section 5.8. It is crucial that we work with the equations in conservation 
form, and that we choose the three equations that are known to remain 
valid in the integrated form. To make the correct choice it is necessary to 
go back to the original integral formulation in (6.2)-(6.4). Specialized to 
one dimension and omitting the body force (although it would not affect 
the jump conditions), they are 

jj£pdx + [pu]*-0, (6.84) 

| £ W * + [p"2-/>uC = 0, (6.85) 

*i r ]*' 

it) (^pu2+pe)dx+\(\pul+f>e)u~P"u+qi : = 0. (6.86) 

Each of these is in the form (5.54) and the corresponding jump condition is 
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(5.56). After deriving the jump conditions, the assumptions pu = — p, ^ =0, 
e = e(p,p) are again used for the continuous flow on the two sides and 
therefore may be inserted in the jump conditions. Then they become 

-U[p] + [pu]-0, 

U[pu] + [pu2+p]=0, 

-U 
1 2 . jpu' + pe i-pu2 + pe \u+pu = 0. 

(6.87) 

(6.88) 

(6.89) 

The corresponding differential equations in conservation form are 

P, + (P")x = 0> 

(pu), + (pu2+p)x = 0, (6.90) 

Upu2 + pe} +U±pu2 + pey+pu\ =0 . 

These are equivalent to the set (6.60)-(6.62). 
Another conservation equation can be derived from this set: 

(PS),+ (puS)x = 0, (6.91) 

which follows immediately from (6.60) and (6.62). But this does not apply 
more generally in integrated form. In fact, from (6.7)-(6.9) and (6.31), we 
have 

(pS\ + (puS)x = (Pu+p)"x-q \x 

Hence 

iCpSdx+[puSt^[ (Pu+P)»x-<i\x dx. 

(6.92) 

(6.93) 

The term on the right in (6.93) is crucially different from the source term ht 

in (5.54), since it involves derivatives of the flow quantities and there is no 
way to integrate them out. Therefore the argument leading to (5.56) does 
not apply. (It should be remembered that the assumptionspu= -p, <7,=0 
are introduced only after the appropriate limits have been taken.) Thus the 
jump condition corresponding formally to (6.91) cannot be derived. In 
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fact, we shall show later from (6.87)-<6.89) that 

-U[pS] + [puS]*0. (6.94) 

In the discussion of shock structure the actual contribution of the right 
hand side of (6.93) will be studied in more detail. 

It is interesting that the four equations in (6.90) and (6.91) are the only 
conservation equations that can be found for the set (6.60)-(6.62). To 
prove this result consider 

where f,g,h are functions of p,p,u. If this equation is expanded in terms of 
derivatives of p,p,u, and if (6.60), (6.61), and (6.63) are used to replace the 
/ derivatives, we have 

Up-ufp)px + ( gp-ufp--fu\px + (gu-ufu-pff)-pa2fp)ux + h = 0. 

Since this is to be an identity, the coefficients of the derivatives must 
vanish separately and h must be equal to zero. The three equations for / 
and g can be solved to show that the most general solution for/ is a linear 
combination of p, pu, \pu2 + pe, pS. Thus the only independent conserva-
tion equations are those already noted. Any three of the four can be used 
to generate a "weak solution," but only the choice (6.90) with jump 
conditions (6.87)-(6.89) corresponds to the real physical situation. 

Useful Forms of the Shock Conditions. 

First it is convenient to write the shock conditions (6.87}-(6-89) in 
terms of the relative velocities v=U-u. With this substitution for u, they 
become 

[pv]=0, 

[p + pv2-pvU]=0, 

pv(h+ ^c2) - {p + pv2) U+ ±pvU2 = 0, 

where h is the enthalpy e+p/p. By taking linear combinations, they may 
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be reduced to 

[pu]=0, [p + pv2]=0, pc ( / i+±c 2 H=0 . 

These are the shock conditions for steady flow in a frame of reference in 
which the shock is at rest. If p,o, =p2tJ2#0, the constant factor pv may be 
dropped in the third condition and we have 

p2c2 = p,o,, (6.95) 

P2 + P2V2=Pl + PiVl (696) 

h2+W2 = h, + \v\. (6.97) 

The usual situation is that the flow ahead of the shock is known and 
the shock conditions are used either to determine the flow behind in terms 
of the shock velocity or to determine the shock velocity and the remaining 
flow quantities in terms of one of the flow quantities behind. We note 
explicit formulas in the case of a polytropic gas. It will be useful to include 
the expressions for the sound speed even though they follow from those 
for p and p. For a polytropic gas 

1 P , y P 2 P , , a < n <?= r - , A= - - , a2 = y-, (6.98) y - 1 p Y - 1 p p 

and the required formulas are derived by straightforward manipulation of 
(6.95M6-97). 

When the flow quantities are expressed in terms of U it is convenient 
to use the parameter 

U-u. 
M !-, 

which is the Mach number of the shock relative to the flow ahead. Then 

u2-ut 2(M2-1) 

0, (y+l)M ' (6.99) 

p2 (y + l)A/2 

^ = ( y - l ) M 2
 + 2 ' (61°°> 
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p2-Pl 2y(M2-\) 

Pi Y + l ' 

a2 _{2yM2-(y-l)}l/2{(y-l)M2 + 2y 

ax (y+\)M 

(6.101) 

(6.102) 

When/>2 is taken as known, it is convenient to introduce the shock strength 

P2~P\ z= 

Pi 

and solve the shock relations in the form 

U-u, ( y + l \ ' / 2 

M=^TH1 + VZ) (6-103) 
(6.104) « 2 - « i 

,1/2 
■+1 \ 

y + l 

1 + V - z 

Pi = 2y 
Pi , . Y - l 

1 + - r Z 2Y 

,1/2 

(l+z)(l + - ~ - z ' { ' ♦ S ^ 
Y+l 

(6.105) 

(6.106) 

Properties of Shocks. 

Certain important properties of shocks will be noted from these 
formulas for polytropic gases, but the qualitative results are true in general. 
First we check the condition (6.94). For a polytropic gas, S = cvlogp/py; 
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hence from (6.105) and the definition of z, we have 

^ - ^ = l o g i V - - (6-107) 

* ( ' ^ ) 

This is not zero when z ̂  0; the entropy does indeed jump at the shock. 
According to the second law of thermodynamics, the entropy can only 

increase following a particle. Therefore if a particle passes from side 1 to 
side 2, we require S2>SV It may be shown from (6.107) that d(S2- St)/dz 
>0 for y > l , z>-\, and these always hold. Hence S2-St>0 implies 
z >0. Thus a shock should always be compressive with/>2>/>i, and it then 
follows from the other relations in (6.103)-{6.106) that 

Pi>Pv Pi>Pi> <*2>ai> "2>
M!> M>\. (6.108) 

Another approach to this question of the sign of the jumps is to ask 
when shock waves are required by the breaking of waves. In the simple 
waves of Section 6.8, the propagation speed is u + a, so that the shock 
formation condition discussed in Section 2.6 becomes 

u2 + a2>U>ul + ai. (6.109) 

That is, the shock is supersonic viewed from ahead and subsonic viewed 
from behind. From (6.103), it is clear that {/>«, +a, requires z>0, and 
the other inequality then follows from (6.103), (6.104), and (6.106). 

The jump in the entropy at a shock, (6.107), depends on the strength 
of the shock. As a consequence, the flow behind a shock of changing 
strength cannot be isentropic. This has an important bearing on the simple 
wave argument in Section 6.8. At the same time, we should consider the 
possibility of a jump in the Riemann invariant, 

2a 
s= -~u, 

y - 1 
which was used in (6.73). It turns out that there is a jump in this quantity 
at the shock. On both counts, the simple wave solution would not be valid, 
strictly speaking, when shock waves occur. However, the jumps are surpris-
ingly small when the shock strength is small or even moderate. 
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Weak Shocks. 

For weak shocks, all the expressions in (6.103)-(6.107) may be ex-
panded in powers of z. The first few terms are 

U-ux v+1 (Y+l)2
 2 , ^ 3 , 

P2-P1 _z Y - l r . m * 

4y2 " 32Y3 

z2+0(z3), 
P\ 7 2y 

«2"« i Y - l Y 2 - l 2 , (Y-»XY+1)2
 3 j . n , «v 

- Z - — - r - Z 2 + —— Z 3 + 0 ( O , 2y 8y2 16Y
3 

12Y
2 

2 
a*-~ a, u* — w. 1 (v + 11 

z3+0(z4) . 

VLfi-jfri^o,^ 

2 «2~«1 «2-« l _ 1 (Y + 1) .3. „ , . * 

a, y — 1 Oj a, 32 y3 

In general the jumps in flow quantities are proportional to z, but the jumps 
in S and s are only 0(z3). Even for moderate shocks they remain 
surprisingly small; typical values for y = 1.4 are given below. 

z 

0.5 

1.0 

2.0 

5.0 

10.0 

S 2 - S , 

0.003 

0.013 

0.052 

0.215 

0.478 

Y - l s2-sl 

2 a, 

0.001 

0.005 

0.019 

0.085 

0.209 

For shocks of weak or moderate strength, it is a reasonable approximation 
to neglect changes in the entropy and the Riemann invariant. With these 
approximations, the simple wave solution of Section 6.8 can be retained 
and used even when weak shocks are included. 
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Strong Shocks. 

At the other extreme of very strong shocks, the asymptotic behavior as 
z->oo may be used. The most convenient form is obtained from (6.99)-
(6.101). Usually when these are required £/»«/,, so we assume thntM~U/al 

and A/» l . Then (6.99)—(6.101) may be approximated by 

*~£TU' vr^' '2~7^Pi(/2' (6110) 

where we have used a? = yPi/p{ to eliminate both p, and a,. The expres-
sions involve only the parameter p, from the flow ahead; ul,pl,al are now 
small compared with values behind the shock and so are negligible in this 
approximation. It is interesting that there is only a finite compression 
Pi/Pv however strong the shock may be. 

6.11 Weak Shocks in Simple Waves 

As noted previously, it will be a good approximation when the only 
shocks occurring are weak or of moderate strength to retain the relations 

y - 1 
5=S 0 , a = a 0 + - y - M (6.111) 

in a simple wave. Then, as we saw in (6.83), the remaining equation may 
be written 

y+1 
u, + c(u)ux = 0, c = a + u = a0-\—-z—u. (6.112) 

In addition to eliminating two equations, the relations in (6.111) already 
satisfy two of the shock conditions approximately and there is just one left 
to accompany (6.112). Since this treatment is approximate, there are many 
choices that agree to lowest order. As we saw in Chapter 2, the most 
convenient one to use with an equation like (6.112) is 

c. + c, 
t / = - L y - i , (6.113) 

which reduces to 

U=^(al + ul + a2 + u2) = a0+^-(ul + u2) (6.114) 
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in this case. From the weak shock conditions, 

a, 4-y 32y2 V ' 

1 I a2~ai . « 2 - " i \ Y+l ( Y + 0 2 

2 
/ f l 2 - f l , M2-M,\ Y+l (7+1) 2 j 

\ a, a, / 4Y 16Y
2 " 

so that (6.114) is true to first order in z, but not to second order. This 
assumption is not as accurate as (6.111). One could relate U to ul and u2 

by an expression that is accurate to second order in z, but the extra 
complication in the shock fitting is usually not worth it. 

The problem of shock fitting is essentially the same as in Chapter 2 
and, with the simple form (6.113), follows closely the account in Section 
2.8. 

We could still consider the initial value problem for (6.112) but this is 
only a special case of the full initial value problem in gas dynamics; it 
applies only if the prescribed values satisfy (6.111) so that the flow 
produced is a simple wave. It is more natural here to consider again the 
piston problem with 

u = g(t) = X(t) on x = X{t), 

and complete the discussion of Sections 6.8 and 6.9 in the case that shocks 
are formed.* The solution is 

K - * ( T ) , (6.115) 

X = X(T) + ao+^-gir^U-r), (6.116) 

where the characteristic variable T is chosen so that I = T O I I the piston 
path. Shocks will be required on characteristics with g(r)>0. We could 
relate the problem to the initial value problem by extending the 
characteristics back to the x axis as in Fig. 6.3 and taking 

S=X(T)-{a0+^-g(T)}T, F«)-o0- * ( T ) . 

Then the results of Section 2.8 could be applied. It is perhaps clearer, 
however, to proceed directly. 

•The formulas will be given in a form that covers also the more general case in which the 
prescribed g(/) is not equal to X(i). 
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X 

Fig. 6.3. Shocks produced by a piston motion. 

We treat the case of a front shock propagating into an undisturbed 
region with K = 0 ahead (Fig. 6.3). If the shock path is x = s(t), the shock 
condition (6.114) gives 

f -ao+^-gir), (6.117) 

and the characteristic equation (6.116) gives 

* ( / ) - J f ( T ) + { « 0 + I | ^ g ( T ) } ( / - T ) . (6.118) 

These two equations are solved to find s and t as functions of the 
parameter T and thus determine the shock. Since X(r)/a0<s:l, Ar(r)/a0<T, 
and / » T at the shock, it is sufficient in the shock calculation to approxi-
mate (6.118) by 

Then we have 

s(t) = U0+^-g(r)\t-a0T. (6.119) 

ds ^ Y+I 
8^) +\K-8(^)1 

\dT 
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Comparing this with (6.117), we have 

4a0
 8y ' 2a0

 KK ' dt dt 

This may be integrated to 

2+1 
4a, 

-g2(r)t= r8(T')dr'. (6.120) 
o ■'0 

Relations (6.119) and (6.120) determine the shock. 
If g(0)>0, the shock starts immediately at the origin. The relation 

between r and / is 

Y+l , * 
- * ( 0 ) / ~ T , 4a0 

so that 

• | « o 
Y+l , x 

The shock starts with velocity a0+ {(y+ l)/4}g(0); this checks with 
(6.114). 

If the piston comes to rest so that g(r)-*0 as T-»T0, the asymptotic 
behavior is 

l±}-g\r)t~ [TOg(T)dT 

s~a0f + \(y+\)a0f W ) * } tl/2-a0r0, 

(4 T \x/2 ' / 2 
■1/2 

The shock path is roughly parabolic in the (x,t) diagram and the shock 
strength decays like / _ 1 / 2 . Between the shock and the limiting 
characteristic T = r0, we have 

Y + l 
* ~ U 0 + 2 g(r) \t-a0r0, 
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so that 

, x 2 x-a0(l-r0) 
«=^)~7TT ; • 

Further shocks can be handled similarly. If the piston returns to its 
original position at / = T and remains there, the asymptotic behavior is a 
balanced N wave with shocks at 

l r I 1 / 2 

x = a0(/-T0)±{(Y+lH/o°s(T)</T} ,'/2, 

and 

2 x-a0(t-r0) 
W y - W 

y+1 t 
between them. 

Other special cases and limiting results can be derived following the 
arguments in Section 2.8. 

6.12 Initial Value Problem; Wave Interaction 

The simple wave is a disturbance propagating on one family of 
characteristics. In general there will be waves on all three families. The 
complete initial value problem will require all three, unless the values 
prescribed already satisfy the simple wave relations. If the initial values are 
uniform with w = 0, a = a0, S=S0 except in the range a < x < b, the (x, t) 
diagram is as shown in Fig. 6.4. There is an interaction region adceb, but 
then, provided shocks do not occur, the disturbance separates into three 
simple waves as shown. Their existence is established by noting that in 
each of them two of the characteristics originate in the initial uniform 
region. 

Between the simple waves, all three characteristics originate in one or 
the other of the uniform regions; hence they are uniform states with M = 0, 
a = a0, S—S0. Once the interaction is solved, the simple waves can be 
described analytically (similar to Section 6.8) with boundary conditions 
provided by the interaction region. 

If the entropy is initially uniform everywhere, the flow is isentropic. 
The P wave in Fig. 6.4 drops out and the interaction region is limited to 
abc. 
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' ! 

a b 

Fig. 6.4. Initial value problem in gas dynamics. 

In practice, the interaction region is best solved numerically. However, 
some analytic simplification can be made in the isentropic case, and a 
related problem was solved completely by Riemann. For isentropic flow, a 
may be used in place of p and the equations may be written 

a,+ uax+-Y~aux = 0, 

(6.121) 

U, + MM, H 
* y— 1 

aa =0. 

Equations such as these can be transformed into a linear set of equations 
by interchanging the roles of the dependent and independent variables: the 
so-called "hodograph" transformation. In this transformation, 

*.,= J ' 

where J is the Jacobian: 

x = J' L = J ' 
f „ = - J' 

J=u,ax-a,ux. 

Since the equations (6.121) have one and only one derivative in each term, 
the Jacobian cancels through and the equations become 

y - 1 
xu-utH+- 2 at=0, 

x„ - ut„ + 
7 - 1 " 

at=0. 
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These are now linear equations for x(u,a) and t(u,a). Notice it is crucial 
that J cancel through; otherwise the equations would still be highly 
nonlinear. 

A single equation for t(u,a) may be obtained if x is eliminated by 
cross-differentiation. Then we have 

( ^ 
Y - 1 1 

4 a 

With b = 2a/(y- 1), « = (y+ l)/2(y— 1), the equation becomes 

On 
lbb+ ~fr~tb=tuu-

For n = 1 this is the wave equation for spherical symmetry, which has a 
relatively simple general solution. Indeed, when n is any integer, the 
general solution is not too difficult and may be written 

where F and G are arbitrary functions. It is fortunate that the two 
interesting cases of y = f and y = % are included as the cases n = 2 and 
n = 3, respectively. The Riemann invariants are u ± b, so the basic 
characteristic structure is apparent in this expression. 

In the linearized approximation to (6.121), that is, 

y — 1 2 
a, + —— a0ux = 0, u,+ ——^a0ax = 0, 

the general solution is 

u=f(x-a0t)+g(x + a0t), 

2 b-bo=—[(a~ao)=f(x-aot)-g(x + a0t). 

The nonlinear solution takes a form relating to the inverse of this. 
For the initial value problem, a and u are prescribed functions 

a=&(x), u=sll(x) at/ = 0. 

In principle, by elimination of x, this defines a certain curve $ in the (b, u) 
plane, and we have / = 0, x given, on $. These two boundary conditions 
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are sufficient to determine the solution in the appropriate characteristic 
triangle. In practice, however, it is simpler to use a numerical solution in 
the (x,t) plane, as noted previously. 

Simple waves have either u + b or u - b constant, so the mapping into 
the (u,b) plane is singular; the entire simple wave region in the (x,t) plane 
is mapped into a line in the (u,b) plane. The interaction of two simple 
waves is then formulated in the (u,b) plane as requiring the solution with / 
prescribed on characteristics 

u + b = bv u-b = b2. 

The determination of F, G is easier in this case. The solution can be found 
also for general y; the details are given in Courant and Friedrichs (1948). 
This analysis is limited to shock-free flows and seems to be mainly of 
academic interest. In view of this, the details are not documented here. 

6.13 Shock Tube Problem 

One special initial value problem, which includes a shock, can be 
solved exactly and very simply. It is also important since it refers to the 
main device for producing shocks in experimental studies. A shock tube is 
a long tube with an end section partitioned off by a thin diaphragm. The 
gas held behind the diaphragm is pumped up to a high pressure. The initial 
state is two uniform regions with 

u = 0, P~P\, P = P\ i n x > 0 
and 

u = 0, P=PA>P\, P = P* inx<0. 

The diaphragm separating the two uniform initial states is burst to produce 
a shock propagating down the tube. If the viscous effect of the side walls 
of the tube are ignored so that this may be treated as a plane wave 
problem, and if the solution is limited to times before the waves are 
reflected from the ends of the tube, the exact solution may be obtained 
analytically. 

The (x,t) diagram is shown in Fig. 6.5. The interface separating the 
two gases moves down the tube, there is a compressive shock moving into 
the gas on the low pressure side, and an expansion wave moves into the 
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centered 
S.W. 

Fig. 6.5. The (x,t) diagram for a shock tube. 

high pressure gas. Since the parameters provided by the initial conditions 
do not specify a basic length or time, and the lengths of the tube sections 
are irrelevant in the early stages before the disturbances reach the ends, 
dimensional arguments show that the solution must be constant on the 
lines x/axt — constant in the (x,t) plane. Therefore the velocities of the 
shock and the interface must be constant, and the expansion wave must be 
a fan centered at the origin. There are uniform regions 1, 2, 3, 4 as shown; 
regions 1 and 4 are still in the original uniform states. The problem may be 
viewed as the combination of two piston problems, using the interface as 
an effective piston. The fluid velocities on the two sides of the interface 
must be the same as the velocity of the interface, so it is like a solid wall as 
far as the flow on either side is concerned. However, its motion must be 
determined as part of the problem and cannot be prescribed in advance. If 
the velocity of the interface is V, the shock conditions (6.103}-(6.105) may 
be used with u2= V, K, = 0, to determine p2, p2, U in terms of V. In 
particular, the shock strength z = (p2-P\)/Pi is determined from (6.104): 

■HS4"' 
(6.123) 

The gases on the two sides of the diaphragm may have different values of 
y. We use y, for the gas ahead and y4 for the gas behind. The expansion 
wave between regions 4 and 3 is a simple wave with 

5, = 5. 
2a 

4> 
3 2 a 4 
3 +K= 4 

Y 4 - 1 ' ' Y 4 - I ' 

For a polytropic gas, S = cv\ogp/py*, a2 = y4/>/p, so that these two rela-
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tions can be solved to find also p3,p3. In particular, p3 is determined from 

x,^(,_(M"-"n (,l24) 

If required, the details of the flow in the centered simple wave can be 
calculated; the solution is similar to (6.79) but on the other family of 
characteristics. 

At this stage, the solution is completely determined in terms of V. The 
final relation is to enforce the condition p2=p3, since the interface has no 
mass and cannot sustain a net force. These pressures are determined from 
(6.123) and (6.124), and they provide the equation for V. The result of 
most interest, however, is the shock strength z. If we substitute p3=p2 

=/>,(l + z) in (6.124) and equate the two expressions for V/ax, we have 

„ ( r n i<Y4-')/2r^ 

£ _ 2 - ^ 1 - ^ ( 1 + .) 
/ + 1 X1/2 Y 4 - l « , \ I * J J 

7 l l 1 + ^ T z J 
This is the equation for z in terms of the known quantities p4/Pi, fl^fl,. 

6.14 Shock Reflection 

The reflection of the shock from the end wall can also be solved 
exactly. The normal reflection of a plane shock from a plane wall can be 
analyzed from the shock conditions. Let subscripts 1 and 2 refer to the 
states ahead of and behind the incident shock, and subscript 3 refer to the 
state behind the reflected shock. If the incident shock strength is denoted 
by zi = (p2-pi)/pl, the state 2 is determined by (6.104H6106) with z = zr 

The reflected shock has state 2 ahead and state 3 behind, so that if the 
reflected shock strength is zr = (p3-p2)/p2, then from (6.104), with suitable 
changes in subscripts and change in sign of the velocities because the 
reflected shock travels in the opposite direction, we have 

U2~U3_ Zr 

°> / Y + l V / 2 ' 

Next to the wall the gas must be at rest; hence H3 = 0. But we also know w2 
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and a2 in terms of z(, so this is a relation for zr in terms of zt: 

Z: Zr 

This leads to a quadratic for zr and the relevant solution is 

z, ^ p . (6.125) 

For weak shocks, z,->0 and (6.125) is approximately zr~zt; hence 

P3-Pi~2(P2-Pi)> 

and the pressure increase at the wall is approximately twice that in the 
incident shock. For strong shocks, z,—»oo, we have 

2y p3 3 Y -1 
zr r , — =8 for y = 1.4. 

y - 1 p2 y-\ 

6.15 Shock Structure 

In accordance with the general point of view that evolved in Chapter 
2, a shock is interpreted as a thin region in which rapid changes of the flow 
quantities occur. It is a discontinuity in one level of description, but it is 
replaced by a thin region in a more accurate level of description. As a 
check on this, particularly regarding the correct choice of conserved 
quantities, and in order to estimate the shock thickness if necessary, we 
consider the shock structure in the special case of a transition between two 
uniform states. 

For one dimensional flow, the equations for conservation of mass, 
momentum, and energy are 

fc+(p")* = 0 ' 

(pu), + {pu2-pu)x = 0, (6.126) 

l-pu2+pej +ll-u2+e\pu-pllu + qi J =0. 
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An improved description over the one used so far is to take the Navier-
Stokes relations for the stress pxx and the heat flux qx, while retaining the 
assumption of local thermodynamic equilibrium. The assumptions are that 
pxx depends linearly on the velocity gradient and qx depends linearly on the 
temperature gradient. They are noted in general in equations (6.28) and 
(6.29); for one dimensional flow they reduce to 

/»n- - /» + J/«<,. 1i"-*Tx. (6.127) 

The thermodynamic relations 

1 P 

P 
p*=<&pT (6.128) 

complete the system for a polytropic gas. 
For the shock structure solution the flow is steady relative to the 

shock. Hence all flow quantities are functions of X = x - Ut alone. For 
such functions 

J- = _ i] A. JL = A. 
3r dX' dx dX 

and the equations (6.126), being in conservation form, may be integrated 
to 

— Up + pu = A, 

- U(pu) + Lu2+p- | / i % ) = B , (6.129) 

ul^pu2 + pe\+U-u2+ejpu+pu~-iiuux-\Tx\ = C, 

where A, B, and C are constants of integration. As X-> + oo, the flow tends 
to a uniform state denoted by subscript 1. The constants A, B, and C are 
determined then in terms of U,ux,px,px. If the flow also tends to a uniform 
state u2,p2,p2 as X^> — oo, it is clear that the states at ±oo are related by 
the shock conditions (6.87M6.89). 

The relations (6.127) may also be used to explore further the equations 
for the entropy change. We may now write (6.92) explicity as 

d , , „ , „ , (4/3)yux + (\Tx)x — {piU-u)S} , 
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or, better still, 

\TX) (4/3)M7V4 + X7* ^ { p ( t / _ u ) s + _ £ } . _ 

Hence 

[ p ( t / - u ) S ] , = I ^i dX>Q. 
J -00 

The entropy change across the shock is clearly seen to be a con-
sequence of the dissipation of energy by viscosity and heat conduction, 
and the sign of the entropy change is automatically predicted. 

The details of the shock profile between the limiting values at ± oo are 
provided by the ordinary differential equations in (6.129). With v=U—u 
and new constants related to A, B, and C, they may be put in the form 

i 4 
pv*+p+^nvx = P, 

pv = Q, 

3" 

[h+ — v2\pv + —ftwx+\Tx = E. 

These are the steady flow equations in a frame of reference moving with 
the shock, but with v measured positive in the negative X direction. The 
shock conditions relating the uniform states at ±oo are now in the 
corresponding form (6.95H697). 

The continuity equation pv-Q and the relations in (6.128) may be 
used to reduce the system to two equations for o and T. For a polytropic 
gas, 

and it is a little more convenient to work with v and h. The equations are 

3 

A 

l ^ - P - e ^ + I - i A j , (6.130) 

-A j r+ f /«» , -£ -<? (A+£C 2 ) . (6.131) 
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It is a simple matter now to show qualitatively that a solution of the 
required form exists. In the special case \/cp = $n, which is a good 
approximation for air, an integral can be found and the solution exhibited 
explicitly. (The quantity \i£p/\ is the Prandtl number, and it is 0.71 for air 
at normal temperatures.) For this value of \/cp, (6.131) can be written 

5*('+H-£-eK4 
The right hand side vanishes as A'-xso, that is, /», + {v\ = E/Q. Therefore 
the only solution that is bounded as A'-* - oo is 

h+2v~Q 

throughout. In this case, h + \v2 is not only the same on the two sides of 
the shock; it remains constant throughout the shock. Equation 6.130 may 
then be written 

4 P n(y+l ;. Y _ 1 E l \ 

3 ^ = P-Q[-27V+^TQvl-
Since the constants must be such that the right hand side vanishes for both 
« = C| and v = v2, it must be possible to write it 

4 Y+l ( « i - » ) ( » - f 2 ) 
1^^~WQ v • 

This is easily integrated to give 

12.1±±X= -^- log(»- t> 2 ) - - ^ - l o g ^ . - c ) . v 

V 2y " «i-«2""°V" "Z/ «i - t 52 

We have C = Pit'i> s o t n e shock thickness is proportional to 

3p, Y + 1 u, —1)2 ' 

As expected it becomes thinner as ju decreases for fixed strength and also 
as the strength increases for fixed ft. 
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6.16 Similarity Solutions 

The simple wave solution is limited to plane waves moving into a 
uniform region. The problems of cylindrical or spherical symmetry and of 
plane waves moving into a nonuniform region are more complicated. A 
fairly general approximate theory for weak waves can be obtained (and 
this is developed in Chapter 9), but there are also some special exact 
solutions, which fit more conveniently into the account in this chapter. 

We consider first cylindrical or spherical wave motion. The equations 
(6.49) reduce to 

P, + «Pr+p(«r + ̂ ) = 0, (6.132) 

u, + uur+-pr = 0, (6.133) 

Pt + upr-a
2(Pl + uPr)=0, (6.134) 

where r is the distance from the center andy'=l,2 for cylindrical and 
spherical waves, respectively. 

The characteristic equations are nearly the same as in Section 6.7; the 
extra term jpu/r does not involve derivatives and therefore does not 
change the appropriate choice of the linear combinations. The 
characteristic equations become 

dp du , .pa2" n dr ,, . , , . 
_ ± p o _ + , _ _ = 0 o n - = u±a, (6.135) 

^ - a 2 - = 0 o n - « « . (6.136) 

The innocuous-looking extra term in (6.135) invalidates the simple wave 
argument. In isentropic flow, the C_ characteristic equation becomes 

fc-H-ft S-"- (6137) 

This can no longer be integrated once and for all to give the simple 
relation between a and u. As a consequence there are no exact solutions 
corresponding to the simple waves of plane flow. One can proceed by 
means of certain approximate methods to get analogous solutions, but they 
are limited to weak disturbances. These approximate theories are taken up 
in Chapter 9. 
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However, turning to another approach, we can find a different class of 
exact solutions which are surprisingly useful. The set of equations (6.132)-
(6.134) has special similarity solutions in which all the flow quantities take 
the form tmf(r/t"). These have the simplifying feature that the partial 
differential equations reduce to ordinary differential equations with inde-
pendent variable r/t". 

Point Blast Explosion. 

One of the best known similarity solutions describes the blast wave 
produced by an intense explosion. It was found independently by Taylor, 
Sedov, and von Neumann in connection with atomic bomb research. Its 
form can be argued on dimensional grounds. It is supposed first that the 
explosion can be idealized as the sudden release of an amount of energy E 
concentrated at a point, and that this is the only dimensional parameter 
introduced by the explosion. Second it is supposed that the resulting 
disturbance will be so strong that the initial pressure and sound speed of 
the ambient air are negligible compared with the pressures and velocities 
produced in the disturbed flow. Then the only dimensional parameter 
relating to the ambient gas is the density p0. In particular, the strong shock 
relations (6.110) apply; that is, 

U=^T\U> p=7TTp°' /' = 7TTPot/2' (6>138) 

behind the shock moving with velocity U. 
The dimensional argument is based on the fact that the only parame-

ters in the problem are E, with dimensions ML2/T2, and p0, with di-
mensions A//L3. The only parameter involving dimensions of length and 
time is E/p0 with dimensions L5/T2 or some function of it. Let us now 
consider various quantities that arise in the solution. The flow is headed by 
a shock at r=R(t). Since /?(/) is a length, the only possible form for its 
dependence on t is 

/?(/) = *(—) >2/5, (6-139) 

where k is a dimensionless number. It then follows from the shock 
conditions (6.138) that the pressure and velocity immediately behind the 
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shock are 

8 ^ A ,-6/5 M . 4 _ * _ / £ \ ,-3/5 
P 25y + l \ p J ' 5 y + l U o / 

or, equivalently, 

, 8 _ * L £ * - 3 , M = l 1 ^ . ( 4 ^ " ^ (6.140) 
^ 2 5 Y + 1 5 r + l U ) V ' 

It is striking, as usual, that such valuable information can be obtained at 
the outset from a simple dimensional argument. 

The argument can be taken further to show the functional form of 
u,p,p in the entire flow field. Since there are no independent length and 
time scales provided by the parameters in the problem, only the combina-
tion E/p0 with dimensions L5/ T2, any dimensionless function of r and t 
can depend only on the combination f = Et2/p0r

5 or some function of it. 
We shall in fact use 

which is proportional to f ~ l / 5 from (6.139). Then, for example, ut/R, 
p/p0, pt2/p0R

2 are all dimensionless and must be functions of £ alone. 
Following Taylor (1950) we take 

2 

the factor of $ is included because 2R/5t is the shock velocity. There are 
other equivalent forms and the choice 

K-ffno, P-AMO, /'-(ffjpo'tt) 
fits a general scheme discussed below. Clearly the connection is 

<P = £K, * - 0 , f=yt2P. 

The shock is at | = 1 and the shock velocity U is R = 2R/5t, so the 
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shock conditions are 

<*>(!) = * ( 0 -
Y+l 

/(O-
2y 

(6.142) 

When the expressions (6.141) are substituted in the equations of motion, 
three first order ordinary differential equations are found for the functions 
<p(£),i//(£),/(Q. These have to be integrated from £=1 to £=0, with initial 
conditions (6.142). The parameter k does not appear in the equations. It is 
fixed from the definition of E as the total energy in the flow. That is, we 
require 

-fU+M UiTr2dr, 

which leads to 

l=4irk5 Htfl JL. 
Y(y- i ) 

+ \W i2di. 

The functions <p,^,/in Fig. 6.6 are taken from Taylor's numerical integra-
tion of the equations in the case Y = 1 -4. It was shown by Sedov, using 
different variables, that the equations could in fact be solved analytically; 
reference should be made to Sedov's book on similarity solutions. (1959, 
Chapter 4). 

0.2 0.4 0.6 0.8 1.0 

Fig. 6.6. The normalized velocity <p, density ^, and pressure / in the point blast explosion 
(Taylor). 
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Similarity Equations. 

The point blast similarity solution is one of a family in which 

(6.143) 

If these expressions are substituted in (6.132)-(6.134), and the forms 

are substituted for derivatives of functions of £, the factors in r and / 
cancel through and leave ordinary differential equations in £ alone. They 
are most conveniently written in terms of V, A=(yP/Qy/2 and fi; the 
sound speed is 

The equations are 

(6.144) 

- ^ - 0 + l ) K ( K - l ) - ( K - l ) ( K - : i ) , (6.145) 

^ - 1 ) 2 - > , 2 } l f a 2 ( ( ; + 1 ) F " J ? ) ( " " 1 ) " " 2 

" K K " H ) ~ 0 ' + 1 ) K ( K _ 1 ) - (6146) 
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There is a possible singularity if 

( K - l ) 2 - ^ 2 = 0 , (6.147) 

and this would be a singularity on a curve £=constant. The original 
equations are hyperbolic so we know that singularities can occur only on 
the characteristics 

^ = u±a= — (V±A). (6.148) 

On a curve |=constant, we have 

dr _ nr 
dt~ t " 

Therefore a curve £=constant which is also a characteristic must have 
V±A — \. This agrees with (6.147). Thus, a singularity can occur only on 
the characteristic through the origin, and this limiting characteristic is one 
of the family £=constant. 

In the point blast problem, n = 2/5, the limiting characteristic does 
not appear in the flow behind the shock. Its position would be in the 
region ahead of the shock, as shown in Fig. 6.7, but the flow is taken to be 
uniform there, with V=A = 0, and there is no singularity. It represents the 
edge of the fold in the (r,t) plane in the multivalued solution which is 
replaced by the shock. 

Guderley's Implosion Problem. 

The limiting characteristic plays a crucial role in the problem of an 
incoming spherical or cylindrical shock collapsing to the center. In this 
case there is no dimensional argument to establish that the solution must 

Fig. 6.7. The (x,t) diagram for the point blast explosion. 
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Fig. 6.8. The (*,/) diagram for Guderley's implosion solution. 

be a similarity solution. However, Guderley (1942) proposed that it be of 
the above form (6.143) for some exponent n to be determined. The origin 
of / is taken to be the instant at which the shock reaches the center, so that 
t < 0 and C < 0 in (6.143). One might argue for a similarity solution on the 
grounds that there must be a singularity at the center with a shock coming 
in on some curve in the (r, t) plane and being reflected back along another 
curve. This perhaps suggests that the solution is related to a family of 
curves coming into the origin, and the family r/(—()" = constant is the 
simplest to try. In any event, it works! The equations are then as derived 
above (6.144)-(6.146) for some n to be determined. The incoming shock 
may be normalized to be at 

since C is an adjustable parameter. 
In this geometry, it is clear from an outline of the (r,t) plane (see Fig. 

6.8) that the limiting characteristic through the origin is in the flow region. 
And the question of a singularity on it becomes most important. In 
integrating (6.144)-(6.146) for V(£), P(£), Q(Q from their values at £= 1, the 
curve (V-\)2-A2=*0 will be reached. There would then be a singularity 
in the solution except in the special case when the right sides of (6.144)-
(6.146) also vanish. Obviously a nonsingular solution is required, and the 
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TABLE 6.1 

Y 

5/3 
7/5 
6/5 

Cylindrical y'= 1 
n (1 -n)/n 

0.815625 
0.835217 
0.86U63 

0.226054 
0.197294 
0.161220 

Spherical j = 2 
n ( l - « ) / « 

0.688377 
0.717173 
0.757142 

0.452692 
0.394364 
0.320756 

exponent n has not yet been specified. Guderley put the two together and 
proposed that the value of n should be the one that makes the right hand 
sides of (6.144)-(6.146) vanish at the curve (6.147) and allows the solution 
to be continued smoothly across the limiting characteristic. 

The numerical integration has been repeated with great accuracy by 
Butler (1954) and the values found for n are presented in Table 6.1. The 
pressure at the shock and the shock velocity are given by 

/ , C X f -2( i -n) /« ) [ /ar"1'-"'/"; 

the exponent (1 - n)/n is also presented. It is intriguing that the exponent 
(1 - n)/n fory' = 2 is nearly double the value fory'= 1. One is tempted to try 
arguments to prove that this should be exactly true. An approximate 
theory, described later (Chapter 8), gives this result automatically, but the 
proposed result does not appear to be exactly true. 

Guderley also showed that the reflected shock can be fitted into the 
same similarity solution. Of prime interest is the increase of strength on 
reflection. At the center both the incoming and outgoing shocks have 
infinite strength and velocity in this idealized model, but the ratio of the 
strengths remains finite. Guderley shows that for y = 7/5 the ratio of the 
pressure behind the reflected shock to the pressure behind the incident 
shock is about 26 for spherical waves 0 = 2) and about 17 for cylindrical 
waves 0 = 1). These compare with the ratio 8 for plane waves (see Section 
6.14). 

The infinity at the center would be modified by viscous effects in any 
case, but a more important question concerns stability. It will be shown 
later that an approximate theory predicts that small, unsymmetrical deriva-
tions in the shape of the shock would grow and the shock would not focus 
perfectly at the center. However, it seems that this instability affects the 
behavior in only a small neighborhood of the center, and over much of the 
motion Guderley's solution applies. 
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Other Similarity Solutions. 

On dimensional grounds one can argue that the flow produced by a 
uniformly expanding sphere must be a similarity solution with u,p,p 
functions only of r/Ct, where C is the velocity of the sphere. The 
equations are (6.143)—(6.146) with « = 1, and in this case the similarity 
solution is not limited to strong shocks. This was proposed and solved by 
Taylor (1946). 

In some ways, problems of plane shocks propagating through a 
nonuniform density distribution p0(^) are analogous to spherical or cy-
lindrical waves. It turns out that there are some corresponding similarity 
solutions. Sakurai (1960) investigated cases in which p0(x)ccxm and found 
that they could be analyzed like the implosion problem. In particular, the 
exponent in the similarity variable is found by suppressing a possible 
singularity on the limiting characteristic through x = 0. (See Section 8.2.) 

Other cases, including an exponential density stratification, have been 
studied by Sedov, (1959, Chapter 4), Zeldovich and Raizer (1966), and 
Hayes (1968). 

6.17 Steady Supersonic Flow 

Problems of steady supersonic flow can also be treated by the 
methods developed for unsteady waves. There are, in fact, close analogies 
between problems in the two fields. Two dimensional steady flow corres-
ponds to unsteady plane waves, axisymmetric steady flow to cylindrical 
waves. 

If body forces are neglected, the equations for steady flow may be 
written 

V(pq)=0, (6.149) 

V ^ q 2 ) + < o X q = - - V / , , (6.150) 

q-VS = 0. (6.151) 

These are taken from (6.49) with minor changes in form. It is convenient to 
use vector notation, to use q for the velocity vector (since later in two 
dimensional flow the components will be denoted by u and v) and to 
replace the original expression (q- V)q on the left of (6.150) by the equiva-
lent expression shown, where <o = curl q is the vorticity. 
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Now the thermodynamic relation (6.31) can be taken to be 

TdS=dh--ap 
P 

and used with (6.150) and (6.151) to deduce the equations 

vUn2 + h)+<*Xq=TVS, (6.152) 

q - v ( | q 2 + / I j=0. (6.153) 

Therefore, from (6.151) and (6.153), the entropy S and the "total enthalpy" 
h + $q2 remain constant along the streamlines in any continuous part of 
the flow. If a continuous flow comes from a uniform state S^SQ, h = h0, 
q = U, at infinity we have 

h+±q2 = h0+±U2, (6.154) 

S = S0 (6.155) 

throughout the flow. These relations have to be reexamined if shocks 
occur, since the quantities may jump discontinuously as the streamlines 
cross a shock and the jumps may be different on different streamlines. But 
we accept them for the present. Then (6.152) reduces to 

toXq = 0. (6.156) 

We are interested only in two dimensional or axisymmetrical flows; for 
these, <o and q are orthogonal so the conclusion is <o = 0, that is, the flow is 
irrotational. In general, there are special flows—the so-called Beltrami 
flows—which satisfy (6.156) with u¥=0. 

For a poly tropic gas, h = a2/(y-l) and Bernoulli's equation (6.154) 
may be used in the form 

a2 = a2-^(q2-U2) (6.157) 

to express a in terms of q. If the flow is also isentropic p and p can be 
determined from a and therefore from q. 

We now consider a continuous two dimensional flow with uniform 
conditions upstream. The flow is taken to be in the (x,y) plane with 



Sec 6.17 STEADY SUPERSONIC FLOW 201 

q=(w,u). Since all the thermodynamic quantities are known in terms of q, 
via (6.155) and (6.157), we need two equations for u and v. We may choose 
(6.149) and the irrotational condition « = 0. The remaining equations are 
then automatically satisfied by the various integrals used to arrive at this 
point. We have 

(pu)x + (pv)y = 0, 

vx-uy = 0, 

where p is to be expressed in terms of u and v by (6.157). The relation 
between a and p is a2ocpr-1; hence 

dp = i d(a2) = udu + vdv 
P Y - l a2 a2 

The equations may therefore be transformed into 

(u2-a2)ux + 2uvuy + (v2-a2)vy = 0, (6.158) 

vx-uy = 0, (6.159) 

where a2 is given by (6.157). 

Characteristic Equations. 

The next step is to investigate the characteristic forms, following the 
procedures of Chapter 5. The manipulation, although elementary, is a little 
complicated and a variety of alternative tricks may be used to keep it as 
short as possible. We choose to start in a straightforward way and consider 
the linear combination 

(u2 - a2)ux + (2uv -l)uy + lvx + ( v2 - a2)vy = 0. 

This is in characteristic form 

(u2-a2)(ux + muy) + l(vx + mvy)=0, 
provided that 

(u2-a2)m = 2uv-l and lm = v2-a2. 
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The requirement on m is 

(u2-a2)m2-2uvm + (v2-a2)=0. (6.160) 

It has two real roots if u2 + v2 > a2. Therefore the system is hyperbolic in 
regions where the flow is supersonic. The corresponding characteristic 
equations may be written as 

( « 2 - a V ^ - + ( t > 2 - a 2 ) ^ = 0 on ^ = m. (6.161) 
dx dx ax 

Since only two variables are involved, the differential form 

(u2-a2)mdu + (v2-a2)dv (6.162) 

can be integrated for each choice of m, and two Riemann variables can be 
obtained. The procedure is clear, but it is at this point that a little 
ingenuity (combined with knowing the answer!) can be used. The guide 
here is symmetry. 

Since m is the slope of the characteristic, (6.160) can be expressed as a 
relation between the differentials dx, dy, on the characteristic and taken as 

(u2-a2)dy2-2uvdxdy + (v2-a2)dx2 = 0, 
or, better still, 

(udy-vdx)2 = a2(dx2 + dy2). 

If x is the inclination of the characteristic to the x axis, and 9 is the 
inclination of the streamline, we have 

dx = cos\ds, dy = s\nxds, 

u = qcos9, v = qsm9. 

Then the differential relation reduces to 

q2sm2(X-9)=a2. (6.163) 

But a is a function of q, so if we introduce a variable /x defined by 

s i n M = £ , 0 < / x < ^ , (6.164) 

q 2 

the characteristic condition (6.162) becomes simply 

X = 0±/i. (6.165) 
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The characteristics make angles ± ji with the stream direction. The quant-
ity (i is called the Mach angle and is related to q by (6.164) and (6.157). In 
view of their significant roles, we now work towards the two dependent 
variables ju, 9, in place of either q, 9 or u, v. 

The remaining problem is to transpose the differential relation (6.162) 
for the Riemann variables. On a characteristic, (6.162) vanishes; therefore 
(6.160) can also be used to relate du and dv. The relation is 

(vdv + udu)2 = a2(du2 + dv2). 

In terms of q and 9, it becomes 

q2dq2=a2(dq2+q2d92), 
that is, 

1/2 

H H ?-»• 
Therefore the Riemann variables are 

9±P{p), 
where 

- / ( * -
' ( /^ l l \ - l f f 

l)/2 
dfi 

/

COS2fi 

sin2 n + (y -

= Y T ^ T ^ " ' ( V Y ^ T
 tanM)" / i- (6,66) 

Finally, the characteristic equations are 

dy 
9 + P( n) = constant on C+ : - r-=tan(0 + |K), 

(6.167) 
dy 

9-P(n)= constant on C_:-r- = tan(0-j i) . 
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Fig. 6.9. Expanding supersonic flow around a continuous corner. 

Simple Waves. 

The special solution in which one of the Riemann variables is constant 
throughout the flow will again be called a simple wave. It arises in the 
study of flow around an expansive corner as indicated in Fig. 6.9. 
Upstream of the corner the flow is uniform, with n = /i0, 9 = 0, say. The C_ 
characteristics all start in this uniform region and therefore 

P(ti)-9=P(fh) (6.168) 

on each of them. As a consequence, this Riemann variable is the same 
constant throughout the flow. Then, from the equations for the C+, /i and 
9 must be individually constant on each C+ , and each C+ is a straight line 
with slope tan(0 + /x). Since 9 = 9w is given at the wall in terms of the wall 
shape y = Yw(x), the solution may be written 

9 = 9M)> P((iw) = P((i0) + 9w, 
(6.169) 

e=e0 / 

- / / / / V / V / ' / ? -

/ * 
/ ^ c < » 

^ e=fl| 
^ M'Mi 

Fig. 6.10. The centered Prandtl-Meyer fan for supersonic flow around a sharp corner. 
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There is a close analogy with the piston problem, both with the solution 
(6.76)-(6.77) and its derivation; the correspondence is 

y<r+x, x*-*t, £«-»T. 

All quantities of interest may be calculated from the expressions for /i 
and 0. Of particular interest is the pressure at the wall and this requires 
only the Riemann invariant (6.168); the value of jû , is determined in terms 
of 0W and the pressure is related with /A by the relation 

7A%) - | l + ( y - l ) / 2 s i n V | (6-170> 

In the limiting case of a sharp corner, shown in Fig. 6.10, the simple wave 
becomes a fan (the Prandtl-Meyer fan) and the solution in the fan is given 
by 

P(ii)-9=P(H), 
(6.171) 

tan(0 + ,O = £ . 

When the corner is compressive, multivalued regions develop due to 
the convergence of characteristics (as shown in Fig. 6.11) and a discon-
tinuous shock must be fitted in. The extreme case of a sharp compressive 
corner is shown in Fig. 6.12. In general, once a shock appears, the various 
integrals along the streamlines and along the C_ are no longer strictly 
valid, since the quantities concerned jump discontinuously at the shock. 
However, this situation is closely analogous to the situation for the corres-

Fig. 6.11. Shock formation in supersonic flow. 
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P|.?|.fll A - < ^ ^ ^ 

Fig. 6.12. Shock formation in supersonic flow past a wedge. 

ponding unsteady problems treated earlier. For weak shocks the various 
integrated relations are true to first order and the simple wave solution is 
an approximation valid to first order in the strength of the disturbance. It 
is completed by fitting in shocks appropriately. 

Oblique Shock Relations. 

The shock conditions will be required for the oblique shock shown in 
Fig. 6.12. These are easily obtained from the normal shock relations in 
(6.95)-(6.97). If the flow in Fig. 6.12 is viewed by an observer moving with 
speed ^,cos/8 along the shock, the flow on side 1 will appear to be normal 
to the shock. Then (6.95)-(6.97) give the normal jump relations with 
t>, = g,sin/J, v2=q2sin(p — #)• Moreover, in this moving frame, the flow is 
one dimensional; therefore the flow on side 2 must also be normal to the 
shock. Hence qx cos/? = <72cos( ft— 0). The complete set of shock conditions 
may be written (in a slightly more general form to allow for an inclination 
0, of the upstream flow to some arbitrary reference direction) as 

p2q2sm(p-92)=p1qlsin(p-ei), 

p2 + p2qlsin2( / ? - 0 2 ) = p l + P,?2sin2( p-0,), 

q2cos(p-02) = qxcos{p-ex),
 ( 6 " 1 7 2 ) 

A 2 + ^ | s i n 2 ( / 8 - 0 2 ) = /i1 + i ^ s i n 2 ( y 3 - 0 ] ) . 

The shock conditions can also be derived directly from the steady flow 
equations in conservation form. Then they are related to conservation of 
mass, normal momentum, tangential momentum, and energy, respectively. 
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It might be noted that h + {q2 is in fact continuous, so that the argument 
leading to (6.154) is still valid. However, the entropy and the Riemann 
invariant do jump. 

The shock conditions determine p2, p2, <72> P m terms/?,, p,, qx, 9, and 
they can be used to solve the problem shown in Fig. 6.12 exactly. If the 
wall curves around after the sharp corner, as for a supersonic airfoil, we 
may use the simple wave solution as an approximation when all the values 
of 9 are small. Three of the shock conditions are satisfied to first order by 
the simple wave relations; the remaining one is used to fit in the shock. It 
may be shown from (6.172) that 

/ » - A + f i ^ + 0<#"). 

Therefore, to first order in 9 and J^-JW,, the shock bisects the angle 
between the characteristics on the two sides. This corresponds to (6.113) 
and the shock fitting follows very closely the similar steps in the unsteady 
case. The procedure will be seen later in the discussion of the more 
interesting case of the shock produced at the nose of an axisymmetric 
body. 

Oblique Shock Reflection. 

Finally, we note for later use that if an oblique shock is reflected from 
a plane wall, a possible local flow pattern is as shown in Fig. 6.13. If the 
initial uniform state and ft are known, the shock conditions between 
regions 1 and 2 can be used to determine all the flow quantities in 2. Then 
in region 3, 9 is known, since it must take its original value parallel to the 
wall, so the shock conditions applied to jumps from 2 to 3 are again 
sufficient to determine the remaining flow quantities in 3, together with the 
reflected shock angle $r. 

An important result of this analysis is that the proposed solution 
covers only a certain range of cases. If the shock is weak enough or at a 

/ / / / / / / , 

Fig. 6.13. Regular shock reflection. 
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///////////////// 

Fig. 6.14. Mach reflection. 

sufficiently glancing angle, there is no solution and what happens is that 
the range of reflected shocks available can not turn the flow in region 3 
back parallel to the wall. The whole pattern gets pushed away from the 
wall and assumes the pattern with three shocks shown in Fig. 6.14. It is 
known as "Mach reflection" in honor of Ernst Mach, who first observed it 
experimentally. The analysis of it is still incomplete with some theoretical 
results in apparent disagreement with observations. 



CHAPTER 7 

The Wave Equation 

The equation 

—Y = c2V2<p, c = constant, (7.1) 

has become known as the wave equation even though the majority of 
waves are not governed by it! However, it does occur in many problems 
and it is the simplest equation for starting the discussion of two and three 
dimensional waves. There is an enormous number of possible topics and 
we must make some choice. Following the general theme of this book, we 
restrict the discussion to basic results which contribute to an understand-
ing of waves and play a role in extensions to nonlinear theory. We make 
no attempt to give even an introduction to the vast amount of special and 
intricate analysis developed for the various boundary value problems of 
diffraction theory. The elementary aspects of interference and diffraction 
patterns are well documented in a variety of books and the more advanced 
theory rapidly becomes a matter of skillful use of "mathematical methods" 
rather than one of understanding the nature of waves more deeply. 

On the other hand, the approximate theory of geometrical optics 
involves valuable general ideas which can be extended to other contexts 
both for linear and nonlinear problems. It is developed here for the wave 
equation and the extensions for nonuniform media and for anisotropic 
waves are noted. These extensions go beyond the strict discussion of (7.1) 
but the material fits in conveniently here. Other aspects of geometrical 
optics and the development of similar ideas in nonlinear problems are 
considered in later chapters. 

7.1 Occurrence of the Wave Equation 

The wave equation (7.1) occurs primarily in three fields: acoustics, 
elasticity, and electromagnetism. 
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Acoustics. 

The equations for acoustics have been given in Section 6.6. The 
expressions are noted here for easy reference. The gas dynamic equations 
are linearized for small perturbations about a constant state in which 

K = 0, p = p0, P^Po^PiPo)-

The propagation speed is 

a0
2=/>'(Po). (7-2) 

and in terms of a velocity potential q> the perturbations are given by 

K-V9, (7.3) 

p-Po=-Po<P,> (7-4) 

Po 
P - P O = - — <Pr (7.5) ao 

Substitution in the linearized continuity equation leads to the equation for 
9: 

<p„ = agvy (7.6) 

Linearized Supersonic Flow. 

The acoustic formulation may be used when the disturbance is caused 
by a moving solid body. If the disturbance is to remain small, the motion 
of the body must be very small (this applies to the cone of a loud speaker, 
for example) or the body must be very slender. The former is a typical 
source for sound waves and the equation must be solved subject to 
appropriate boundary conditions. The case of a slender body moving with 
arbitrary constant velocity relates acoustics to aerodynamics. If the body 
moves with constant velocity, there is an obvious advantage in transform-
ing to a moving frame of reference fixed in the body. Let (xl,x2,x3) refer 
to the original frame in which the motion of the gas is small and described 
by (7.3)-(7.6). If the body moves with speed U in the negative X, direction, 
and (x,y,z) refer to coordinates fixed with respect to the body, the 
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transformation of coordinates is given by 

x=*x{+Ut, y — x2, z = xy 

The velocity components in the new frame are (U+ultu2,u3) where 
M, = 9<p/ bXj. Moreover, the flow appears steady in the new frame so that 

<p(xux2,x3,t)=Q(x,y,z) 

= <J>(JC,+ Ut,x2,x3). 
Therefore (7.6) becomes 

( t f 2 - ! ) * „ « * „ + * „ , M-%-; (7.7) 
"o 

(7.4) becomes 

P-Po--PoV*x> (7-8) 

and the velocity components relative to the body are 

( t f+*„* , , * , ) . (7.9) 

For supersonic flow, M > 1, we recover the wave equation in a 
reduced number of variables with x playing the role of time. This is a 
linearized version of the analogy noted in Section 6.16. 

Elasticity. 

The derivation of the wave equation in the elementary treatments of 
transverse vibrations in strings and membranes, and of longitudinal and 
torsional waves in bars, is taken to be well known. Here we note only how 
the wave equation arises in the full three dimensional theory. 

The motion of an elastic solid can be described in terms of the 
displacement {(x,/) of a point from its position x in the unstrained con-
figuration. It will also be convenient to introduce X(x,/) = x+£(x,/) for the 
new position at time t. The forces acting across a surface in the deformed 
body can be described in terms of a stress tensor pjV just as in the case of a 
fluid (Section 6.1). If we temporarily consider the stress as a function of the 
current variable X in the deformed configuration, the stresses produce a 
net force dpj,/dXj per unit volume. This follows from the divergence 
theorem, exactly as in the case of a fluid. However, the preceding 
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"Lagrangian" description of the displacements (which is usually more 
convenient in elasticity) relates all quantities back to the original un-
strained configuration. Accordingly, the net force per unit volume of the 
unstrained configuration is 

Xjdxk 

Jw^ <7-10) 
where J is the Jacobian 

d{xt,x2,x3) 

Moreover, dxk/dXj is JJk/J, where JJk is the cofactor of the element 
dXj/dxk in the determinant (7.11). Therefore the net force per unit un-
strained volume, (7.10), is 

and the equations of motion are 

Po~^=JjkW (7>12) 

The extension of any line element from the unstrained to the strained 
position is obtained from 

, 3A", dXj , 
dXf - dxf = -= ^— dxt dxk - dxf 

' ' dXj dxk
 J * J 

= 2€Jkdxjdxk, 

1 / 3*,- M, 

where 

*lk~ l\sXj dxk
 S» 

= i ( ^ + ii + lili,. (7,3) 
2 ̂  dxj dxk dxj dxk J 

In general, the stresses pJt depend on the strains eJk and the temperature. 
In the linear theory of elasticity for small displacements £ from an 
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unstrained configuration, the equations are linearized as follows. Since 
Jjk * 8jk + 0(V£), (7.12) is linearized to 

*l?"aV (7',4) 

the strains (7.13) are linearized to 

* = 2 - [ ^ + t | : (?-15) 
the stress-strain relations are taken to be 

Pji = 2IXji + Kk8ji> ( 7 I 6 ) 

where \, p. are the Lame constants. Strictly speaking, different constants A, 
ft should appear, for example, for isentropic and isothermal motions, but 
the difference is small for most materials. (A good elementary discussion 
of the thermodynamics is given by Landau and Lifshitz, 1959, p. 8.) 

From (7.14)—(7.16), the three equations for the displacements |, are 

P o ^ - f i V 2 6 + (X + M)^ (V-{ ) . (7.17) 

The divergence and curl of (7.17) lead to 

r ( V . f l - ^ : v * ( V . & (7.18) s™-^-* 
i i ( V x © - f V2(VX& (7.19) 

respectively. Thus there are two modes, each satisfying a wave equation; 
(7.18) describes compression waves propagating with velocity {(A+ 2/*)/ 
Po}1/2 while (7.19) describes shear waves which have velocity {/i/p0}1/2. 
The two modes are coupled through the boundary and initial conditions 
placed on the £,. or the pJt, and the full solutions to problems involve 
considerably more than just solving the wave equation. 

Electromagnetic Waves. 

Maxwell's equations for a nonconducting medium with permeability /t 
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and permittivity i may be written 

^ + VxE = 0, M-UxB, 
dt dt n 

V-B = 0, V E = 0, 

where B is the magnetic induction and E is the electric field. Therefore 

i - 5 L V x(V XB)= — V2B, 

and E satisfies the same equation. All the components of E and B satisfy 
the wave equation with the propagation speed c=*(€fi)_l/2. However, 
choosing the components to satisfy V-E = 0, V-B = 0 couples the com-
ponents, as do the boundary and initial conditions, so the solution to 
problems is again more than just the solution of the scalar wave equation. 

7.2 Plane Waves 

For one space dimension x, the wave equation is 

If characteristic coordinates a = x — ct, ji — x + ct are introduced, it reduces 
to 

3 V a 

dadp 
and the general solution is 

9-/(«) + *(0) 

=f(x-ct)+g(x + ct), 

where / and g are arbitrary functions. The arbitrary functions are readily 
determined to fit prescribed initial or boundary conditions. For the signal-
ing problem of outgoing waves with* 

9,-0(0. Jf-0, 

•The boundary condition is taken with prescribed <px rather than <p to compare with the 
source solutions in spherical and cylindrical waves. 
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the solution is 

9 - - c e , ( / - i ) (7.20) 

where Qt(t) is the integral of Q(t). For the initial value problem, 

<P = 9o(*)> <P,==(Pi(-*). '=0 . -OO<JC<OO, 

the solution is 

<P=j{<Po(x-ct) + <pQ(x + ct)} + ̂ f^yiU)d^ (7.21) 

7 J Spherical Waves 

For waves symmetric about the origin q> = tp(R,t), where R is the 
distance from the origin. The wave equation reduces to 

1 92«p 92<p 2 9<P 
c2 dt2 BR2 R 3/J" 

Surprisingly enough, this may also be written 

I d2(R<p) = d2(R<p) 

c2 dt2 a/?2 * 

which is the one dimensional wave equation. Thus the general solution 
takes the simple form 

f(R-ct) g(R + ct) 
9 R— + —R— ( 7 - 2 2 ) 

For a source producing only outgoing waves, the solution is 

f(R-ct) 
<ps 

R 

and / is determined from the properties of the source. A convenient 
standard form is to prescribe 

e w - f t a 4 * * 2 ^ (7-23) 
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this gives 

Q(t) = -4wf(-ct) 
and 

1 QU-R/c) 
*=~T. R • (7'24) 

In acoustics, dq>/dR is the radial velocity and Q(t) is the volume flux of 
fluid. 

For an initial value problem, although it is merely a matter of 
determining the functions / and g in (7.22), the solution is more interesting 
than might have been expected. Consider the "balloon problem" in acous-
tics: the pressure inside a region of radius R0 is p0+ P while the pressure 
outside is p0, the gas is initially at rest, and the balloon is burst at / = 0. 
From (7.3) and (7.4), the initial conditions may be formulated as 

f - £ , R<Rp 
<p = 0, «p,= | Po 

I 0, R>R0. 

Therefore the solution 

f{R-a0t) g{R + a0t) 
<P = j + J (7.25) 

must have 

j(R) + g(R)-0, 0<R<n, 

{ — fl, 0<R<RQ, (7.26) 

{ 0, R0<R<oo. 

These conditions determine / and g for positive values of their arguments. 
However, in the solution (7.25), the values of / are also required for 
negative argument. The remaining condition comes from the behavior of 
the solution at the origin. Since there is no source at the origin, we require 

l i m / ? 2 | | = 0 ; 
/?-.o oR 

hence, 

/ ( - < V ) + S K ' ) = 0 > 0</<oo. (7.27) 
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This condition determines/for negative argument in terms of the values of 
g for positive argument. 

Solving (7.26) and (7.27), we have 

J W - M S ^ ' " * * -fi°<£<*°' 
U *0<|£|, 

' 0- i?o<€-

Finally, the solution for the pressure disturbance is 

p-pQ=^{(R-a0t)F+(R + a0t)G], 

where 

F ( 1, -RQKR-OOKRO, 

[ 0, otherwise, 

G = | 1, 0</? + a0/<^0, 

I 0, otherwise. 

The variation of pressure with time is shown in Fig. 7.1. For a point 
R>R0, a discontinuous pressure increase equal to PR0/2R arrives at time 
t = (R — RQ)/a0; the excess pressure then decreases linearly in time to a 
value — PR0/2R at t = (R + R0)/a0 and it then returns discontinuously to 
zero. Even at R = 7?0, the discontinuity at the front of the wave is only 
P/2; the remaining P/2 to make up the initial discontinuity P is taken by 
the incoming expansion wave. 

For interior points R<RQ, a discontinuous decrease in pressure, 
reducing the initial value P to P{\ — R0/2R), arrives at time t = (R0- R)/ 
a0; the excess pressure then decreases linearly with time to — PR0/2R at 
t = (R0 + R)/a0 and then returns discontinuously to zero. Notice at the 
center R = 0 these changes are infinite but the whole disturbance lasts for 
zero time! 

It is interesting that an entirely positive initial distribution of pressure 
leads to an outgoing wave with equal positive and negative phases. In fact 
this N wave profile is typical in two and three dimensional waves. The 
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p-Po P-P, 
0 

p 

p 

p 

R 
\ R0+R 
o-fTV ao» 

Fig. 7.1. Pressure signatures in the balloon problem. 

reasons for it can be understood as follows. In an outgoing wave the 
pressure and radial velocity are given by 

P~Po = 
Poaof(R ~ ao') 

R 

f(R-a0t) f{R~a0t) 
R R' 

The first point we can make is that in any wave that returns both p-p0 and 
M to zero after the whole wave passes, both f and / must return to zero. 
Hence, / ' has to have both positive and negative parts if the total integral, 
which is /, has to return to zero. A second point concerns the total volume 
flow at large distances. For large R, the volume flow across a sphere of 
radius R is 

4tTR2u~4mRf'{R-a0t). 

This is large in R. Iff, which is proportional to the pressure, were always 
positive, there would be an infinitely large outward flow as R-*oc. An N 
wave, however, has a large outward flow immediately followed by a 
balancing large inward flow, so the net outflow is finite. 

For plane waves neither of these effects arises and a positive source 
provides a wave with wholly positive p-p0 and u. 
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7.4 Cylindrical Waves 

Hadamard pointed out in his classic studies of the wave equation that 
the general character of the solution is different in even and odd numbers 
of space dimensions. Precise instances will appear below, but we might 
express the result crudely by saying that odd dimensions are easier than 
even. For this reason the three dimensional spherical case was considered 
first and the cylindrical wave solution will be deduced from the spherical 
wave solution. Here only the solution for outgoing waves will be obtained. 

We start from the solution (7.24) for a point source. Suppose such 
sources are distributed uniformly on the z axis with a uniform strength q(i) 
per unit length (see Fig. 7.2). The total disturbance from this distribution is 
clearly a function only of the distance r from the z axis and the time t; it is 
the cylindrical wave produced by a line source. The total disturbance is 

q{t-R/c)dz 
R —Lf q(t-R/c)dz 

R 

where R = Vr2 + z2 . 

q(t)dz 

Fig. 7.2. Construction detail for a line source. 

Various forms of this solution are valuable. If z = rsinhf, /J = rcoshf 
are substituted in the integral, we have 

*--£jf*('-7co,h0*; (7.28) 

alternatively, if 
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Formula 7.28 is particularly useful for calculating the derivatives of q> 
and therefore for verifying directly that the wave equation is satisfied. It is 
easily shown that 

c ^ + ^ ) - f t , - i j [ " ^ { f . i n h f ^ ( , - f o o , h f ) } « 

^ 2 ^ s i n M ' " 7 c o s h 4 

If q'(t)->0 sufficiently fast as f-»-oo, for example if q is identically zero 
until t => 0, this is zero. 

For a periodic source q(t) = e~'"', we satisfy the condition ^(/)-»0 as 
t-* — oo by allowing u to have a small positive imaginary part, which 
makes insignificant changes at finite times. From (7.28), the solution for 
the periodic source is 

lit J0 

It is just 

since the integral is one of the representations of the Hankel function. This 
solution would be obtained more simply from the equation by separation 
of variables. The Fourier superposition of such elementary solutions pro-
vides another derivation of (7.28). 

The first derivatives of <p describe important physical quantities (pres-
sure and velocity in acoustics); from (7.28), followed by the substitution 
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cosh£ = c(/-Tj)/r, 

q'(rj)dn 

}/(t-v)2-r2/c2 

<pr= -z— / coshf^'lr- - coshfWf 

(7.30) 

2 7 rJ-« r V0-r,)2-rVc2 

These formulas can also be derived directly from (7.29) if judicious 
integration by parts is used to avoid the divergent integrals or if Hada-
mard's "finite part" of an integral is used. The latter is incorporated into 
the version using the theory of generalized functions. 

Behavior Near the Origin. 

From the final integral in (7.30) it is easy to see that 

Hence the flux per unit length of the line source is 

\im2impr = q{t), 
r->0 

which checks our definition of ^(0- This gives 

<P~"2Vlog''' 

but often the next term in the expansion is required. The expression in 
(7.29) may be integrated by parts to give 

' - £ / '~r/C >< M f C-*>)+V('-q)2-'2A2 ) , 
«<i)tog "-JJl K 
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If we now approximate this for small r by 

<P ^ f q'Wlog2^''^ dV, £->0, (7.31) 
• ' - 0 0 

it may be shown by careful estimation that the errors are proportional to r. 
The expression for <p, is the same as (7.31) with '̂C?) replaced by q"{t\). 

Behavior Near the Wavefront and at Large Distances. 

If q(t)<=0 for t<0, the lower limit in (7.29) may be taken to be zero, 
and the solution is nonzero in t — r/c>0. The first signal arrives with the 
wavefront t — r/c = 0. If we introduce 

T=t-r-
C 

to measure the time elapsed after arrival of the wavefront, (7.29) may be 
written 

^o y(T-T))(r-i) + 2r/ r/c) 

Since 17 ranges from 0 to T, the second factor under the radical may be 
approximated by 2r/c when cr/r<.\. Hence 

1 f i(v)<tn t c \l/2 a CT«i. 

That is, 

M1 

<p— ( £ ) Qit-r/c), ^ « 1 , (7.32) 

where 
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The expression (7.32) may be compared with (7.20) and (7.24). In all three 
cases we have an amplitude falling off like r_ ("_ , ) / 2 , where n is the 
dimension of the space. In the present case, however, the formula is not 
exact, and Q is not simply the source strength. A simple interpretation of 
the dependence of the amplitude will be given in Section 7.7, equation 
7.70. 

The expansion in (7.32) can be continued by noting that 

1 r fa) I c\l/2jt , M ) l " ' . 

i r i(v) (c \l/2 s / - 1/2 \fc(T-T?nm 

= - ^ i 0 ^ p ( 2 7 ) 20( „ )[-2T-)*' 

- _ V ^ ^ M)(JL)"+'/2 SL < , (7 34) 

where 

CLW- /~>/ ' ) ' ±f*Mr-vr-l/2*l. (7-35) 
(» i —1/2): ■'f ^o 

It is interesting that if ^(0 + )>0, so the source switches on with a finite 
strength, 

em(T)ocT("+l/2, T-»0. (7.36) 

Thus the expansion in time after the wavefront passes is in one half 
powers. 

Tail of the Cylindrical Wave. 

One of the important differences between odd and even dimensions, 
noted by Hadamard, is in the behavior of the solution for a source which 
lasts for only a finite time. Suppose q(i) is zero except for the time interval 
0 < / < T. For plane or spherical waves, we see from (7.20)* and (7.24) that 
the disturbance is confined to 

-<t<- + T and -<t<— + T, 
c c c c 

•For (7.20), <px was prescribed, so by "disturbance" we mean the quantities <px and <p,. The 
fact that <p may be a constant not equal to zero in i>x/c+ T is not counted as a disturbance. 
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respectively. The first signal arrives with the wavefront which left the 
source at / = 0; this must be true in all cases. The interesting point is that 
the disturbance ceases with the signal which left the source at the final 
time t = T. For the cylindrical wave, (7.29), an integral over the source 
strength q(t) is involved and the disturbance continues after t = r/c+T. 
We have 

T 

= __L f ^('n)drf 
2"J0 V(/-T,)2-r2 -r2/c2 

For fixed r, 

t>- + T. 
c 

9 {i/o^^^H' ' ^ (7J7) 

The disturbance decays to zero only asymptotically as t—*oo. 

7.5 Supersonic Flow Past a Body of Revolution 

The most interesting use of the cylindrical wave solution is probably 
in supersonic aerodynamics. As noted in (7.7), the perturbation velocity 
potential satisfies the two dimensional wave equation with 

x<r+t, M2 — l<-»—r • 
c 

For a body of revolution, (7.7) becomes 

B2<t>x =$„.+ - $ , , fi=VM2-l , 

where r is distance from the flight path and x is distance from the nose of 
the body. The solution is zero for x<Br and 

— if 
x-Br 

dt\, x>Br. (7.38) 
V(x-T?)2-B2r2 

The source strength q(j}) is related to the shape of the body. The boundary 
condition on the body is that the velocity normal to it is zero. Hence if the 
body shape is given by r= R(x), 

<&r = R'(x)(U+$x) on r = R(x). 



Sec 7.5 SUPERSONIC FLOW PAST A BODY OF REVOLUTION 225 

For the linearization in the equations, the body must be slender, that is, 
R'(x) is small, and 4>x and <J>r are both small. Accordingly, the boundary 
condition is linearized to 

<&r=UR'(x) on r=/?(*) . (7.39) 

But $r~q(x)/2irr as r-*0, therefore (7.39) gives 

q(x)=2irUR(x)R'(x)=US'(x), 

where S(x) = irR \x) is the cross-sectional area of the body at a distance x 
from the nose. Intuitively one can see that US'(x) is the rate at which the 
increasing cross-sectional area is pushing fluid out, and this is the source 
strength. The solution for the given body therefore is, 

—£/ 
•A) 

x-Br>0. (7.40) 
^(x-nf-B2,2 

The components of the velocity perturbation are obtained by suitable 
modification of (7.30) as 

*«—£/ > ■ (741) 

•A) 

~x- Br 

• - -£ - / 

yj{x-T))2-B2r2 

{x-v)S"(v)dg 

^(x-i})2-B2r2 

(7.42) 

In linear theory, the pressure is given by (7.8). However, an interesting 
question arises here about the consistency of the linear theory, particularly 
with regard to the pressure. The exact expression for the pressure in 
potential flow is given by Bernoulli's equation [see (6.157)] as 

Therefore, since a\ = yp0/p0, 

P-Po 

Po 
— ("•, + £•*+£*»)■ 
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When r is not small compared with the length of the body, $x and $ , are 
comparable small quantities being of order 82 in the thickness ratio of the 
body 8 (defined as maximum diameter divided by length). Then the 
linearization in which $% $*, are neglected is correct. However, on the 
body r = R(x)— 0(8), and for small r, 

* US'W * i^W, 
fl> „ „ (D ^ lno r 

2mr ' x 1m g 

Therefore on the body 

$,-0(8), ^-ofs'logj). 

Apart from the log(l/5), which in practical situations is not really large, 
the term \<b\ is as important as the term <bx. It appears then that one 
should take 

ZZE° = -U*X-U% (7.43) 
Po 2 

rather than (7.8), for a good approximation to the pressure. Lighthill (1945) 
and Broderick (1949) showed by careful consideration of higher approxi-
mations that (7.43) is correct with an error 0(8*10^1/8) . At the same 
time the consistency of the linear theory must be questioned, since the 
boundary condition is applied in the region where $ x and $ r are not of the 
same order. It is shown in the references cited that (7.41) and (7.42) are the 
correct lowest order terms, and the adoption of the nonlinear relation 
(7.43) is the only essential change. 

Drag. 

The drag on the surface of the body due to the perturbed pressure is 

D- [\p-p0)S'(x)dx, Jo 

where the integration extends over the length / of the body. The expression 
for * near the body is 

J0 
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[see (7.31)], and the pressure is given by (7.43). Hence the drag can be 
written 

ImD -f/ix)[ 2 , „y„,i-S"(x)\ogR(x) 

9 r* , s 2(X-TJ) 1 s,2(x) , 

+ A J s-(1I)log-A-ir^AI--L—i-f \dx. dx JQ
 K" ° B ' 4TT R2(X) 

The first and third terms combine into 

- f lS'(x)S"(x)logR(x) + j^R'(x)\dx, 

since S' = 2irRR', and this is 

" / £{\S'2(x)logR(x)}dx = 0, 

for a body with S'(0)= S'(l) = 0. After integration by parts, the second 
term gives 

D'^T f 5"W CS-Wog-l—dndx 

p0u
2 r' c' i 

0 ' ' c"'(x)S"(ii)logT-L-rdxdn. (7.44) 
•'O •'O 

4* J 0 Jo I*-*! 
[The term in log(2/Z?) integrates to zero.] This is the famous supersonic 
drag formula first obtained by von Karman and Moore in 1932. 

Behavior Near the Mach Cone and at Large Distances. 

The wavefront is x-Br = 0; this is the Mach cone making an angle 
sin - ' 1/Af with the x axis. When (x-Br)/Br<g.l, we have from (7.32) and 
(7.33), suitably transcribed to supersonic flow, that 
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Hence the velocity components are 

UF(x-Br) F(x-Br) X-Br 

< J > . . $.~UB — - . ^ r ^ « l , (7.45) 
VlBr 

where 

F{i) 2w J 

VlFr 

S"(v) 
dn\. 

Br 

(7.46) 

In this limit, <S>X and <I>r are the same order and the pressure is given to the 
first order by 

P-Po F(x-Br) 

PoU V2B? 
(7.47) 

It should again be noted that the behavior near the wavefront and at large 
distances can be combined in one expression. 

If the body is sharp nosed with R'(0) = e, then S{X)~~TK2X2 for small 
x, and we have 

F{£)~2t2Zx/1 as $-»0. (7.48) 

Figure 7.3 is a typical F(g) curve. The appearance of negative phase is 
typical, even for a shell shaped body for which the source strength US'{x) 
is always positive. In fact it is easily shown that 

•'n 

Fig. 7.3. Typical F curve for axisymmetric supersonic flow past a body. 
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and the physical explanation in terms of mass flow is similar to that given 
for spherical waves at the end of Section 7.3. 

It may be remarked that the velocity components and pressure are 
continuous at the Mach cone according to this linear theory. In reality a 
shock wave is produced, and we have the important phenomenon of the 
sonic boom. This is missed because it is a nonlinear effect. The theory for 
it is developed in detail in Chapter 9. 

7.6 Initial Value Problem in Two and Three Dimensions 

One of the many "Poisson integrals" appearing in the theory of partial 
differential equations provides the solution of the wave equation for initial 
conditions 

<P = <Po(x)> <P, = <Pi(x), ' = 0. 

According to Hadamard's ideas, the three dimensional problem will be 
easier than the two dimensional, and we start with it. 

We know from the spherical wave solution discussed in Section 7.3 
that 

/([x-fl-cQ 
* (X '0= |«-fl 

is a solution for arbitrary £ We now argue intuitively that the initial 
prescribed disturbance at any point £ gives rise to such a spherical wave 
and propose that the solution should be something like a superposition of 
all the spherical waves. That is, we consider 

* — 00 

The arbitrary function ¥(£) is inserted because, depending on the initial 
conditions, the spherical waves from different points £ will have different 
strengths. The form of (7.49) suggests the introduction of spherical polars 
(R,9,\) based on the point x. It then becomes 

Hx,t)= C° ['f "vix+RWiR-cORsinOdRdOdX, 
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where 1 is the unit vector from x to £ and its Cartesian components may be 
written 

1= (sin0 cosA,sin0sinA,cos0). 

With the idea that the initial source strength determining/acts only for an 
instant, we specialize this formula to the case f(R- ct) = S(R- ct). Then 

^(x,t)~ct(" f "*(x + ctl)sin9d9d\. (7.50) 
Jo Jo 

Formally, this is a solution for arbitrary SK It may also be written as a 
surface integral 

YV ' ct Js(,t) 

where S(t) is the surface of the sphere with origin at x and radius ct. For a 
continuously differentiable function ¥, we see from (7.50) that 

^_»0, ^,-»4irc¥(x) as /-+0. (7.51) 

If we choose *(x)« <p,(x)/4irc, we shall have solved the special initial value 
problem 

«//-*0, </,,-*<p,(x) as f-»0. (7.52) 
The solution is 

Mx,t) = -±jf 9ldS. (7.53) 

It represents the total contribution of the instantaneous sources which send 
spherical waves to the point x in time /; they are all exactly a distance ct 
away and their contributions traveling with speed c arrive at x just at the 
time t (see Fig. 7.4). Notice that all points inside 5(0 could still in 
principle have been contributing. But there is no "tail" for spherical waves: 
the sources act for an infinitesimal time and each contribution lasts only 
for an infinitesimal time. This will not be so in two dimensions. In any 
event, (7.53) is formally the solution for the initial values (7.52). It may also 
be written 

<Kx,0 = /A/[<p,], 
where 

MMmA^?U9ldS 
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Fig. 7.4. Construction detail in Poisson's solution of the initial value problem. R is the region 
of the initial disturbance. 

stands for the mean value of <p, over the sphere S(t). 
To furnish the other half of the initial condition we could specialize / 

in (7.49) to 8' and pursue the consequences similarly to the above. 
However, it is quicker to use a trick that is often useful: if i// is a solution of 
a partial differential equation with constant coefficients, then so is any t or 
x derivative. In this case, we note that 

X(x,f). J r 

is a solution of the wave equation, where \f>(x,t) is given by (7.50). 
Moreover, as r-*0, we see from (7.51) that 

x = ^_>47rc*(x), 

x, = ̂ , = c2vV^o. 

To give x-*Wo(x)' X,-*® a s '-*0, we must now choose ^(x) = <p0(x)/4irc, and 
take 

The complete solution for general initial values therefore is 

3M AvchM') J 4WCVS<0 

- £ { ' ^ [ % ] } + ' " [ 9 i ] . (7-54) 
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Direct Verification of the Solution. 

It remains to verify directly that (7.50) satisfies the wave equation. We 
have immediately that 

+*,*, = *) J -j~sin9d9d\ 

where £=x + ct\. The t derivatives require a little more manipulation. First, 

+, = -+c2tf f l^sinOdBdX 

_ * . 1 f , a * , „ 

"T + 7 j s ( l ) 4 ^ 

= ± + L( **„, 
' ' Mo H2 

where V(i) is the volume inside the sphere S(i). Then 

which reduces to 

, _c f 32¥ ,c 

in view of the expression for $,. We see that 

as required. 
These arguments assume that ^ is twice continuously differentiable. 

The solution (7.54) requires only that <p0 and <p, are integrable in order for 
it to be meaningful. We might extend the meaning of solution to include 
all cases in which (7.54) is defined. In particular, if <p0 and <p, are piecewise 
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continuous, (7.54) is defined and <p-*<p0(x), <p,-»<p,(x) at points of continu-
ity. 

For the balloon problem in Section 7.3, <p0=0, tpl= — P/p0 in an 
initial sphere. This is an example of piecewise continuous data. It is 
interesting to construct the solution using Poisson's integral not only for 
the spherically symmetric case but for an arbitrary shape of initial pressure 
region. This is left for the reader. 

Wavefront. 

If the nonzero values of <p0(x) and q>t(x) are confined to a finite region 
R as shown in Fig. 7.4, the solution at any point outside R is zero until the 
time when S(t) first intersects points of R. It is clear that this occurs when 
ct is equal to the least distance from x to the boundary of R. This least 
distance is on the normal from R to x. The wavefront at time t can be 
determined by turning this argument around. Construct all the normals to 
the boundary surface of R. Measure a distance ct out along each normal. 
The surface formed by these points is the wavefront. Notice that where the 
surface of R is concave, the wavefront will be folded over itself after a 
while (see Fig. 7.5). This construction will be studied further in the 
discussion of geometrical optics. 

Fig. 7.5. Wavefront construction for a disturbance initially confined to the region R. 
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The disturbance at any point x outside R ceases when S(t) becomes 
so large that R is entirely within it. Thus in three dimensions an initial 
disturbance of finite extent produces disturbances which last only for a 
finite time. There is no "tail." 

Two Dimensional Problem. 

The solution for a two dimensional distribution of initial values may 
be treated as the special case in which <p0(x) and (jo,(x) are independent of 
x3. Suppose nonzero values of <p0(xt,x2), <p,(jc,,;c2) are confined to a finite 
region R0 of the (xl,x2) plane. From the three dimensional point of view, 
they occupy the cylinder R with generators parallel to the x3 axis based on 
the cross section R0. The initial disturbance is no longer finite in extent. 
For a point x outside the cylinder R, the wavefront construction is as 
before, but the spheres S(t) centered at x will intersect R at all times after 
the first time of intersection. This accounts for the "tail" in two dimen-
sional waves, and it vividly shows the difference between two and three 
dimensions. 

In the solution (7.54), the value of <p(x,t) must be independent of x3. 
The integrals can be reduced to two dimensional form to show this 
explicitly. We consider the value of 

Mt(Po] = T - ^ I f, <Pods 
ATTC t Js(t) 

at a point (x,,x2,0). 
At a point ( ^ . l ^ ) °f S(t) (see Fig. 7.6), the value of <p0 is <p0(£i,£2)-

The outward normal has a direction cosine /3 with the x3 axis equal to 

*3_ ,±V^2-(*|-^)2-(^-t2)r 

ct ct 

The surface element dS is equal to d^d^2/\l3\ where d£xd£2 >s >ts projec-
tion in the (x,,x2) plane. Therefore, remembering the two equal contribu-
tions from above and below the plane, we may write 

"W-2SF// 
^x,i2)dixdi2 

»(o \ /c 2 ' 2 - ( * i -£ i ) 2 - ( *2-S2) 2 

where a(t) is the interior of the projection of S(t) onto the (x,,x2) plane: 

o(/ ) : ( x , - « , ) 2 + ( * 2 - « 2 ) 2 < ^ 2 -
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Fig. 7.6. Geometry involved in descending from three dimensions to two in the initial value 
problem. 

The full solution reduces to 

»(*«.^')-^2s// <Po(ii,i2)dtidt2 

<«> V< 2 ' 2 - ( * , - * , ) 2 - ( *2 - *2 ) 2 

9,({„«2)^1^2 ~L f( — 
(0 V<* 2 - ( * | -« l ) 2 - ( *2 -«2) J 

(7.55) 

One notes the similarity with (7.29). 
Since the integration is over the whole of the inside of the circle 

(*t ~ti)2+(xi-t2)2'Mc2t2, not just its boundary, the disturbance continues 
even after this circle completely surrounds the initial region R0. 

7.7 Geometrical Optics 

In the discussion of one dimensional problems in Sections 5.5 and 5.6, 
the role of the characteristics as carriers of discontinuities was developed. 
It was also shown that the variation in the magnitude of the discontinuity 
could be found directly from the equations without finding the complete 
solution. The same is true in more dimensions, and the theory of discon-
tinuities for linear equations is one version of geometrical optics. The 
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second version concerns periodic waves in the high frequency approxima-
tion. The two cases are intimately related, since the Fourier analysis of 
discontinuous functions relates the singularities to the high frequency 
behavior. It turns out that both aspects of geometrical optics can be 
combined into the same derivation. 

Geometrical optics is particularly important when the exact solution 
cannot be found explicitly or is exceedingly complicated. Even for simpler 
problems it is often easier to find the wavefront behavior in this way 
rather than untangle it from the exact solution. We develop the ideas on 
the wave equation, then show the applications to waves in nonhomo-
geneous media (for which exact solutions may not be obtainable) and to 
anisotropic waves (which are complicated). In the next chapter, an 
approximate theory for Shockwave propagation is developed from the 
ideas of geometrical optics. Due to nonlinearity and number of di-
mensions, such problems are extremely difficult to tackle in other ways. 

The main use of the discontinuity theory is to determine the behavior 
of a wavefront spreading into an undisturbed region. We suppose that the 
wavefront is specified by the equation ,S(x, /) = 0, and that <p is identically 
zero in 5(x,0<0. The surface S = 0 and the behavior of the discontinuity 
in <p or its derivatives are to be determined. If the mth derivatives of <p are 
the first ones to be discontinuous at the wavefront, we assume that <p may 
be expanded in the form 

,_fwfir+»'W(f7i)f+"-- s>°. 
*■ 0, 5 < 0 

The coefficient $0(x) determines the variation in the magnitude of the 
discontinuity. As we saw in the case of cylindrical waves, the singularity at 
the wavefront may involve fractional powers, so we allow m to be nonin-
teger. The idea then is to substitute this series into the equation for q>, 
equate the coefficients of successive powers of 5 to zero, and thus obtain 
equations for S and the <!>„. In doing this, however, it turns out that all we 
require is that <p should take the form 

9 - S *-(x)/.(5), (7-56) 
n = 0 

where the/„(S) have the property 

US)=fn-x(S). (7.57) 
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In calculating the derivatives of <p, derivatives of the/,, will appear but they 
can all be replaced in terms of earlier members of the set by making use of 
(7.57). Then the equation may be satisfied by equating the coefficients of 
the successive /„ to zero. This allows a number of important extensions, 
and the preceding case is included because 

S>0, 
/ „ (* ) - (» + «)! (7.58) 

U, S<0, 
satisfies (7.57). 

We will carry out the substitution in the form (7.56), but for the 
present one should think of this as notation for (7.58). Then we will come 
back to consider the extensions. Also for the first run through we will 
consider m > 2. Strictly speaking, the meaning of "solution" is extended if 
the derivatives appearing in the equation are not continuous. For the wave 
equation this requires continuous second derivatives and m > 2. As we shall 
see, there is a real point to this, not just ultra caution! 

In the substitution, first and second derivatives of the f„(S) will 
appear, but they are replaced according to (7.57) by 

/;(5)=/„_,(5), / ; (5)=/ n_ 2(5) . 

For w = 0, 1, these will introduce/_ ,(5) and f_2(S) which do not appear in 
the original set. For (7.58) with m>2, they are defined by the same 
formula; in other cases their definitions will have to be included in 
defining the fn(S). After substitution in the wave equation, we have 

[s4-c-25,2]$0/_2 

+ {[s*-c-2S?]% + 2SXi%x+(SXiXi-c-%)%}f_l 

+ 2 EJ„(S) = 0. (7.59) 
n-0 

The expression for En will not be needed beyond noting that it contains the 
leading term 

[s?rc-2S?]*n+1 

followed by further terms in 4>n+,,...,$0 and derivatives of S. 
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The wave equation will be satisfied if the coefficients of/_2,/_,,..., 
are individually zero. Thus 

S4-c-2S,2-0, (7.60) 

IS^+iS^ - c - 2 S ,> 0 =0 , (7.61) 

and the subsequent equations determine $,,<f>2,..., successively. The equa-
tions for S and $ 0 are the ones of main interest. Before discussing their 
solution, we return to the question of extending the application by suitable 
choice of the/„. 

Discontinuities in <p or its First Derivatives. 

If m<2 in (7.58), the question of the definition of f_2 and/_, arises, 
and this is bound up with the extended meaning of the solution. For m = 2, 
that is, for discontinuities in second derivatives, the definition of f_2 and 
/ - i by (7.58) is still straightforward and the extended meaning of the 
solution is merely that the equation is satisfied separately on the two sides 
of the wavefront 5 = 0. 

If <p itself is discontinuous, m = 0, the series behind the wavefront is 

<p = $0(x) + $1(x)5+ ^4>2(x)S2 + 

If this alone is substituted into the wave equation, the first two terms in 
(7.59) do not appear, and (7.60), (7.61) are lost. If, however, we take 

<p = Q0(x)H(S) + <I>l(x)Hl(S)+---, 

where H(S) is the Heaviside function 

H(S)-l1' S>°' 
[ 0, S<0, 

and the H„(S) are its integrals defined by 

, , f - rS" , S>0, 

I 0, 5<0 , 

and if, in addition, the derivatives are taken in the generalized sense, we 
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have 

«p„ = $0S,28'(5) + (a>I5,2 + $05„)5(S)+ • • •, 

and so on. Then (7.59) is obtained with 

/0=//(S), / _ , - * ( 5 ) , /_2-«'(S), 

and the information on S and $0 is not lost. In the case m>2, this 
difference does not arise. The explanation is that for m<2, we really are 
extending the discussion into the realm of "weak solutions," and the 
extended definition does include information on the possible discontinui-
ties, by whatever means the extension is carried out. For linear problems, 
the required extension is immediately obtained by allowing generalized 
functions such as the delta function and interpreting the derivatives in that 
sense. It is equivalent to the method indicated in Section 2.7. 

If (p is continuous, but first derivatives are discontinuous, the 
appropriate series would be 

<p = «D0(x)//1(S) + 4>1(x)//2(5)+--, 
and in this case 

/ 0 (S)=/ / , (S) , /_,(S) =//(<?), /_2(5) = 8(5). 

Wavefront Expansion and Behavior at Large Distances. 

If (7.56) is viewed as an approximation for the behavior of the 
solution near the wavefront, rather than just as a device for studying the 
discontinuities in derivatives, the validity can be extended by allowing the 
f„(S) to be more general even than powers or step functions. For instance, 
in cylindrical waves, the wavefront expansion (7.34) takes the form (7.56) if 
we introduce 

( « - i / 2 ) ! IT JO C 

(„-,/,)! (jLy+./* 
"V ; n\{-n-\/2)\\2r) 

This expansion was found to be valid for 
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Thus S need not be small, provided r is large enough. The functions/„(S) 
satisfy the crucial relation (7.57) and so this expansion is included in the 
development here. 

We expect in general that the expansion (7.56) with appropriate f„(S) 
will give the behavior in some extended region behind the wavefront. Of 
course, the precise forms of these more general f„(S) can be known only 
from more complete solutions; they are not determined from the substitu-
tion of (7.56) into the equation. But the determination of S and $0 from 
(7.60) and (7.61) still gives valuable information. Typically, this extension 
gives the behavior for large distances in the sense that cS/\x\ is small. In 
the first approximation f^S) gives the wave profile and $0(x) gives the 
amplitude decay as x-»oo. 

High Frequencies. 

In wave propagation there is often interest in solutions periodic in 
time with a given frequency w. If the equation for <p is taken more 
generally now in the form 

where L is some linear operator independent of t, periodic solutions may 
be written 

<p = *(x)e-"" 
where 

c* 
For large values of u/c (normalized by some suitable length in the 
problem, possibly x itself), a standard method of finding the asymptotic 
solutions is to take 

n-0 

where the functions o(x) and $„(x) are to be determined. In terms of <p this 
is 

n-0 

It may be rewritten as 

<P~ 2 *„(x)£(s), 
n-0 
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with 

S = /-o(x), fn(S)= e""S 

Moreover, with this definition of f„(S), (7.57) is satisfied. Therefore the 
equations for S and $„ are exactly the same as in the wavefront expansion; 
there is no need to rederive them, and we also see why results for the two 
cases are the same. 

In this application, the surfaces S = constant are surfaces of constant 
phase (e.g., crests and troughs), while $0(x) determines the amplitude of 
the oscillations at x. 

Determination of S and 4>0. 

We continue now with the discussion of the equations for S and $ 0 in 
the case of the wave equation. The description will be given in the 
language of wavefront propagation, but the high frequency interpretation 
is obvious. 

Equation 7.60 for S is often called the eikonal equation. It defines how 
the surface 5 = 0 moves in x space. The unit normal to the surface is given 
by the vector I with components 

-s, 
/,= IVSI 

The normal velocity can be calculated by noting that neighboring points 
(Xfrtf,) and (Xo+15.y,f0+80 are on the surface at neighboring times pro-
vided 

S(xo,ro)=0, S(xo + l8s,to+8t) = 0. 

Hence to first order in 8s and St, 

/I.SJt& + 5,S/ = 0, 

and the normal velocity is 

&|-^-|4[- <7-63> 
Thus the eikonal equation states simply that the wavefront has normal 
velocity ±c. 
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In the further construction of the solution, it is convenient to specify 
the wavefront in the form 

S ( x , / ) = / - a ( x ) = 0 . (7.64) 

The family of surfaces a(x) = constant gives the successive positions of the 
wavefront in x space. Equations 7.60 and 7.61 become 

2 - ~ , (7.65) 
C 

2 ^-g^7 + ^ * o = 0. (7.66) 

The nonlinear equation for a may be solved according to the method 
of Section 2.13 by integration along its characteristic curves. If we intro-
duce Pj = ax and write the equation as 

J / S I g , » - I c - ' - Q , 

the characteristics defined by (2.86) are curves in the x space with direction 

dxt 

Normalized in this way the parameter s is the distance along the 
characteristic, because reuse of the equation shows that c'pf = 1. The full 
set of characteristic equations (2.86)-{2.88) is 

dx- dPi n da 1 n „ , 

These can also be derived directly from (7.65), using 

d 3 d 

without quoting the general formulas. Since the vector pt = a^ is normal to 
the wavefront a = constant, the first of the equations (7.67) shows that the 
rays are also normal; they are the orthogonal trajectories of the wavefronts 
o — constant. The second equation shows that p is constant on the ray; 
hence so is the ray direction cp, and the rays must be straight lines. The 
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rays can be constructed, then, by drawing the family of straight lines 
normal to the initial wavefront. The third equation in (7.67) may be 
integrated to 

s 

where s is measured from the initial wavefront. At any time f>0, the 
wavefront t = a = s/c is a. distance ct out along the rays. This is exactly the 
construction deduced for Poisson's exact solution and represented in Fig. 
7.5. Formally, if x,, is a point on the initial wavefront and I(Xo) is the unit 
normal at that point, the solution of (7.67) is 

x = x0 + I(x0)i, p = c~'l(x0), o = - . 

This is an implicit form for a(x); given x, the initial point XQ and distance s 
are determined, in principle, from the first of these, then o = s/c. 

These results are special to the wave equation. In general the rays, 
defined as the characteristics of the eikonal equation, are neither straight 
(nonhomogeneous medium) nor orthogonal to the wavefronts 
(anisotropic). 

Equation 7.66 is a linear equation for $0, and its characteristics are 
the same rays already introduced for the eikonal equation. It may be 
written in characteristic form as 

1 d^n 1 
1 °'-icoM; (7.68) O0 ds 2 

the integration is straightforward, in principle, once CT(X) has been deter-
mined. It shows that $0 is to be obtained by integration along the rays and 
its variation is somehow related to the divergence of the rays as measured 
by oxx. But, due to the implicit form for a(x), it is more illuminating to 
proceed a little differently. 

First we note that (7.66) takes the divergence form 

- ^ k * o ) = 0, (7.69) 

which suggests that something is conserved, and perhaps also suggests use 
of the divergence theorem. We consider a tube formed by rays, going from 
the initial wavefront S0: a = 0 to the wavefront S :o = t at time /, as shown 
in Fig. 7.7. We integrate (7.69) over the volume inside the ray tube and use 
the divergence theorem to write the result as 
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Fig. 7.7. Wavefronts and ray tube in geometrical optics. 

where n is the outward normal and the surface integral is over the sides 2 
and ends S0, S, of the ray tube. In this case the rays are orthogonal to the 
wavefronts a — constant. Therefore 

HjOx=0 on 2 , 

and that contribution drops out. On S ,n and Va are in the same direction, 
so 

«1ox=|Va| on S, 

and from the eikonal equation (7.65), |Vo| = c - 1 . On S0, n and Vo are in 
the opposite direction, so 

/i,-ô  = - |Vo |= -c~l on S0. 

In this case c is constant, and we have 

(<!>ldS=(<t>2
0dS. 

• 'S • '§0 
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If the ray tube is taken to be very narrow with small cross-sectional 
areas A6E0 on S0 and A(£ on S, this may be written to first order as 

^(x)Affi=4»g(x0)Affi0, 

or, in the limit A6E0, A#-»0, as 

^-=(^r/2 (7 70) 
*o(xo) U « J {'m) 

It is usual to interpret (7.70) in terms of the flow of energy down the 
ray tube, particularly when the context is the high frequency approxima-
tion for periodic waves noted in (7.62). There is an average flow of energy 
across any section of the ray tube, and without performing a detailed 
calculation it is clear that the flux is proportional to <^lA&. Hence (7.70) is 
equivalent to a "law" of constant energy flux along the ray tube. For 
nonuniform media (as will be indicated below) there are extra factors, 
depending on the medium, multiplying <bl&&, but the law of constant 
energy flux remains true. It is in fact a general result of geometrical optics 
for nondispersive waves and it is often used directly to determine the 
amplitude variation without going through the detailed calculation each 
time. Recent work on dispersive waves has provided general arguments on 
this kind of question but has also changed the point of view. The more 
general concept appears to be conservation of "wave action," which in the 
simplest linear cases is energy flux divided by an appropriate frequency. 
Here the frequency is constant and so the two are the same. These general 
questions are discussed in Part II. 

For plane, cylindrical, and spherical waves, the ray tubes are straight 
channels, wedges, and cones, respectively. Therefore we have 

^ - = 1, * 0 = constant, 

a-- v"-* 
&-*'■ *°««-'-
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in these cases. They check with the earlier results, obtained from the exact 
solutions, for the behavior near the front or at large distances. In two 
dimensions, without cylindrical symmetry, 

A&o^R^AO, A&=(R] + s)A9, 

where #, is the radius of curvature of the initial wavefront, and A0 is the 
angle subtended at the center of curvature (see Fig. 7.8). [The ray construc-
tion shows that the radius of curvature of the wavefront at a distance s 
along the ray is (./?, + s) and the angle subtended remains as AO.] Hence 

* o ( * ) / * i \ ' / 2 

*o(*o) U i + ' j ' 

r |s 

Fig. 7.8. Geometry of wavefronts and rays. 

In three dimensions, a little differential geometry shows that the surface 
elements are proportional to the Gaussian curvature: 

A&0oc/?,fl2, A6fcoc(/?, + j)( / t 2 + j ) , 

where RVR2 are the principle radii of curvature of the initial wavefront. 
Hence 

^(xo) [ (R} + s)(R2 + s) 
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Caustics. 

At points where the initial wavefront is concave outward, the rays 
form an envelope as shown in Fig. 7.9. This is typically cusp shaped, and 
between the two arms the region is triply covered by rays; it is like a fold 
in the sheet. The envelope is called a caustic. At the caustic, since 
neighboring rays touch each other there, d S, / d #0-»0. According to (7.70) 
this means that 3>0-»oo there. For the wavefront problem this result is 
correct and can also be established from the exact solution of the wave 
equation. Whether the wave equation still applies is another question. In 
acoustics, for example, it is obtained only after linearization; it would be 
invalid due to nonlinear effects when 4>0-»oo. In Chapter 8 the nonlinear 
behavior of shocks is discussed, and it will be argued (except possibly for 
extremely weak shocks which are affected more by viscous effects) that as 
a concave shock focuses it also speeds up and avoids overlapping itself. 

Fig. 7.9. Formation of a caustic. 

For high frequency waves, the geometrical optics approximation is 
invalid at the caustic, even as an approximation to the wave equation. The 
singular behavior of $0 makes the expansion (7.62) nonuniformly valid in 
the neighborhood of the caustic. The correct behavior was first investi-
gated by Airy and more recent work has been carried out by Keller and his 
co-workers (see, e.g., Kay and Keller, 1954). The correct result is that the 
amplitude remains finite but large in w, typically being proportional to a 
fractional power of «. This topic is a little more special than the rest of this 
chapter and the reader is referred to the original papers. 

7.8 Nonhomogeneous Media 

In nonhomogeneous media the governing equations have coefficients 
which are functions of x. The expansion method still goes through, but the 
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equations for a and 4>0 are modified. In isotropic cases the only change to 
the eikonal equation is that c = c(\), so we can usefully discuss the 
consequences before looking at specific examples. The dependence on x 
modifies the characteristic form for the rays. Withpi — ox, as before, and 

// = i c ( x ) ^ - i c - ' ( x ) = 0, 

the characteristic equations are 

-d7 = -dp- = cp« 

A-""''-*—a^"" 7 ' (7-71) 

d o = 9H = 1 
ds Pi 3/?,. c ' 

Since p is normal to the wavefront o = constant, the first equation shows 
that the rays are still orthogonal to the wavefronts. However, the second 
equation shows that cpk is no longer constant on a ray, and so the rays 
bend around in response to the gradient in c. The rays have to be found by 
solving the first two equations simultaneously for x,(s),Pi(s), then the third 
equation gives 

f ds 

•/ray v ' 

Of course a is the time of travel of the wavefront along the ray. 
Fermat's principle states that this time is stationary compared with 

neighboring paths between the two points. We can check this. Let an 
arbitrary path between the two points x = a and x = b be specified para-
metrically by 

x = x(ju), 0 < / i < l , x(0) = a, x(l) = b. 

(To apply the usual methods of the calculus of variations, it is convenient 
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to normalize the parameter so the integration is over the same fixed range 
for all paths. Thus 5 is not a convenient parameter for this argument.) The 
time on each path is 

From a standard argument in the calculus of variations, the JC,(JM) for a 
stationary value of any integral 

r - J T ^{x(M),x(M)}rf/i, *(/*)= ^ ' 

satisfies 

dfi \ dxt ] 9x, 

In our case, this reduces to 

d { 1 1 dXi \ _,_ 1 , / T n 

If, on this stationary path, we revert to s as parameter, by means of 

yjc? «/ju = </J, we have 

This agrees with (7.71) and we have proved Fermat's principle in this case. 
Fermat's principle gives an immediate and illuminating picture of why the 
rays are straight when c is constant. 

Stratified Media. 

For a stratified medium in which c depends only on the vertical 
coordinate, y say, we can simplify the ray calculation further. First, any 
ray remains in the same vertical plane in which it starts. Thus it is 
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sufficient to discuss the two dimensional case with x horizontal and y 
vertical. The speed is c = c(y), and (7.71) reduce to 

dx dy 
■fi-cpv -£ = cP2, 

* i = o dpi = c ^ * - ! 
ds ds c2 ds c' 

Since px is constant and dx/ds — cpv the angle 9 of the ray to the 
horizontal is given by cos9=plc(y), and if subscript zero refers to some 
initial point on the ray, we have 

coM, « 5 « £ O 0 . (7.73) 
yi c0 cos0o c0 

This is just Snell's law in optics. 
The component p2 can be found by solving the equations for y and p2, 

or better still by noting that p\+p\= 1/c2 (the eikonal equation itself) 
gives 

The ray equations may 

d± 

P2=y 
1 1 cos20o 

c2(y) 

be combined into 

= ^ i = 

4 ' 

c(y)cos90/c0 

* H }/\-c\y)cos%/cl 

Therefore the ray with initial angle 90 at (x0,y0) is given by 

ry c(y)cos90/c0 

(7.74) 

dy. (7.75) 
>0 Vl-c2OOcos20o/co 

The time of arrival of the wavefront is 

„./"*- f±- = f » (7.76) 
Jo c Jyo cT>i Jyo c(y)}I\-c2(y)cos29n/c

2 
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It should be noted that all we have really used in deriving these results 
is Snell's law; we viewed it from the more general characteristic theory. 

Harmless appearing distributions for c( v) give some remarkable ef-
fects for the rays. We note two examples. 

Ocean Waveguide. 

Suppose c(y) is as shown in Fig. 7.10 with variations in c confined to 
a layer |>>|< Y, c = constant c, outside the layer, c<c{ inside the layer, 
with a minimum c0 at y = 0. We consider the rays from a point source at 
x=y = 0. 

y* 

-Y 

C| 

Fig. 7.10. Rays in an ocean wave guide. 

As c increases along a ray, cos0 = ccos0o/co increases, 9 decreases; 
the ray bends toward the horizontal. If 90>cos~l(c0/cl), the ray 
penetrates into the region c = cx and remains straight thereafter. However, 
if 90< cos- '(c0/c,), cos0 increases to 1 and 9 decreases to zero at the value 
of y for which 

coo-
COS0n 

At this point the ray turns around, crosses the minimum in c again, and 
repeats the pattern symmetrically about the x axis. These rays, then, 
oscillate about the x axis as shown in Fig. 7.10. 
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The channel |_y|< Y forms a sort of waveguide, and at points inside it 
sufficiently far from the source there may be a number of overlapping rays. 
Thus geometrical optics predicts a succession of signals. Moreover, it can 
be shown from (7.76) that the signals off the center line may arrive faster 
than those on the center line. They have farther to go but benefit from the 
faster propagation speed. In this situation the amplitude predictions of 
geometrical optics are not valid and one must turn to more exact treat-
ments (see Cohen and Blum, 1971, for some recent work). 

Shadow Zones. 

For a source below a maximum of c, as shown in Fig. 7.11, one can 
similarly deduce that a shadow may be formed, into which the rays do not 
penetrate. The rays are sketched in Fig. 7.11. 

^ ^ \ shadow 

^> 7 

\ \ 
c 

Fig. 7.11. Formation of a shadow zone. 

Energy Propagation. 

The modifications to (7.66) depend on the particular problem and on 
which particular physical quantity is denoted by <p. The remarkable thing 
is that the result is always constant energy flux down the ray tubes. We 
may verify this for acoustics in a nonuniform medium. To keep the 
analysis simple, we consider a fluid initially at rest with uniform pressure 
and no body forces, but with arbitrary density distribution p(x). We might 
imagine a heated layer of fluid in which the gravitational effects are of 
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smaller order and may be neglected. The linearized equations* for the 
perturbation pressure P, perturbation density R, and perturbation velocity 
V are 

/?, + V-(pV) = 0, 

pV, + V/> = 0, (7.77) 

P,-c2(/?, + VVp)=0, 

where c2(x) is the sound speed. In terms of P alone, the equation is 

/>„ = c 2 ( v 2 P - — V P j . 

From the first two terms of the series 

0 

we find 

If V and R are expanded in similar series, the coefficients V„ and R„ may 
be determined in terms of Pn and a by going back to the original three first 
order equations in (7.77). In particular, 

P0Va Pa 

Vo--V". *<>=-r- <7-78) 

P cl 

The equation for P0(x) may be written in divergence form as 

l -o. a /po<V 
3*, \ p 

Integration over a narrow ray tube as in the argument preceding (7.70) 

•The notation is changed from Section 6.6 to avoid clashing here with the use of subscripts to 
denote the successive terms in the wavefront expansion. 
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gives 

P2 

—A & = constant. (7.79) 
pc 

The extra factor pc, which is a function of x, modifies the pressure 
amplitude in addition to the modifications of ray divergence. 

The interpretation of (7.79) as energy flux is best given in the high 
frequency application of geometrical optics. The average rate of working 
of the pressure on the fluid crossing the element of area A6B is 

P0V0nk&, (7.80) 

where V0n is the component of V normal to AS. From (7.78), 

F 0 n = 7 „ - V a = - . 

Hence 

pc 

Thus (7.79) shows that the energy flux remains constant along the ray tube. 

7.9 Anisotropic Waves 

When there are preferred directions in the medium, the eikonal 
equation may not be symmetric in the a . As a consequence, the rays 
defined as the characteristics of the eikonal equation are no longer orthog-
onal to the wavefront. If we assume that the medium is homogeneous, so 
that x does not appear explicitly in the eikonal equation, we may write the 
eikonal equation as 

H(pvp2,p,)=0, Pi = oXi. 

The characteristic equations reduce in this case to 

The Pj are constant on these rays; hence the ray direction Hp is constant 
and the rays are straight lines. However, the ray direction is parallel to the 
wavefront normal if and only if 

"„<*/>,• 
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This is true if and only if H is a function of />?+/>f+/>3> that is, if the 
propagation is isotropic. 

A simple example of anisotropy is provided by the wave equation in a 
moving medium. If the medium has velocity U in die x, direction, and if a0 

is the propagation speed when the medium is at rest, 

(The symbol c is reserved for the normal speed of the wavefront which is 
not a0.) The eikonal equation is 

ol=±(i-Uoxf, (7.82) 

and we take 

H=±{pf-a^(l-UPl)
2}. 

The ray direction has components 

dx\ V A. U2\ dxi 4*3 

This clearly is not in the direction of the wavefront normal p. For a point 
source the wavefront is just a sphere of radius a0t swept downstream a 
distance Ut. The rays are shown in Fig. 7.12. 

Fig. 7.12. Wavefront and rays for an acoustic pulse in a wind. 
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The result that the rays are not orthogonal to the wavefronts is surely 
surprising at first encounter. The intuitive feeling that the wavefront is 
moving out along its normals is natural and one might expect as a 
consequence that the orthogonal trajectories play a basic role in the 
geometry. But it just is not so. The point is that the rays are concerned 
with energy propagation and neither the speed nor the direction need 
coincide with the normal velocity of the wavefront. This is the first 
appearance, in a restricted form, of the important difference between 
phase velocity and group velocity. It will be discussed in the general form 
in Chapter 11, and more detailed examination of the underlying concepts 
is postponed until then. 

We return to the general case in (7.81). Since thep, are constant, the 
integration of the equations is immediate. We consider the case of a point 
source at the origin. In terms of the distance s from the source, the solution 
of (7.81) is 

Xi = lts, a=p,lis, (7.83) 

where the unit ray vector I is defined by 

HP 

V ^ 

The family of rays is obtained by varying the pt over all values satisfying 

H(Pi,p2,p3)=0: (7.85) 

Each choice of the pk determines a ray, and at time t the wavefront a = / is 
a distance 

s=-±j (7.86) 
Pi'i 

along it. The coordinates of the point on the wavefront are 

*, = 4 ' ; (7.87) 
Pjlj 

varying the parameters pv p2, p3, subject to (7.85), gives the whole 
wavefront. 

From (7.63), with the reduced form S = t — o(x) which is used here, the 



Sec 7.9 ANISOTROPIC WAVES 257 

normal velocity of the wavefront has magnitude 

1 J_ 
C |Vc|V 

Therefore the unit normal to the wavefront is given by 

and the angle /t between the ray vector and the normal vector is given by 

cos n = ljnj = cljPj. 

Therefore (7.86) may be written as 

s~-£—t. (7.88) 
COS/t v 

The wavefront moves along the ray with increased speed c/cos/i so that its 
speed along the normal is c. 

It is sometimes convenient to use c=\/p and the unit normal /i, = c/>,. 
as parameters in place of px, p2, p3. Then the eikonal equation (7.85) 
determines c as a function of the direction n. This function c(n) specifies 
the anisotropic medium and the geometry of the rays and the wavefront 
can be expressed completely in terms of it. This description is particularly 
convenient for two dimensional and axisymmetric problems. We describe 
the two dimensional case in (xt,x2) space, but note that the axisymmetric 
case is exactly the same with x2 interpreted as distance from the axis of 
symmetry. 

Two Dimensional or Axisymmetric Problems. 

If the normal n makes an angle \p with the x, axis, the eikonal 
equation provides the function c(\p) for the propagation speed. To express 
the rays and wavefront in terms of c(\(/), we shall need to find the direction 
of the ray vector 1 in terms of c(\p). It turns out that it is most useful to do 
this by finding the angle \i between the ray vector I and the normal n (see 
Fig. 7.13). Since I has the direction d/f/dp and n has the same direction as 
p, this angle can be found from an argument in p space. The vector Hpi in p 
space is first written in terms of polar coordinates p and \f/. It has a 
component dH/dp in the direction of p and a component dH/pty 
perpendicular to p. Hence 
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Fig. 7.13. Geometry of wavefront, rays, and normals in an anisotropic medium. 

In terms of the function c(\p), an equivalent eikonal equation for H(p,\(/) 
can be written: 

Therefore 

H=pc(xp)- 1=0. 

tanji = 
c(+) 

(7.90) 

This is the crucial expression relating the directions of 1 and n. 
The rays are given by 

xl = scos(n + \l')t, x2 = s sin ( p.+ \l/)t. 

The wavefront (7.88) is at a distance 

COSjU 
s = =/V?IT TT72 (7.91) 

along the ray with parameter ^. Therefore in Cartesians the wavefront is 

x,= cos(ja + ^/), x2= sin(/i + <J0. 
1 cos/i v r Y / * cos/x 

If these are expanded and n eliminated from (7.90), we obtain 

x,= {c(*p) cosxp — c'($) sin\(/} t, 

*2 = {c(\l/) sin \f/ + c'(\p)cos\p}t. 

(7.92) 

(7.93) 
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The geometry is shown in Fig. 7.13. 
Another derivation of (7.92) and (7.93) is obtained by arguing that the 

wavefront is the envelope of elementary plane waves 

JC, cos^ + x2 sin^ = c(^)t. 

The envelope is found by solving this simultaneously with its \p derivative: 

- je, sini//+ JC2 cos*/'■= c '^Jf . 

The solution is (7.92), (7.93). This derivation is simpler, but it is limited to 
homogeneous media and it does not bring out the ray properties. We have 
preferred to unify all cases by one method, the method of characteristics 
applied to the eikonal equation. 

Source in a Moving Medium. 

To illustrate the results, let us apply them to (7.82). With />,« cosip/c, 
p2-sin >|//c, the eikonal equation gives 

c2 alV c )■ 
Therefore 

c(^)= Ucos\[> + a0 

for an outgoing wave. The wavefront (7.92)-(7.93) is 

JC,«=(1/+ a0cos>p) t, 

x2-(a0s\n+)t. 

This is a circle of radius a0t centered at a point Ut downstream as required. 

Magnetogasdynamics. 

Again rather harmless appearing problems lead to surprisingly com-
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plicated geometry. An interesting example of this arises in magnetogas-
dynamics. In an infinitely conducting medium with uniform magnetic field 
in the A:, direction, perturbations satisfy 

^-(<72+A2)4v29 + ̂ 2 4 ^ = 0. (7.94) 
3/4 V ' dt2 T 3x? V ' 

The eikonal equation is 

\-(a2 + b2)p2 + a2b2p2p2 = 0. 

With />, = cos\j//c,p = 1/e, we have 

c 4 - ( a 2 + 2>2)c2 + aVcos 2 ^ = 0. (7.95) 

There are two outgoing wavefronts (the fast and slow waves), correspond-
ing to the increased order of (7.94). 

In this case, it is convenient to work with the polar form (7.91), where 
the wavefront is distance 

s = tVc'2 + c2 (7.96) 
in the direction 

c'U) 
« * ) - / i ( * ) + *, t a n ^ - ^ f . (7.97) 

From (7.95), the derivative c'(ip) satisfies 

{2c3-(a2+62)c}c ' -a262sin^cos^ = 0. (7.98) 

Consider now the range 0 < \j/ < m/1 for the parameter ^, and for de f-
initeness suppose a > b. 

From (7.95) to (7.98), we have the following values as 4<-»0 and 

c—>a, b, 

c'^0, 0, 

ju-»0, 0, 

1^0, 0, 

s-^at, bt, 
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\f/-*ir/2: 

c-»Va2 + fc2 , 0, 

c'->0, ab 

f i - 0 , E. 
2 ' 

abt 
0, 

The first solution gives points A,B on the JC, and x2 axes and suggests a 
distorted but reasonable outgoing wavefront S, as shown in Fig. 7.14. The 
second solution is surprising. In both limits ^-»0, IT/2 we have £-»0 and s 
finite. Thus we have points P,Q on the x axis. At P, \f/*=ir/2 so the 
wavefront is tangential to the axis; at Q, \p = 0 so the wavefront is 
perpendicular to the axis. Between ^ = 0 and m/2 there must be a maxi-
mum or minimum of £. Since £=n + \p, this occurs at the value of $ given 
by 

4* °0; 

*2 

>j?^* tva +b 

1 ^ 

Fig. 7.14. Wavefrontx in magnetogasdynamics. 
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Fig. 7.15. Wavefronts in magnetogasdynamics. 

from tan ju. = c'/c, the condition may be written 

c"(*) + c(*)«0. 

It may be shown that the wavefront has a cusp at this point. It may be 
shown also that £ is negative. Thus the second front has the remarkable 
shape S2 shown in Fig. 7.14. Even though ^>0 and the wavefront is 
locally moving with a component in the positive x2 direction, the energy 
propagation has a component in the negative x2 direction, and as a 
consequence this wavefront appears below the JC, axis. This is a striking 
example of the difference between the wavefront velocity and the ray 
velocity, between the phase velocity and the group velocity. 

The complete wavefronts are symmetrical in the xx and x2 axes and 
the complete picture is presented in Fig. 7.15. 



CHAPTER 8 

Shock Dynamics 

The discussion of the wave equation has brought out most of the main 
ideas in the linear theory of hyperbolic waves in two or three dimensions, 
and we turn now to nonlinear effects. For plane waves in uniform media, it 
was possible to give a thorough treatment of the nonlinear theory. How-
ever, it required sophisticated ideas and methods in contrast to the linear 
theory which was almost trivial. In more dimensions or in non-
uniform media, where even the linear theory becomes complicated, we 
should expect considerable difficulties in the analysis. Cylindrical and 
spherical waves still involve only two independent variables, but some 
complication arises because their equations have nonconstant coefficients. 
Plane waves in nonuniform media are similar. In the general case of two or 
three dimensional propagation, we have to deal with more independent 
variables and the geometry becomes even more involved. It is not surpris-
ing therefore that we have to resort to approximate methods. Indeed, the 
only exact analytic solutions are similarity solutions for special problems, 
and these usually require numerical integration of the reduced equations. 
The similarity solutions for cylindrical and spherical waves and for waves 
in nonuniform media have been discussed in Section 6.16; others will be 
referred to below. Apart from similarity solutions, one must use approxi-
mate theories or numerical methods. This chapter and Chapter 9 are 
devoted to some of the approximate theories that have been developed for 
shock propagation in these circumstances. The description is for shock 
waves in gases, but the ideas and mathematical procedures may be used 
for analogous problems in other fields. 

The most obvious type of approximation is for those problems that 
can be treated as small perturbations to simpler problems with known 
solution. For example, a plane shock propagating through a slightly 
nonuniform medium or along a slightly corrugated wall can be analyzed as 
a perturbation of the uniform case. A problem like this will be analyzed in 
detail below, since it is needed in another connection, and others will be 
indicated. But the perturbation procedures of this type generally are 
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obvious, and the resulting mathematical problems, although often difficult, 
no longer involve new concepts about the behavior of waves. We again 
draw the line at developing purely mathematical methods and stress, 
rather, approximations that are intimately related with the wave propaga-
tion. 

In an intuitive way, we can say that the difficulty in these problems is 
due to the combination of two effects: the shock is adjusting to changes in 
the geometry (or in the medium) at the same time that it is coping with a 
complicated nonlinear interaction with the flow behind it. Nonlinear plane 
waves are free of the first, and linear nonplanar waves are free of the 
second. In the more general case, if one of the effects can be dealt with 
fairly simply so that emphasis can be placed on the other, there is hope for 
an approximate theory. 

This chapter concerns problems where the nonlinear geometrical 
effects play the biggest role and the interactions with the flow behind are 
not responsible for the major changes in the shock motion. "Shock 
dynamics" seems to be a convenient name since the motion of the shock is 
stressed over the dynamics of the whole fluid flow. In the next chapter we 
consider problems where the opposite emphasis is appropriate. They are 
problems of weak shocks and the idea is that for weak shocks the 
geometrical effects, although important, can be taken unchanged from the 
linear theory. Then the nonlinear analysis consists of introducing, within 
that geometrical framework, the crucial effects of the nonlinear interaction 
with the flow. 

In both cases, the approximations become intuitive and are based on 
incorporating known effects into a mathematical description. The 
"justification" comes from checks on particular cases that can be handled 
precisely and from comparison with observations. The problems are too 
hard for the more routine approximation procedures. 

In the discussion of shock dynamics, the description will be based on 
the picture provided by geometrical optics. There the geometry is in terms 
of wavefronts propagating down ray tubes and, for an isotropic medium, 
the rays are the orthogonal trajectories of the successive positions of the 
wavefront. For a shock moving into a gas at rest the medium is isotropic. 
Therefore, by analogy, we shall introduce rays orthogonal to the successive 
positions of the shock, and study how an element of the shock propagates 
down a ray tube. However, there is a crucial difference between a shock 
and a linear wavefront. The shock velocity at any point depends on its 
strength, so the geometry cannot be mapped out in advance, independently 
of the determination of the strength of the wave. The two are coupled 
together and the ray tube geometry itself has to be determined at the same 
time as the shock strength is determined in terms of the ray tube area. The 
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equations corresponding to (7.60) and (7.61) are coupled together. It is as if 
c in (7.60) depends on $0. But we have to analyze the whole thing again. 

As a building block in this theory, we shall need to study propagation 
down a given tube of arbitrary cross section. This is interesting for its own 
sake, and of course propagation in a wedge-shaped channel is identical 
with cylindrical waves, propagation in a cone is identical with spherical 
waves, so that we have an opportunity for further discussion of those 
problems. Propagation of a plane wave in a nonuniform medium is similar, 
and some details of that are also included. 

8.1 Shock Propagation Down a Nonuniform Tube 

We consider the one dimensional (hydraulic) formulation for flow in a 
tube of given cross-sectional area A (x). Even in a uniform tube, the shock 
can be changing in a complicated way due to interactions with the flow 
behind it, as described in the piston problem of Sections 6.8 and 6.11. But 
we are concerned with isolating as much as possible the effects due to a 
nonuniform A(x) and, effectively, want to take the very simplest piston 
problem. That is, we want to formulate the problem in such a way that the 
shock would continue with constant speed in the case A (x) = constant. To 
do this, assume that 

A(x) = AQ=constant in x<0, 

and that the shock is initially moving in this section with constant Mach 
number M0. We may imagine the shock to be produced by a piston 
moving with appropriate constant speed far back in the uniform section. 
The piston is still providing the thrust to keep the shock moving, but there 
are no changes due to this; the changes are due entirely to the cross-
sectional area. The problem then is to determine how the Mach number of 
the transmitted shock depends on A (x) in x > 0. 

The flow is not strictly one dimensional but if the cross section A (x) 
does not vary too rapidly, the equations obtained by averaging across the 
tube will provide a good approximation. They are 

A'(x) 
p, + upx + pux + pu =0, (8.1) 

u, + uux+-px = 0, (8.2) 

pt + upx-a
2(Pl + upx)=0. (8.3) 
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The area change appears only in the continuity equation (8.1), and this 
equation follows immediately from conservation of mass in the form 

(PA),+ (puA)x = 0. (8.4) 

We note that for propagation into a wedge with apex at x0, 

A'(x) - i 
A(x)cc(x0-x), A(x) x0-x' 

and for a cone 

2 A'(x) 
A(x)cc(x0-X) , 

A(x) (x0-x) 

(8.5) 

(8.6) 

With r = (x0-x) and the sign of w reversed (to be measured positive for 
increasing r), the equations are then identical with those for cylindrical and 
spherical waves in (6.132H6.134), and they are exact. The fact that the 
equations are exact in this case indicates that the true criterion for the one 
dimensional formulation is really that the curvature of the walls in the x 
direction should be small. But the question of precise validity seems to be 
one which has never been completely investigated. 

Figure 8.1 is the (x,t) diagram for the problem, with the origin of t 
taken as the time when the incident shock arrives at x = 0. For t<0 the 

shock 

Fig. 8.1. The (x,t) diagram for a shock entering a nonuniform region. 
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flow consists of uniform regions separated by the moving shock. We take 
u = 0,p=pQ, p = p0 in the undisturbed state ahead of the shock, and we take 
u = uv p=px, p = Pi in the initial uniform state behind it. The quantities 
«,,/>,,p, are determined in terms of p0, p0, A/0 by the shock conditions. 
When the shock reaches x = 0, disturbances to this state propagate on the 
particle paths P and the negative characteristics C_. The C_ may have 
positive or negative slope depending on whether ux>ax or ux<ax; the 
latter case is shown in Fig. 8.1. The problem is to determine these 
disturbances from (8.1)—(8.3), together with the modifications of the shock 
position and strength. The shock conditions are 

u = a, °7+l (""£). (8-7) 

,2j 2 _ M 2 . Y - l 
' - ^ T + T ^ - ^ M ) ' (8-8) 

(y+l)M2 

(y-\)M2 + 2 P = P o / ' , . . , (8-9) 

and, when required, the sound speed is given by a2 = yp/p. 

The Small Perturbation Case. 

The one dimensional formulation is not limited to small changes in 
A(x) itself, since large changes may be attained over large enough dis-
tances, even though the derivatives of A (x) are small. However, in the case 
when the change of A(x) from A0 remains small, 

A(x)-A0 

we may assume that the disturbances to the state «,,/>,, p, behind the shock 
and the change in shock Mach number are correspondingly small. We may 
then solve the problem as a perturbation on the solution for the uniform 
tube. The equations (8.1>-<8.3) and the shock conditions (8.7H8.9) are 
linearized about the state w„/>„p,. However, it should be noted that there 
is no assumption that />,-/>0,..., are small; the shock is of arbitrary 
strength. 
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The linearized equations are 

, P i M ' ( * ) n p, + ulPx + Plux + 0, 

u, + ulux+—px = 0, (8.10) 
Pi 

where, to save writing, we leave it to be understood that p, is interpreted as 
(P-Pi)/> A'(x) as {A(x) — A0y, and so on. The general solution is readily 
obtained since the equations are linear with constant coefficients; the most 
significant derivation is via the characteristic form of the equations. The 
characteristic equations for (8.10) are 

C + : ( | + («. + « i ) | j ) ( ? + W ) + M i « . ^ - 0 . (8-11) 

c - : { i + ( M i _ a i ) ^ } ( ; , " p | f l | M ) + p i a ? M i ^ r = 0 ' (8-12) 

and the general solution taking each in turn is 

p,a?M, A(x) — An , , „ , 
(p-Pl) + pMu-u})=-^- K' 0 + F { x - ( u , + a,)f}, (8.14) 

p,a?M, A(x)-A0 , 
( / > - / > , ) - P , ^ . ( » - » , ) " - 7 - T " ^ °+<?{*- (» , -« , ) / } , (8.15) 

"1 "1 -^0 

(/>-/>,)-a?(p-p.) = / / ( * - " , ' ) , (816) 

where F, G, and / / are arbitrary functions. In the linearized form, because 
of the constant coefficients, we have been able to carry out the integration 
on the three families of characteristics explicitly, and the characteristics 
have been approximated by the straight lines, X - ( M , ± a,)/= constant, 
x - M,/ = constant. The three arbitrary functions are to be determined from 
the initial conditions of the problem and the boundary conditions at the 
shock. 
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First, and most decisive, F must be identically zero. This is because 
the C+ characteristics behind the shock, that is, the lines x — (ul + al)t <0, 
all originate in the uniform region where u = ui,p=pl,p = pl,A=A0 (see 
Fig. 8.1); hence from (8.14), F—0. It is in this crucial step that modifying 
disturbances overtaking the shock are excluded. It should also be stressed 
that in this perturbation analysis the conclusion F=0 is a strict deduction 
from the formulation of the initial conditions, not an intuitive argument. 

The other two functions G and H are not zero: they describe the 
disturbances on the C_ characteristics and the particle paths P shown in 
Fig. 8.1. These originate at the perturbed shock and the three shock 
conditions are sufficient to determine G, H, and the change in shock Mach 
number (from which the change in shock position may also be deduced). 
The functions G and H are of subsidiary interest. The main result we want 
is the change in shock Mach number, and this can be determined without 
involving G and H. The shock conditions give the perturbations p—px, 
u - M,, at the shock in terms of the change in Mach number M— M0. From 
(8.7) and (8.8), they are 

p-Pt = ~rM0(M-M0), u-u1 = z^TaJ^l + ^(M- M0). 

(8.17) 

y+1 ov °" ' Y + 1 

When these are substituted in (8.14) with F=0, we have 

A-A, (4^ 0 + 4J I + J - )*£LU_* O ) . _>4_5_ . 
| y+1 y + l \ M0

2/P0aoJ P0«o"' + a i Ao 

(8.18) 

The expressions for M,, p,, a, in terms of A/0 are given by (8.7)-(8.9) with 
M— M0. Then, after some algebraic manipulation, (8.18) becomes 

- = -g(M0)(M-M0), (8.19) 
A0 

where 

' ^ ■ ^ ( ^ T T T ^ K 1 ^ ^ ) ' (8'20) 

2 _ ( V - l ) A / 2 + 2 

2yM2-(y-l) " ' - , , . . , 2 , , . , , - ( 8 - 2 » 
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The quantity ft is in fact the Mach number of the shock relative to the flow 
behind it. 

When needed, the expressions for G and H may be found by applying 
(8.15) and (8.16) at the shock; in the small perturbation theory, it is 
consistent to apply these conditions at the unperturbed shock position 
x = a0M0t, since the errors would be second order. The details may be 
found in the paper by Chester (1954), where small perturbation results 
were first derived. It is interesting that the area term in (8.15) changes sign 
at M, = a,, and in fact is singular at w, = a,. Yet (8.19) shows neither a 
change in sign nor any singularity. Friedman (1960) has investigated the 
case u, = a„ which is the case of exactly sonic flow behind the shock. He 
shows that small nonlinear effects must be incorporated into the distur-
bances on the C_ in order to obtain a uniformly valid solution, but that 
(8.19) is unaltered. 

Before discussing (8.19) in detail, we go on to an important extension. 

The Finite Area Changes; The Characteristic Rule. 

For a tube which varies slowly but which accumulates large changes 
in A (x) over a sufficiently large length, we might break down the problem 
into successive small lengths in each of which the change in A is small. In 
each such small length of tube, it would be admissible to linearize about 
the local conditions and develop a small perturbation theory as in (8.14)-
(8.16). But it would no longer be strictly valid to take F=0, because the 
entry conditions into each of these subsections would not be a uniform 
state. After a number of successive sections the errors might accumulate. 
However, if we neglected this, (8.19) would apply to each subsection with 
AQ and M0 taken to be the area and Mach number at the entry to the 
subsection. But then the theory is extremely simple. We are saying, in 
effect, that (8.19) is the differential form of a functional relation M 
= M(A): 

is-i« <822) 

and we do not have to discuss the subdivision into small subsections 
explicitly at all! Moreover, (8.19) was itself merely a substitution of the 
shock conditions into the characteristic relation on the C+ characteristics. 
So the whole derivation can be put into the following characteristic rule: 

Write down the exact nonlinear differential relation for the C+ 

characteristics. Substitute the expressions for p, p, u, a in terms of M from the 
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shock conditions. The resulting differential equation gives the variation of M 
wih x. 

Although we have all the ingredients already, let us follow this 
prescription to emphasize its simplicity. The basic equations governing this 
particular problem are (8.1)—(8.3). The characteristic equation for the C+ 

characteristic is 

dp , du , pa2" 1 dA n , Q , , , , 
— +pa— + —— - T - J - = 0 . (8.23) 
dx dx u + a A dx 

The shock conditions are given in (8.7)-(8.9). On substitution we have 

• < * ) * + JI-»
 (8-24> 

where g(M) is given by (8.20). It is convenient to write this as 

M - M A / ) ^ + 7 X = 0 . (8-25) M2— 1 dx A dx 
where 

M A 0 = (1 + ^ I ^ ) ( 1 + 2 M + _ L ) , (8.26) 

2_ ( y - i ) A / 2 + 2 

* 2 y A / 2 - ( 7 - l ) -

The reason for this choice is that A(Af) varies little over the range of Mach 
numbers. The limits are 

M-*l, A-»4, (8.28) 

#T A/-KJO, x_> w=i + l + y _ J L = 5.0743 for y= 1.4. (8.29) 

Formula 8.25 was first obtained by Chisnell (1957), who used a 
different approach. The area distribution A(x) was approximated by a 
sequence of discontinuous steps and the solution was built up from 
analysis of the elementary interaction of the shock at each discontinuity. 
At each interaction the shock is transmitted with a modified strength, and 
disturbances are reflected (the C_ and P disturbances in our analysis). But 
the reflected disturbances are themselves re-reflected when they travel 
back through the earlier steps; the re-reflected waves overtake the shock 
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and contribute to the later interaction. If all re-reflected waves are neg-
lected, (8.25) follows. Chisnell analyzed the effects of all singly re-reflected 
disturbances and found that their total modification to (8.25) was much 
smaller than their individual contributions. Earlier Moeckel (1952) had 
applied similar ideas to steady oblique shocks in nonuniform supersonic 
streams. The nonuniform stream was replaced by layers, in each of which 
the flow quantities were constant, with surfaces of discontinuity between 
the layers. The solution was built up from the elementary interactions at 
the interfaces. 

Although the Moeckel-Chisnell approach offers in principle the 
possibility of successive improvement by including more and more 
multireflections, it does not seem practicable to go beyond the first 
re-reflections. It is also difficult to assess to what degree of approximation 
the equations (8.1)—(8.3) have been solved. However, the relatively small 
modifications from the first re-reflections indicate that (8.25) may be 
unexpectedly good. This is indeed the case, as we shall see below. 

When the quick derivation of (8.25) by the characteristic rule occurred 
to me, I hoped also that a full analysis of the approximation could be 
based directly on (8.1)—(8.3). So far this has not been completed! To see 
what is involved, note that the characteristic equation (8.23) may be 
written 

P, , _,_ ( », , \ , pa2u.A'(x) 
\-pz + pa\ hi/. H —— =0. (8.30) 

u + a Vx y \u + a x) u + a A(x) 

This is exact and holds throughout the flow since it is just a combination 
of the basic equations (8.1)—(8.3). If (8.23) is applied to a shock moving 
with velocity U, we are claiming that 

p> j . -L / " ' j . \^pa2uA^x) 
— +pr + pa T7 + M* H 7—r=v (8.31) 
U Fx ^ \U x) u + a A(x) v 

is a good approximation at the shock. Taking (8.30) and (8.31) together we 
see that the approximation is based on the assumption that 

[v-^Y"'*^ (832) 

is relatively small at the shock; that is, this expression is small compared 
with p,/U. The smallness of the first factor would correspond to the 
thought that the C+ characteristic in Fig. 8.1 is fairly close to the shock, so 
that we are merely transferring the relation that holds on a C+ to the 
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shock. However, whereas (w + a — £/)/ U is zero for M = 1, it tends to 0.274 
(for Y = 1.4) as M->oo. The consequences of the characteristic rule are 
sometimes a hundred times more accurate than this! In the case of a 
cylindrical or spherical implosion noted below the relative error is about 
0.003. Thus although the first factor may contribute a little to the accuracy, 
the rule works well because 

p, + pau, 
F' y ' (8.33) 

Pi 

is extremely small at the shock. Although some further discussion was 
presented in the original paper (Whitham, 1958), no really satisfactory 
explanation of this was found. Of course we know that the result is correct 
in the small perturbation theory, and we check from (8.14) with F=0 that 

/?, + p,a,M, = 0, 

in that theory. 
With only the partial justification provided by the small perturbation 

case and the Moeckel-Chisnell analysis, the accuracy of (8.25) has been 
confirmed by comparison with known solutions. First for weak shocks, 
M=*\, we have A = 4; hence 

A / - l c c 4 - ' / 2 . (8.34) 

This is the correct result of geometrical acoustics for weak pulses, as M- 1 
is proportional to the strength of the pulse. Secondly, we may apply (8.25) 
to converging cylindrical or spherical shocks by taking Accx0— x or 
(x0—x)2, respectively, and compare the results with Guderley's exact 
similarity solutions described in Section 6.16. For infinitely strong shocks, 
A tends to the value n given in (8.29), and (8.25) becomes 

Therefore the rule gives 

Mccr~l/" for cylindrical shocks, 

Mccr~2/" for spherical shocks. 
(8.36) 

A comparison with the exponents from the exact similarity solution is given 
in Table 8.1. The accuracy is amazing in view of the simplicity of the 
approximate theory. Among other things, it shows that converging shocks 
are reacting primarily to the changing geometry as assumed in the 
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approximate theory, and are very little affected by the further disturbances 
from the source of the motion; the strength of the initial shock enters only 
through the constants of proportionality in (8.36). This would not be true 
for outgoing shocks. They would slow down due to the expanding 
geometry and the continuing interaction with the flow behind over large 
distances would be important; this approximate theory is not appropriate 
for such problems. 

Y 

6/5 
7/5 
5/3 

TABLE 8.1 

Cylindrical 
Approximate Exact 

0.163112 
0.197070 
0.225425 

0.161220 
0.197294 
0.226054 

Spherical 
Approximate Exact 

0.326223 
0.394142 
0.450850 

0.320752 
0.394364 
0.452692 

Another point of interest is that according to the approximate theory 
the exponent for the spherical case is just double the exponent in the 
cylindrical case. This is not true, however, in the exact similarity solution, 
although it is very nearly so. 

With the partial justification mentioned earlier and these independent 
checks, we conclude that the characteristic rule gives a good simple 
approximation to problems of this type and it may be used with confidence 
in a wide range of problems. 

For general M, the solution of (8.25) may be written 

A_ 
An 

AM) 

7W 
f{M) = exp{-J M\(M) 

M2-l 
dM (8.37) 

In particular this formula may be used to extend the results for converging 
and spherical shocks to include shocks of intermediate strength. Of course, 
as the center is approached, /4->0 and A/-»oo. Table 8.3 presents values of 
/(M)fory=1.4. (See p. 288.) 

In the next section the characteristic rule will be used for the problem 
of a shock propagating through a nonuniform density layer, and further 
examples may be found in the original paper (Whitham, 1958). It will also 
be the basis for the geometrical treatment of two and three dimensional 
shock propagation in Section 8.3. 
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8.2 Shock Propagation through a Stratified Layer 

Here the method is applied to the one dimensional problem of a plane 
shock moving in the x direction through a given equilibrium distribution 
u-0, p—p0{x), p = p0(x). If p0(x) is not constant, there must be a body 
force in the problem to maintain the pressure gradients and we include this 
in the equations. The one dimensional equations are 

p, + upx + pux=*0, 

u, + uux+ ^Px=$, (8.38) 

p, + upx-a
2(p, + upx)=0, 

where S" is the body force per unit mass. In the atmosphere or for 
propagation in the outer layers of a star, 3F would be the gravitational 
acceleration. In equilibrium, the distribution of p0(x) and p0(x) must 
satisfy 

— ̂ - f f , (8-39) 
Po dx 

and the entropy distribution must be given to complete the determination 
of p0(x),p0(x). In the atmosphere *$ = — g and we have, for example, 

Po(*) = P o ( 0 ) e _ w * r o (isothermal), 

pi$~l(x) = c — gx (isentropic), 
Y - l 

as discussed in Section 6.6. 
We now apply the characteristic rule to the propagation of a shock 

through such a layer, remembering that the theory applies only for the 
local effects of the layer and should be used only when additional effects 
would be small. The appropriate characteristic relation may be written in 
differential form as 

dp + padu ■—<Sdx = 0 on — = w + a. 
^ u + a dt 
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But we apply it along the shock. That is, we use the differential equation 

ax ax u + a 

with u,p,p,a expressed in terms of p0(x), p0(x), and the shock Mach 
number M(x). In general, numerical integration will be required, but the 
result for strong shocks may be obtained analytically. For strong shocks 
[see (6.110)], the shock conditions simplify to 

2 „ 2 rr2 r + 1 z 7P 2y (y -2 ) , , 2 

where U is the shock velocity. In this limit U is relatively large and the 
third term in (8.40) is negligibly small compared with the other two; the 
body force <3r enters indirectly through its control of p0(x). Equation 8.40 
reduces to 

U dx p0 dx 
where 

Hence 
*-H 
UccpQ-^, 

/••, r 
P*PI-2P. 

(8.41) 

(8.42) 

For y= 1.4, /? = 0.21525. 
These results allow a further check to be made against exact solutions. 

Sakurai (1960) investigated similarity solutions to this problem in the case 
where p0ocx". He found U<xx~x and determined the value of X for 
different values of a. His values of X/a are given in Table 8.2, and they are 
compared with /?. Although not quite as good as for the implosion 
problem, the approximation is still remarkably close. 

The limitation to problems where local modification of the shock is 
intense must be borne in mind. For an exponential fall off in density, 
similarity solutions can also be found and compared with this approxima-
tion. The comparison has been made by Hayes (1968) and the difference in 
the exponents is as much as 15%. We attribute this to the fact that an 
exponential change in density does not have the strong local effect of a 
power law with p0->0 at finite x. 
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TABLE 8.2 

y 

5/3 
7/5 
6/5 

a-2 

0.21779 
0.19667 
0.16545 

a=l 

0.22335 
0.20214 
0.17040 

a - 1 / 2 

0.22820 
0.20704 
0.17498 

P 

0.23608 
0.21525 
0.18301 

Chisnell (1955) originally studied the problem of this section from the 
successive interaction approach, in the case p0=constant, % = 0, and found 
the small corrections due to re-reflections. As before there is some benefi-
cial cancellation. 

8 J Geometrical Shock Dynamics 

We now turn to the development of the approximate geometrical 
theory for shock propagation in two or three dimensional problems when 
there is no special symmetry (Whitham, 1957,1959b). We consider a shock 
propagating into a uniform gas at rest and, based on the experience with 
geometrical optics for linear problems, we introduce "rays" defined as the 
orthogonal trajectories of the successive positions of the shock. As a 
specific example, consider the case of shock diffraction around a corner in 
Fig. 8.2. The shock positions are shown by full line curves and the rays by 
broken lines. The idea is to treat the propagation of each element of the 
shock down each elementary ray tube as a problem of shock propagation 
in a tube with solid walls. The equivalence would be exactly valid if the 
rays were particle paths, since solid walls are particle paths in inviscid flow. 
However, this is only approximately true. The shock conditions require the 
induced flow immediately behind the shock to be normal to it, but as the 
distance from the shock increases the particle paths will deviate from the 
rays in general. So a definite approximation is involved, and it is one that 
may be quite severe. However, it is only by this step, or a similar one, that 
the geometrical effects can be extricated from the whole complicated flow. 
In the problem of diffraction around a corner (Fig. 8.2) the wall itself has 
to be both a ray and a particle path along its entire length, so there is some 
additional resistraint on the deviation between the rays and particle paths 
further back. 

The accuracy of this type of approximatiom is hard to assess in 
advance and higher approximations are virtually impossible. As justifica-
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/ /*/ S /'/ / / / 7 

Fig. 8.2. Shock positions (solid lines) and rays (dashed lines) in the diffraction of a shock 
around a continuous corner. 

tion we shall see that the theory does reduce precisely to geometrical optics 
for linear problems and the nonlinear results will be compared both with 
other theoretical results for special cases and with experiments. It is 
perhaps appropriate to comment that approximations which are easy to 
assess usually involve small effects. Here we are concerned with large 
effects in extremely difficult problems. 

The ray tube approximation is independent of how the propagation in 
each ray tube is handled. However, we assume that the local Mach number 
will be a function of the ray tube area, and in the absence of any other 
explicit formula we adopt the results established in Section 8.1 and use the 
relation in (8.37). 

It is convenient to specify the shock position at time / in the form 

a(x) = a0/, (8.43) 

where a0 is the undisturbed sound speed. The successive shock positions 
are then given by the family of surfaces a(x) = constant. It is clear that in 
principle we have a procedure to determine the function a(x). First of all, 
the shock Mach number at any point can be determined in terms of a(x) 
from (8.43). Secondly, it must be possible to determine all the geometry of 
the rays from the function a(x), since it specifies the family of shock 
positions: this determination gives the ray tube area. The A-M relation 
then provides the bridge to derive an equation for a(x). 

The normal velocity of any moving surface S(/,x) = 0 has been noted 
in (7.63). If this is applied to S = a0t-a(\), the shock velocity is found to 
be t /=a0/ |Va| . Therefore 

M = IVol 
(8.44) 
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To study the geometry of the ray tubes it is convenient to introduce a unit 
vector I for the ray direction at any point and a function A related to the 
ray tube area. The definition of I is clear and it is given in terms of a by 

l = — (8 45) 
|Va|' K ' 

since the rays are normal to the surfaces a = constant. The definition of A 
may need a little amplification. We want to introduce a finite function of 
position that can be used to measure the area of arbitrary infinitesimal ray 
tubes. To do this we consider any particular ray and construct a narrow 
ray tube around it consisting of a bundle of neighboring rays. We may 
then introduce the ratio of the cross-sectional area at any location along 
the ray tube to the area at a standard reference section. In the limit as the 
maximum diameter of the ray tube tends to zero, this ratio approaches a 
finite limit and the limit function is taken as the function A along that ray. 
It is defined in similar fashion along each ray and so becomes a function 
of position. For any infinitesimal ray tube, A is now proportional to the 
ray tube area rather than being the area itself. However, in (8.37) only the 
ratio of areas appears so that this quantity A is still related to the local 
Mach number by 

A f(M) 
Ao f(M0) 

For the same reason the original reference point for the ratio of cross-
sectional areas along the ray tube drops out and is replaced by the initial 
condition A=A0 for A/ = A/0, which is incorporated in (8.46). In fact, A 
can be taken to be any finite function proportional to the infinitesimal ray 
tube area along the ray. Different constants of proportionality on different 
rays would be compensated for by different values of AQ. 

The relation of A to the function a(x) defining the shock positions 
comes essentially from the fact that increases in A along a ray are related 
to the divergence of the ray vector I in (8.45). In fact, we now show that 

(±)-* (8-47) 

and this can also be written 

1 dA \-VA 
A ds A 

■-V-1. (8.48) 

To prove (8.47), the divergence theorem is applied to the volume V in a 
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Fig. 8.3. Ray tube geometry. 

narrow ray tube between the two successive shock positions as in Fig. 8.3. 
We have 

where 2 refers to the sides of the tube, Sx and S2 refer to the ends, and v is 
the outward normal. On the side walls l-i>=0 by definition of 1 so the 
contribution from 2 is zero. On S2, l-v= + 1, while on S,, l-i»= - 1. Hence 
the right hand side of (8.49) reduces to 

JSl A Js, 
dS f dS_ 

A ' 

From the definition of A, both integrals tend to the same value so the 
difference tends to zero as the diameter of the tube shrinks to zero. 
Therefore the integral in (8.49) is zero. Since the choice of V is arbitrary, it 
follows that (8.47) holds everywhere. 

Equations 8.44-8.47 provide a partial differential equation for a(x). 
Collecting the results we have 

M']h- <8 5 0> 

(£-)-»• (8.51) 

where l = Va/|Va| = A/Va has been used in obtaining (8.51) from (8.47). 



Sec 8.4 TWO DIMENSIONAL PROBLEMS 281 

This is a convenient form for comparison with the results of geometri-
cal optics in linear theory. The linear limit corresponds to M-*\ and the 
linear theory replaces (8.50)-(8.52), respectively, by 

|V«|= 1, (8.53) 

V - ( i - V a ) - 0 , (8.54) 

Note that M is replaced identically by unity in the first two, where the 
geometry is concerned, but M — 1 appears as a measure of the strength 
(which is small) in (8.55). In this way the geometry is uncoupled from the 
determination of the strength of the wave. The flow quantities such as 
z = (p—p0)/p0 are proportional to (A/-1) and the linear theory would 
refer to z rather than M-\. From (8.54) and (8.55) we have 

V-(z2Va) = 0. (8.56) 

Equation 8.53 is the same as the eikonal equation (7.65), bearing in mind 
the normalization of a by the sound speed, and (8.56) is the same as the 
transport equation (7.66) with zoc$0. In the linear theory (8.56) was 
obtained first and then interpreted as z<xA~1^2, which corresponds to 
(8.55). Our arguments here have led directly to what was the 
"interpretation." The main point, however, is that the theory developed 
here does reduce to the linear theory in the appropriate limits. The crucial 
difference in the nonlinear theory is the coupling of the strength z with M. 
Even for weak shocks, with M— 1<1, this coupling can make important 
qualitative differences. 

8.4 Two Dimensional Problems 

In two dimensions the shock positions and rays form an orthogonal 
coordinate system as shown in Fig. 8.4, and for some purposes it is 
convenient to formulate the equations in terms of these intrinsic 
coordinates. The successive shock positions are already described by the 
family of curves a = constant, and we introduce a function /?(x) to describe 
the rays as the family /? = constant. The required equations, using a and /? 
as independent coordinates, can be derived by direct transformation of 
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equations (8.50) to (8.52), but it is instructive in bringing out further points 
in the geometry to give an independent derivation. (This was, in fact, the 
first derivation of the theory.) 

S - ^ / < A + A a 8 a ) 8 £ 

Fig. 8.4. Line elements in shock dynamics. 

In the description based on the net of curves a = constant, /? 
= constant, the geometry is closely tied to the line elements for increments 
da,d/i in the coordinates, and the ray tube geometry is introduced via the 
coefficients for the line elements. The line element for an increment rf/J will 
be A(a,(i)d/3 for some function A. This function A is clearly proportional 
to the width of the ray channel between rays ft and fl + dfi. In the two 
dimensional problem ray tubes are of constant depth in the third dimen-
sion; hence A is proportional to the ray tube area and may be used as in 
the first formulation. An increment da corresponds to a change of shock 
position in time dt = da/a0. Therefore the distance traveled is Udt = Mda. 
This shows that the line element for the increment da is Mda. The general 
line element for neighboring points is given by the metric 

ds2=M2da2 + A2d/i2. (8.57) 

The functions M and A in such orthogonal coordinates are not arbitrary 
functions of (a,/J). They satisfy a differential equation which follows 
because we know that the 2-space described by (8.57) is, in fact, flat. The 
curvature calculated in terms of M and A must vanish. Ahother way of 
saying this is that M and A must be such that (8.57) can be transformed 
into 

ds2=dx2 + dy2. 
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The appropriate condition, which will be derived below, is 

te£)+&(*Wh (8i8) _3 
3a \ M 9a 

When the A-M relation is added we have a complete set of equations to 
determine A(a,fi), M(a,(l). From these the rays and shock positions can 
be determined as functions of x and>\ 

To establish (8.58), consider the curvilinear quadrilateral PQRS in 
Fig. 8.4 with vertices (a,/?), (a + 8a,£), (a,/3 + S/?), (a + 8a,/} + 80). Let 
9(a,p) be the angle between the ray and a fixed direction, the x axis say. 
Since the sides PS and QR are of length A8f} and {A +Aa8a)8/$, respec-
tively, and the distance between them is M8a, the change in ray inclination 
from P to S is 

Hence 

M- QR-PS _ i dAM 
S9-PQ~-M~da-Sfi-

Since the inclination of the /? curves is 0+\ir, a similar argument shows 
that 

Equation 8.58 follows by elimination of 9, but it will be more convenient to 
work with the pair of equations (8.59) and (8.60). The system is completed 
by the A -M relation 

/(A/) 

"-"•iw- (M,) 

The equivalence of (8.59H8.60) with (8.50H8.51) is easily established 
using 

_ cosfl sing 
a* M ' °>= M ' r s ,- ,x 

Px A ' Py~ A > 

Once 0, M, A have been found as functions of a and /*, the shock 
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positions may be obtained by integration along rays. On a ray 

dx a 9y . . 
= COS0, -TT7T- = SU10. Mda ' M 3a 

Therefore 

x = x0((3)+\ Mco&9da, 

(8.63) 

y=yo(P)+ f M sine da, 

give the position of the shock at time t = a/a0 in terms of the position 
x = x0(l3),y=y0(!3)att = 0. 

In general, the coefficient A0/f(M0) in (8.61) may be a function of /?, 
since both A0 and A/0 may vary along the initial shock position a = 0. But 
we may define a new variable /? and a new A to eliminate this. The 
invariant quantity is the line element Adfi. If A = k((i)A, then 

Adp = k(P)Adp = Adp, 
where 

P = fk(p)df3. 

Thus any unwanted factor /c(/J) can be absorbed into a new (3. We shall 
assume this has been done, unless otherwise stated, and we take A = A (M). 
In the diffraction problem of Fig. 8.2, the initial shock a = 0 is plane and 
M0 = constant. We choose /? to be the distance from the wall in this 
uniform region. Hence A0= 1 and 

f{M0) 

8.5 Wave Propagation on the Shock 

It is interesting that (8.59)—(8.61) turn out to be hyperbolic and 
represent a wave motion for disturbances propagating on the shock. A 
little thought shows that this should have been expected. The flow in the 
region behind a deforming shock involves two dimensional waves propa-
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Fig. 8.5. Cylindrical waves produced in the diffraction of a shock. 

gating with the local sound speed relative to the local flow as sketched in 
Fig. 8.5. Our approximate equations describe in some way the trace of 
these cylindrical waves where they intersect the shock. 

The wave propagation on the shock is brought out by studying the 
characteristic form of the equations. When A =A (M) is substituted in 
(8.59) and (8.60), they become 

90 A'{M) ZM 

9/8 

90 
9a 

The characteristic form is 

where c 

[h*< 
is the function of M 

c{ 

M 9a "' 

+ l 9 M =0 
A(M) 9)8 

•£)Hfh 
given by 

" > - ■ & 

(8.65) 

(8.66) 

(8.67) 

Since A'(M)<0, the characteristics are real and we have nonlinear waves 
propagating with velocities 

dfi 
da = ±c 

relative to the (a,/?) mesh. These waves carry the changes of the shock 
shape and shock strength along the shock. The Riemann invariants are 
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given by (8.66). We have 

dp . f dM . . dp , . „ . 
+ | —;—= constant on -r- = c, (8.68) 

J Ac da 

f dM . . dp 
- I —r~ = constant on -7- = —c. (8.69) 

J Ac da 

The wave motion is analogous in every way to the prototype of one 
dimensional nonlinear gas dynamics discussed in Chapter 6, and the ideas 
and techniques established there may be taken over to these waves propa-
gating along the shock. 

The A (A/) relation is derived from (8.25), which may be written 

(8.70) 

(8.71) 

Hence 

and the integral in 

, { > 

1 dA _ 
A dM 

Ac-i 

M 
M2-

M2-\ 
\{M) 

-MAO 

) " ■ 

the Riemann invariants is 

u\-fM™, ,n \(M) 

M2-l 

1/2 

dM. (8.72) 

The explicit formulas for weak shocks, M— 1«1, and strong shocks, 
A/» l , will be useful. They are 

, , A (A/o-1)2 

A~4, Ao (A/ -1) 2 J> M W - * 1 , (8.73) 

Ac-l^f1)1'2, <o(A/)~2V2(M-l) ' / : 

and 

A~« = 5.0743fory=1.4, ^Xlf) 

Ac~n~,/2M, w(A/)~/i1/2logA/ 

as A/-+00. (8.74) 
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The characteristic relations are most easily obtained in the (ot,/J) 
coordinates, but in applications to specific boundary value problems the 
description in Cartesian coordinates (x,y) is sometimes preferable. It is a 
simple matter to transform (8.68) and (8.69) to this form. We note that 

dy _ya+yfidP/da 

dx xa + xpdP/da' 

where xa = Mcos9, ya = MsinO, xfi= -,4sin0, y^** A cos 9. Therefore the 
characteristics d/2/da = ± c become 

dy 
^ = t a n ( 0 ± m ) , (8.76) 

where 

-- iH-iEFf- <8J7) 

and the characteristic equations are 

dy 
9 ± «(M ) = constant on C ± : - j - = tan(0±m). (8.78) 

Values of m(M) and w(A/) are given in Table 8.3, which is taken from a 
paper by Bryson and Gross (1961). 

These equations could also be deduced directly from the two dimen-
sional form of (8.50), (8.51). With ax = cos9/M, ay = sin9/M, the equiva-
lent set of equations in 9 and M is 

8 /sinfl\ 8 /cosg\ Q 

dx{ M ) dy\ M ) ' 

8 /cos#\ 8 /s inf l^Q 
8x1 A ) dy[ A ) -

It is straightforward, but longer, to show that the characteristic equations 
are the above. 
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8.6 Shock-Shocks 

The function c(M) is an increasing function of M. Therefore waves 
moving in the positive direction and carrying an increase of M and 0 will 
break in typical nonlinear fashion. From the earlier experience in 
analogous problems, we assume that a discontinuous jump in M and 9 will 
be required; that is, the shock develops a corner as shown in Fig. 8.6. 
Within this approximate theory, we follow the usual philosophy of such 
"shock" discontinuities and derive jump conditions from the conservation 
form of the basic equations. These "shocks" in the waves on the original 
gas dynamic shock will be referred to as "shock-shocks." The waves on the 
shock are interpreted as the trace of roughly cylindrical waves which are 
spreading out in the flow behind the shock. A shock-shock is the trace of a 
true gas dynamic shock in the flow behind the main shock. Thus it 
corresponds to the three-shock Mach reflection (described at the end of 
Chapter 6) which has been studied and investigated directly. We shall 
discuss the relation with Mach reflection in more detail later. 

The differential equations (8.59) and (8.60) of this theory are derived 
from the metric (8.57) of the shock-ray network. The corresponding finite 
form is required to deduce jump conditions. Consider the neighborhood of 
the discontinuity in two successive positions of the shock as shown in Fig. 
8.6. Let the difference in the a coordinates for the two shock positions be 
Aa, and let the difference in the /? coordinates of the rays be A/?. Let 
subscripts 1 and 2 refer to values ahead of and behind the discontinuity. 
Then, in Fig. 8.6, PQ= M2Ao, QR= A2W, SR= M,Aa, PS= Afi/1. 

a + Aa 

Fig. 8.6. Line elements for a shock-shock. 
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Expressing the distance PR in two alternative ways, we have 

(M1Aa)2+(y41Ay8)2=(A/2Aa)2+(y42Ay8)2. 

But the ratio AB/Aa is the shock-shock velocity C in the (a,B) 
coordinates; hence 

Ml-Mi 
c jrnr- (8-8°) 

A2 Al 

The corresponding jump in 0 is deduced from 
cot(02 - 0,) = ian(RPQ + RPS) 

_A2C/M2+Mi/AlC 
\-A2MjM2A, ■ 

Substituting for C from (8.80), we have 

(M!-M?)l/2(AJ-Alf/2 

t™^-^ A2M2 + AXMX • (8-81) 

For the description in Cartesian coordinates (x,y), (8.80) is transformed to 
the equivalent forms 

A, I M\-M\ 

^ - " ' ' - ^ I F ^ f ) • ''-,or2' (882) 

where x is the angle of the shock-shock line with the x axis. 
It is assumed that the functional relation (8.61) between A and M still 

applies even for the sharp change in channel section at a shock-shock, the 
velocity C is determined by (8.80) in terms of M, and M2, and the jump in 
9 is determined by (8.81). Then for weak shock-shocks, M2— M,->0, it is 
easily checked that (8.80) reduces correctly to the characteristic velocity 
(8.67), and (8.81) reduces correctly to the Riemann invariant relation. 
However, for sufficiently strong shock-shocks the dependence of A2 on M2 

will not be given accurately by (8.61) since the relation was derived on the 
supposition that the channel section varies slowly. Nor is it just a question 
of establishing the correct formulas relating M and A at an abrupt change 
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in channel section. In fact, these formulas have been found by Laporte 
(1954). In reality, as is known from the traditional discussion of Mach 
reflection, there is a third shock and a vortex sheet behind the main shock; 
in principle, then, one should take the additional relations from the 
analysis of the three-shock configurations. This would be a complication 
which does not seem to be worth pursuing in detail in view of the 
approximate nature of the theory. We might note, however, that if it were 
done, the A-M relation for the waves following the shock-shock would 
take the form 

A = k(P)f{M), 

where k(P) = A2/f(M2) has to be found from the three-shock relations; it 
would be incorrect to continue the A-M relation through the shock-shock 
back to the initial position and take k = A0/f(M0). The whole thing is like 
the question of entropy in ordinary gas dynamics, where first of all one 
assumes that p=p(p) and this leads to simple waves. But then, since 
compression waves break, shocks have to be considered and they involve 
entropy changes so that p is no longer a function of p alone; behind the 
shock the entropy is constant on each particle path. We have the 
analogous situation with A and M similar to p and p, and k playing a role 
similar to the entropy. The simpler theory of shock-shocks with A=A(M) 
in (8.80) and (8.81) is rather like neglecting entropy changes at gas 
dynamic shocks. This is known to give accurate results if the discontinuity 
is not too strong, and it is expected that the same will be true here. A 
comparison between these simpler shock-shock conditions and the three 
shock results for Mach reflection will be given in Fig. 8.11. It substantiates 
the view that the more elaborate treatment would not be worthwhile in the 
context of this approximate theory. 

8.7 Diffraction of Plane Shocks 

We now consider specific applications of the general theory and start 
with the problem of the diffraction of a plane shock as it moves along a 
curved wall. The geometry for a convex curve is shown in Fig. 8.2. The 
wall is a ray and the shape of the wall provides a given boundary value 
9 = 9W on the wall. If we use the (a,/J) coordinates, the wall can be taken to 
be the ray /? = 0. In the first instance, 0W is known as a function of distance 
s along the wall. However, if we pose 9 = 9w(a) on the wall, we can 
determine the relation between a and s from the final solution. For simple 
shapes, such as sharp corners, this relation is not needed since 9W just takes 
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constant values on the two sides of the corner, and the (a,(l) description is 
simpler. For more general shapes, for which this implicit relation would be 
a nuisance, it is usually better to work in the (x,y) description and use the 
equivalent set of equations (8.78). 

The wall is initially straight with 0W = O and the shock is uniform with 
9 ■» 0, Mm M0. We choose /? as the distance from the wall in the uniform 
region so that A0—l and (8.64) applies. We choose a - 0 as the initial 
position at the start of the corner. The complete problem then is to solve 
the equations (8.65) for initial and boundary values given by 

0-0 , M"M0 fora = 0, 0</?<oo, 

9 = 9w(a) for 0 = 0, 0<o<oo. 

The propagation of the waves along the shock is analogous to one 
dimensional waves in gas dynamics. The displacement of the wall corre-
sponds to a piston motion, and we may think of the relative displacement 
of the wall pulling or pushing the foot of the shock and sending out waves 
along it. A convex corner corresponds to the piston being withdrawn and 
sending out expansion waves, whereas a concave corner corresponds to 
pushing the piston in to produce compression waves. In either case, until 
shock-shocks are produced by breaking, the solution is diagnosed as a 
simple wave by exactly the same type of argument used in Section 6.8. The 
C_ invariant in (8.69) is constant everywhere since all the C_ originate in 
the uniform region ahead of the waves in which 9-0, M<= M0. Therefore 

9-u(M)--a(M0) (8.83) 

throughout, where w(A/) is given by (8.72). In particular, the Mach number 
Mw at the wall, which is perhaps the most important result, is given in 
terms of 9W without further calculation of the solution. We have 

0w = «o(Mj-w(A/o) . (8.84) 

For any particular 9W, the corresponding value of Mw is obtained by 
solving this relation using Table 8.3. 

In the simple wave, the values at the wall propagate out and remain 
constant on the C+ characteristics shown in Fig. 8.7. If a characteristic 
variable r is specified as the value of a at the point of intersection of the 
characteristic with the wall j8—0, the simple wave solution is 

8-9w(r), M=MW(9W), / B - ( « - T ) C ( A / W ) . (8.85) 
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Fig. 8.7. The characteristics in the diffraction of a shock. 

The corresponding equations in the (x,y) description are 

0-8w-txa-yw(l), M = MW{9W), 

y=y„(i) + (x-i)\&n{Ow + mw). 
(8.86) 

Expansion Around a Sharp Corner. 

For a sharp convex corner, 9 jumps from 0 to a negative value 9W and 
remains at that value. The corresponding Mach number at the wall jumps 
from M0 to the value Mw given by (8.84). The disturbance is a centered 
simple wave (see Fig. 8.8), and the solution for M in the wave is found 
from 

| - c ( 3 # ) , c(Mw)<^<c(M0). 

The corresponding 9 is given by (8.83). Along the shock 

(8.87) 

dx = — sin 8, 
dy 

= cosff; 
A dp ' A dp 

therefore at time / = a/a0 the shock is given in terms of the parameter P by 

x = aMwcos9, 

y-aMwsm9w + 

-f, 
i 

f(M0) 

AM) 

/(A/0) 

sin9d/i, 

cos 9 dp. 

(8.88) 
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Since M and 9 are functions of the single variable fi/a, it follows that x/a 
andy/a are also functions of this single variable. Hence the shock pattern 
expands uniformly in time. This could have been deduced directly in 
advance by dimensional arguments. There is no fundamental length or 
time in the problem so that all flow quantities must be functions of x/a0t 
and y/a0t. This is equally true in the exact formulation and in the 
approximate geometrical theory. 

The first disturbance propagates out on the characteristic /? = ac(M0). 
Since /? measures distance from the wall on the initial undisturbed shock 
and w=a0t, the velocity in physical space is a0c(M0). One of the few 
quantities that can be determined in the exact formulation of this problem 
is the speed of the first signal. According to the theory of sound, the first 
possible disturbance from the corner travels out into the flow behind the 
shock with the local sound speed a relative to the local flow velocity u. 
Therefore the disturbance travels along the shock with speed 

{a>-(U-u)2}l/\ (8.89) 

where U is the shock velocity. The quantities U,a,u all can be expressed in 
terms of A/0, and it is found that (8.89) is a0c* where 

m f (M0
2-l)[(Y-l)M0

2 + 2] 
C = \ (y+l)A/0

2 

This is to be compared with 

where X(M) is given by (8.26). For weak shocks, 

1/2 

C o ~ { ^ ( M 0 - l ) } , c * ~ { 2 ( M 0 - l ) } 1 / 2 , Af0-»1; (8.90) 

for strong shocks, taking y - 1.4, 

c0~0.4439M0, c*~0.4082M0, A/0-»oo. (8.91) 
Thus the dependence on M0 is the same, and in fact there is reasonable 
numerical agreement for M0>2. For weak shocks, c0=$c*. One could 
claim that c* gives only the speed of the first signal and the main 
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disturbance could in fact come later. But on the whole the evidence seems 
to be that for weak shocks the true disturbance is distributed over the 
whole sonic circle and the approximate theory concentrates the distur-
bance roughly halfway out. We shall see below that the prediction of the 
total magnitude of the disturbance, as evidenced by the value of Mw, is 
very good and the concentration of the disturbance in this theory is 
unavoidable. For stronger shocks the disturbance is more concentrated 
and the approximate theory represents the behavior very well. One might 
add that the theory emphasizes local behavior near the shock, and this is 
obviously better for stronger shocks. Fortunately, the problems of weak 
shocks are less interesting and can be handled by linear acoustics in any 
case. 

Even though the exact formulation for diffraction around a sharp 
corner can be reduced to a similarity solution in x/a0t,y/a0t, very little 
can be done with it in general. However, for small angles 9W, the flow 
behind the shock can be linearized and the solution carried through. This 
was done by Lighthill (1949). We may compare our results with Lighthill's 
results in this special case. For small 0W, (8.84) for the Mach number Mw at 
the wall may be approximated by 

Mw-M0=c(M0)9w 

We compare this with Lighthill's results in the two extreme cases A/Q—>1 
and A/0-»oo. For weak shocks 

A^-^o~{^o-l)} K, 

whereas Lighthill has 8/3w times this. For strong shocks 

Mw-MQ~0M39M(flw; 

Lighthill's value has to be taken from a graph but the numerical factor 
appears to be about 0.5. Lighthill's theory shows that the disturbance is 
spread out over the entire sonic circle for weak shocks, but for stronger 
shocks it concentrates more and, in fact, the curvature tends to infinity as 
A/0-*oo. 

In view of the relative simplicity of this approximate theory, the 
results are remarkably good. Lighthill's analysis, limited to a sharp corner 
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and to a small angle, is already quite heavy by comparison, and the 
approximate theory may be applied to the enormous variety of problems 
for which other analytic solutions have not been found. The results should 
be good except for very weak shocks and even there the prediction of total 
Mach number change should be good. Experimental tests showing this 
agreement will be noted later. 

The solution for any initial Mach number and any corner angle is 
given in (8.87) and (8.88). The formulas simplify in the limit of strong 
shocks, M0-*oo, and the form of the solution becomes clearer. For strong 
shocks, the appropriate expression for Mw becomes 

MW<-M0CKP\-^A, (8.93) 

and in the fan 

M lP*a 
M0 \ M0a 

l / ( n + I ) 

(8.94) 
yfii , ^ 

^=^TTl o 8M0«-

The equation of the shock at time t = a/a0 is found from (8.88) with 
f(M)=M~". It is easiest to use 9 as a parameter instead of /?, and to fix 
the constants of integration from ;c = A/0a0f, y = MQa0t/Vn, when 0 = 0. 
Then we have, 

^L-J"±±)l/2
e»/V*sm(-n-0), ^ 

M°;°' " L 8W<9<0, (8.95) 
^—Jn+1) e*/V*cos(T,-0), J 

where tamj = v^j. The shape of the shock is plotted in Fig. 8.8 for 
9W—— IT/2. The similarity form of the solution has already been noted, 
and we add that for strong shocks the solution scales with M0 also. 

The solution for various M0 has been compared with experimental 
results by Skews (1967). The agreement is found to be reasonably good 
and typical results are reproduced in Fig. 8.9. 

For strong shocks there is no limit on the magnitude of 0W for which a 
solution can be found. For sufficiently weak shocks there is a limit, since 
Mw cannot decrease below unity. Hence if 9W decreases below the value 



Fig. 8.8. Theoretical shock shape in diffraction around a 90° corner. 
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Fig. 8.9. Shock diffraction: comparison of experimental results (solid lines) with theory 
(dashed lines). (Skews) 
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*um g» v e n b y 

0 fM°dM 
"lim~ J, Ac ' 

there is no solution. Presumably this corresponds to strong separation or 
other effects at the corner, but at present the interpretation is unclear. 

Diffraction by a Wedge. 

For a concave corner, the waves on the shock break and a shock-
shock must be introduced into the solution (8.85), using the jump condi-
tions established in Section 8.6. We consider in detail only the solution for 
a sharp concave corner, which is equivalent to the problem of diffraction 
of a plane shock by a wedge. This problem, has received considerable 
attention in the literature (see Courant and Friedrichs, 1948 p. 338). In the 
approximate theory the solution is simple. The solution is a shock-shock 
separating two regions in which M and 0 are constant, as in Fig. 8.10. 
From (8.81), the Mach number at the wall is obtained by solving 

t a n ^ 
{Ml M2)i/2(Al-Al),/2 

AWMW + A0M0 A, 
f(Mw) 

' f(M0) 
(8.96) 

The angle x for the line of the shock-shock shown in Fig. 8.10 is expressed 
from (8.82) as 

t a n ( X - 0 J = 
Aw( 1 - ( M 0 / A / J 

M \-(Aw/A0)
2 

1/2 
(8.97) 

Fig. 8.10. Mach reflection at a wedge. 
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For strong shocks 

and x becomes a function of 9W alone. It is plotted in Fig. 8.11. 
In reality, the true configuration is the Mach reflection with a third 

reflected shock and a vortex sheet, as indicated in Fig. 8.10. Moreover, the 
"Mach stem," the part of the shock near the wall, is slightly curved. The 
gas dynamic shock relations for the three shocks provide relations between 
the angles of the flow and the shocks at the triple point. If we assume that 
the Mach stem is straight, these allow an alternative determination of x as 
a function of 9W. This is the broken line in Fig. 8.11. The difference for 
small 9W is about as expected, being of the same order as the discrepancy in 
(8.91). Then, fortuitously, the curves come closer together and cross. In the 
three-shock theory there is an upper limit on 9W at which Mach reflection 
goes over into regular reflection (see Section 6.17), while the simplified 
shock-shock relations continue to predict a very tiny Mach stem. However, 
for 9 greater than about 70° the Mach stem is so small that we have 
virtually the same picture as regular reflection. Again we conclude that the 
theory is remarkably good. 

Diffraction by a Circular Cylinder. 

Perhaps the most severe test of this theory is the application to 
diffraction by a circular cylinder which was carried out by Bryson and 
Gross (1961) and then compared with their experimental results. There is a 

x-t 

25° 

20° 

15° 

10° 

5° 

0° 10° 20* 30° 40* 50* 60* 70* 80° 90* 

Fig. 8.11. The Mach reflection angle x-# versus wedge angle 9. The solid line refers to the 
present theory; the broken line refers to the three-shock theory. 
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Fig. 8.12. Diffraction of a shock by a sphere or a cylinder. 

difficulty in starting the solution at the nose, but Bryson and Gross 
proposed a satisfactory way to handle this. First of all, the shock suffers 
regular reflection until an angle of about 45° around from the nose is 
reached, when a Mach stem is formed and subsequently grows. As noted 
in Fig. 8.11, the approximate theory predicts a Mach stem for all 6W up to 
IT/2. Bryson and Gross adopted the view that this is virtually regular 
reflection if the Mach stem is extremely small. There is still a difficulty in 
getting the calculation started at the nose, however, since the behavior 
there is singular. They adopted the following procedure. It is assumed in 
the early stages that the small Mach stem is straight and radial, as in Fig. 
8.12. If its length is b at an angle <p around from the nose, and the radius of 
the cylinder is normalized to unity, the undisturbed rays contained in a 
stream tube of area A0=(1 + b)sin<p pass through the area Al = b. Hence 

b = /M 
(l + 6)sin<p /(A/0) 

(8.98) 

Since a is continuous at the shock-shock and is given by x/M0 in the 
undisturbed part of the shock, we have a = { l - ( l + fe)cos(p}/A/0. The 
Mach number M is given by 

1 i n i da 
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0 - 1 2 -

Fig. 8.13. The shock-shock standoff distance. 

at radius R. Putting these two together and taking the mean position 
R = i + \b for M„ we have 

M° 1 d ,. , 1 j , , ^ (8.99) 

Equations 8.98 and 8.99 provide a differential equation for b(<p) to be 
solved subject to the initial condition A = 0,<p = 0. For strong shocks, 
A/0»l, it is 

db M j . . X t 1 + V 2 -r- = (l + Mtanq> dtp cos<p (l + 6)sin<p 

\/n 

(8.100) 

For small <p, 

6 = sin"+V, 

The solution of (8.100) is plotted in Fig. 8.13. Bryson and Gross use this 
solution up to <p = 45c and then continue with the detailed characteristics 
solution. When the two Mach stems meet behind the cylinder a second 
shock-shock is formed. The results are shown in Fig. 8.14 and are com-
pared with their experimental observations. The theoretical shock positions 
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x/D 

Fig. 8.14. Diffraction by a cylinder. M0 = 2.81: circle = Re7.79x 104; triangle-Re 0.87 X 104, 
cross-vortex locus. (Bryson and Gross, 1961.) 

and the two shock-shocks are the full lines, the rays are the broken lines. 
The circles and triangles are experimental points for the shock-shock 
positions at Reynolds numbers Re = 7.79xl04, Re = 0.87xl04, respec-
tively. In the experiments a vortex is formed near the front and its locus is 
shown by the crosses; it is, of course, not included in the simple theory. 
Schlieren photographs of the flow pattern are presented in Figs. 8.15a,b,c. 

Diffraction by a Cone or a Sphere. 

For three dimensional problems, the formulation in (8.50)-(8.52) is 
used. For axially symmetric problems, the first two equations are 

d I rM \ . 3 / rM \ n 



Fig. 8.15. (a) Schlieren photograph of shock diffraction on a cylinder of 5 in. diameter. 
A/0 = 2.82. Note the boundary-layer separation starting. Notation: I.S., indicent shock; M.S., 
mach shock; R.S., reflected shock; CD., contact discontinuity; T.P., triple point; V., vortex. 
(Bryson and Gross 1961.) 
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Fig. 8.15 (b) Schlieren photograph of shock diffraction on a cylinder of j in. diameter. 
A/0=2.81. Notation: I.S., incident shock; M.S., mach shock; R.S., reflected shock; CD., 
contact discontinuity; T.P., triple point; V., vortex. (Bryson and Gross 1961.) 
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Fig. 8.15 (c) Schlieren photograph of shock diffraction on a cylinder of j in. diameter. 
M0 = 2.S4. Notation: M.S. mach shock; R.S. reflected shock; CD., contact discontinuity; 
T.P., triple point; V., vortex. (Bryson and Gross 1961.) 
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where x is distance along the axis and r is the radial distance. It is again 
convenient to introduce the ray angle 9 by 

and work with the set 
a = 

cosfl 
M ' a = 

sinfl 
M ' 

JWsinJA 3 /cosfl \_n 

dx{ M j dr\ M ) ' 

A_ AM) 
AM0) 

(8.101) 

The boundary condition on a solid wall r = r„(x) is tan0 = r^(;c). 
For diffraction by a cone, the solution is a similarity solution in which 

all quantities are functions of r/x. Equations 8.101 can be reduced to 
ordinary differential equations which have to be solved subject to the 

Fig. 8.16. Comparison of theoretical and experimental results for the shock-shock angle in 
diffraction by a cone. (Bryson and Gross, 1961.) 
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x/D 

Fig. 8.17. Diffraction by a sphere. Circles represent M0 —2.85; crosses represent A/0"»4.41. 
(Bryson and Gross, 1961.) 

conditions on the wall and at the shock-shock. The details are given in the 
original paper (Whitham, 1959b). Bryson and Gross extended the calcula-
tions and compared the results with experiments. Figure 8.16 compares 
shock-shock angle x with wall angle 9W for M0 = 3.68. 

For a sphere, Bryson and Gross performed a characteristics calcula-
tion for (8.101), starting the calculation from an approximate treatment of 
the nose region analogous to their method for the cylinder. Their results 
are not as detailed as for the cylinder, but the agreement between theory 
and experiment shown in Fig. 8.17 is equally good. 

8.8 Stability of Shocks 

The theory puts into quantitative terms one of the arguments that has 
always been used to explain the stability of plane shocks. Suppose that for 
some reason a portion of the shock has developed a bulge as shown in Fig. 
8.18. The delayed part is now concave forward and so will strengthen as it 
propagates. As it strengthens, it speeds up and thus tends to reduce the 
bulge. Similarly, any section of the shock ahead of the rest weakens and 
slows down,. The overall effect is one of stability. The arguments for 
changes of strength depending on the curvature are put into quantitative 
terms in the A-M relation. 
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X 

'£ 

Fig. 8.18. Sketch of a shock positions (solid lines) and rays (dashed lines) for nonlinear 
resolution of a caustic. 

In linear geometrical optics, a concave portion of a wavefront would 
produce a caustic, since the linear rays would be normal to the initial wave 
front and form an envelope (refer back to p. 247). As the wavefront 
propagates down the converging ray tubes it strengthens, and its strength 
tends to infinity as it reaches the caustic. But in the linear theory the speed 
is unchanged, and hence the rays remain the same. In the nonlinear theory 
developed here, the shock speeds up as it strengthens. This pushes the rays 
apart and there is no overlap and no caustic. The shock overshoots as 
shown in Fig. 8.18 and the disturbance evens out as it spreads along the 
shock. 

In detail the problem would be formulated as an initial value problem 
with M and 6 prescribed on the initial shock position. In two dimensions 
the problem would be exactly analogous to the problem discussed in 
Section 6.12. There would be an initial interaction region and then the 
disturbance would separate into two simple waves moving in the positive 
and negative directions along the shock. In each the total change in 9 and 
M would be zero, so that they would ultimately take the 7V wave form with 
shock-shocks at the front and at the back and a linear decrease of 0 
between. The shape would be that of Fig. 8.18. Detailed calculations will 
not be given here. According to the general results established earlier, the 
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shock-shocks decay like t~x/1. For a uniformly distributed disturbance 
such as an initial sinusoidal shape, the disturbance eventually decays like 
\/t (see Section 2.8). 

Stability of Converging Cylindrical Shocks. 

An interesting and important question arises concerning the stability 
of converging cylindrical and spherical shocks. The expected intense 
pressure at the center would be considerably reduced by imperfect focus-
ing. Experiments by Perry and Kantrowitz (1951) showed very symmetrical 
shapes for weak and moderate shocks, and some indication of instability 
for strong shocks, although the conclusions do not seem to be clear-cut. It 
is interesting to analyze the question using this theory. Local corrugations 
on the shock will have the tendencies described for plane shocks, but these 
have to be superimposed on an overall convergence and strengthening of 
the whole shock. Delayed parts will have the tendency to strengthen but 
the other parts are already strengthening due to the general convergence 
and are nearer the center. So the delayed parts could continue to lag 
behind and could possibly be left further and further behind. While the 
radius is sufficiently large it seems clear that the behavior would be close 
to that of plane shocks and the propagation would be stable. The question 
then concerns the behavior as the strength becomes large close to the 
center. 

The problem for strong cylindrical shocks was analyzed by Butler 
(1955) using a small perturbation treatment which implicitly included the 
approximations of the ray tube theory. With the general formulation 
developed here, it can be handled more easily and without making small 
perturbation assumptions. For strong shocks, the two dimensional equa-
tions (8.59H8-6!) m a y be written 

4^ + r i i r - = 0 , (8.102) 

The symmetrical solution for a shock with initial radius R0 is 

, . - l / O i + l ) 

*—£, „_^_«±i._j2M , a<0. (8104) 
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This is, of course, Guderley's solution. 
To study perturbations to this solution, we use a hodograph trans-

formation of (8.102H8-103), and interchange the roles of dependent and 
independent variables. This produces linear equations without any 
approximation as to the size of the perturbations. First we introduce new 
variables 

n + l 

\Mo) Vn V^ 

and (8.102M8.103) become 

to*9!?'0-
99 9? _ n 

a* a/? 

(8.105) 

In these variables the symmetrical solution is qcc\/s, 6ccj3. In the 
hodograph transformation, fi,s are treated as functions of q,&. The trans-
formation formulas are 0^ = Jsq, &s = — Jfiq, q$ = — Js#, qs = Jfle, where J 
is the Jacobian 9(g,0)/3(s,/J). The equations in (8.105) become 

When /? is eliminated we have the single equation 

q\q + 2qsq = seB. (8.106) 

Solutions to this (by separation of variables) are 

1 / l \ , / 2 

s = q»eim*, f l = - ^ ± ^ - m 2 ) . (8.107) 

If m = 0, jw= — 1 gives the symmetrical solution. If m>\, <3l|U.= — j . 
Therefore when q-^cc as the shock contracts to the center, the harmonics 
dominate the symmetrical mode. Hence the shock is unstable. 

The imaginary part of /i shows that the disturbance consists of waves 
traveling around the shock. When the disturbance becomes large it is 
possible for J to vanish. This means that the mapping from the (q, 0) to 
the (s,{!) plane is no longer single valued, and it corresponds to the 
appearance of shock-shocks. When this stage is reached, further calcula-
tions would have to be carried out numerically in the (s,P) plane. 
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8.9 Shock Propagation in a Moving Medium 

For propagation into a moving stream, the linear theory shows con-
clusively that rays are not orthogonal to the wavefronts (see Section 7.9 
and Fig. 7.12). Correspondingly, we cannot expect the rays to be orthog-
onal to the shocks in the nonlinear theory. At first sight this poses a 
problem since the nonlinear formulation relied on the orthogonality to 
compare propagation in a ray tube with propagation down a given chan-
nel. However, a way out is to consider propagation in a uniform stream as 
a test case. In a frame of reference moving with the stream the original 
formulation applies. It remains only to make a Galilean transformation to 
another moving frame to see the correct formulation for moving media. 
Then, as expected, the rays are not orthogonal to the shocks. The re-
sults have been given (Whitham, 1968) and applied by Huppert and 
Miles (1968). It would be interesting to pursue this investigation to see how 
the theory for a moving medium might have been formulated directly. It 
indicates that the closeness of rays to streamlines is not as important as 
was originally thought, and this might lead to more novel points of view. 



CHAPTER 9 

The Propagation of Weak Shocks 

As indicated at the beginning of Chapter 8, we can pursue a different 
approach and cover a different class of problems when the waves are 
moderately weak. The geometrical effects are accepted unchanged from 
linear theory and we are then able to cope with more general nonlinear 
interactions within the wave profile. The approximation procedures will be 
developed for unsteady waves, using spherical and cylindrical waves as 
prime examples, and then applied more specifically to the sonic boom 
problem, which is perhaps the most interesting situation where weak 
shocks have to be studied. The unpleasant aspects of sonic booms loom 
large, but they are in fact extremely weak shocks and, naturally, the aim is 
to make them weaker. The maximum overpressure at the ground for 
current and contemplated supersonic transports is about 2 lb/ft2; this 
corresponds to a shock strength of about 10"3. The basic problem for 
uniform velocity and flight path may be treated as one in steady super-
sonic flow, so this work also continues the development in Section 6.17. 

9.1 The Nonlinearization Technique 

Geometrical effects arise in their simplest form for spherical waves. If 
the linearized theory is governed by the wave equation, the solution for an 
outgoing wave may be written* 

<P = — - . (9-1) 

where c0 is the propagation speed. The amplitude decays like l/r as the 
energy spreads out across a surface area increasing like r1. The wave 

•It was convenient in Section 7.3 to use different symbols R and r for the radial distances in 
spherical and cylindrical geometry, since the solution for a point source was used to generate 
the solution for a line source. It is no longer necessary and we use r in each case. 
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profile is reduced by the factor \/r but is otherwise undistorted. If this is 
the linearized solution to a nonlinear problem, we know that the nonlinear 
distortion of the profile will be crucial for a correct treatment of wave 
breaking and shock propagation. Suppose that the correct nonlinear pro-
pagation speed determined from the characteristic equations is in fact c(y\ 
the linearized speed c0 being its value at <p = 0. Then the nonlinear 
distortion may be introduced by modifying (9.1) to 

/ ( T ) / Q , , 

<p=-y-, (9.2) 
where r(t,r) is to be determined so that the curves T = constant satisfy the 
exact characteristic condition. That is, we require 

-r = c(<p) on T = constant. (9.3) 

Since <p is expressed as a function of T and r, this provides a differential 
equation to determine T, and the inverted form can be integrated im-
mediately. We have 

~~ on T = constant; (9.4) dr c{Ar)/r) 

hence 

J c{j{r)/r} 

where the integration is carried out holding T constant and T(r) is an 
arbitrary function allowed by the integration with respect to r. Equation 
9.5 determines r(t,r) implicitly and the combined equations 9.2 and 9.5 
provide us with a "nonlinearized" solution. This nonlinearization techni-
que was proposed first by Landau (1945) and independently by the author 
in the context of the sonic boom problem (Whitham, 1950, 1952). 

The function F(T) corresponds to the arbitrariness in the choice of the 
characteristic variable. Once 7\T) has been chosen, / (T) is determined from 
an appropriate boundary condition at the source. Different choices of T(T) 
are compensated for in the resulting / (T) . For the general development one 
may take T(T) = T for simplicity but the extra flexibility is sometimes useful 
in specific problems. It should be noted that the functions / in the linear 
result (9.1) and in the nonlinearized version (9.2) will be the same only if 
T{r) is chosen so that T = t — r/c0 (to a sufficient approximation) where the 
boundary condition is applied. 
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Of course this nonlinearized solution usually does not satisfy the 
relevant nonlinear equations exactly, nor has it been deduced at this point 
as a formal approximation. However, it appears to include the important 
nonlinear effects for small <p. In the simpler case discussed in Section 2.10 
and in the case of plane waves, we saw that the linearization of the 
characteristics was the source of the nonuniform validity. Nonlinearity will 
also modify the amplitude factor 1/r, but one would expect this second 
modification to be uniformly small in <p. This view will be substantiated 
later when we look more carefully at the justification of the procedure. 
First, the further consequences and extensions of the procedure are 
mapped out to see its full scope. 

Since <p takes a particularly simple form for spherical waves, the 
integral in (9.5) is tractable and can be simplified by a change of variable 
to f(r)/r. In other problems, however, the corresponding expressions are 
less amenable and it is valuable to streamline the analysis. In using the 
linearized result as a starting point, we have already assumed that <p is 
small so it is consistent to expand c(<p) as c0+ c,<p + 0(<p2), say, and to use 
(9.3) in the approximate form 

;<p. (9.6) 
dr c0 v 

The expansion is taken for dt/dr rather than dr/ dt in view of the 
subsequent integration with respect to r. Then corresponding to (9.4) we 
have 

dt _ \ C\ / ( T ) 
dr c0 d r 

on T = constant, (9.7) 

and the characteristics are 

/ = - - % ( r ) l o g r + r ( T ) . (9.8) 

The linear theory would take T=t-r/c0 or a function of it, and we see 
that it is not uniformly valid because the additional term tends to infinity as 
r-*oo. The term in logr is small compared with r, but it should be 
compared rather with c0t-r, which measures distance from the head of 
the wave. The view that the correction of the propagation speed would be 
crucial is confirmed, and there is a close analogy with the situation 
discussed in Section 2.10. 
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The approximation of (9.4) by (9.6) is not only a simplification. In 
most problems it would actually be inconsistent to keep higher order terms 
in <p, since (9.2) is itself only a first order approximation to <p. 

The singular behavior of logr as /•-»() is only a minor nuisance since 
the correction term is not important near the origin and we could revert to 
linear theory there. However, to use (9.8) as it stands we must exclude the 
origin and apply the solution outside some sphere r = r0(t) on which 
boundary data are given. (For example, a fluid source could be represented 
by an expanding sphere pushing out the fluid.) We may then choose T(r) 
so that (9.8) becomes 

< = f - % K > l o g - ^ T + T . (9.9) 
co cl r0(r) 

With this choice, the nonlinear T agrees with t — r/c0 on the boundary 
curve and the function / is the same as in the linear theory. 

Waves described by (9.2) and (9.8) will break whenever the 
characteristics form an envelope and the solution becomes multivalued. If 
c,>0, a wave carrying an increase of <p breaks. Assuming that 7" (T )>0 , 

this means that breaking occurs when / ' ( T ) > 0. On the envelope, 

% ( T ) l o g r - r ( T ) - 0 . 

For (9.9), breaking first occurs at a distance given by 

W O * i / ( 0 

where Tm corresponds to the maximum of f'(r). Then a shock must be 
fitted in. The techniques of shock fitting follow closely the earlier treat-
ment and we defer the discussion for the present. 

We now consider extensions of the procedure. First, the linear solu-
tion may not be as simple as (9.1). For example, in cylindrical waves the 
solution (7.29) is 

9"~U f 
qiv)dn (9.11) 

V(/-T,)2-r2/c0
2 

The characteristic variable t — r/c0 is significantly visible in the upper 
limit, but both / and r appear also in the integrand. However, the evidence 
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from plane and spherical waves is that the nonlinear effects become 
important at large distances. And at large distances, we saw in (7.32) that 

* JUT-- (9.12) 

Therefore the nonlinearization for large distances can follow closely the 
spherical case. If the correct propagation speed is c(<p) = c0+c,<p+ 0(<p2), 
we take 

A*) < P=37i ' (9.13) 
r 

dt _ 1 C\ A?) 
dr c0 c2

0 r'/2 ' 

' - - T - ^ T / W + T . (9.14) 
co c0 

Here the function 7\T) arising in the integration with respect to r has been 
taken to be T; the correction term remains small as r-»0 and there is no 
need for more elaborate choices of JT(T). Again, the linear theory, which 
takes r—t — r/c0, is not uniformly valid as r—»oo. Moreover, although the 
emphasis so far has been on the behavior at large distances, the deviation 
of the characteristics from the linear ones depends on 

t-r/c0 

this is large near t — r/c0=0 as well as for large r. So the nonlinear 
correction will be equally important near the wavefront / - r /c 0 = 0 at all 
distances. Significantly, (9.12) is valid for (c0/ -r)/r<& 1, so that it covers 
both situations; the corresponding nonlinearized solution given by (9.13) 
and (9.14) is also valid near the front of the wave for all r. This is of 
tremendous importance since the most interesting problems will have a 
shock at the head of the wave and the nonlinearized solution derived from 
(9.13) can be used to study it in its entirety. 

We may nonlinearize the whole solution by taking 

•A) 

KU ' (9.16) 
V(T-ij)(T-i , + 2r/c0) 
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and determining the nonlinear T from this. In this more complete form, the 
characteristic equation corresponding to (9.14) becomes quite complicated. 
But the extra terms remain small compared with /(r)r1/2. It is therefore 
sufficient to take (9.16) combined with (9.14) as a nonhnearized solution 
over the field. In any case, the nonlinearization is of prime importance in 
the region C0T/>«: 1, where (9.16) may be approximated by (9.13) with 

It should be noted, however, that appropriate boundary conditions are 
normally prescribed outside the region c 0 r / r< l , so that either (9.16) or 
the full linear solution to which it reduces is required to determine the 
function/(T) that appears in (9.13)-(914). 

The basic role of geometrical optics now becomes apparent, for (9.12) 
is the geometrical optics approximation to cylindrical waves. In general, 
geometrical optics provides a ray geometry and (for uniform media) we 
have 

< P - * ( * > / ( / - ~ ) (9.17) 

along each ray, where s is the distance along the ray, $ ( J ) is the amplitude, 
a n d / ( / - J / C 0 ) describes the wave profile. This is the natural form for 
nonlinearization and is applicable just where the nonlinear effects are most 
important—near the head of the wave and at large distances. The non-
linearization follows by taking 

? - * ( * ) / ( T ) , 

( 9 ' 1 8 ) 

t=---\f{r)\ Hs')ds'+T{r). 

Combining the results for each ray we have a complete nonhnearized 
solution. It should be noted that c(<p) refers here to the velocity on the ray 
and this is not the same as the normal wavefront velocity for anisotropic 
media. For nonuniform media, c and c0 may also depend on s. The s/c0 is 
replaced by fds/c0 and any dependence of cx/c\ on s must be included 
under the integral sign in (9.18). 

At this point, the procedure can be compared with the one in the last 
chapter. Roughly speaking, the / (T) for those problems was a step function, 
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so the nonlinear interaction took a mild form and strong nonlinear effects 
on the ray geometry could be included. Here the ray geometry and its 
effect on the amplitude $(s) is accepted unchanged from linear theory, but 
more general profiles / (T ) can be handled. Presumably a combination of 
both approaches would be needed in still more general problems, but the 
analysis looks forbidding. 

A second extension of the techniques is required because the non-
linear propagation speed is often a function of the derivatives, qp, and tps, 
rather than of <p itself. However, the procedure goes through. The expres-
sions for <p, and <ps are each written in the form corresponding to (9.17) and 
the revised characteristics are determined from the appropriate expansion 

— = — = a,<p, — a2% on T = constant. 
CIS C CQ 

From (9.17) the corresponding first terms for <p,,<ps are 

<P, = <I>(*)/'(T), 9 , - - - f -* ( j ) / ' (T ) , 

and the characteristic relation becomes 

The characteristics are given by 

, = - £ - - A : / ' ( T ) (%(s')ds'+T(r). (9.19) 
c0 •'o 

A specific example of this is provided by spherical waves in gas 
dynamics. The linear theory is the acoustic theory and <p,,<pr are related to 
the pressure and velocity perturbations. From (7.3)-(7A) we have 

P-Po 1 yH'-r/th) 
— — = - —<P/ = : 

Po flo r 

u ! F(t-r/a0) f{t-r/a0) 
— = —<p = , 
«o ao r a0r* 

where F(T)= -f'(r)/al. The perturbation in the sound speed a will also be 
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needed, and it is given by 

a~a° -_ y~l p~Po - t~l F('~r/ao) 
a0 2y p0 2 r 

The nonlinearized solution is 

P-Po VF(r) a~ao 7 - 1 F(T) 
Po r ' ao 2 

u m AT) 

anr' 

(9.20) 

(9.21) 

where r(t,r) is to be determined from the improved characteristics. The 
exact characteristic equations were given in (6.135). The outgoing 
characteristics have velocity a + u. Therefore the first order correction to 
the characteristics requires 

dt 1 1 a + u-a0 
■ ex . 

dr a + u aQ a\ 

From (9.20) and (9.21), this means that 

dt = 1 Y+l Fjr) | i AT) 

dr a0 2a0 r a% r2 ' 

* = ^—F(r)iogr- — — + T{T). 

(9.22) 

(9.23) 

[The relation between F(r) and/(r) is modified to/ ' (T) = -a^F( r ) 7"(T) if 
T'(T)=£ 1.] Since our interest is in the region a0T/r<l , and the term f(r)/r 
is always relatively small in this region, it is sufficient to use 

P-Po Y-F(T) a-a0 Y - 1 H*) F(T) = = __ u= 

p0 r a0 2 r r 

Y+l V -\T-nr)\ogr+T{7). 
(9.24) 

This is a rather trivial example of retaining only the geometrical acoustics 
approximation to (9.21) and (9.23). Cylindrical and other waves in gas 
dynamics are handled similarly and the geometrical acoustics approxima-
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tion provides a greater simplification similar to the step from (9.11) to 
(9.12). 

When derivatives appear in the expression for c it is more convenient 
to take them as new dependent variables. Then, in all cases, the geometri-
cal optics approximation leads to expressions for the dependent variables 
which are proportional to 

* ( * ) F ( T ) , 

where <b(s) is an amplitude function and F(T) describes the wave profile. 
The corrected propagation speed, using this approximation, takes the form 

c~c0+cpc9(s)F(r), (9.25) 

where the coefficient A: is a constant determined by the particular relation 
of c to the dependent variables. The improved characteristics satisfy 

f t - J L - * » ( , m T ) (9.26) 

and are given by 

r« — -*F(T) / "*(* ' )<&'+T(T) . (9.27) 
co •'o 

Shock Determination. 

Shocks, when required, are fitted in using the weak shock condition 

tf-£(*, + c2), 

where U is the shock velocity and cvc2 now denote the propagation speeds 
on the two sides. In the present context, it is convenient to describe curves 
in the (s, t) plane by giving / as a function of s, so the shock condition is 
used in the form 

( fL-M(* ) , + (SU- (9-28> 
which is equivalent to first order in the deviation of velocities from c0. If 
the shock is specified by 

t-f-Gis), 
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we have 

G'(s)=^k{F(rl)+F(r2)}<t>(s), 

G(s) = kF(rl)[%(s')ds'-T(rl), 

G(s)=kF(r2)f%(s')ds'-T(r2). Jo 

We then deduce the typical "equal area" relation 

^{F(r]) + F(T2)}{T(r2)-T(rl)}=fy(r)dT(T). (9.29) 

For a head shock moving into the undisturbed region, the shock is 
determined by (9.27) with T related to J by 

\kF\r) (S*(s')ds'= [TF(r')dT(r'). (9.30) 

As s-+oo, the equation of the shock asymptotes to 

t=±-Kl [%(s')ds'\ + 7 X T 0 ) , (9.31) 
^o I ■'O I 

where 

/T=J2A:Jr
o
TV(T)rfr(T)j , F ( T 0 ) = 0 . (9.32) 

At the shock the flow quantities are proportional to 

K^(s){fS^(s')ds'\ . (9.33) 

The typical asymptotic wave form is the N wave, with balanced shock 
waves, and between the shocks the linear decrease in time is proportional 
to 

<t>(s) If *&(*') dA . (9.34) 
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For spherical waves &(s)=l/s and the shock strength (9.33) decays 
like s~ '(logs)~i/2, only slightly faster than the decay for linear pulses. For 
cylindrical waves <b = s~l/2 and the shock strength decays like s~3/4. Of 
course plane waves are also covered by these formulas; <I> is constant and 
the decay law is s~x^2, in agreement with earlier results. The asymptotic 
decay laws for cylindrical and spherical waves were obtained indepen-
dently by various writers and the first was probably Landau (1945). 

For more general two and three dimensional waves in a uniform 
medium 

where A (s) is the ray tube area. Further details and applications may be 
found in an earlier paper (Whitham, 1956). For nonuniform media s/c0 is 
replaced by fds/c0 and all the dependence on .$ in (9.26) must be included 
in $(s). 

9.2 Justification of the Technique 

There are several approaches by which the nonlinearization technique 
can be examined mathematically on specific systems and each one throws 
light on different aspects of the approximations. 

First, suppose the nonlinear equation for <p is 

<p/ + (co+c1<p)«jpJt+^<p = 0. (9.35) 

This is proposed as a model in the first instance, but we shall see a tie-in 
with other cases later. The linearized equation is 

and its solution is 

A'-
<p-

-x/c0) 

X* 

= 0, (9.36) 

(9.37) 

This is analogous to spherical waves for /? = 1 and cylindrical waves for 
/?= i. The characteristic form of (9.35) is 

( c + c , * ) ^ - - ^ , (9.38) 

4f- - l- . (9.39) 
ax CQ+C^ 
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The exact solution of (9.38) is 

f(r) 

x" 

where T is the characteristic variable to be determined from (9.39). It is 
clear that 

xp 

is a uniformly valid approximation to (9.40) for small <p. This confirms the 
main step in the technique. The determination of T can be examined using 
the expansions of (9.39) and (9.40) in powers of <p, and the expansions are 
convergent for |(p| <c0/c , . We obtain 

dt _ l , v.**) , r2/2(T) , 
dx c0 x

p x2p 

with coefficients yn related to c0, c,; in particular y,= -cx/c\. Hence 

(Logarithms replace the corresponding powers when /?= 1, £, etc.) The first 
uniformly valid approximation is 

, - n T ) + i + J ^ , . - . , (9.43) 

and it agrees with the result obtained from (9.41) and 

dt 1 Cl tn AA\ 

= y. (9.44) 
dx c0 d 

Therefore the uniformly valid approximation given by (9.41) and (9.43) is 
exactly the one that would be obtained by the nonlinearization procedure. 
Notice that it would, in fact, be inconsistent to use further terms in (9.44) 
without further terms in (9.41). 

The remaining approaches are illustrated on the equation for spherical 
waves in gas dynamics to keep the algebra as simple as possible, but it 
seems clear that they would go through (with possibly minor alterations) in 
other cases. It will be sufficient, again for simplicity, to give the details for 
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isentropic flow; the methods are not limited by this and, even when shocks 
are present, the entropy changes for weak waves do not affect the lowest 
order terms. The full equations are given in (6.132)—(6.134), and for 
isentropic flow they may be reduced to the following pair of equations in 
sound speed a and radial velocity u: 

a, + uar + I l l f l ( „ r + ^ ) - 0 , (9.45) 

u, + uur+ -^-raar = Q>. (9.46) 

Small Parameter Expansions. 

One obvious approach is to continue the naive expansions in small 
amplitude beyond linear theory, see what goes wrong, and correct it. It 
may now be helpful to display a small parameter e explicitly; c would be 
taken, for example, as the maximum value of u/a0 on some initial surface. 
The naive expansions would then be 

u = eul(r,t) + €2u2(r,t)+ ■ ■ •, 

a = a0+eai(r,t) + €2a2(r,t) + 

These are substituted in (9.45) and (9.46). The coefficients of successive 
powers of € are equated to zero to obtain a hierarchy of successive pairs of 
equations for («,,a,), (u2,a2),... . Of course M, and a, are found to be the 
linear expressions given earlier, the main terms being proportional to 
F(t — r/a0)/r. The expressions for u2 and a2 are then found to contain 
terms in r -1logr, r~2\ogr, and r~2. The first of these is responsible for the 
nonuniformity, since it makes the ratios u2/u{ and a2/al tend to infinity as 
r—>oo; the others are harmless. The expressions are 

u {Fir*) f(r*)] , J Y + 1 f ( T ' ) f V ) , 1^ 

2 ^ ^ ^ J r + i ^ W ) l o g r + a \ + . , , 
y-\ a0 r \ 2a0 r J 

where T* is the linearized characteristic t- r/a0. Here u2, a2, denote terms 
uniformly bounded with respect to «, and a,; F(T*)= -/'(r^/a2, as 
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before, and tF now replaces the function F in (9.20) and (9.21). We see 
immediately that the appearance of the nonuniform terms may be in-
terpreted as the consequence of an injudicious use of Taylor's expansion 
on the expressions 

u _ [ f ( T ) / ( T ) 

*0 I r On/"2 

a-a0 F(T) 
= c 

with 

T = T* + -z—(.F(T) logr. 
2a0 

But these expressions would just be the proposed nonlinear solution (9.20), 
(9.21), with T determined as in (9.24) and with T(T) = T. The situation is 
closely similar to the one discussed in Section 2.10. The use of Taylor's 
theorem in reverse is a familiar one in perturbation theory. The arbitrary 
function T{r) allows more freedom in the choice of the characteristic 
variable T; changes in the choice of T are absorbed by changes in the 
determination of F(T) from boundary data so the final solution is unique. 

The foregoing investigation shows that to avoid nonuniformities one 
should start with the expansions 

M = eM,(r,T) +€2u2(r,r)+ • ■ •, 
(9.47) 

a = a0+ea,(r,T) +e2a2(r,r)+ • • •, 

where r(t,r,e) is to be suitably chosen. Better still, one should add the 
expansion 

t-t0(r,r) + etl(r,r)+--- (9.48) 

to (9.47) and determine rather the function t{r,r,t) by choosing tx(r,r), 
t2(r,r),..., to avoid nonuniformities in the validity. For wave problems we 
expect the latter to stem from the requirement that curves T = constant be 
characteristic curves. (Cases other than wave problems were proposed 
using this "strained coordinate" technique by Lighthill, 1949.) Assuming in 
advance that T will turn out to be the characteristic variable, it is clearly 
preferable to start from the equations (9.45)-(9.46) written with T and r as 
independent variables and t{r,r) defined by 

£—4-. (9-49) 
or a + u 
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The equations may then be written 

2 -ar+ur+^--=0, (9.50) 
y - 1 r ' a+ur 

y - l 
a r - " T - ( ^ T ^ + « » , ) ^ ' T = 0 . (9.51) 

The form is unsymmetrical because of the mixed use of one characteristic 
variable T and the radial distance r. However, (9.50) can be recognized as 
the characteristic equation for variations along the characteristics 
T = constant. 

Equations 9.49-9.51 are now solved by the expansions 9.47-9.48. To 
lowest order in (9.49) we have 

3r a0' 
hence 

' o - f + T(r). 

The first order terms in (9.50)—(9.51) are then 

-aXr + uXr+—--0, 
7 - 1 lr lr r 

■ « I T - M 1 T - - — T a o a i r : r ' ( T ) = 0. y - l 1T 1T y - l 

To solve these equations it should be remembered that they must be the 
linearized equations in disguise. It is easily verified that the solution is 

«i Hr) AT) 

anr 

F(r) 

Y - l "o r 

where/'(T)= -alF{r)T'(r). In the next order, (9.49) gives 

3/ , «i + fli 

"37 = ~ at ' 
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Hence 

? + ' * Y M 1 / ( T ) 

/, - - -r— F(r) log/-- — — - . 

These lowest terms are precisely the nonlinearized solution (9.20)-(9.23), 
thus justifying the technique and providing a consistent scheme for higher 
approximations. 

Expansions at Large Distances. 

A variant of this approach is to use expansions of u(r,r), a(r,r), t(r,r), 
not in powers of a small amplitude parameter t but in inverse powers of r 
(supplemented by logarithmic terms when necessary) whose coefficients 
are functions of r. This is essentially the approach used in the author's 
earlier papers (Whitham, 1950a, 1950b). 

Wavefront Expansion. 

Another approach, which is not as strongly based on expansions in e, 
proceeds from a close analogy with the simple waves of the plane case. The 
full characteristic forms for (9.45)-(9.46) are 

{ J H - ^ H T V H ^ - 0 - <»■*> 
In the plane case the terms in 2au/r are absent, and for a simple wave 
(9.52) is dispensed with quickly by arguing that 

is constant everywhere. This conclusion can no longer be reached exactly. 
However, the change in this Riemann variable will depend on the integral 

I 2au — 
Jc. r 
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Fig. 9.1. Characteristics and shock in discussion of spherical waves. 

taken along the C_. Near the head of the wave the contribution will be 
small, since the range of integration is small (see Fig. 9.1). The relative 
change in the Riemann variable due to the integral will in fact be of order 
«oT/r> since T provides an estimate of the time change from the head of the 
wave. Furthermore, the arguments so far have indicated the region a0r/r 
<1 as the one of interest. This suggests the constancy of the Riemann 
invariant as a good first approximation for this region. If we take 

2a 
y - 1 

2an 
— u — (9.54) 

as an approximation to (9.52); the second equation (9.53) provides a single 
first order equation for u. Its solution requires integration along the C+ 

and the range of integration on the C+ is not small. The equation for u is 

du^( . Y + l \ Y + l \ 8 u 
dr 

(9.55) 

This is almost the same as (9.35) with /?= 1 and can be handled similarly. 
The comparison of (9.55) with (6.83) for the plane case should also be 
noted. The exact solution is 

a0\
 2 ao I 

2 / ( Y - D 
F ( T ) 

where T is the characteristic variable to be determined from 

- l 

(9.56) 

H°^) -i-1-?* <-> 
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A uniformly valid approximation is 

— = , /= —F(T) logr+r (T) , 
a0 r a0 2a0 

and, from (9.54), 

2 a~ao = u =
 f(T) 

y-l a0 a0 r 

This is the proposed solution (9.24). It should be noted, however, that in 
this approach as opposed to the last one we obtain only the geometrical 
acoustics form for u and a. This is perfectly satisfactory for the behavior in 
o0T/r<l, but it would require supplementing by other methods to deter-
mine F(T). 

When a shock is required at the head of the wave, the jumps in the 
entropy and the Riemann invariant (9.54) are of third order in the strength 
and do not affect the lowest order approximation. 

N Wave Expansion. 

After the shocks are included, the typical asymptotic behavior of the 
final waveform at large distances is an N wave centered around a limiting 
characteristic T0. For spherical waves, with details of the coefficients added 
to (9.34), we have 

^ t Z ^ ^ J L ^ l ^ [ t . Z . - n T o ) \ { r { o % r ) - \ (9.58) 
y-l a0 a0 y+\ ( a0 ) 

This suggests that the final N wave form could be generated directly by 
looking for solutions in the form of expansions 

« - o , ( r ) ( f - f 0 ) + e2 ( ' - ) ( r - fo ) a +" - . 
(9.59) 

where f = / - r/a0 and £0 refers to the asymptotically straight characteristic 
between the shocks. If these expansions are substituted in (9.45)-(9.46), the 
successive powers of ( f -? 0 ) lea<* t o a hierarchy of equations for (»„£,), 
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(v2, b^),.... The first pair of equations gives 

6, = V U , (9-60) 

dvx 7+1 v* 
(9.61) 

The first equation confirms the relation between a and u. The second 
equation may be written 

d_ 
dr 

which integrates to 

J-) + I±iI=o, 
t W 2a\ r 

2a\ 1 
y+1 rlogr 

(9.62) 

and confirms the dependence on r noted in (9.58). 
ais gives a very simple approach to the asymptotic behavior, which is 
: the outstanding results of the theory. It may be continued further to 

mclude the shock determination. If $-£0=G(r) at the front shock, (9.59) 
provides power series in G(r) for the flow quantities at the shock. The 
shock condition (9.28) in this case is 

dG 1 u + a-a0 

dr 2 a} o 

and, from (9.60M9.62), we find 

dG 1 G 
dr 2 rlogr 

Therefore 

+ 0(G2). 

G(r)alog'/2r. (9.63) 

This agrees with (9.31) for spherical waves. 
Although this final method is perhaps the simplest of all, and one in 

which higher order corrections may be easily found, it cannot predict how 
the coefficients in the shock equation and shock strength depend on the 
initial source. 
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SONIC BOOMS 331 

The central problem for sonic booms is to determine the shocks 
produced by an axisymmetrical body in steady supersonic flight. The 
effects of different body shapes, acceleration, curved flight paths, and 
nonuniform atmosphere are all developed in various ways from this basic 
problem. 

For the basic problem it is convenient to take a frame of reference in 
which the flow is steady. The linearized theory has been discussed in detail 
in Section 7.5 and the nonlinearization can now proceed in close analogy 
with the techniques developed here for unsteady waves. The corresponding 
problem of plane flow treated in Section 6.17 also contributes to the 
background of ideas. 

If U is the mainstream velocity parallel to the x axis and the perturbed 
velocity components in the x and r directions are now denoted by U{\ + u) 
and Uv, we have 

X x — Br S"(r,)dn 

V(JC-7 , ) 2 -BV 2 

J _ r*-Br (x-V)S"i Xv) dt\ 

V ( * - I ? ) 2 - B V 

(9.64) 

(9.65) 

where B« VAf2—1 and S(x) is the cross-sectional area at a distance x 
from the nose. The disturbance is confined behind the Mach cone x — Br 
= 0, which makes the Mach angle 

-Mo-sin" '-! (9.66) 

Fig. 92. Linear characteristic pattern in supersonic flow past a body. 
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Fig. 9.3. Nonlinear characteristic pattern with shocks in supersonic flow past a body. 

with the stream direction. The quantity x- Br is the linear characteristic 
variable and corresponds to t — r/c0 in the discussion of unsteady cylindri-
cal waves. In the (x,r) diagram, the linear characteristics are a family of 
parallel straight lines making an angle (iQ to the x axis as shown in Fig. 9.2. 
In the region (x— Br)/J9r«l, the approximations in (7.45)-(7.47) may be 
used. This region includes the front shock and the main part of the far 
field and it is here that the nonlinear corrections are crucial. The nonlinear 
effects modify the characteristics and introduce shocks as indicated in Fig. 
9.3. Following the nonlinearization technique, we replace x — Br by £(x,r), 
where £ is to be determined so that the curves £=constant are an adequate 
approximation to the exact characteristics. The modified expressions for 
the flow quantities are 

w = 
V25r 

t> = 
BF(t) 

P~Po 
Po 

= yM2 no 
VlFr 

VlFr 

a-an ■M' 

VlFr 

(9.67) 

(9.68) 

where 

Hi) (9.69) 

A typical F curve was given in Fig. 7.3. As noted in (7.48), F-+0 as £->0 
and the linear theory with % = x-Br does not predict a shock. The 
nonlinearization is clearly crucial here. 

The exact equations for irrotational axisymmetric flow are the same as 
for plane flow, (6.158)—(6.159), with^ replaced by r and an additional term 
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-a2v/r in (6.158). Since the highest derivatives are unaffected, the 
characteristic directions are still given by 9±\i, where 9 is the flow 
direction and fi is the exact Mach angle defined by /n = sin~'a/<7. Accor-
dingly, on £ = constant, 

^ = c o t ( M + 0). 

Just as in the unsteady wave problems, the first order perturbation 
approximation to this is sufficient and we use 

-^ = cot/iQ- (/*- li0+ 9)cosec2/i0. 

To the same order 

hence 

a0(a-a0 \ 
9-v, ^"^o^-^l-a "j^W 

dx _ M2(a~ao \ „ 2 -=— = a — u\ — M v. dr B \ a0 ) 

On substitution from (9.67) and (9.68), the equation becomes 

dx_R (Y+l)A/4F(g) 
9 ' (2B)3/2 r"2 ' 

and we have 

where 
x = Br-kF(Or1/2 + i (9.70) 

(y+l)M4 

k = ,.. \ n . (9.71) 
2i/2B3/2 

The nonlinearized solution in the region £/Z?r<Kl is given by (9.67), (9.68), 
and (9.70). 

The Shocks. 

The characteristics overlap and a shock is required when /"'(I) > 0. For 
a finite body, 

r°V(o^=o 
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as noted earlier, so there will be two such regions in general and two 
shocks. The counterpart to (9.28) is that the shock slope is the mean of the 
characteristic slopes on the two sides, and the shock determination is 
completely analogous. If a shock is described by 

we have 

where 

x = Br-G(r), 

=kF(t2y/2-z2, 

For the front shock which has undisturbed flow ahead of it, F(£,) = 0 and 
£, may be eliminated from the determination. Then, dropping the subscript 
on £2, we have 

\kF2(t)rl'2= f^FWd?, (9.72) 

x=Br-kF(Or,/2 + l (9.73) 

for the determination of the shock. The flow quantities immediately behind 
the shock are given by (9.67) and (9.68) with £(r) determined from (9.72). 

Flow Past a Slender Cone. 

For a cone with semiangle e, S(x) = ■nt2x2 and the F function (9.69) is 

F{l) = 2t2lx'2. 

In that case the relation (9.72) between | and r for points on the shock is 

£l/2=3f c £2r./2_ 

The shock equation (9.73) reduces to 

x = Br-\kVr. 
4 
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This corresponds to a conical shock with a semiangle of 

3 (y+\) M6 „ 

The shock strength obtained from (9.68) is 

P-Po 3 Y ( Y + 1 ) M 

p0 2(M2-l) 
e4. (9.75) 

For a cone, dimensional arguments show that the exact solution is a 
similarity solution with the flow quantities functions of r/x. The exact 
nonlinear equations may then be reduced to ordinary differential equa-
tions and integrated numerically. This is the famous Taylor-Maccoll solu-
tion (1933), which was a landmark in the development of the theory of 
supersonic flow. The results (9.74) and (9.75) were deduced for slender 
cones within the similarity theory by Lighthill (1948). It provides a valu-
able check on the more general approach for slender bodies. Numerical 
results show that (9.74)-(9.75) are very good approximations for cones up 
to 10° semiangle over a range of Mach numbers from about 1.1 to 3.0. 

For general slender bodies, these formulas give the initial behavior of 
the shock. It should be noted that whereas the disturbances near the body 
are 0(e2), the shock strength is 0(c4). This explains in a sense why it is 
missed in the linear theory. 

Behavior at Large Distances for Finite Bodies. 

According to (9.72), for points on the shock £-»|0 as r-»oo, where 
F(£o) = 0. Then (9.72) is asymptotically 

1 / 2 

F ( l ) ~ { f j f ° F ( f ) ^ ' } r_1/4- <9-76> 
The shock is asymptotic to 

x-Br-^kf^FiOdty/*-^ (9.77) 
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and the shock strength is 

p-Po yA/2 (2 r«o ' 1 / 2 
r-3/< 

Po (25)' 

= -^m(M'- \fS{f\m}1/2r-y4. (9.78) 

This is the most important formula for sonic boom work. It shows that the 
boom at the ground depends very weakly on the Mach number, depends 
on distance like r - 3/4 , and depends on the body shape through the factor 

K=i[f
i0F(Z)<tt} • (9-79) 

If the length of the body is / and the ratio of maximum diameter to length 
is the thickness ratio S, the shape factor KccSl3/4. For a body shape 

S / | I - ( I - T ) I, 0<x<l, 
R(x)= I V I ' } 

SI, I < x, 

we find K= 1.045/3/4. 
The asymptotic wave profile is a balanced N wave. Between the 

shocks |~£0,.F(£)~0, so that from (9.70) 

and from (9.68) and (9.71) the pressure ratio is 

P-Po y ( A / 2 - l ) l / 2 (Br-x + to) 
Po 7+1 M7 (9.80) 

The flow behind the rear shock is not completely undisturbed but is of 
smaller order than the disturbance in the TV wave. For this and other 
details reference may be made to the original account (Whitham, 1952). 
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Extensions of the Theory. 

Axisymmetric bodies might seem a far cry from real aircraft, but it is 
known that the far flow field in any direction away from a finite body can 
be represented as the flow due to an equivalent body of revolution. That is, 
in any direction the expressions (9.67)-(9.69) apply but the F function will 
be different for different directions. In the linear theory from which one 
starts, the contributions from fuselage, wings, lift distribution, and the like 
can be treated separately and superposed to give the final F function for 
each direction. The nonlinear expressions then apply with this F function. 
The volume contribution is related to a distribution of cross-sectional area 
S(x), where the cuts are made by planes at an angle to the stream in 
accordance with the supersonic area rule. For details of the method and 
the nonlinear results, see Whitham (1956). When various protuberances 
such as wings are included S'(x) becomes discontinuous and (9.69) must 
be modified appropriately (Whitham, 1952). 

The effects of the lift distribution are of equal importance with the 
volume effects. In the linear theory the lift distribution L(x) provides a 
contribution 

0 Jo \(x-y) -B2rz 

to the velocity potential, where u is the angle of a meridian plane through 
the flight path and is measured from the downward vertical. This may be 
approximated for (x — Br)/Br«.l as before and the perturbations are 
again given by (9.67)-(9.68) with 

lm ^ Jo Vi^n 
This is an interesting illustration of the "equivalent body" concept for 
asymmetric distributions. It should be noted that the approximations 
(9.67)-(9.68) are valid for £/Br<&\ and they are sufficient to determine the 
shocks. However, the pressure distribution behind the main N wave makes 
important contributions to the total lift transmitted to the ground. The full 
form (9.81) and, when necessary, its nonlinearization are required for a 
detailed accounting of the lift. This has sometimes caused confusion in the 
literature where it has been remarked that the pressure distribution given 
by (9.68), when integrated over the ground, does not give the total lift 
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f™L(x)dx. The expression (9.68) applies only in the region of the main JV 
wave. The full formula derived from (9.81) integrates correctly to give the 
total lift. 

The remaining extensions to accelerating bodies and nonuniform 
atmospheres, the latter being always important in the real situation, can be 
handled analytically to some extent and the theory leans heavily on 
geometrical acoustics (see Friedman, Kane, and Signalla, 1963, and re-
ferences given there). Further developments and comparisons with wind 
tunnel and observational data are reviewed in a series of papers published 
in the Journal of the Acoustical Society of America (1965). Similar compari-
sons have been made by various government laboratories and aircraft 
companies. (A popular account for laymen which contains some interest-
ing checks of the theory with reality is presented in Boeing Document 
D6A10598-1). The conclusion seems to be that the theory provides good 
results and valuable insight in an extremely complicated practical problem. 



CHAPTER 10 

Wave Hierarchies 

The study of a single set of hyperbolic waves, including the various 
effects of geometry, diffusion, and damping, has now been covered in 
considerable detail. To complete this first part, we discuss the situation 
when waves of different orders appear in the same problem. Typical 
examples arose in Chapter 3 and some preliminary comments were made 
there. In traffic flow, for instance, the equations 

P, + (pv)x = 0, 
(10.1) 

r(v, + vvx) + ^px + v-V(p)=0 

were proposed at a certain level of description. This system has two 
families of characteristics and the characteristic velocities are found to be 

»+VT. °-^i- (102) 

Consequently, waves with these velocities will have their important roles to 
play. Yet the reduced equations 

p, + (pv)x = 0, v=V(p), (10.3) 

which are expected to be a good approximation for sufficiently small 
values of v and T, have a single family of characteristics and the 
characteristic velocity is neither of the two in (10.2); it is in fact 

V(p)+pV'(p). (10.4) 

If there is to be no inconsistency between the two levels of description, 
waves with velocity (10.4) must also play an important role in the solutions 
to (10.1), even though they no longer correspond to the characteristics. The 
aim here is to clarify further the roles of the "higher order waves" (10.2) 
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and the "lower order waves" (10.4), and to see how each set is modified by 
the presence of the other. 

We consider first the linearized versions of systems like (10.1), since 
general solutions to typical problems can be obtained by transforms and 
used to exhibit the salient features explicitly. Similar analytic solutions are 
rarely available for the full nonlinear systems, but the linear results may be 
used to infer the corresponding nonlinear behavior of the various waves 
and to suggest simplifying approximations for their description. 

When systems such as (10.1) are linearized it is more convenient to 
work with the equivalent single second order equation. It takes the general 
form 

where the coefficients are constants and, for definiteness, we choose €^02. 
In different notation, this was (3.4) for traffic flow; c, and c2 are the 
linearized forms of (10.2), namely the values in the undisturbed flow, and a 
is the linearized form of (10.4). For flood waves, the nonlinear system 

(3.37) is similar to (10.1). The characteristic velocities are v±vg'h , but 
the reduced system (3.38) shows also the presence of lower order waves 
with velocity 3v/2. The linearized equation (3.41) is in the same form as 
(10.5). For the chemical exchange processes formulated in (3.74), the linear 
equation is exact and is covered by (10.5) with one of the c's zero. Other 
examples will be mentioned later. If the systems concerned are higher than 
second order, there will be corresponding increases in the number of 
factors that make up the operators in (10.5). 

The waves of different order are clearly displayed by the factored 
operators in (10.5). Indeed if the lower order terms were absent (TJ = OO), 
the general solution would be • 

<p = <pi(x-cit) + <p2(x-c2t). (10.6) 

Conversely, if the higher order terms were absent (TJ = 0) , the solution 
would be 

<p = <p0(x-at). (10.7) 

The latter corresponds, of course, to the reduced level of description whose 
linearized version is the equation 
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Fig. 10.1. The (x,t) diagram for the initial value problem. 

Our questions concern the combined system, the different roles played by 
the waves in the two levels, and the modifications to (10.6) and (10.7). 

We can sketch out in advance what must happen. Since the 
characteristics of (10.5) are determined by the higher order terms, the first 
signals and wavefronts must travel with the velocities c, and c2. But to fit in 
with the reduced description, some of the disturbance must travel with 
velocity a. This is indicated in the (x,t) diagram in Fig. 10.1. As the 
parameter TJ is reduced, the first signals must become small; the main 
disturbance must be moving with velocity a and be reasonably well 
approximated by (10.7). 

This picture makes sense only if a lies between c, and c2. But as we 
saw in Chapter 3, exactly this ordering of velocities is necessary for 
stability, and the stability condition ties in nicely with the ideas on 
propagation. One is tempted to say that the instability that arises when a 
does not lie between c, and c2 is a consequence of an unresolvable 
competition between the two sets of waves. 

The question of appropriate boundary conditions also arises here, 
since the number of boundary conditions is determined by the number of 
characteristics pointing into the (x,t) region of interest. Since the number 
of characteristics can change in going from (10.1) to (10.3), or from (10.5) 
to (10.8), a rationalization of this apparent disagreement is also required. 
In view of the inequality 

c]>a>c2 (10.9) 

required for stability, (10.5) can only require more boundary conditions 
than (10.8). When this is the case, there will be no inconsistency in the two 
levels of description if the additional information for (10.5) affects the 
solution only in a layer next to the boundary, which is thin for small ij, and 
outside this layer the solution of (10.5) is well approximated by a solution 
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of (10.8). The appropriate solution of (10.8) will satisfy only some of the 
boundary data, and the remaining adjustment to the additional boundary 
data occurs in the boundary layer. 

The details of all these arguments are substantiated from complete 
solutions of (10.5). The relevant ideas can then be taken over piecemeal to 
the nonlinear situation. In the nonlinear case, the possibility of shocks 
arises and different types of shock will appear as appropriate discontinui-
ties in different levels of description. An understanding of the relations 
between them leads to a simple criterion to predict when the shock 
structure will still contain a discontinuity. Instances of this were noted in 
the inequalities (3.17) and (3.52). We shall now be able to give a more 
general view of these and add further examples. 

10.1 Exact Solutions for the Linearized Problem 

First we check the stability requirements on (10.5). An elementary 
solution is 

<p = Aeikx-ia' 
provided that 

n(u- kCi)(u-kc2) + i(u-ka)=0. (10.10) 

For relatively short waves, A:c,i)»l, we have 

' ^ - I f i Z f L , (io.il) 
TJ C , - C2 

kc ± £ Z £ l . (10.12) 
TJ C , - C 2 

One or the other of these has positive imaginary part showing instability 
unless 

T J > 0 , cx>a>c2. (10.13) 

It is then easily verified that <J«<0 for all k under these conditions, so 
they provide the complete stability requirements. We now suppose that the 
inequalities in (10.13) are satisfied and consider more general solutions. 

The main points can be made equally well on the solution of the 
initial value problem by Fourier transforms or the solution of the signaling 
problem by Laplace transforms. The latter is chosen since it offers a richer 
number of cases depending on the signs of c,, c2, and a. 
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Case c , > a > 0 , c2<0. 

This is the simplest case; with c2<0, only the c, family of higher order 
waves is generated and with a>0 there is no conflict in the number of 
boundary conditions posed on x = 0. For (10.5), a well-posed problem is 
then 

<p = <p, = 0, x > 0, t = 0, 
(10.14) 

<p=/(0> * = 0, />0 . 

For the reduced equation (10.8), the initial condition <p, = 0 would be 
dropped, but in either case the solution remains identically zero in x>0 
for a finite time so the difference does not show up. The solution of (10.5) 
by Laplace transforms may be taken to be 

i C Hp>x)ep' 
2m J* p 

where $ is a Bromwich path <3l/> = constant to the right of all the 
singularities of the integrand in the complex p plane. On substitution in 
(10.5), we have 

Vi<W„ + {»j(ci + c2)p + a}yx +p(vp + l}q>=0, 

and the possible solutions for <p are 

q> = F(p)exP>(")+G(p)exP^''\ (10.16) 

where />,, P2 are the roots of 

Tjc1c2/
,2 + {Tj(c1 + c > + a}/>+/>(i)/>+l)=0, (10.17) 

and F, G are arbitrary functions. For large p, 

P P 
/>, £- , />2 - . 

c, c2 

In this first case, with c,>0, c2<0, the second term in (10.16) is un-
bounded for large <3lp, so we must take G{p) = Q; this term would 
correspond to incoming waves with velocity c2<0 and is excluded. The 
remai ung function F(p) is determined from the single boundary condition 
<p—/J) at x = 0. In fact the requirement is simply that F(p) be the Laplace 
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transform of/(/). The final solution therefore is 

9=2^7 f ^e"+'>0»dp, (10.18) 

where 

F(p)^p[C°f(t)e-"dt, 

/ 

(10.19) 

f(A 1 f F{p)e"' < 

and P\(p) is the root of (10.17), which is asymptotic to —p/ct as/?-»oo. 
When t — JC/C, <0, the contour can be closed by a large semicircle to 

the right to show that <p = 0. Thus the wavefront is x- c,f = 0. The behavior 
of <p near the wavefront is obtained from the more detailed asymptotic 
behavior of the integrand of (10.18) as/>-*oo. If the contour 6J is taken far 
enough to the right, we may substitute the expansion 

P 1 c,-a / 1 
/».= - — - - i - - ! + 01-

c, TJC, cx-c2 \p 

in (10.18) and deduce the approximation 

H-t,) exp| - - ^ — - ^ L I. (10.20) 
1 c , - c 2 c,i) ' 

This is in fact the first term in the geometrical optics expansion (cf. Section 
7.7); further terms in the series are obtained by continuing the expansion 
of ep>x for large p. The general form can be found by substitution of the 
geometrical optics expansion directly in (10.5), but (10.20) also relates the 
function of t — x/cx to the boundary condition. The expression (10.20) is 
valid near the wavefront. It shows that the first disturbance propagates 
with the c, waves, but this disturbance damps out exponentially and 
becomes negligible in a distance of order C,TJ. As ij—»0, this disturbance 
becomes negligible for all x > 0, in agreement with the reduced description. 

We ask, then, where the main disturbance described by (10.18) is to be 
found. To obtain this information, we investigate the behavior on the 
family of lines x/t = constant in the (x,t) plane, since each one of these 
represents the path of a wave moving with constant velocity. We shall need 
to be reasonably careful about the various limits involved and, accord-



Sec 10.1 EXACT SOLUTIONS FOR THE LINEARIZED PROBLEM 345 

ingly, introduce nondimensional quantities 

q = VP, Q(q) = r)CiPl(p), w = 7 7 -
c i » 

In general, the boundary function /( / ) will introduce another time scale T, 
say, and F(p) will take the form 

n„>-s(,f). 
Then (10.18) becomes 

, C $(qT/r,) 
, p = - J _ f ^t't'O^ + 'nQ*/^ (|0.21) 

ATTI I q 

where Q(q) is the appropriate root of 

^ 2 + { ( , + l ) 9 + ^ } e + ̂ +,)=0-
We now consider the asymptotic behavior of (10.21) as //17—>oo, with m 
fixed. According to the saddle point method, the dominant contribution 
comes from the neighborhood of the point q = q* for which 

-^{q + mQ)=0, 

that is, 

l + mQ'(q*)=0. (10.22) 

The first term of the asymptotic expansion is found by deforming the 
contour into the path of steepest descent 6 through q = q* and expanding 
q+mQ as far as quadratic terms in q — q*. Thus we have 

<p^xp^{q* + mQ(q*)}]j 

f ^(qT/ij) ( t t 2) 
_ / ^L-exp^LmQ^g*)(q_q*f^q ( 1 0 2 3 ) 2m 

'e 
as r/rj—»oo. 

In the usual application of the saddle point method, the remaining 
part of the integrand would also be expanded in Taylor series about q = q* 
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and %(qT'/'17)/' q would be replaced by ^{q*T/r\)/q*. This further step 
would be valid for the limit //TJ-»OO, T/r\ held fixed, and is relevant when 
Oi], / » T . But we are interested in the case f»rj, T~»T], independent of 
the magnitude of t/T. To include this case, the possibility T/i\-*oo must 
be allowed in (10.23) and the more general form must be retained. 

In discussing the behavior of (10.23), it is convenient to revert to the 
original variables. We have 

tp-exp^ + xP^p*)}^: (^y-exp{\xP;'(p*)(p-p*)2}dp, (10.24) 

where/)* is the function of x and t determined by 

t + xP[(p*) = 0; (10.25) 

this provides the asymptotic behavior of <p as //TJ-»OO keeping x/ctt fixed. 
For simplicity we shall assume that /"/(/)<# is convergent so that F(p)/p 
is finite as />—>0 and there is no pole. [The case in which /(/) approaches a 
constant as /-»oo is of interest, but this is most easily handled by reformu-
lating the problem in terms of <pr] The asymptotic expression (10.24) is 
itself dominated by the exponential factor outside the integral. The ex-
ponent is stationary when 

^ {//>* + */>,(/>*) }=0, 

and, in view of (10.25) which determines p*(x,t), this condition reduces to 

/»,(/»•)-0. 

From (10.17), /'1(^*)=0 must correspond to either p* = Q or p*- — 1/TJ, 
and it is a simple matter to check thatp* = 0 is the correct choice for />,. 
Therefore the exponential factor in (10.24) has a stationary value, in fact a 
local maximum, for those x and / which give p* = Q as the solution of 
(10.25). Thus the maximum is found on 

t+P{(0)x = 0. 

One checks from (10.17) that P{(0)= -a~K Hence the maximum of the 
exponential factor is to be found on 

x = at, 
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and the maximum value is one. The disturbance is exponentially small (in 
this limit) except in the neighborhood of x = at; this result shows that the 
main part of the disturbance eventually travels with velocity a. Since the 
approximation is for /»TJ, the result applies increasingly earlier as TJ—*0. 

We can extract further information on the behavior of the main 
disturbance. In the neighborhood of x = at, the corresponding values of p* 
are small. The details of the disturbance may then be obtained by making 
further expansions of (10.24) about p* = 0. But we would then have made 
an approximation to(10.18)in two stages: first an expansion of pt + P{(p)x 
about p=p* and then an expansion of the resulting expression about 
p* = 0. Obviously, the final result must be included by simply expanding 
pt + Px(p)x about p = 0. We have 

p pln(ci-a)(a-c2) 
np)~--+ :—-+ a a 

Hence 

1 C KP) \ / x\, P\{c\-a){a-cjx\ 

* ~ 2 ^ J e — e x p ( H ' - « r ? ) * (,0-26> 

Ja 

applies in the neighborhood of x-at = 0 as f/?}-*oo. The first approxima-
tion is just 

'e 
which is exactly the prediction of the lower order equation 10.8. Thus the 
lower order formulation is shown to give a correct description of the main 
disturbance. 

To see the effect of the quadratic term in the exponential in (10.26), it 
is more instructive to find the equation satisfied by (10.26) rather than to 
intepret the integral. The expression is, in fact, identical with the solution 
of the equation 

7 ? (c , -a ) (a -c 2 ) 
9, + "<PX = 2 f»' (l °'2 ' 

a 
for the same boundary condition <p=/(0 on x = Q. The right side of (10.27) 
is already a small correction (of order r\/t compared with the other terms), 
so it is consistent to use the first approximation 9/8f =* —a(d/dx) in it and 
to take an equivalent form 

(p, + aq>x = i1(ci-a)(a-c2)q>xx. (10.28) 
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This is more familiar; it shows that the main part of the disturbance 
propagates with velocity a and is diffused by the effects of the higher order 
terms in the equation. But the latter effect is small when TJ is small. To 
summarize then in the case c , > a > 0 , c2<0: The first signals propagate 
out with velocity c, but damp out as shown in (10.20). The main distur-
bance lags behind and moves with the lower order wave speed a. In this 
case there is no disagreement in the number of boundary conditions to be 
prescribed at x = 0; <p=/(0 is appropriate for both (10.5) and (10.8). After 
a time of order TJ, the first signals are exponentially small and the main 
part of the solution to (10.5) is well described by (10.8) using the same 
boundary condition at x = 0. The effect of the higher order terms is to 
produce a diffusion of the lower order waves as shown by (10.28) but this 
is small when TJ is appropriately small. 

Case c, > 0, c2 < a < 0. 

In this case the maximum value of the exponential factor in (10.24) 
still occurs at x — at, but with a < 0 this is outside the region x>0 . The 
expression (10.24) is exponentially small throughout the region x>0 . The 
saddle point formula does not apply at x = 0, since from (10.25) there is 
clearly no saddle point, but it is easily shown from (10.18) that the solution 
falls exponentially from the value <p=f(t) on x = 0, and the disturbance is 
confined to a boundary layer of thickness TJ/C,. In this case the first signal 
decays exponentially and the main disturbance does not propagate. 

The reduced equation (10.8) does not permit data to be specified at 
x = 0, and its solution is <p=0. This agrees with the preceding description 
outside the boundary layer, and the difference in boundary conditions is 
accommodated by the boundary layer. 

Case ci>a>c2>0. 

In this case both characteristics of (10.5) point into the region x>0, 
and it is appropriate to give the two conditions 

9-XO. <Px-g(t) forx = 0, />0, (10.29) 

However, we note that only one of these or possibly a combination of 
them could be posed with (10.8). The two conditions (10.29) correspond 
precisely to the fact that with c, and c2 positive, both terms in (10.16) must 
be retained and there are two arbitrary functions to be determined. If f(p) 
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and g(p) are the transforms of /(f) and g(t), then the arbitrary functions in 
(10.16) are determined by 

F+G=f, PlF+P2G = g. (10.30) 

The discussion of the term (10.18) in the solution is exactly the same 
as before with the same conclusion that the first signals travel with velocity 
c, but are damped out; the main disturbance travels with velocity a and is 
diffused by the higher order effects. The main disturbance is again well 
described by (10.8) and the only new question concerns which boundary 
condition is in fact adopted. The function F(p) which appears in the 
corresponding solution (10.26) is obtained from (10.30) as 

F-jf=J-x- 00.31) 

But when (10.26) applies, />, is approximated for small values of TJ/>, and 
P2 must be approximated in the same way. It is easily seen from (10.17) 
that 

VP1=-^ + o(vY), VP2— -*- + oivph 
a cxc2 

hence (10.31) reduces to 

F=f 

in this approximation. Therefore the boundary condition <p=/(/) is in fact 
satisfied and must be used with the reduced equation. 

The second term in the complete solution is 

' (S^ELgPt+W^ (1032) 
2m I p 

Since P2 p/ci as/?—»oo, this expression is zero for x>c2t, correspond-
ing to the second wavefront provided by the waves with velocity c2. It is 
easily shown, as in the earlier case, that these waves are damped exponen-
tially and become negligible when * / C 2 T J » 1 . The saddle point investiga-
tion then shows that the contribution of (10.32) is small except near x = 0. 
Near x = 0, we may use the asymptotic expansion for 

—>oo, fixed 
V C2TJ 
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to see how the solution behaves. According to Watson's lemma, this is 
found from the behavior of the integrand in (10.32) for small rjp. We have 

Therefore (10.32) is asymptotic to 

Thus the first contribution from (10.32) travels with the c2 waves but 
damps out and its main contribution is the boundary layer given by 
(10.33). 

A composite solution for / / T J » 1 is obtained by adding the two main 
contributions to give 

, . ^ , _ £ ) . { s W + i / ( , ) ) ^ , e x p ( - ^ - i ) . (10.34) 

This satisfies both boundary conditions to the first order. The second term 
is needed to satisfy the second boundary condition, but it decays rapidly 
away from the boundary in a layer whose thickness is of order ijc,c2/a. 
The various results are conveniently represented in an (x,t) diagram as 
shown in Fig. 10.2. 

Fig. 10.2. The (x,t) diagram for the signaling problem. 
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10.2 Simplified Approaches 

Other linear equations with constant coefficients can always be 
treated in similar fashion by transforms and suitable asymptotic ex-
pansions. However, the details are tedious and the main ingredients in any 
solution can be seen very simply, and with greater insight, by more 
intuitive arguments. We indicate the techniques on the previous problem. 

First, in any wave profile moving approximately with speed V, the / 
and x derivatives are related approximately by 

5 —"E- (,0'35» 
We can use this in (10.5) to examine the waves moving with velocities 
c,,c2,fl, in turn. For c, waves, we use 3/3/— — c, 3 /3* in all derivatives 
except the sensitive one where the factor 3/3/+ c, d/dx itself appears. We 
have 

/ ^ 9 / 9
 _L M . / ^ 9<P n 

7,^-Ci)MYt+c^r+{a-c^jx-^°-
The 3/3.x operator can be integrated out without loss since it corresponds 
to the remnants of the other waves. Accordingly we take 

3<p 3<p c, — a 

l£ + c'a7 + - r ^= 0- (1036) 
Ot OX 7 l ( c , - C 2 ) 

The solution is exactly the one found in (10.20). Similarly for the c2 waves, 
we have 

ot 2 ox T)(C, - c2) 

the solution is similar in form to (10.20) and may be verified in detail from 
(10.32). 

For the lower order waves propagating with velocity a, we use 
d/dt~ -a o/dx in the second order terms in (10.5) and the approximate 
form is 

<P, + a<Px = -n(cx-a)(a-c2)(pxx. (10.37) 

This in exact agreement with (10.28). If the / derivatives are preferred in 
the second order term we obtain the alternative form (10.27). 
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The possibility of boundary layers near JC = 0 may be investigated in 
the same spirit by arguing that x derivatives will be much larger than t 
derivatives so that the approximation 

ix»i <1 0-3 8) 
should be made. This may be interpreted as the special case of (10.35) with 
K=0; it corresponds to nonpropagating waves. Under this approximation, 
(10.5) is reduced to 

1C|C2V„ + a 9 , - 0 (10.39) 
and the general solution is 

v-A(t) + B(t)t*p(--?-£), (10.40) 

in agreement with (10.34). Of course the exponential solution is omitted 
unless a/clc2i}>0 and it is only in the case of exponential decrease that 
the existence of a boundary layer is inferred. 

For initial layers, where data for <p and <p, are imposed at t = 0 in the 
full equation, we consider the form of the equation under the approxima-
tion 3/3f»3/3;c. For (10.5) we have 

T,<p„ + qp, = 0, <p=C(x) + D(x)e-'/,>. 

This shows how the solution adjusts to the approximate form where only 
the initial value of <p is relevant. 

These techniques allow a quick assessment of the various regions of 
interest and of the relevant approximations. They are easily made the basis 
of more formal perturbation procedures. For example, the straightforward 
expansion 

9 = <Po(*'0 + Wi(-M) + l W * . 0 + " -

gives (10.8) for <p0; the expansion 

<p=<Po(£,') + V / : W £>') + •••> 

i=-n-v\x-at) 

leads to (10.28) for «p0; the expansion 

<p = <p0(A
r,0 + W,(A',/) + - - , 

leads to the boundary layer equation (10.39) for cp0. 
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103 Higher Order Systems, Nonlinear Effects, and Shocks 

For a nonlinear system of equations which exhibits plane waves of 
different orders, we do not normally have the luxury of complete exact 
solutions and for analytic work have to rely on the counterparts of the 
approximations in the last section. Just how to proceed in detail will vary 
from problem to problem but we may note a few guidelines. For ease of 
reference suppose we call the complete set of equations the system I and 
the reduced set obtained by setting some parameter i\ equal to zero the 
system II. The theory of characteristics will provide the characteristic 
velocities c,,..., c„ for I, and characteristic velocities ax,...,am (m<ri) for 
II. In general, for nonlinear problems these will be functions of the 
dependent variables. However, the linearized theory for small perturba-
tions about some uniform state will be useful to set the scene and give 
information about stability. If just two orders are present the linearized 
theory for plane waves in a uniform medium may be reduced to a single 
equation 

7}(i+Ci"fc)""(i+c""fc)<p+(i+ai^),"(i+a"'^),p=0' 
(10.41) 

for some perturbation potential <p, where the propagation speeds now take 
their constant values in the uniform state. The standard stability argument 
turns up the interesting result that the orders must satisfy either m — n—l 
or m = n — 2 for stability. In the first case the complete requirements are 

w = n - l , T)>0, ci>al>c2>a2-■ • >a„_i>c„. (10.42) 

These are just the conditions that allow a satisfactory interpretation of how 
the solutions to II approximate to the full set I. The second case, m — n-2, 
introduces effects more typical of dispersive waves and its discussion is 
relegated to the second part of the book. (The stability conditions for this 
case were given by Wu, 1961, correcting an earlier misstatement by the 
author that (10.42) was the only case to consider.) 

Equation 10.41 may be solved by transforms, but the overall picture 
may be outlined by the techniques of the last section. Each of the c, waves 
satisfies an approximate equation 

I fa + Wj+Y/V-O, (10.43) 

where y, is determined in terms of the a's and c's similar to (10.36). The 
stability conditions ensure that y,>0, SO w e n a v e exponential decay. 
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Similarly, the a, waves satisfy an approximate equation 

?, + <W* = WP**> (10.44) 

analogous to (10.28), and a ,>0 . 
When nonlinear effects are included, we should aim toward an equa-

tion of the form 

<P, + cfo>Px + fi,<P-0 (10.45) 

to replace (10.43). Within the waves of any order there is now nontrivial 
interaction between the different waves and extracting (10.45) would 
require something akin to the "simple wave argument." In nonlinear 
problems it would normally be more convenient to work with n dependent 
variables and a system of first order equations. The technique of using 
3/3? =* - c , 3 / 3 x for c, waves is roughly equivalent to taking the (n—X) 
Riemann variables of the other (n - 1) c waves to be constants. 

Equation 10.45 can then be solved by the methods of Chapter 2. 
Waves carrying an increase of c,(<jp) may break [see the discussion of (2.72)] 
and shocks will be required. These shocks are discontinuities of the system I 
and the shock conditions are deduced in the standard manner from the 
relevant system of conservation equations. For /?,>0, even when shocks 
are produced the disturbance normally decays and the main disturbance is 
eventually carried by the lower order waves. 

If 7] = 0, a nonlinear simple wave on the a, characteristics will satisfy 
an equation of the form 

<p, + 0 , ( 9 ) ^ = 0. (10.46) 

Shocks required in the solution of this equation will satisfy the discontinu-
ity conditions derived from the reduced system II and will be different 
from the shock conditions for system I. 

When higher order diffusive effects are introduced one should aim for 
an equation 

^, + ai((P)Vx = pi<pxx (10.47) 

corresponding to (10.37). This can be related to Burgers' equation for a„ 
within the same type of approximation, and analyzed from the results of 
Chapter 4. 
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10.4 Shock Structure 

A shock of system II, let us call it an Su, will be smoothed out to some 
extent when viewed within system I. It is just the shock structure problem. 
However, we can now comment more decisively on the occurrence of 
discontinuities in the structure. An S„ will always be associated with one 
particular family of a waves, and each family of a waves is sandwiched 
between two families of c waves. But the Su shock will go faster than the a 
waves ahead of it and slower than the a waves behind it. Even in a stable 
situation, it may overtake the next c wave ahead or lag behind the c wave 
following. This would violate the characteristic property of the c waves ;/ 
the solution remains continuous. But Sl discontinuities can do this. There-
fore, whenever this situation occurs, the S„ profile will require discon-
tinuities in the shock structure. These discontinuities are S{s satisfying the 
5*, jump conditions, and we may regard the complete profile as a combined 
St-Su wave. 

If the velocity of an Su associated with the a, family is I/,, and if 
superscripts 1 and 2 now denote the values of quantities ahead and behind 
it, the criterion for a continuous shock structure is 

c}l\<U,<c}u. (10.48) 

If this is violated, there will be a discontinuity in the profile, and this may 
be the case even though the states on the two sides are stable. If we 
consider a nonlinear version of Fig. 10.1, the main disturbance remains 
continuous provided its velocity is well away from the higher order wave 
velocities on the two sides. 

In the nonlinear case all these velocities have a certain range of values, 
so it is possible fof the main wave to combine with the c waves ahead or 
behind. When this happens the exponential decay of the c waves ceases 
and, since the c waves break, an S, shock is picked up in the shock 
structure. The criterion (10.48) on the velocities gives a very simple method 
of prediction which avoids the much more involved analysis of the integral 
curves for the shock structure equations. Its use will be noted in the 
following examples. 

10.5 Examples 

Flood Waves. 

This case was studied in great detail in Chapter 3. We note that, with 
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the current notation, 

c ^ u + Vg7*, c2 = v-VgTh, 

3v 
« - T . 

According to (10.42) a uniform flow A = /i0,t5 = «0 is stable (as noted in 
Section 3.2) provided 

3u0 v0- VVAQ < -y <v0+ V7h0 , 

the lower limit being no restriction. According to (10.48) the S„ shock 
structure will be continuous provided 

c(2) - - y f ^ 7 < u < t><' > + y / g ^ . 

The Sn shock conditions show that U > u(2), so the lower inequality is 
always satisfied. The criterion for the appearance of a discontinuity in the 
S„ structure is 

This is precisely the result found in (3.52) from the detailed analysis. 

Magnetogasdynamics. 

The equations for magnetogasdynamic waves are given in Examples 
10 and 10' of Section 5.2. The first set is the system I and we have 

C| = (<o/0~'/2. c2 = u + a, c3 = u, 

c4=u-a, Cj=-(c0ja) 

The second set is the system II and 

1/2 

a. = u + \a2-\ I , a2 = a, = u, 
\ W>/ 



Sec 10.5 EXAMPLES 357 

The genuine waves moving relative to the fluid have alternating velocities 
as required by (10.42) and are stable. The confluence of a2,a3, with c3 on 
the particle paths is easily checked to be a stable situation. 

An Sn shock of the ax family moving with velocity U has a continuous 
structure provided 

M
(2) + a ( 2 )<C/<(€0^)"1 / 2 . 

The speed of light is effectively infinite, so we deduce that a discontinuity 
appears at the back of the profile when 

U<ua)+a™. 

This is a simple derivation of the result found by Marshall (1955) by a 
detailed analysis of the shock structure. Further discussion of this case may 
be found in Whitham (1959a). 

Relaxation Effects in Gases. 

The equations of inviscid gas dynamics (Chapter 6) may be written 

p, + upx + pux = 0, 

u. + uur H—pr = 0, p 

p 
e. + uer H— u = 0. 

p 

During rapid changes in the flow the internal energy e may lag behind the 
equilibrium value corresponding to the ambient pressure and density. The 
translational energy adjusts quickly, but the rotational and vibrational 
energy may take an order of magnitude longer. If we suppose that a of the 
degrees of freedom adjust instantaneously but a further a, degrees of 
freedom take longer to relax, we may take 

e=-- + E, 2 p 

where E is the energy in the lagging degrees of freedom. In equilibrium [see 
(6.42)] E would have the value 

a. p 
F = —- — 
^equil 2 p-
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A simple overall equation to represent the relaxation is 

«+„*~i(fi.?5). 
where T is the relaxation time. After some minor manipulation, the set of 
equations may be written 

f(A + «ft)-(l + f)J(ft + «P,)+p(£( + «E,)-0, 

E- + »E* + 7 ( £ - T P H -
The characteristic velocities are 

cx=>u + ap C 2 *C 3 = M, c4=u-af, 

where af is the "frozen" sound speed defined by 

This is the system I for this case. However, if the relaxation time r is 
taken to be so short that E<*>(ar/2)(p/p) is an adequate approximation to 
the last equation of the set, we have the equilibrium theory: 

P, + uPx + pux = 0, 

ut + uux+-px~0, 

a + ar , v / , a + ar\P k ( A + ^ ) - ( l + f L 2 ^ ) ^ ( P , + «PJ-0 . 
2 

This is the reduced system II for our problem. The characteristics are 

a, = w + ae, a^u, a3=u-at, 

where a, is the equilibrium sound speed defined by 

2 (< ■ 2 \ p P 

a;f = 1 + —-— - = ye-. 
\ a + ajp "p 
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Since ye<ip the various velocities alternate and there is stability; again 
confluence of velocities with the particle velocity is stable. 

Viewed from the full system the 5„ shock structure, which takes the 
flow between two uniform states in equilibrium, will be continuous if 

um - af> < U < um + af\ (10.49) 

Since the Sn shock conditions show that U > M(2), only the upper restric-
tion arises. A frozen St shock will appear at the front of the profile and will 
be followed by a continuous relaxation region when 

U>uw + a?\ 

This criterion may be written as 

"-V-̂ -l*) ' ('"-50) 
For a diatomic molecule the two rotational modes may lag behind the 

three translation modes, and we may describe this by taking a = 3, ar = 2. 
The frozen and equilibrium sound speeds are given by 

2 5P i IP 
1 3 p 5 p 

The criterion (10.50) predicts a fully relaxed smooth profile for 

M< 1.091, 
and a discontinuity followed by a relaxation region when M exceeds this 
critical value. The discontinuity would itself be resolved into a thin 
sublayer by the inclusion of viscosity and heat conduction. 

Griffith, Brickl, and Blackman (1956) and Griffith and Kenny (1957) 
report on experimental observations for vibrational relaxations in C02. 
The appropriate choice for a is 5 to include translational and rotational 
modes. The vibrational modes take considerably longer to adjust. At 
300°K, the appropriate choice* for ar is 2. The critical value for M is 
1.043, and the experimental observations in the references cited bear this 
out very accurately. (Further details may be found in the above papers and 
in the excellent article by Lighthill, 1956.) 

We see that a careful assessment of the waves involved and the roles 
they must play leads to relatively simple predictions of important 
phenomena in quite complicated situations. 

•At this temperature the four modes have only one half of their classical energies so that 
ar = 2 is appropriate. 
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CHAPTER 11 

Linear Dispersive Waves 

The discussion in Part I was concerned primarily with hyperbolic 
systems. Most wave motions, including the familiar one of water waves, 
are not described by hyperbolic equations in the first instance. At a later 
stage there is some link-up with hyperbolic equations in describing the 
propagation of important average quantities associated with the distur-
bance. But a different set of basic ideas and mathematical techniques must 
be developed. 

These nonhyperbolic wave motions can be grouped largely into a 
second main class which we call dispersive. In general the classification is 
less precise than that for hyperbolic waves, since it is made on the type of 
solution rather than on the equations themselves. But it may be made 
precise in a restricted class of problems, and one can make extensions in a 
natural way or proceed by analogy. It should be added that a few special 
equations exhibit both hyperbolic and dispersive behavior, the different 
behaviors appearing in different regions of the solution. But these are 
exceptional. 

The first two chapters develop the general ideas for linear systems. 
Chapter 13 is devoted to water waves, a subject which is fascinating for its 
own sake as well as being the subject in which many of the ideas of 
dispersive waves were first developed. In Chapter 13 a start is made on 
nonlinear dispersive waves in this specific context to serve as background 
for the general developments of nonlinear theory in Chapters 14 and 15; 
Chapter 16 contains miscellaneous applications. The final chapter covers 
the recent work on solitary waves and special equations. 

11.1 Dispersion Relations 

For linear problems, dispersive waves usually are recognized by the 
existence of elementary solutions in the form of sinusoidal wavetrains 

<p{x,t) = AeiKX-iul, (11.1) 
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where K is the wave number, w is the frequency, and A is the amplitude. In 
the elementary solution, K,U>,A are constants. Since the equations are 
linear, A factors out and is arbitrary. But to satisfy the equations, K and w 
have to be related by an equation 

G(u, K ) = 0 . 

The function G is determined by the particular equations of the problem. 
For example, if <p satisfies the beam equation 

9,,+y2<pxxxx
=0> 

we require 

w
2 - y V = 0. 

The relation between a and K is called the dispersion relation, and as will 
become evident below, we can dispense with the equations once we know 
the dispersion relation; conversely, we can construct the equation from the 
dispersion relation. 

We assume that the dispersion relation may be solved in the form of 
real roots 

U=W{K). (11.2) 

There will be a number of such solutions, in general, with different 
functions W(k). We refer to these as different modes. The beam equation, 
for example, allows two modes: 

w = yn2, 03= -yK2. 

For the present we study one mode; in linear problems the modes can be 
superposed to make up the complete solution. The linearity also allows us 
to work with the complex form (11.1) with the understanding that the real 
part should be taken when necessary. The actual solution is 

61<P = |/4|COS(K-X-W/ + TJ), Tj = arg/1. 

The quantity 

0 = K-x-ut (11.3) 

is the phase; it determines the position on the cycle between a crest, where 
6X<p is maximum, and a trough, where 3l<p is a minimum. In this plane 
wave solution, phase surfaces 9 = constant are parallel planes. The gradient 
of 9 in space is the wave number K, whose direction is normal to the planes 
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and whose magnitude K is the average number of crests per 2IT units of 
distance in that direction. Similarly, - 0, is the frequency w, the average 
number of crests per 2m units of time. (The normalization to 2IT units is 
convenient in working with the trigonometric functions.) The wavelength is 
A = 2TT/K and the period is r = 2m/w. 

The wave motion is recognized from (11.3). Any particular phase 
surface is moving with normal velocity U/K in the direction of K. We 
therefore introduce the phase velocity, 

C = - K , (11.4) 
K 

where k is the unit vector in the K direction. For any particular mode 
u = W(K), the phase velocity is a function of K. For the wave equation 
<P„ = CQV2<P, the dispersion relation gives u= ±C0K and c— ±cQ: the phase 
velocity agrees with the usual propagation speed. In general, c is not 
independent of K. Different wave numbers will lead to different phase 
speeds. This accounts for the term "dispersion." In a Fourier synthesis of 
more general solutions by superposition, components with different wave 
numbers disperse as time goes on. This crucial process is discussed in 
detail in the next section. 

As regards classification, we must exclude the case c = constant from 
the class of dispersive waves, since the dispersion would be absent in that 
case. It is also clear that the solutions (11.2) must be real for these effects. 
The heat equation <p, = V2<p has solutions (11.1) with <O=-/ 'K2, but the 
solutions are not wavelike. To eliminate the unwanted cases, we restrict the 
term dispersive, in the first instance, to those cases for which 

W(K) is real, and 

(11.5) 

determinant 
d2W 
3K, 3K, 

For one dimensional problems, the second condition is just 

W"(K)^0. 

This is slightly stronger than c'(*)^0, since it eliminates W=a>c + b as 
well. The reason for this is amplified below, but for the one dimensional 
case we note in advance that the group velocity W'(K) is the more 
important propagation velocity and the condition W"(K)^0 ensures that it 
is not a constant. We can see directly that the excluded case W= an + b is 
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not really dispersive. The elementary solution is 

_ — ibt IK(X — at) 

and Fourier superposition gives the general solution 

e-""f(x-at). 

An initial waveform f(x) is modified as it propagates but there is no 
dispersion. One can easily show that the governing equation is hyperbolic. 

The determinant in (11.5) may vanish near some special value of K, for 
example, as K-»0 or K-*OO, and these limiting values will require special 
consideration as singularities in the general formulas. 

Examples. 

Some typical examples which will be used as illustration in the 
development of the general theory are: 

<j>„-a2V2<p + 02<p = O, w = ± V « V + /6
2

 ; (11.6) 

<p,/-a
2VV = /32V2<p„, <o=± aK ; (11.7) 

<p, + a<px + (3<pXJtx = 0, w=aK-/k3 . (11.9) 

The first of these is hyperbolic but has dispersive solutions satisfying 
(11.5) nevertheless. It represents vibrations for a displacement <p with 
additional restoring force proportional to <p; it is also the Klein-Gordon 
equation of quantum theory. The other equations are not hyperbolic, and 
these are the more typical cases. Equation 11.7 appears in elasticity for 
longitudinal waves in bars, in water waves in the Boussinesq approxima-
tion for long waves, and in plasma waves. Equation 11.8 is the equation for 
flexural vibrations of a beam. Equation 11.9 also applies to long water 
waves; it is the linearized form of the Korteweg-deVries equation. The 
water wave approximations will be investigated in detail later; the others 
are taken to be reasonably familiar. 
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Correspondence Between Equation and Dispersion Relation. 

It is obvious from these examples, and clearly true in general, that 
equations with real coefficients will lead to real dispersion relations only if 
they consist entirely of even derivatives or they consist entirely of odd 
derivatives. Each differentiation brings out a factor /. Even derivatives will 
lead to a real coefficient, odd derivatives to a pure imaginary coefficient; 
they cannot be mixed if the final form is to be real. Schrodinger's equation, 

^1 = -JL. 
dt 2m 

with mixed odd and even derivatives, has a real dispersion relation 

ihTT--fzVV (1U°) 

hu=-z— 
2m 

by allowing a complex coefficient. 
We can take the correspondence between the equation and the disper-

sion relation much further. A single linear equation with constant 
coefficients may be written 

,/_3_ _3_ _3_ _3_\ = n 

where P is a polynomial. When the elementary solution (11.1) is substi-
tuted in the equation, each 3/9/ will produce a factor — iu, and each 
d/dxj produces a factor /K,. The dispersion relation must be 

P( — iu, IK,, /"K2, iK3) = 0, (11.11) 

and we have a direct correspondence between the equation and the 
dispersion relation through the correspondence 

3 3 

37~-"°' a*;"1* 
From (11.11) we can recover the equation. This is the basis for the earlier 
remark that the equation can be dropped when the dispersion relation is 
known. 

It is seen, however, that an equation of this type can yield only 
polynomial dispersion relations. A natural question to ask is what kind of 
operators yield more general dispersion relations. One possibility is that 
the oscillatory wave motion represented by (11.1) takes place in only some 
of the space coordinates while there is a more complicated behavior in the 
remaining coordinates. A typical example is the theory of deep water 
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waves in which waves propagate horizontally, and the dependence on the 
vertical coordinate is not oscillatory; this will be seen later. A second 
possibility, which has wavelike behavior in all the variables, can be 
illustrated in one dimension by the integrodifferential equation 

^ ( * , 0 + f K(x-i)^(i,t)dZ-0, (11.12) 
J — 00 

where the kernel K(x) is a given function. This equation has elementary 
solutions <p = Ae'KX~iul provided 

-iaeha+ f °° K(x-Z)iKeiKtdZ=0. 
■ ' - 0 0 

The condition can be rearranged as 

c = - = C KVDe-^dS. (11.13) 
K - ' - o o 

The right hand side is the Fourier transform of the given kernel K(x) and, 
by the inversion theorem, we have 

K(x) = j - C c{K)eiK*dK. (1114) 
lit J-ae 

Thus (11.12) can be constructed to give any desired c(«) and consequently 
any desired dispersion function: simply choose K(x) as the Fourier trans-
form (11.14) of the desired phase velocity C(K). In particular, if 

C(K) = C0+C2K
2+--- +c2mK2m, 

then 

K(x) = c08(x)-c28"(x)+ •••+(- lfc^o-'W, 

and (11.12) reduces to the differential equation 

When C(K) is a more general function with an infinite Taylor series in 
powers of K, we can take the corresponding differential equation with an 
infinite series of derivatives. This is effectively summed by (11.12). 
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Definition of Dispersive Waves. 

We can now introduce a restricted definition of dispersive linear 
systems as those for which there are solutions (11.1), (11.2), with (11.5) 
satisfied. There is some overlap with hyperbolic systems as the example 
(11.6) illustrates, but the system is usually not hyperbolic. We need not 
confine the considerations to differential equations, as the last paragraph 
shows. 

It is immediately clear that the definition is too restrictive. Even for 
linear differential equations, it is limited to constant coefficients. For 
example, if y is a function of x in the beam equation, that is, 

(11.1) is not a solution. Yet unless y(x) is a particularly violent function of 
x, we would expect the solution to have many features similar to the case 
of constant y; in some sense the structure is the same. We would think of 
this as a problem of dispersive waves in a nonuniform medium. Again, an 
equation may have separable solutions, say, 

X(Kx)e-ib", U=W(K), 

where X is an oscillatory function such as a Bessel function. This would be 
dispersive in a similar way, but it would be hard to include in an overall 
definition. We seem to be left at present with the looser idea that whenever 
oscillations in space are coupled with oscillations in time through a 
dispersion relation, we expect the typical effects of dispersive waves. 

The situation is similar for nonlinear systems: a restricted class can be 
identified and then the ideas are extrapolated in a natural way. 

A more comprehensive answer lies perhaps in the variational formula-
tions to be developed in the later chapters. These allow the theory of the 
solutions to be developed in a general way, and presumably they provide 
the appropriate general framework for many questions, including the 
classification. But this is still an open question. 

11.2 General Solution by Fourier Integrals 

If (11.1)-(11.2) is an elementary solution for a linear equation, then, 
formally at least, 

«p(x, t) = f °° F(K)e"■'~mK)'dK (11.15) 
J - 0 0 
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is also a solution. The arbitrary function F(K) may be chosen to fit 
arbitrary initial or boundary data, provided the data are reasonable 
enough to admit Fourier transforms. If there are n modes with n different 
choices of W{K), there will be n terms like (11.15) with n arbitrary 
functions F(K). It will then be appropriate to give n initial conditions to 
determine the solution. The examples (11.6)—(11.8) all have two modes and 
it is appropriate to prescribe <p and <p, at / = 0. As happens in these cases, 
the two modes will often be w= ± W(K) and, in a typical one dimensional 
problem, we have then 

<p = r Fl(K)eiKX-imK)'dK+ f°° F2(K)eiKX+imK)'dK (11.16) 
■ ' - 0 0 • ' - 0 0 

with initial conditions 

<P = <Po(*). <P, = <Pi(-0 

at f=0. If W(K) is odd in K, as in (11.7), the first term in (11.16) represents 
waves moving to the right and the second term represents waves moving to 
the left. If W(K) is even, as in (11.6) and (11.8), waves moving to the right 
and left appear in both contributions. Applying the initial conditions, we 
require 

<*>„(*)= P [Fl(K) + F2(K)}eiKXdK, 
• ' - o o 

<pi(x)=-i['*W{K){Fi(K)-F2(K)}e**dK. 
■ ' - 0 0 

The inverse formulas give 

F , (K) + F2(K) = * 0 ( K ) = ^ f" <p0(x)e-**dx, 

- ^ (K){ / - 1 (K) -F 2 ( ( c ) }=* 1 ( K ) = ^ - r 0 0 « p 1 ( x ) e - » « ^ , 
" • ' - 0 0 

and F,(K),F2(K), are determined to be 

1 ( '*i(«0 ) 

1 f i*i(«) 1 



Sec 11.3 ASYMPTOTIC BEHAVIOR 371 

Since 9>o(x),9i(x) are real, 4>0(-K) = ^ ( K ) and $ , ( — K) —*{■(«) where 
asterisks denote complex conjugates. It follows that for W(K) odd 

F I ( - . ) - * T < . ) . ( n i 7 ) 

F 2 ( - K ) - / J ( I C ) ; 

and for W{K) even 

F , ( - K ) = F2*(K), 
(11.18) 

F2(-K) = F*(K). 

In either case, the solution (11.16) is real: real initial conditions must lead 
to real solutions for real equations. 

A standard solution from which others can be reconstructed is 
obtained by taking 

<Po(*) = *(•*)> <Pi(*)=0. 

Then F1(K) = F2(K) = \/Am and (11.16) reduces to 

1 r00 

<p=—{ COSKX cos W(K)tdK; (11-19) 
IT J0 

of course this is a formal integral to be interpreted as a generalized 
function. 

113 Asymptotic Behavior 

Although the Fourier integrals give exact solutions, the content is hard 
to see. It becomes clearer and one starts to understand the main features of 
dispersive waves by considering the asymptotic behavior for large x and t. 
We consider first the typical integral 

<p(x,t)= r°° F(K)eiKX-'mK)'dK 

in the one dimensional case. For wave motions we are interested in the 
behavior for both large x and /; the interesting limit is /-*oo with x/t held 
fixed. (A particular choice of x/t allows us to examine waves moving with 
that velocity.) Accordingly, the integral is written 

<p(x,0= [°° F(K)e-'x'dK, (11.20) 
J — en 
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where 

X{K)=W(k)-K±. 

For the present, x/t is a fixed parameter and only the dependence on K is 
displayed in x- The integral in (11.20) may then be studied by the method 
of stationary phase; this is, in fact, the problem for which Kelvin de-
veloped the method. Kelvin argued that for large t, the main contribution 
to the integral is from the neighborhood of stationary points «= k such 
that 

x'(k)=yV'(k)-±=0. (11.21) 

Otherwise, the contributions oscillate rapidly and make little net contribu-
tion. The later development of the method of steepest descents (or saddle 
point method) is easier to justify and to assess errors. A full discussion of 
the methods is given, for example, in Jeffreys and Jeffreys (1956, Sections 
17.04-17.05). It will be sufficient here to derive the first term in the 
asymptotic expansion following Kelvin's argument. 

The functions F(K),X(K) in (11.20) are expanded in Taylor series in the 
neighborhood of K = k. The dominant contribution comes from the terms 

X(K)^x(k) + (K-kfX"(k), 

provided x 'W^O- With these approximations, the contribution is 

F(k)cxp{ -iX(k)t) C exp{ - i ( K - * ) V ( * ) / } < & . 
^ - 00 

The remaining integral is reduced to the real error integral 

1/2 

/ " • - * - ( : ) 

by rotating the path of integration* through ± IT/4; the sign should be 
chosen to be the same as the sign of x 'W- Then we have 

W"\^WleXp{"'xW'-7^«" 

*This corresponds to changing to the path of steepest descents. 
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1 -
t\W" 

If there is more than one stationary point K = k satisfying (11.21), each one 
contributes a similar term, and we have, 

<P~ 2 F^>V^% wfa-iWQ'-ji&ir'lk)}. (11.22) 
points k 

The next term in the asymptotic behavior requires the Taylor series 
continued as far as the (K - k)2 term in F(K) and the (K - k)4 term in x(<0> 
Two further terms are required because the odd powers integrate out 
eventually. When this is done, preferably using the method of steepest 
descents, the additional term may be written as a factor 

/ F" 1 W" F' 5 W"2 1 H"° \ m r n 

\2F 2 W F 24 W"2 ZW) ^ u " " ' 

multiplying the term in (11.22). The complicated form comes from the 
necessity of working to two further terms in the Taylor series for F and x-
In general, this series continues in inverse powers of t with coefficients 
which are functions of k. 

Earlier, the precise meaning of "large /" was left vague. The require-
ment may now be taken to be that the correction term in (11.23) be small; 
/ must be large compared with time scales derived from the dispersion 
relation and from the length scale in the initial conditions. For sharply 
peaked initial conditions with small length scale, F' and F" are small and 
the requirement is that t be large relative to the typical period in W(k), 
which in turn is given by parameters in the equation. For the extreme case 
of a S function initial condition, F is constant and F' — F" =0. 

For the special case of two modes with « = ± W(K), the full solution is 
given by (11.16). We make the further assumption that W'{K) is monotonic 
and positive for K > 0 (this is usually the case), and we consider the 
asymptotic behavior of (11.16) for x >0. If W(K) is odd, W(K) is even and 
(11.21) has two roots ±k. These two contributions in (11.22) can be 
combined, since F,( - k) = Ff(k) from (11.17), and we have 

V ~ 2 6 I | F 1 ( / C ) Y ^ ^ exp{Ucx- iW{k)t- / | sgn W(k)}\ 

x /-»OO,y>0, (11.24) 

where k(x,t) is the positive root of (11.21) defined by 

k(x,t): W\k)= i , *>0, ^>0. (11.25) 
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For odd W(k), the second integral in (11.16) does not contribute to the 
solution in x > 0 ; it gives a corresponding expression for x <0 . 

When W(K) is even, W'{K) is odd; (11.21) has one root k for x > 0 and 
it is positive. There is only one contribution from the first integral in 
(11.16). However, for the second integral in (11.16), the stationary points 
satisfy 

v / t 

and - k is a solution of this for x >0 . That is, with k defined as in (11.25), 
there is a stationary point K = k in the first integral of (11.16) and a 
stationary point K= - k in the second one. In view of (11.18), the contribu-
tions can again be combined and the net result is the same formula as 
(11.24). 

The significance of the condition W " ( K ) ^ 0 in the definition of dis-
persive waves for linear systems is now clear. If W(K) is a constant, there 
are no stationary points for general x/t and the whole asymptotic analysis 
is different. Of course it is not necessary, since the Fourier integrals can be 
simplified immediately. The significance of W"(k)^0 appears also in the 
denominator of (11.24) and in the error term (11.23). If IV"(K) is not 
identically zero, but vanishes for some particular stationary point k, the 
correct asymptotic behavior is found by going to further terms in the 
Taylor series for X- If x " W = 0, but x'"(k)¥=0, the contribution to (11.20) 
is 

F(k)cxp{-iX(k)t) j e x p { - | / X " W ( « - A : ) 3 } ^ 

F(k) 
= (4)!35/62i/3 v ' ...exp{ikx-iW(k)t}. (11.26) 

{t\W'"{k)\f 
Since k is a function of x/t this would indicate a singular behavior on the 
corresponding line x/t= W'{k) and in its neighborhood. 

We now take up a detailed discussion of (11.24) and (11.25). 

11.4 Group Velocity; Wave Number and Amplitude Propagation 

At any point (x,t), (11.25) determines a certain wave number k(x,t), 
and the dispersion relation <o= W(k) gives also a frequency «(x,/) at that 
point. We may introduce a phase 

9(x, t) = xk(x, t) - tu(x, t), 
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and (11.24) may then be written 

<p=6l{A(x,t)emx'0}, (11.27) 

where the complex amplitude is 

* Y 'I w"(> 
A{x,t) = 2Fl(k)\l t J ; r ( " / 4 ) , 8 n H " . (11.28) 

The expression (11.27) is in the form of the elementary solution, but A,k,u 
are no longer constants. However, the solution still represents an oscil-
latory wavetrain, with a phase 9 describing the variations between local 
maxima and minima. The difference is that the wavetrain is not uniform; 
the distance and time between successive maxima are not constant, nor is 
the amplitude. 

It is natural to generalize the concept of wave number and frequency 
in this nonuniform case by defining them as 9X and - 9t, respectively. 
Counting the number of maxima in unit distance would obviously be a 
clumsy and ill-defined quantity, whereas 9X is straightforward and does 
correspond to the intuitive idea of a local wave number. Moreover, in the 
present case, we have 

9{x,t) = kx-W{k)t, 

fx=k+{x-W'{k)t)fx, (11.29) 

ft--W(k)+{x-W(k)t)^; 

the stationary condition (11.25) eliminates the terms in kx,kt, and we have 
just 

^=k(x,t), (11.30) 

f « - W ( * ) - - « ( * , 0 . 01-31) 

Thus the wave number k, which was first introduced as a particular value 
of the wave number in the Fourier integral, agrees with our extended 
definition of a local wave number 9X in an oscillatory nonuniform wave-
train. The same is true of the corresponding frequency. Furthermore, the 
local wave number and local frequency satisfy the dispersion relation even in 
the nonuniform wavetrain. 
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These extensions work so neatly because the nonuniformity is not too 
great. If an oscillation is too irregular, we might find a phase function 9 
and then define 9X as the wave number, but the intuitive interpretation 
would be lost if 9X itself varied rapidly in the course of one oscillation. In 
our case, k(x,t) is a slowly varying function. From (11.25), 

K W 1 K. _ w 1 
k " kW x' k~° kW" t' 

and x, t are both relatively large. Therefore the relative change in one 
wavelength or one period is small. Thus & is a slowly varying function in 
this sense; the same is true of «. [Again we note the singular behavior near 
any points with W"(/c)»=0.] From (11.28), it is easily seen that A is also 
slowly varying. 

With these interpretations of the quantities appearing in (11.27), we 
return to the determination of k and u> as functions of (x,t) from (11.25), 
and the determination of A from (11.28). Equation 11.25 determines & as a 
function of x and t, but to appreciate its content we turn it around and ask 
where a particular value k0 will be found. The answer is: at points 

x= W'(k0)t. 

That is, an observer moving with the velocity W(k0) will always see waves 
with wave number k0 and frequency W(k^). The quantity 

is the group velocity; it is the important velocity for a "group" of waves 
with a distribution of wave number. The interpretation of (11.25) shows 
that different wave numbers propagate with the group velocity; any particular 
wave number k0 is found displaced a distance W(k0)t in time t. 

Any particular value 90 of the phase propagates according to 

Hence it moves according to 
9(x,t) = 90. 

9x% + 9,-0, 

that is, 

dx _^ ._ . <£ 
dt " 9, k' 



Sec 11.4 GROUP VELOCITY 377 

Thus the phase velocity c is still given by u/k even though the meanings of 
w and k have been extended. But it is different from the group velocity. An 
observer following any particular crest moves with the local phase velocity 
but sees the local wave number and frequency changing; that is, neighbor-
ing crests get farther away. An observer moving with the group velocity 
sees the same local wave number and frequency, but crests keep passing 
him. 

As illustration of this important distinction, consider the beam equa-
tion. The dispersion relation is 

Hence (11.25) becomes 
W{k) = yk = ,̂J-2 

and we have 

W'(k)=2yk=±, 

k = 
2yt' " 4y/2 ' 

The group lines of constant k and w are 

0 = 
4yt' 

2yt 

the phase lines of constant 9 are 

= constant; 

Ayt = constant. 

These are shown in the (x; t) diagram in Fig. 11.1. In this case the group 
velocity 2yk is greater than the phase velocity yk. 

k = co 

Fig. 11.1. Group lines (solid lines) and phase lines (dashed lines) for waves in a beam. 
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k » 0 x 

Fig. 11.2. Group lines (solid lines) and phase lines (dashed lines) for deep water waves. 

For water waves in deep water (see Chapter 12), the dispersion 

relation is W= Vgk . Hence W\k) = x/t leads to 

* = 
Ax2 

gt_ 
2x' - £ • 

The group velocity { Vg/k is less than the phase velocity \/g/k and we 
have the situation shown in Fig. 11.2. 

In all cases (for the uniform media considered so far) the group lines 
are straight lines whereas the phase lines are not; each wave number 
propagates with a constant velocity; each phase accelerates or decelerates 
as it passes through different wave numbers. 

If we take 8 function initial conditions so that Fl(k)=l/4ir, the 
amplitudes A (x, t) can be given explicitly as well and the complete asymp-
totic solutions are 

1 -I <P~ cost 
V^y/ l4?' 5) 

for the beam, and 

l(g\i/2 t (g'2 

(11.32) 

(11.33) 

for water waves. [In fact, (11.32) is exact since W(K) is exactly quadratic 
for the beam.] 

A second important role of the group velocity appears in studying the 
distribution of A(x,t). The form of (11.28) suggests that | /1 | 2 is the 
interesting quantity to consider, and this is also natural on physical 
grounds since it is an energylike quantity. The relation of \A\2 to the true 
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energy density and to the so-called "wave action" will be pursued later. 
For the present, A(x,t) is a well-defined quantity given by (11.28) and we 
may consider \A |2. 

The integral of \A^ between any points x2>xx>0 is given from 
(11.28) by 

Q(t)= C2AA*dx 
Jx, 

f*1 Fi(k)F*(k) 

"8*1, -wWx-
In this integral k is given by (11.25). Since k appears in the arguments of 
the integrand and x does not, it is natural to introduce A: as a new variable 
of integration through the transformation 

x=W'(k)t. 
For W"(k)>0, we have 

Q(t) = S^fk2Fl(k)Fr(k)dk, (11.34) 
Jky 

where kx and k2 are defined by 

x, = W'{kx)t, x2 = W'(k2)t. (11.35) 

If W"(k)<0, the order of the limits is reversed. 
Now, if &, and k2 are held fixed as t varies, Q(t) remains constant. 

According to (11.35), the points x, and x2 are then moving with the 
corresponding group velocities. We have therefore proved that the total 
amount of \A\2 between any pair of group lines remains the same. In this 
sense, \A\2propagates with the group velocity. The group lines diverge with a 
separation increasing like t; hence \A\ decreases like t~l/2. 

In the special case of a wave packet where the initial disturbance is 
localized in space and contains appreciable amplitude only in wave num-
bers close to some particular value k*, say, the resulting disturbance is 
confined to the neighborhood of the particular group line k* and the wave 
packet as a whole moves with the particular group velocity W(k*). 
Accounts of group velocity in the literature are frequenctly limited to this 
case. The foregoing arguments are more general, however, and allow a 
general distribution over all wave numbers with the full dispersion shown 
in Figs. 11.1 and 11.2 as the entire range of values of W'(k) come into 
play. 
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11.5 Kinematic Derivation of Group Velocity 

The concept of group velocity is so fundamental in understanding the 
wave motion that one feels it should not be only the end product of 
Fourier analysis and stationary phase. In nonuniform media, or for non-
linear problems, where the Fourier analysis cannot be carried out in this 
way, surely the same concepts must appear and be equally important. How 
do we free the ideas from the Fourier analysis? 

To see how to generalize the results, we look at their derivation by 
more intuitive arguments. The arguments can always be checked against 
the previous discussion, or justified eventually by direct asymptotic 
methods. The advantages are tremendous, since we can then make pro-
gress on approximate treatments of problems for which the exact solutions 
are not known. At the same time, we obtain quicker and fuller insight even 
in those problems where the exact solution can be found. 

We first consider the role of group velocity in determining the propa-
gation of wave number and frequency. On reexamination of the arguments 
we see that very little was required. First, if we assume there is a slowly 
varying wavetrain and that a phase function 0(x,t) exists, we can define 
local wave number and frequency by 

k = 9x, to=-0, . (11.36) 

If, further, we know or can propose a dispersion relation 

u=W{k), (11.37) 

we have an equation for 0 and we could proceed to solve it to determine 
the geometry of the wave pattern. It is usually more convenient, however, 
to eliminate 0 in (11.36) to give 

f + £ - 0 , (II A ) 

and use this in conjuction with (11.37) to solve first for k(x,t) and «(*,/). 
Notice that this formulation is the basic one for the nonlinear waves 
discussed in Chapter 2. Indeed, k is the density of waves, « is the flux of 
waves, and (11.38) is a statement of the conservation of waves! Substitut-
ing the dispersion relation (11.37) in (11.38), we have 

| ^ + C(A:) |^=0, C(k)=W'(k). (11.39) 

The group velocity C(k) is the propagation velocity for the wave number k. 
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According to the analysis in Chapter 2, the general solution of (11.39) 
for an initial distribution k=f(x) at / = 0 is 

* - / « ) , * = £ + e ( | ) / , (11.40) 
where 

e«)=c {/(£)}. 

The special case of a centered simple wave arises when the range of values 
of k is initially concentrated at the origin. Then k{x,t) is determined from 

x = C(k)t. 

This is just the determination of k given in (11.25) and represented in Figs. 
11.1 and 11.2. The validity of the asymptotic expansion (11.24), noted from 
(11.23), requires x and / so large that the initial disturbance appears to be 
concentrated at the origin. 

But, the concepts are already extended. The slowly varying wavetrain 
defined by 0(x,t) need not have originated from a relatively concentrated 
disturbance at the origin, and the distribution of k(x,t) may be more 
general, as in (11.40). Moreover, there is no necessity for the solution <p to 
be sinusoidal in 9; any oscillatory wavetrain with a definable 0 and a 
dispersion relation between k and w is included. 

It is interesting and significant that (11.39) for k is nonlinear, even 
though the original problem is linear, and that it is hyperbolic, even though 
the original equation for <p is not in general. This is the first instance of 
hyperbolic equations arising for the propagation of important overall 
quantities like k. In this sense one can preserve the association of wave 
propagation with hyperbolic equations, but there is a considerable non-
hyperbolic substructure. 

Extensions. 

The simplified derivation of the group velocity is readily extended 
further to linear problems in more dimensions and in nonuniform media. 
The extension to nonlinear problems must await further developments, 
because the dispersion relation then involves also the amplitude. For 
multidimensional equations with constant coefficients, the exact solution 
can still be obtained from the use of multiple Fourier integrals and the 
asymptotic expansion can then be obtained from stationary phase. For n 
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space dimensions, it is easy to show that 

<p= f^ F(K)eiKX-mK)'dK 

~MT)1 det dW 
dkjk; 

■1/2 

exp{/k-x-/^(k)/ + /f} (11.41) 

where 

x,. _ dW(k) 
t ~ dk.. 

and f depends on the number of factors mi/A arising from path rotations. 
However, let us use the simpler kinematic derivation and at the same time 
include nonuniform media. 

The description of a slowly varying wave in, say, three dimensions 
involves a phase 9(x,t) where x = (xi,x2,xi). We define the frequency w 
and vector wave number k by 

« = 
30 
9 / ' k.= 

8fl 
a*,.-

(11.42) 

We assume that a dispersion relation is known, and that it may be written 

«= W(k,x,t). 

For a uniform medium, this would be obtained from the elementary 
solution (11.1). For a slightly nonuniform medium, it would appear reason-
able to find the dispersion relation first for constant values of the parame-
ters of the medium and then reinsert their dependence on x,t. For 
example, if a,(i,y were slowly varying functions of x or / in the problems 
(11.6)-(11.9), we would use the same dispersion relations displayed there 
but with a,/J,y, taken to be the specified functions of x and /. Intuitively, 
this would appear to be a satisfactory procedure provided that a,(i,y, vary 
little in a typical wavelength and period. This will be substantiated in 
Sections 11.7 and 11.8. 

If we eliminate 9 from (11.42), we have 

^ ■ + J ^ = 0 , ^ i _ ^ = 0 . 
3/ dx.- dXj dx, 

(11.43) 
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Then, if w = W(k, x, t) is introduced into the first of these, 

3*, | dWdkj = dW 
dt 3/c 3x(- dxt ' 

Since dkj/dx^dkj/dxj, this may be modified to 

v 
where 

dk, dk: a w 

C,(k,x,0 ^ — ^ . (11.45) 
7 

The three dimensional group velocity C is defined by (11.45) and is the 
propagation velocity in (11.44) for the determination of A:,. Equation 11.44 
may be written in characteristic form as 

dlL = _W o n ? * W (,,.46) 
dt 3x,. dt dk, v ' 

We note that k is constant on each characteristic when the medium is 
uniform in x, and then the characteristics are straight lines in the (x,t) 
space. Each value of k propagates with the corresponding constant group 
velocity C(k). But this is not true in a nonhomogeneous medium, for then 
the values of k vary as they propagate along the characteristics and the 
characteristics are no longer straight. It might also be remarked that 

die _ foo - du^ 3Ff 
dt ~ 3/ Jdxj dt ' 

the frequency is constant on each characteristic when the medium is time 
independent but not otherwise. 

It is interesting that the equations of (11.46) are identical with Hamil-
ton's equations in mechanics if x and k are interpreted as coordinates and 
momenta and WQa,x,t) is taken to be the Hamiltonian! If instead of 
eliminating 0, we substitute for a and k in the dispersion relation, we have 

» + ̂ g . „ ) -a OUT) 
This is the Hamilton-Jacobi equation, with the phase 9 as the action. 
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If W is independent of x and t, the solution of (11.46) for an initial 
distribution fc,=/(x) is 

W , « ) . *,=£,+e,(£)/, (n.48) 
where 

e,«)-c,{f«)}. 

Again the centered solution corresponding to a whole range of k released 
at the origin at t = 0 is found by determining k(x, t) from 

x,-Cf(k)t. (11.49) 

This is the special case obtained in the asymptotic expansion (11.41) of the 
multiple Fourier integral. 

Examples of the use of these various equations will be given in 
Chapter 12. 

11.6 Energy Propagation 

The preceding kinematic derivation shows one role of the group 
velocity and determines the geometry of the waves. The second role of the 
group velocity is in connection with the amplitude distribution A(x,t) in 
(11.27)—(11.28). We would like to have direct access to the behavior of A 
and its involvement with the group velocity in much the same spirit. It 
looks feasible since energy is apparently involved and we expect to be able 
to make a direct statement of energy balance. This is the case. However, 
recent work using variational formulations has not only improved and 
generalized the derivations, it has also shown that "wave action" rather 
than energy is perhaps the more fundamental concept in this connection. 
The variational approach is subtle and it is useful to prepare the ground 
with a more traditional discussion of energy propagation. 

We start as before with the one dimensional problem for a uniform 
medium and see how to obtain information on the amplitude distribution 
without using the Fourier integral solution. In this first approach we are 
forced to work with specific cases. The Klein-Gordon equation 

is one of the simplest to use, since it keeps the order of derivatives as low 
as possible. It is hyperbolic and is exceptional in that respect, but we are 
concerned only with oscillatory parts of the solution, not with wavefront 
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behavior. The accompanying energy equation is easily obtained, and for 
constant coefficients a,/I, it is 

A ( ^ + i „ ^ + ^ v ) + ^(-«Vv9,)-o. (11.50) 

We now consider a slowly varying wavetrain in which 

<p~<&(Aei9) = acos(9 + T)), 

a = \A\, rj = arg/l, 

and we compute the energy density and energy flux. A term like %<pf will 
have 

iu2a2sin2(0 + T)) 

together with terms involving a, and r,,. Because a and r, are assumed to be 
slowly varying these latter terms are neglected in the first approximation. 
Treating the other terms similarly we see that the energy density is given 
approximately by 

Uu2 + a2k2)a2sin2 (9 + T,) + ±p2a2cos2 (9 + T,), (11.51) 

and the energy flux by 

a2<o*a2sin2(0 + T,). (11.52) 

In cases where higher derivatives occur, extra terms in the derivatives of w 
and k would also arise but be neglected because w and k are also slowly 
varying quantities. 

Since we are concerned with variations of the overall quantities u>,k,a, 
and not with the details of the oscillations, we consider the average values 
of (11.51) and (11.52). The average values of COS2(0 + TJ) and sin2(0 + rj) 
over one period are both equal to one half, so we have 

&=±(U
2+a2k2 + fi2)a2, (11-53) 

$ = j<x2uka2, (11.54) 

for the average values of the energy density and the energy flux. In this 
particular problem, the dispersion relation is 
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hence 

&=±(a2k2 + p2)a2, $ = ±a2k^a2k2 + f32a2. (11.56) 

The group velocity is 

C ( * ) « - = = , (11.57) 
yja2k2+p2 

and we observe the important result that 

<5 = C(k)&. (11.58) 
This turns out to be general. 

It is now tempting, on the intuitive grounds that energy must be 
balanced overall, to propose the "averaged" energy equation 

^L + j-(C&) = 0 (11.59) 

as the equation to determine a. This is the differential form of the 
statement that the total energy between any two group lines remains constant. 
For if we consider the energy 

£(,)= ("M&dx (11.60) 

between points xvx2, moving with the group velocities C(&,), C(k2), 
respectively, we have 

= fXl^dx+C2$2-Ci&l, (11.61) dE CXld& 
dt 

and from (11.59) this is zero. Conversely, (11.59) is just the limit of (11.61) 
as x2 — x,—»0. 

This behavior was found in Section 11.4 for a1 itself rather than for 
£ . However, & =f(k)a2, and when this is substituted in (11.59) the 
resulting equation can be expanded to 

Since 
^{¥+iH+/Wa1f+ct}=0- (1L62) 

^ + C - ^ = 0 (11.63) 
dt ox 
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from (11.39), we have 

f + A ( C o 2 ) = 0. (,,.64) 

We see that any function of k can be slipped in or out of equations (11.59) 
and (11.64), provided (11.63) holds. Now, by the same argument given for 
$, (11.64) is the differential form of the result found in Section 11.4 that 

Q(t)= P(,)a2dx (11.65) 
J*tO) 

remains constant between group lines. Hence (11.64) and (11.59) are 
confirmed. Direct justification will appear later. 

We might also note that the characteristic forms of (11.63) and (11.64) 
are 

§=o, <^ = -c"(*)M2> Tt=c{k)- ( 1 ,66 ) 

[In the second equation kx can be treated as a known quantity because 
k (x,t) would be determined first; this is the exceptional case of Example 7 
in Section 5.2.] The group velocity C(k) appears as a double characteristic 
velocity, corresponding to the dual role noted in Section 11.4. 

The asymptotic solution obtained in Section 11.3 is the special case of 
a centered wave, where k(x,t) is the function of x/t determined from 

f = c(*). 

In this case the amplitude equation is 

dt t ' 

Since k itself may be used as a characteristic variable, the solution may be 
written 

a = t-l/2&(k) 

where & (Ac) is an arbitrary function. This agrees with (11.28) and again 
confirms the validity of the approach. Of course the function & (k) cannot 
be determined without some tie to the initial conditions, and this cannot be 
found from asymptotic discussion alone. 

In this initial value problem, we know in fact that & (k) is given by 
(11.28), and it is interesting to note that the energy E(t) between the group 
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lines k = Ac, and k = k2 as given by (11.60) is therefore 

= Z*(j{k)Fx{k)F*{k)dk, (11.67) 

where/(A:) is the factor i(«2A:2-l- >82) appearing in (11.56). From (11.50), 

the exact total energy is 

and from the exact solution (11.16), together with relation (11.18), this may 
be put in the form 

£,o. = 8T r' AK)Fx(K)Fl(K)dK. (11.68) 
• ' - 0 0 

This applies at all times both before and after the dispersion into a 
wavetrain; it shows the distribution of energy over the wave number range. 
But after dispersion the wave number range is spread out explicitly as a 
distribution over x. The form of E(t) in (11.67) shows that the same 
amount of energy is still associated with the range kx <K<k2- That is, the 
energy put into any wave number range remains there. 

The energy arguments leading to (11.58) and (11.59) are easily ex-
tended to more dimensions. For the Klein-Gordon example, the energy 
equation becomes 

and, for a slowly varying wavetrain <p~~acos(9 + -q), its averaged form is 

dt dxj ' 

where 

S = ^(w2 + a2k2 + p2)a2, % = ja2
Ukja2. 
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It may be verified from the dispersion relation that 

%-Cj&, (11.69) 

and then the averaged energy equation becomes 

^ . + J L ( C y 6 ) - 0 . (11.70) 

The total energy in any volume moving with the group lines remains 
constant. For 

±( &dV=[ ^dV+f SC.n.dS, 
dt Jv(t) Jy(l) dt Jso) J J 

where S(t) is the surface of V(t), rij is the outward normal to S(t), and CJHJ 
is its normal velocity. From the divergence theorem, (11.70) shows this to 
be zero. The characteristic form of (11.70) is 

d& 8Cy> dx, 
—j- = - T - » on —— = C.(k); dt dxj dt ,v ' 

the energy density decays due to the divergence dCj/dxj of the group lines. 
For the uniform medium, k remains constant on the group lines [see 
(11.46)]. Therefore, since & =f(k)a2, a2 satisfies the same equations. This 
may also be verified directly from (11.70) with appropriate extension of 
(11.62). For the centered wave corresponding to (11.41), k is determined 
from 

y = C,(k); 

hence 

da2 na2 

dt t ' 

where n is the number of dimensions. This agrees with the amplitude 
variation in (11.41). 

We see that the averaged energy equation does indeed give a correct 
description of the amplitude distribution in accordance with the behavior 
found earlier. It is satisfactory in that it provides an approach that avoids 
the Fourier transforms and so offers the hope of generalization, but in the 
present form it is not completely satisfactory in that the seemingly general 
results (11.69) and (11.70) appear only at the end of manipulations using 
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the specific equation. If we repeat the same type of argument on the other 
linear examples in (11.7)-(11.9), exactly the same final results (11.69) and 
(11.70) are found. 

For example, the energy equation for (11.7) has an energy density 

and energy flux vector 

- a\<f>x.-p\<f>„Xj. 

The average values obtained by (1) substituting qp~acos(0 + Tj), (2) ne-
glecting derivatives of a, rj, k{, and w, and (3) replacing COS2(0 + TJ) and 
sin2(0 + TJ) by their average values of one-half, are 

&-Ua2 + a2kf + fi2a2kJ)a2, 

From the dispersion 

it is verified that 

2(aH-

relation 

u = ak 

}j\ + l32k: 

%' 

) 8 2
w 

_ > 
2 

Cj& 

\¥ 

k = 

» 

and the average energy equation can again be written as 

The same results are found for the remaining examples in (11.8) and (11.9). 
It seems clear that these important general results should be estab-

lished once and for all by general arguments without pursuing the detailed 
derivation each time. Such arguments (and much more) are provided by 
the variational approach. 

11.7 The Variational Approach 

This approach was originally developed for the much more difficult 
case of nonlinear wavetrains and it has many ramifications. A full account 
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must await the further development of these topics, but we can take it far 
enough to complete the above discussion. 

We consider first the variational principle 

8J = SfJL(<Pl,<px,<p)dtdx = 0 (11.71) 

for a function <p(x,t). The variational principle means that the integral J [<p] 
over any finite region R should be stationary to small changes of <p in the 
following sense. Consider two neighboring functions <p(x,t) and <p(x,t) + 
h(x,t) where h is "small"; since first derivatives appear in (11.71), both 
functions are taken to be continuously differentiable. The smallness of h is 
measured in this context by the "norm": 

||A|| = max|/i| + max|/i,| + max|/i.<.|. 

The function L is usually some rather simple function and certainly we can 
suppose that it has bounded continuous second derivatives. Then by 
Taylor's expansion 

J[<P + h)-J[<p]= fj {L^ + L^h^ + L^dtdx+OiUhU2), (11.72) 

where <pj denotes 3<p/9x,. The expression linear in h is the first variation 
SJ[<p,h]. The variational principle (11.71) requires that 8J[<p,h] = 0 for all 
admissible h. By integration by parts (the divergence theorem) we have 

8JWM= If [-{jI^-^I^j + lAhdtdx, (11.73) 

if we choose, in particular, functions h that vanish on the boundary of R. 
We now require (11.73) to vanish for all such h. This implies 

by the usual continuity argument. [If (11.74) were nonzero, say positive, at 
any point, then there would be a small neighborhood in which it remained 
positive; a choice of h positive in this neighborhood and zero elsewhere 
would violate the requirement that (11.73) vanish.] 

The argument extends in natural fashion if L includes second or 
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higher derivatives in <p. The corresponding variational equation is 

L* dt ^ dxj L*'J+ 3,2 L*<-+ 8* foe, L^'+ 3x,ax, *Jk ~U' 

(11.75) 

which is easily recognized as the end result of the repeated integration by 
parts. Equations 11.74 and 11.75 are partial differential equations for 
q>(x,t), and equations in this form can be given the equivalent variational 
formulation. A variational principle involving a number of functions 
<p(a)(x,/) would lead to (11.75) for each <p(o)(x, t) (since they could be varied 
independently), and hence to a system of equations. The question of 
finding a variational principle for a given system of equations can be a 
difficult one, but it is usually straightforward when only a single equation 
is involved. We note that Lagrangians for the examples (11.6)-(11.8) are 

j 1 2 1 2 2 

respectively, and (11.9) is included by substituting <p = \px and taking 

To study slowly varying wavetrains in which 

<p~acos(0 + Tj), (11.77) 

we now calculate the Lagrangian L in exactly the same way as the energy 
density and flux were calculated in the last section. That is, (11.77) is 
substituted, derivatives of a, TJ, U, k are all neglected as being small, and 
the result is averaged over one period. The result in each case is a function 
£(w,k,a); in particular, for the examples in (11.76) we have 

t = ±(o>2-a2k2-p2)a2, 

e = | ( U
2 - a V + j32«¥)a2 , (11.78) 

e = I(<o2-7
2/:V. 
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We now propose the "average variational principle", 

8Jjt(-9„9x,a)dtdx = 0, (11.79) 

for the functions a(\,t), 9{x,t). This is similar to the proposal in (11.59), 
but it certainly is a much more subtle affair which will have to be 
examined in detail later. However, accepting it for the present, we shall see 
immediately that it provides a general and extremely powerful approach. 

Since derivatives of a do not occur, the variational equation (11.75) 
for variations in a is merely 

8a: £a=0. 

The variational equation for 9 is 

89: 4-£e+4- £«,=°-
J 

In these expressions the dependence on 9 involves only its derivatives. 
Accordingly, once the variational equations have been obtained, it is usually 
convenient to work again with w,k,a, and take the set of equations 

£ „=0 , (11.80) 

3*# da 9*. dkJ 

nt+tr°> ^ - 4 = 0 ' (,1-82) 
the latter being just the consistency equations for the existence of 9. 

Equation 11.80 is a functional relation between 9,k,a, so it can be no 
other but the dispersion relation. We check from (11.78) that this is the 
case. Indeed in any linear problem, it is clear that L must be quadratic in <p 
and its derivatives, and that as a consequence £ must always take the form 

£ = G(w,k)a2. (11.83) 

Then from (11.80) the dispersion relation must be 

G(<o,k)=0, (11.84) 

and the function C(w,k) in £ is nothing but the dispersion function. We 
did not even need to calculate £ for each case! 

This is all an unexpected bonus. The aim was to find a general 
argument for the amplitude equation, but we have actually included the 
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kinematic theory proposed in Section 11.5 for the geometry of the wave 
pattern. Equations 11.80 and 11.82 provide just that theory. 

We note that the stationary value of £ is in fact zero. In those simple 
cases in which L is the difference of kinetic and potential energies, this 
proves [subject to the eventual justification of (11.79)] that their average 
values are equal. This is the well-known equipartition of energy for linear 
problems. 

Turning next to the amplitude equation (11.81), we note that it may 
now be written 

£(G.«')-^(V2)-°- (»-85) 
In principle (11.84) can be solved in the form w= W(k) so that 

G{W(k),k} = 0 

is an identity. Therefore 

and the group velocity 

r dw + c -ft 

W Gkj 

If we denote Gu( W,k) by g(k), (11.85) may be written 

A { g ( k ) f l 2 ) + ^ { g ( k ) c . ( k ) a 2 ) = 0 . (i , .87) 

From (11.82) we have 

i + r—-=o —-—^=o-
dt +^dxj ' dxj a*, u ' 

by using these, the factor g(k) can be slipped out of (11.87) and we have 
the amplitude equation 

Thus the variational set (11.80)—(11.82) does give precisely the set of 
equations discussed in the last two sections. 
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At first sight one might expect that (11.87) is the averaged energy 
equation (11.70). But a check on examples shows that the factor /(k) in £ 
and the factor g(k) are not the same. However, there is a standard 
procedure for associating an energy equation with a variational principle. 
Noether's theorem shows that there is a conservation equation correspond-
ing to any group of transformations for which the variational principle is 
invariant (see Gelfand and Fomin, 1963, p. 177). If the principle is 
invariant to a translation in t, the corresponding equation is always the 
energy equation or a multiple of it. Since (11.79) is invariant to a transla-
tion in /, this applies and the corresponding energy equation is found to be 

J - ( w £ u _£ ) + . | _ (_ w ^ ) = 0. (11.88) 

Here, rather than pursue the detailed application of Noether's theorem, it 
is sufficient to note that (11.88) follows from the system (11.80HH.82). 
This is the energy equation. One can easily verify that the previous 
examples agree. 

In the linear problems considered here, we found that the stationary 
value of £ is zero. Hence the energy density & and flux ?F are given by 

S=<o£u, 9 > - - « £ v (1L89> 

We see therefore that the quantity £u is in fact 

03 

and (11.81) or (11.87) may be written 

rnvH^h (,,-9,) 
From (11.83) and (11.89), we have 

S =uGua
2 

% = -o>Gka
2=CJ&, 

which gives the general proof of the relation between F̂ and S . 
But we have another bonus from the general approach. It draws prime 

attention to the quantity (11.90) and to (11.81) and (11.91). The quantity 
& /u is well known in ordinary mechanics as the adiabatic invariant for 
slow modulations of a linear vibrating system. We shall show later that £u 
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is the appropriate quantity in the nonlinear case. Thus these concepts have 
been extended to the case of waves. Instead of an invariant we have the 
conservation equation (11.81) governed by a timelike adiabatic quantity £u 

and spacelike quantities — tk . This conservation equation has become 
known as the conservation of 'wave action". 

There is also a "wave momentum" equation which is the counterpart 
to (11.88) with the roles of x, and / interchanged: 

<L{kiZJ+jL(-kiZkj + Z80) = 0. (11.92) 

This is easily verified from the set (11.80)—(11.82). We note that the 
momentum density is 

* , . £ „ = - S ; (11.93) 
CO 

it is a vector in the direction of k with magnitude $ /c, where c is the 
phase speed. We again have the general proof of a familar result which is 
hard to establish by other means. 

Nonuniform Media. 

Another advantage of the variational approach is that there is no 
change in the basic equations (11.80)-(ll-82) if the medium varies slowly 
with x and /. This would be the case, for example, if the parameters a,fi,y 
in (11.76) were functions of (x,/). If the change in one period is small, the 
average Lagrangian can be formed as before, neglecting the changes a, /?, y 
in one period along with the contributions of the derivatives of u,k,a,rj. 
Then (11.79) is proposed as before, the only difference being that £ now 
depends explicitly on x and / as well as through the functions a(x,t) and 
9(x,t). However, the variational equations (11.80)—(11.82) are unchanged; 
one has only to be careful to include further derivatives in manipulating 
and expanding the equations. In particular, the energy equation now 
becomes 

±(„£ - -e)+-^( -«e % )- -£„ (n.94) 

as is easily verified. Similarly, the momentum equation (11.92) picks up a 
term £x on the right hand side. If the medium depends on /, energy is no 
longer conserved. If it depends on x, momentum is no longer conserved. 
But notice that wave action is conserved in all cases. This again shows the 
preferred position of (11.81) over the energy equation in modulation 
theory. 
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Nonlinear Wavetrains. 

Finally, the variational approach requires very little modification to 
study modulations on nonlinear wavetrains. The main questions will be the 
functional form to replace (11.77), the details of the averaging to find the 
function £, and, in general, the appearance of further overall functions 
similar to w,k,a in the complete description. In the simplest cases, how-
ever, the latter do not arise and once £ (w,k,a) has been found, the set 
(11.80)—(11.82) still apply. The major difference is the crucially important 
one that £ is no longer simply proportional to a2, and (11.80) and (11.82) 
do not uncouple from (11.81). These questions and the careful justification 
of the theory so far will be taken up in Chapter 14. 

11.8 The Direct Use of Asymptotic Expansions 

A more obvious way to avoid the Fourier integrals and open the way 
for extension to problems of nonuniform media and nonlinear systems is 
to substitute asymptotic series of the appropriate form directly into the 
equations of the problem. For the linear problems discussed so far, the 
required form of expansion is 

<p~<><«».'> | An(x,t), (11.95) 
n-0 

where the An are terms of successively smaller order in the relevant small 
parameter. In the present context, this form is suggested by the first term 
obtained in (11.27). It is also an extension of the geometrical optics series 
discussed in (7.62). For the earlier hyperbolic problems the relation be-
tween 0, and ffK would be homogeneous, so that for fixed frequency <o one 
may choose 9(\, t) — uS(\, t) as was done in that discussion. Here the 
dispersion relation between 0, and 9% is more general and we allow a 
continuous distribution of frequency. 

The approach using (11.95) is satisfactory as far as it goes and it can 
be applied to problems of nonuniform media. But to a greater extent than 
was found in the discussion via the average energy equation in Section 
11.6, one works with the specific expressions for each particular problem 
only to find at the very end that the results are general. In the case of 
extensions to nonlinear problems, the correct form of expansion is not 
immediately clear, the manipulation of expressions may become hor-
rendous, and again general results are hidden in the specific details. These 
weaknesses are remedied by applying expansions such as (11.95) directly in 
the variational formulation of the problem. This is, essentially, how the 
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variational approach is justified. But some ingenuity is involved and it is 
useful to include here as background some discussion of the direct applica-
tion of (11.95) to the equations. It is sufficient to treat the one dimensional 
case. 

The expansion discussed in Section 11.3 is valid for f-»oo, with x/t 
fixed. In that case 0{x,t) and A„(x,t) take the form 

9(x,t) = ti(±), A„(x>t) = r"-l/2Ba(^). (11.96) 

The expansion (11.95) is in increasing powers of / _ 1 (or strictly speaking, 
in powers of r/t where T is a typical time scale introduced by the 
parameters in the equations and initial conditions). To keep the technique 
flexible and see the common features in the use of (11.95) in different 
circumstances, we do not introduce (11.96) explicitly, but we note rather 
that 

dA„ dAn d2An 

lf'-97 = 0 < ^ ' > ' - ^ = 0{An+2),.... (11.97) 

That is, each differentiation increases the order by one. Similarly, 0X and 9, 
are 0(1) quantities and any further differentiation increases their order by 
one each time. The increase of order on taking derivatives indicates that 0,, 
9X, and the An are slowly varying functions. This is a general feature in using 
(11.95) whether the expansion is in r/t or some other quantity. 

As an illustrative example we take the one dimensional Klein-Gordon 
equation 

The expansion (11.95) is substituted and terms of successive orders are 
equated to zero. We have 

(02-a202-/32)Ao = O, 

(02-a
202-p2)Ai-{2i0,Ao,-2ia20xAOx + i(0tl-a\x)Ao}=O, 

(02- cttl-p2)A2- {2i0,A „ - 2 i a \ A „ + i{0„ - a29xx)A,} = A0ll - a2AQxx, 

and so on. The first equation eliminates the corresponding term in the later 
equations. If, further, we introduce 

k = 0x, u = - 0 „ 
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the hierarchy becomes 

u2-a2k2-02-O, (11.98) 

2wA0l + 2a2kA0x + (Ul + a2kx)A0 = 0, (11.99) 

2uA „ + 2a2kA lx + (u, + a\)A, = - i(A0ll - a2A0xx), (11.100) 

and so on. 
The first equation is the dispersion relation between w and k, and if 

we prefer to work with these quantities rather than 9 itself, the consistency 
relation 

k, + ux = 0 (11.101) 

is added. This is exactly the determination of 0,w,k described in Section 
11.5. 

The equation for A0 may be written 

£ ( ^ o ^ ) + £ ( ^ « 2 * / M f f ) - 0 . (H.102) 

Since \A0\
2 = a2, and in this case 

this is just the wave action equation (11.81). It is interesting that the wave 
action equation rather than the energy equation arises most obviously, 
although of course the energy equation can also be obtained from (11.99). 
Notice that this point might pass unrecognized without the Lagrangian 
theory. 

One is usually interested only in the first term of the expansion and 
therefore in the first two equations (11.98) and (11.99). However, once 8 
and A0 are determined, A, is obtained by solving (11.100), A2 from the next 
equation in the hierarchy, and so on. 

As a special case, it is easy to check that the equations have solutions 
of the form (11.96), and the expansion then agrees with the one obtained 
from the Fourier integrals in Section 11.3. The relevant solution of (11.98) 
and (11.101) is the function k(x/t) determined from 

J-C(k). 
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Then the various forms of (11.102) all give 

^o='-'/X(f). 
Since A: is a function of x/t, this may also be written 

A0=r^2%0{k) 

in agreement with (11.28). Of course the function 9>0(k) is only determined 
by use of the initial conditions. In this particular case the expansion does 
not apply in the early stages and Fourier transforms or some equivalent 
bridge is unavoidable. When A0 has been determined, (11.100) may be 
solved for Al and the result is (11.23). In fact it is much simpler to 
determine subsequent terms in the expansion by this direct method instead 
of carrying out stationary phase to high orders. 

The expansions are not limited to the centered wave solution; they 
apply to any wavetrain that is slowly varying in the sense of (11.97). For 
example, we might consider a wavetrain produced by a modulated source 
that provides slow changes in the frequency and amplitude. If x and / are 
normalized variables obtained by dividing the original x and / by a typical 
wavelength and typical period, respectively, the modulations provided at 
the source are functions of et and the appropriate forms of 9 and An are 

0 = €-'0(£jc,£/), An = tnAn(ex,€t), (11.103) 

where e is the ratio of the typical period to the time scale of the modula-
tions. The variables are slowly varying in the sense of (11.97) with c as the 
relevant small parameter. For the Klein-Gordon example, the resulting 
equations are (11.98)—(11.100). These correspond to the successive terms of 
order l,c,e2, respectively, but there is no need to display the dependence 
on e explicitly if we follow the ordering in (11.97). 

Nonuniform Media. 

A more interesting case, similar to the preceding one, arises when the 
modulations are produced by slow variations in the medium. For example, 
we might consider an initially uniform wavetrain entering a nonuniform 
medium in which the parameters of the medium change slowly over a 
length scale L. If A is a typical wavelength (say the value in the initial 
wavetrain) the small parameter is « = A/L. In normalized variables, the 
medium will be described by functions of ex, and the form in (11.103) is 
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appropriate to describe the modulated wavetrain. A similar formulation 
applies if the medium changes slowly in time. 

As an illustrative example, we again take the Klein-Gordon equation. 
In a nonuniform medium the equation would usually arise in the self-
adjoint form 

0-i-{a^,og}+^,O9=O. (1U04) 

We suppose that x,t have already been normalized with respect to a 
typical wavelength and period (typical values of a/*-1 and /?"' could be 
used), and to include space and time variations in the same analysis we 
suppose that 

o = 5(«,£/) , 0 = /J(«,ef). (11.105) 

As before, we do not introduce the dependence on « explicitly, but work 
directly with (11.95) and (11.104) with the understanding that 

k = 0x, « = - 0 „ Ao, a, 0 

are all 0(1) quantities and any increase of derivative or increase in the 
subscript of A increases the order by one. The resulting hierarchy begins 
with 

w2-a2Jfc2-/92=0, (11.106) 

lutA* + 2a2kA0x + (u, + a2kx + 2kaax)A0=0, (11.107) 

and we add the consistency relation 

f + £ - 0 . (U..08) 

The determination u, k, and 0 from (11.106) and (11.108) is exactly the 
procedure proposed on more intuitive grounds in Section 11.5, and sub-
sequently obtained from the variational approach in Section 11.7. The 
consequences were already examined in Section 11.5. In particular we 
noted that values of k propagate with the group velocity du/dk obtained 
from (11.106), but neither the group velocity nor the value of k need 
remain constant on a group line. 

In this case the group velocity may be written a2k/u, so that the 
characteristics for (11.107) are the same as for (11.108) and the values of 
A0 may be obtained in principle by integration along these characteristics. 
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The main point to be noted, however, is that (11.107) may still be written 
in conservation form as 

(y<*Mo) +(\«2kA0AS)j =0. (11.109) 

That is, the wave action equation (11.102) still holds in the nonuniform 
case in which a and the relation between u and k depend on x and t. This 
substantiates the claim made in the variational approach. 

Indeed if we form 

iiL + i l 
3/ 3x 

with the energy density and flux from (11.53)—(11.54) and calculate it from 
(11.106M11.108), we have 

^l(u2 + a2k2 + (i2)AoA^ + j_^a2ukAoA^ = 

i K + f H* (H.110) 
This checks with (11.94), since 

£ = ±( w
2 -a 2 * 2 - j8 2 )a 2 . 

The direct use of (11.95) in the equations leads to the required results 
but without the generality and insight of the variational approach. The two 
will be combined in the discussion of Chapter 14. We first consider 
applications of the theory so far, and amplify the ideas on specific 
problems. 



CHAPTER 12 

Wave Patterns 

Some of the most interesting wave patterns are found in water waves. 
Some of them, such as the V-shaped ship wave pattern or the pattern of 
rings spreading out from a stone thrown in a pond, are familiar to 
everyone, and others are relatively easily observed. We start with these. 
Here the dispersion relation, the only input required, will be merely 
quoted. We shall need to look further into the subject of water waves later, 
since it was the first and most fruitful source of ideas on nonlinear 
dispersive waves. The derivation of the dispersion relation will be included 
then. 

12.1 The Dispersion Relation for Water Waves 

In still water elementary solutions for the perturbation TJ in the height 
of the surface take the basic form (11.1): 

■n = Aelkx-iu', 
provided 

«2=(gfctanh*/i)(l + — k \ k = \V\. (12.1) 

Here h is the undisturbed depth, g is the gravitational acceleration, p is the 
density, T is the surface tension. In still water the waves are isotropic and 
the dispersion involves only the magnitude k of the wave number vector. 
There are a number of interesting limits which are conveniently used as 
approximations in appropriate circumstances. 

Gravity Waves. 

Inc.g.s. units, g = 981, p= l , and 7=74, so that \m = 2n(T/pg)1/2 = 
1.73 cm. Thus the surface tension effects become negligible for wavelengths 
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several times greater than this value. Then we have the usual formula for 
gravity waves: 

u2 = gktanhkh, A»Am. (12.2) 

For these, the phase and group velocities are 

/ * \ ' / 2 

c(*) = ( | tanh*Aj , (12.3) 

C(*).^-I.(*)(. + 5 m j ) . (12.4, 

Within this approximation, we have the limiting cases 

co~(g/c)'/2, c ~ ( £ ) , C ~ i ( | ) , kh-+co, (12.5) 

u~(gh)l/% c~(gh)l/\ C~(gh)l/\ kh->0. (12.6) 

For fixed h, both c and C are increasing functions of\ = 2'n/k, with C<c; 
in the long wave limit (12.6), C-^c and the dispersive effects become small. 
Of course, the approximation (12.5) is appropriate for short waves when 

m 

Capillary Waves. 

For A«CAm, the surface tension effect may be dominant and (12.1) is 
then approximated by 

<o2=-A:3tanhA:fc. (12.7) 
P 

In this case 

c{k) = [-k\xahkh\ , (12.8) 

c^=H1+3iiik)- (12-9) 
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The further limits of these are 

-~(j)'V ~(f)V H f̂*"' »—■ 
(12.10) 

and 

"~(?f* <-(?)'"*• c~iffk- kh~°-
(12.11) 

For capillary waves, c and C are decreasing functions of X, with Oc. 

Combined Gravity and Surface Tension Effects. 

When both effects are important, it is usually sufficient to consider 
relatively short waves, kh~>\, and take 

u2 = gk+-k\ (12.12) 
P 

The phase and group velocities are 

c -(f + 7*j ' (1213) 

1 \ + (3T/pg)k2 

C=\c \ n ' . . (12.14) 

The phase velocity has a minimum at k = km> where 

1/2 

* « - ( y ) • X „ = | ^ = 1.73cm; (12.15) 

the corresponding values of c and C are equal with 

cm = 23.2 cm/sec. 

For X>XOT, often known as the gravity branch, C<c; whereas for X<Xm, 
known as the capillary branch, Oc. For any given value of c>cm, there 
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are two possible wavelengths. The minimum group velocity is attained at 
A = 2.54Xm = 4.39 cm, C = 0.77cm= 17.9 cm/sec. 

Shallow Water with Dispersion. 

In the limit kh-*0, (12.1) may be expanded as 

"2~sHki,+(^-\)kv+-\ <,2•,6, 
and we have 

' -^i '+iyp- ib 1 —)- (i2i7» 
When dispersion is neglected altogether, the equations for nonlinear shal-
low water theory are hyperbolic and similar to those of gas dynamics; this 
so-called hydraulic analogy has been exploited for experiments. The dis-
persion must be kept to a minimum so h is chosen such that 

- ^ - 1 = 0 
Pgh2 3 U' 

that is, 

(
J / 2 

— ) =0.48 cm. 

Magnetohydrodynamic Effects. 

In a conducting liquid a third vertical restoring force may be intro-
duced when a horizontal magnetic field is applied and horizontal currents 
flow through the liquid. This has been investigated by Shercliff (1969), who 
finds that the dispersion relation is 

pu2 = kt&tihkh(pg + k2T+JsBn), 

where Bn is the magnetic field normal to the wave crests and / , the current 
along them. The term JsBn is the vertical component of the Lorentz force. 
It is interesting that the propagation depends on the orientation of the 
waves to the field and becomes anisotropic. Details of the phase and group 
velocities, and of the various limiting cases, are to be found in the paper 
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quoted. We shall not pursue this case further here, although the various 
wave patterns can be studied by the methods developed below. 

12.2 Dispersion from an Instantaneous Point Source 

The waves from a point source spread out isotropically and the 
different values of k introduced initially propagate out with the corres-
ponding group velocities C(k). At time / any particular value k will be 
found at r=*C(k)t. Hence k(r,t) is the solution of 

C(*)-J. (12.18) 

For deep water gravity waves (12.5), we have therefore 

This is the axisymmetric counterpart of the one dimensional problem 
noted in Section 11.4. This very simple formula for w has been checked by 
Snodgrass et al, (1966) against observational data of the swells produced 
by storms in the South Pacific. At distances of the order of 2000 miles, the 
frequency was found to vary linearly with /, and the constant of propor-
tionality gave a very accurate determination of the distance of the storm. 

On a smaller scale, the typical rings spreading from a stone or other 
splash in a pond satisfy (12.18) with C(k) given by (12.14). Since C(k) has 
a minimum value of about 18 cm/sec, there is a quiescent circle of radius 
18/ cm. Beyond that there are two values of k for each r/t, one on the 
gravity branch and one on the capillary branch, so there are two super-
imposed wavetrains. Of course, the energy in the different wave numbers is 
determined by the initial disturbance. Waves with wavelength of the same 
order as the size of the object will have the largest amplitudes and will be 
most accentuated. 

123 Waves on a Steady Stream 

The waves produced by an obstacle on a steady stream U in the x, 
direction may be viewed as the waves produced by an obstacle moving 
with speed U in the negative x, direction. For a two dimensional obstacle, 
with flow independent of x2, the only waves that can keep up with the 
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obstacle and appear steady when viewed from the obstacle must satisfy 

c(k)=U. (12.20) 

We again take the situation when (12.12)—(12.14) apply. There will be no 
solutions to (12.20) and hence no steady wavetrain if U<cm. In this case 
there will be local disturbances dying out away from the obstacle but no 
contribution to the asymptotic wave pattern. If U >cm there will be two 
solutions of (12.20): one of them, kg say, on the gravity branch, and one, 
kT say, on the capillary branch. Now kg<km and kT>km\ hence from the 
properties of (12.13)—(12.14), we have 

C(kg)<c(kg) = U, (12.21) 

C{kT)>c{kT) = U. (12.22) 

Therefore, the gravity waves kg have group velocity less than U and will 
appear behind the obstacle; the capillary waves kT have group velocity 
greater than U and will be ahead of the obstacle. The resulting pattern is 
shown in Fig. 12.1. 

Fig. 12.1. Sketch of capillary waves (upstream) and gravity waves (downstream) produced 
by an obstacle on the surface of a stream. 

This is an interesting use of the group velocity concepts to determine 
the correct radiation condition in a steady flow problem. For this reason it 
is also interesting to derive the result in detail from the exact Fourier 
transform solution and see how the group velocity condition comes out of 
the usual type of radiation condition used in the techniques of solving 
boundary value problems. At the same time, the full solution gives the 
amplitudes of the waves. The asymptotic analysis tells us only that the 
amplitude remains constant in each wavetrain; the detailed initial condi-
tions have to be analyzed to determine their values. It would interrupt the 
present discussion of kinematics to give the details here. They will be given 
in Section 13.9. 
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12.4 Ship Waves 

For an obstacle that is finite in the x2 direction we have a two 
dimensional wave pattern on the surface of the water and the analysis is 
more complicated. We shall study only the gravity wave problem for deep 
water and use the dispersion relation (12.5). This covers the pattern 
produced by any object of dimension /»Xm moving on water with depth 
A»/; this is the usual situation for ship waves. 

The most striking result, originally due to Kelvin, is that in deep water 
the waves are confined to a wedge shaped region of wedge semiangle 
s i n - 4 = 19.5°. This result is independent of the velocity provided the 
velocity is constant; it is independent of the shape of the object, and it 
depends only on the fact that C/c = { for deep water. 

Fig. 12.2. Construction of wave elements in ship wave problem. 

A concise form of the argument is given by Lighthill (1957). Consider 
the "ship" to move from Q to P in Fig. 12.2, in time t, and let its speed be 
U. For a wave crest to keep a stationary position relative to the ship, 

Ucosyp = c(k), (12.23) 

where <// is the inclination of the normal (direction of k) to the line of 
motion QP. This condition is most easily seen by taking the frame of 
reference in which the stream of velocity U flows past a stationary ship; 
the stream has component Ucosxp normal to the wave element and this 
must be balanced by the phase velocity of the element. The condition tells 
us the value of k to be found in the direction \p. It may be represented 
geometrically in Fig. 12.2 by constructing the semicircle with diameter PQ 
and noting that PQ=Ut, SQ= Utcos\j/ = ct. Therefore wave elements 
parallel to PS will have ct = QS. Now c is the phase speed and is 
appropriate for condition (12.23), but the group velocity C=\c determines 
the location of these waves. The waves produced at Q will have traveled a 
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Fig. 12.3. Envelope of the disturbance emitted at successive times. 

distance Ct= {ct. Therefore in the direction tp they will be found at T, the 
midpoint of QS. Including all values of $, we deduce that those waves 
produced at Q which can contribute to a stationary pattern lie on a circle 
of radius j Ut centered at R, where PR = \ Ut. Finally, varying / for a fixed 
point P, we have the pattern of circles of Fig. 12.3. From the construction 
in Fig. 12.2, each circle has a radius one third the distance of its center 
from P. Hence they fill a wedge-shaped region with semiangle s in~4 = 

19.5°. It is amusing to note that the construction in Fig. 12.3 is the same as 
for supersonic flow with Mach number 3; all swimming objects have 
effective Mach number 3. 

Further Details of the Pattern. 

In discussing the pattern in more detail, it is convenient to take the 
reference frame in which the source is fixed at P and there is a uniform 
stream U in the xx direction (see Fig. 12.4). This raises some general points 
about handling steady patterns which are also useful in other contexts. The 
dispersion relations in Section 12.1 apply to waves propagating into still 
water, but we may transfer to any other reference frame moving with 
relative velocity — U by noting that the frequency u> relative to the moving 
frame is given in terms of the frequency w0 in the stationary frame by 

w = U-k + w0(k). (12.24) 

This is the dispersion relation between w and k for waves superimposed on 
a stream U. Of course the propagation is no longer isotropic since the 
direction of U enters. For a steady wave pattern in this frame, w = 0 and 
(12.24) becomes a relation between the components /c, and k2 of the wave 
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number vector k. With w0(k)= Vgk , we have 

G{kvk2)=Uk, + Vg~k =0. (12.25) 

Since COSJ/^ - kJk and c{k)=Vg/k , this is the same as (12.23). We 
may also write it using the polar coordinates (k,$) for k as 

§ (k,^) = Uk cost-Vgk =0- (12.26) 

Since the frequency w is zero and k is independent of /, the kinematic 
description (11.43) reduces to the consistency relation 

3/c, 3A:, 
— -^-=0. (12.27) 

From (12.25), kx=f(k2), say, and (12.27) gives 

Hence k2 and k{ are constant on characteristics 

dx1 

For a point source P, the characteristics carrying disturbances pass 
through P and we have a centered wave 

*' = ~f\k2); (12.28) 
i x 

this gives k2 as a function of x2/x{, and kl=f(k2) completes the solution 
for k. 

The basic relation (12.28) can be written symmetrically in kx and k2. If 
ki=f(k2) satisfies (12.25) identically, 

f'(k2)Gk+Gkr0, 

and (12.28) may be written 

x- Gk(kvk2) 

*i Gk(kx,kJ ' 
G(k{,k2) = 0. (12.29) 
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These are to be solved to give kx and k2 as functions of x. The distribution 
of k is sufficient to sketch out the pattern, but the phase 9(xt,x2) can also 
be deduced to give the equations of the crests. 

It might be noted that (12.29) is the limit of the nonstationary 
centered wave solution as w—»0. For the centered wave solution in (11.49) 
we have 

x. Gk 

If we take the ratios of the first set to eliminate / and Gu, (12.29) follows as 
the limit «-*0. We can think of the disturbance propagating out with the 
group velocity Ct even though its form is unchanging and there is no 
change in the appearance of the pattern. We may refer to the group 
velocity in this sense even though it is only its direction 3(7/d/c, that 
appears in the formulas. 

A further remark is that polar coordinates are sometimes useful, as in 
(12.26). In polar coordinates the gradient 9(7/9 k has a component 9 % /dk 
in the direction of k and a component 9 § /k d\p perpendicular to k. Hence 
the angle ft in Fig. 12.4 is given by 

i as/a* n ™ 
t a n " = * 9 S 7 9 * - ( 1 2'3 0 ) 

The content of (12.29) is then equivalent to 

S-V-II-+, g ( * , t f ) - 0 . (12.31) 

Equations 12.30 and 12.31 determine k and \f/ (and hence k) for the 
direction £. 

These formulations apply to any steady two dimensional pattern, and 

dG/dk 

U P xl 

Fig. 12.4. Geometry of wave crests in ship wave problem. 
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Fig. 12.5. A complete wave crest in ship wave problem. 

we now apply them to ship waves. Using (12.25) in (12.29), we have 

tan |= — = 
2k vr 

2k \ k 

Uk^Vgk =0. 

U+ 

It is clearly more convenient to switch to the (k,\(/) description of k and 
reduce these to 

tan£= 
tan ̂  

l+2tan2i|/ ' 
* = g 

U2COS2xP 
(12.32) 

If the approach via (12.30)—(12.31) is preferred, we have 

tanju=-2tan^, (12.33) 
and (12.32) follows. 

We may now sketch out a typical wave crest as \p varies. From (12.25) 
or (12.26), A;,<0 and cosifX), so that only the range -7 r /2<^<7r /2 is 
permissible. The pattern is clearly symmetrical and it is sufficient to take 
the range 0<i^<w/2. From (12.32) we see that the values <//-»0 and 

Fig. 12.6. Final ship wave pattern. 
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\p—>Tr/2 are both to be found on £ = 0, and there must be a maximum value 
of £ in the range. It is easily verified that the maximum value is 

£ = t an - '—— = 19.5° at d. = tan"' — =35.3°. 
2V2 V2 

This agrees with the wedge angle found earlier and shows that the wave 
pattern is confined to this wedge. At the maximum \p^=Tr/2 therefore the 
wave crest can not turn back smoothly; there must be a cusp at \p = \pm on 
the boundary of the wedge. We may then complete the shape as given in 
Fig. 12.5 and the whole pattern must appear as in Fig. 12.6. 

The formula for the phase function 9(x) may be found from 

9 = (\-dx, (12.34) 

using any convenient path since k is irrotational. Obviously the rays 
£ = constant are convenient since k remains constant on them. We have 

9=(kcosn)r, (12.35) 

where r = |x| is distance from the origin. Here k and /x are functions of £ 
given by (12.32) and (12.33). A phase curve 0 = constant is given parametri-
cally in terms of xp by 

9 U29 2 , r ,_L„. 2,i |/2 r= = c o s ^ l +4la.n'i\l/} , 

tan£ = 

k cos fi g 

tarn// 
l + 2tanV ' 

and 9 is negative. These may also be written 

J C l - - i ^ c o s i K l + sin2*), 
g 

U29 2, ■ , x-,= cos d/smu/. 
g 

12.5 Capillary Waves on Thin Sheets 

(12.36) 

One can study steady patterns of capillary waves in similar fashion, 
and a particularly interesting setting is Taylor's study (1959) of waves on 
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thin sheets of water. Surface tension is the dominant effect and the sheet is 
thin enough to make the approximation A/A«l appropriate. In one mode 
the sheet deforms as a whole, keeping roughly constant thickness, and in 
this mode (antisymmetric disturbance of the two surfaces) the waves are 
not dispersive. For the symmetric mode, however, in which the two 
surfaces oscillate symmetrically away from the central plane, there is 
dispersion. We may apply (12.7) taking 2h to be the thickness of the 
undisturbed sheet, since the plane of symmetry is equivalent to a solid 
surface for each half of the sheet. Since the sheet is very thin the 
approximations (12.11) may be used. The wave pattern from a point source 
in a stream U may be analyzed from the general formulation in the last 
section using now the dispersion relation 

/ \ 1 / 2 

G= {/*, + ( — ) k2 = 0. (12.37) 

For a uniform sheet with uniform flow, U and h are constants. In that 
case, we immediately find from (12.29) that 

*7 2ak, I Th\ 
— = tan£= „ „2, , a - — I • O2-38) 
x, s U+2akl' \ p ) v ' 

From (12.37), k-Uco^/a in the (k,\l>) description of k and the 
characteristic relation (12.38) reduces to 

2tani// 
tan2»^-l 

t a n f = — , , that is, £=ir-2$; (12.39) 

it follows from (12.31) that the angle /* is equal to ^. This time, \p ranges 
from 0 to IT/2, £ ranges from - m to 0, and we infer the roughly parabolic 
crests shown in Fig. 12.7. The phase function is 

-m 1/2 

2 
9 = (kcos,i)r=\~-) rsin2|; (12.40) 

successive crests are curves rsin2|/2 = constant. 
Taylor also conducted experiments and developed the relevant theory 

for waves on a radially expanding sheet. In the undisturbed sheet the 
radial velocity, V say, may be taken constant since the pressure gradients 
are at most 0(h) and may be neglected. As a consequence, the semithick-
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+ «ir/2 

^«0 

Fig. 12.7. Pattern of wave crests on a thin sheet of water. 

ness h is a function of the distance R from the center of symmetry (the 
source of the flow) given by 

A — - 2 -
A-nVR' 

(12.41) 

where Q is the total volume flow. Because h depends on R, we have an 
example of waves on a nonuniform medium. Well away from R=*0, the 
medium is slowly varying relative to a typical wavelength and we may 
apply and illustrate the ideas of Sections 11.5 and 11.7 on nonuniform 
media. In polar coordinates (/?,«) based on the source of flow, not on the 
source of the waves (see Fig. 12.8), 

k= (**,•£**), U=(K,0), 

and to adjust for the radial flow the dispersion relation (12.37) is modified 
to 

V9R + 
Th(R) 'Vi^h 

From (12.41), this dispersion relation may be written 

G=\(el+j-20Z) + PRl/%=0, fi~^.y . (12.42) 
1/2 
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characteristic 

source 
of flow 

Fig. 12.8. Construction detail for waves on a radially expanding sheet. 

It may be solved by the method of characteristics, but the details are more 
complicated than in the corresponding steps (12.27)—(12.29) since k is not 
constant on the characteristics nor are the characteristics straight lines. 
However, we may find the characteristic form from the general formulas of 
Section 2.13. If we let/) = 8R, q = 9i), we have 

dr P t ^ dr q R2 

dp _ _ q2 1 PP 
- = -GR-pG^ — - - — , 

dq 
-^ = -Gz-qGe = 0, 

where T is a parameter on the characteristic. Since q is constant on each 
characteristic, it becomes a convenient characteristic variable and, from 
(12.42), 

/ 2 \ ' / 2 

P = pRi/2U--^\ -j3/?,/2. (12.43) 

The characteristic curves are given by 

du l/R2 q 

dR p + pR*/1 pR>/*(\-q*/p*R>)1'2' 

These pass through the source, at R = R0, w = 0, say, and the appropriate 
integral is 

(R0\
3/2 « i n ( a - ( 3 / 2 ) a ) q 

I — I = : , smo= TTT. (12.44) 
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This equation for the characteristics may be solved to express q as a 
function of R and w, and then (12.43) used to obtain/?. We have 

/?tf3/2s i n (3 / 2 )a 

{ (/?//?0)3-2(/?//?0)3 /2cos(3/2)*+ 1} ' / 2 ' 

fiRV>{(R/R0)"
2-«»{3/2)&} 

P = "/{ = TTj — P ' 

{(R/R0)3-2(R/R0)3/2coS(3/2)w+ 1} 

and, finally, 

-H(^-^r«i-'),/l+H'-(iri-
(12.45) 

This result was first found by Ursell (1960b) in an amplif icat ion of Taylor ' s 
a rguments . F o r small w, we have 

«-2 /^3^11- (^ ) V 2 J ; (12.46) 

this agrees with Taylor's equation for the crests and it compares well with 
the experiments. 

This particular case shows the power of the kinematic arguments, 
since any direct attack on the boundary value problem involved here 
would be a formidable undertaking. 

12.6 Waves in a Rotating Fluid 

For small perturbations in an incompressible fluid which has a basic 
flow velocity U along the x3 axis and a solid body rotation with angular 
velocity B about that axis, the linearized equations are 

Dt ox, Dt ox-> 

£)M3 3p 9M, 9M2 3"3 _ n 

Dt 9JC3, ' 9x, ox2 dx3 
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where 

p_PZ£0_io2(x2 + x2) A . i . + f / J _ 
P- ^ 2U(x,+x2), D t - d t

 + U
dx3-

The velocity perturbations may be eliminated in favor of P and the single 
equation 

V 9' 9*3 / 9*3 
obtained. 

When £/ = 0, the reduced equation for periodic 
p=<5pe-«" i s 

d29 d29 (. 482\93<3> 
dx2 dx2 \ a2 ) dx2 

(12.47) 

disturbances 

(12.48) 

The change of type from elliptic for w>2B to hyperbolic for u<2Q leads 
to both interesting phenomena and interesting mathematical problems. For 
u>2$2 the disturbance from a source will have the typical \/r2 decay of a 
doublet solution of Laplace's equation, whereas for «<2J2 it will be 
confined inside the characteristic cone of semiangle tan-1(4B2/io2—1)_1/2 

around the x3 axis. For flow inside a container the boundary conditions 
are of elliptic type, which leads to unusual eigenvalue problems in the 
hyperbolic case u<2Q. Solutions have been found for special shapes 
(Greenspan, 1968; Barcilon, 1968; Franklin, 1972). 

When the stream U is included, the dispersion relation for (12.47) is 

(a-Uky) k2-4Q,2kj = 0. (12.49) 

Waves are possible only when («— Uk3)
2 <4122; for U—0 this checks with 

the condition for (12.48) to be hyperbolic. We have two modes satisfying 

a-Uk3±—j-±, (12.50) 

and the group velocity has components 

C,= + 2 f l - ^ , c 2 - + 2 0 - ^ , C3={/±2QV ' . (12.51) 
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For a point source of constant frequency w on the x3 axis, the distribution 
of k is determined from 

C3 

When t /=0 this reduces to 

I ? ? - , : 2 , . / 2 - ( i2-52) 

(A:2-*!) 
2 v . / 2 

1/2 

-(5-) (12.53) 

The disturbance is found on the characteristic cone in agreement with 
(12.48). 

When U¥=0, there is dispersion even for fixed w and different values 
of k satisfying (12.49) are dispersed over different cones. Complete wave 
patterns can be worked out by the techniques developed here; the results 
can be found in the paper by Nigam and Nigam (1962). But perhaps the 
most interesting questions concern the wave propagation view of the 
Taylor column. 

In a famous experiment Taylor (1922) found that when a sphere is 
pulled slowly along the axis of rotation a whole cylindrical column of fluid 
circumscribing the sphere is pushed along with it. The complete analysis of 
the phenomenon is difficult (see Greenspan, 1968, p. 192), but some 
information can be obtained from the wave kinematics. We take the steady 
frame of reference with main stream U. For waves to appear upstream, 
they must have C3<0; hence 

2£2(A:2 + A:?) 
>U. 

k3 

The most favorable case is for /c3 = 0, which would correspond to the 
surface of the Taylor column. To be upstream the waves must have 
2Q/k>U, or equivalent^, A>l/w/fl. We should expect the dominant 
wavelengths produced to have A = 0(a), where a is the radius of the 
sphere. Indeed Taylor found a column when Sla/nU > 1 and this would fit 
exactly with the choice X — a. Subsequent experiments and theory indicate 
that the transition is not sharp, and this result should be taken as an 
estimate of when the Taylor column will be reasonably strong. 
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12.7 Waves in Stratified Fluids 

Gravity waves in a density-stratified fluid are of great interest in 
meteorology and oceanography. The basic density gradient may be estab-
lished by heating or salt content or other effects, but it is often desirable to 
eliminate compressibility and sound waves in the subsequent motion. To 
achieve this the continuity equation is split into two parts: 

Dp 
^ = 0 , V-u = 0, 

and both are retained! The density is not constant but is assumed to be 
unchanged following a particle path in the wave motion. To these equa-
tions are added the momentum equations 

Du „ 
p-Dj = -"p-p& 

The double use of the continuity equation is in lieu of an energy equation 
and we have a complete system. The results and approximations can be 
checked against more complete descriptions, the main requirement being 
that the sound speed should be much greater than the wave speeds found 
in this theory. 

For two dimensional flow in the (x,y) plane with stratification in the_y 
direction, we take the undisturbed distributions to be u = v = 0, p = p0(>')> 
P=Po(y) with 

^ + P o g = 0, (12.54) 

and we linearize for small perturbations about these values. If the pertur-
bations of p and p are denoted by p, and px, respectively, the linearized 
equations are 

Pi, + upo = 0> ux + vy=0, 

Pout+P\x = 0> Pov,+Piy
 + gPi=0-

A single equation can be deduced; in terms of a stream function Sk defined 
by u = yy,v= -*x, it is 

Po*«« + (PO%,)„ ~ 8P'o*** - 0. (12.55) 

It is convenient for the wave motion to have an equation with even 
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derivatives only, which may be achieved by the substitution 4' = p0
 ,/,2x to 

give 

,/Po2 Po \ gP'o n m<«\ 
X"w + ̂  + \45" ^r "P7^= ( } 

The special case of an exponential distribution, p0cce_ocv, has the attrac-
tion of constant coefficients and can be matched reasonably well to other 
distributions. In that case the dispersion relation is 

(O2 (kj+kl+±a2\-agk2
x=0. (12.57) 

In many situations the interesting wavelengths are in the range k^>a, and 
(12.57) is approximated by 

U = l ^ l ' W o = a g = " " p 7 - (,2-58) 

The frequency u0 is the Vaisala-Brunt frequency; it is constant for the 
exponential distribution and would be a function of y in the more general 
case. 

We note that waves are possible only in the case w<w0, and the 
situation is somewhat similar to the example of rotating fluids. For a 
source with fixed frequency w<w0, one solution of (12.58) may be taken to 
be 

ki = kcos\p, k2= -ksinxp, (12.59) 

where 

^ c o s - ' —; (12.60) 

whatever the magnitude of k, the waves all have the fixed inclination ^ 
with the x axis. The corresponding group velocity has components 

uakl unk,k7 

C, = ̂ , C a - - - ^ P . (12.61) 

Since k ■ C = 0, the phase and group velocities are perpendicular. Hence the 
group velocity is at an angle £ = 7r/2-i|/ to the x axis. The direction of the 
group velocity determines where the waves will be found. In view of 
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(12.60), this direction is the same for all the waves and is at the angle 

{ - f - f - s i n - 1 - ^ - (12.62) 

with the x axis. When all the possible signs of A:, and k2 are included, the 
disturbance forms an A'-shaped pattern. The crests also lie on the X but 
move locally normal to the arms, continually dying out as they leave the 
pattern but being replenished by new ones appearing behind. (Of course 
each arm has a finite thickness in reality because the source is finite.) 

Excellent photographs were obtained by Mowbray and Rarity (1967a) 
and are reproduced in Fig. 12.9. The source is an oscillating cylinder 
normal to the plane of the photograph and oscillating horizontally; the 
vertical rod is a probe. The source introduced also a faint but discernible 
second harmonic with frequency 2w. This gives the pattern with angle 
sin~'2to/w0. In this paper and later ones (Rarity, 1967; Mowbray and 
Rarity, 1967b), these authors investigate the theoretical patterns in detail 
and also study the pattern produced by a moving sphere. In reality the 
distribution of density is not quite exponential and the bending of the 
group lines due to the dependence of w0 on y can be seen in some of the 
photographs. This illustrates the effects of a nonhomogeneous medium, 
and the variations could be analyzed by the kinematic methods developed 
in the last chapter and applied in Section 12.5. 

12.8 Crystal Optics 

In crystals the anisotropic properties of the medium produce striking 
effects in the wave patterns. The structure of the crystal produces direc-
tional effects in the dielectric properties and the relation between the 
displacement vector D and the electric field E must be described by a 
tensor relation. The usual relation B = ju0H suffices for the magnetic 
vectors. The effects are described by taking the constituitive relations 

Di'tyEj, «, = *,", (12.63) 

in Maxwell's equations. In general the dielectric tensor e,y will depend on 
the frequency w. This may be accommodated by using the relations (12.63) 
only after the time dependence e~'"' has been taken out. For a plane wave 
with all components of the field vectors proportional to e""1-"", Maxwell's 
equations reduce to 

-/'wB + /kxE = 0, 
(12.64) 

/'wD + /kxH = 0. 



Fig. 12.9. (1) The image of the undisturbed fluid. (2) «/u0-0.318. (3) u/«0-0.366. 
(4) <J/U0=0.419. (5) u/w0=0.615. (6) u/w0 = 0.699. (Mowbray and Rarity, 1967a.) 

424 
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Fig. 12.9. (Continued) (7) oi/u0 = 0.900. (8) u /w 0 = 1.11. (Mowbray and Rarity, 1967a.) 

Since BocH, it follows that k, D, and H are mutually orthogonal, so that 
D and H are transverse to the direction of propagation. Since E is 
orthogonal to B, it lies in the same plane as D and k but is not transverse 
to the direction of propagation in general. When B and H are eliminated 
from (12.64), we have 

wVoD + kX(kxE) = 0. 

On substitution for D in terms of E, this gives 

u2ptfvEJ +kfaEj-k2E,-Q. 

The dispersion relation then follows from the condition that the 
determinant 

G(«,k) = \<*Wv + k>kj~ k%\ = 0- (12.65) 

In pursuing details of the wave patterns it is convenient to choose 
coordinates along the principal axes of c,y. If the principal values are 
ci>£2>€3> (12.65) may be expanded to 

G(w,k)= W Vo« l«2«3 -«Vo{«2«3(*2 2 +^! ) + «3e i (*3 - , -^ ) + «l€2(*? + * ! ) } 

+ u2Hok
2{tltf + e2k$ + t3kl}=0. (12.66) 
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(3 0" 
0 b 

Fig. 12.10. (a) Dispersion surface in k space, (b) Phase surface in x space. 

For a source of fixed frequency w, (12.66) describes the surface in k 
space which determines the possible wave numbers k of the wave elements 
produced. For an admissible value of k, the corresponding group velocity 
is 

C , . ( k ) = - - ^ ; (12.67) 

it is in the direction of the normal to the surface (12.66), as shown in Fig. 
12.10a. This geometrical correspondence between C and k is useful in 
determining wave patterns. 

A dual surface is also useful. It may be constructed in terms of the 
phase surfaces produced by a periodic point source at the origin. This 
particular problem is not the one of most interest in crystal optics, since 
one would not normally envisage a source imbedded in the crystal, but it is 
a convenient route to the construction and the analysis applies to 
anisotropic waves generally. 

Wave elements with wave number k are found in the direction C(k) 
from the source. Therefore in each direction C from the source we can 
determine the corresponding value of k for that direction (see Fig. 12.106). 
But the phase surfaces generally do not move out on the group lines with 
speed C. The phase velocity has magnitude u/k in the direction k. Hence 
the point of intersection between a phase surface and a group line moves 
out with speed w/(kcosn), where ju is the angle between C and k. The 
phase surface leaving the origin at time I = 0 will be at 

x=-r^—^t=-^-Ct (12.68) 
kcosp C k-C 

at time t. Varying k over all values satisfying (12.66) gives the phase 
surface. 
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An alternative derivation is to note that the phase function 9{\,t) is 
given by 

0 ( x , / ) = - « / + f\dx, (12.69) 
•'o 

and the integral can be taken along the group line to x. Therefore 

0=-<o/ + Jfccosfi|x|. (12.70) 

The phase surface 0=0, which left the origin at t = 0, will be a distance 
i t u 

x = 7 1 
1 ACCOSfi 

out along the group line with direction C. Hence (12.68) follows. 
In optics it is usual to introduce the ray vector s defined by 

— ° C, (12.71) 
Cnk-C 

where c0 is the speed of light in vacuo. Then the phase surfaces are given 
by 

x = sc0/. (12.72) 

Thus s is proportional to the group velocity but is reduced in magnitude to 
give the phase propagation along the ray (group line) as a fraction of c0. 
Since s is a function of k and conversely, the dispersion relation (12.66) 
may be used to find the corresponding surface in s space. Since this s 
surface is the canonical shape for the phase surface, the normal at any 
point is in the direction of k. Thus, using s in place of C, we have dual 
properties between the k and s surfaces. In optics it is also usual to work 
with the refractive index n=c„k/w in place of k. Then we have in addition 
s • n ■» 1. For any point on the n surface, the corresponding s has the 
direction of the normal and its magnitude is the inverse of the perpendicu-
lar distance from the origin to the tangent plane at the point. Conversely, 
on the dual s surface, the corresponding n is in the direction of the normal 
and its magnitude is the inverse of the perpendicular distance to the 
tangent plane. 

In the special case when the dispersion relation is homogeneous in 
a,kl,k2>k3, the dispersion function has the property 

G(pu,pkt,pk2,pk3) =0 

) . Hence d 
p= 1, we have 
for arbitrary p. Hence differentiating with respect to p and then setting 

1, we have 
wG.+M^-O. 
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Therefore k-C = w. In this case, but only in this case, (12.68) reduces to 

x = C/, 

and the phase surfaces move out along the group lines with speed C. The 
difference between the group and phase velocities is just compensated for 
by the inclination factor cos/i. This special case applies to (12.66), for 
example, if the e(> are taken to be independent of «. 

Uniaxial Crystals. 

In the case of a uniaxial crystal with symmetry about the JC, direction, 
we have e2

 = €3 an<^ t n e common value will be denoted by e±. The 
dispersion relation (12.66) then factors to give the two possibilities 

w 2 = - ^ - , (12.73) 

« 2 = — — + — *-. (12.74) 
«±Mo <iK> 

One would expect anisotropy to distort the waves, but it is perhaps 
unexpected that splitting would occur and one family remain isotropic. 
The interesting phenomena in crystal optics stem primarily from this 
splitting. 

We now have two surfaces in k space as shown in Fig. 12.11a. The 
waves described by (12.73) are isotropic with speed («xfi0)_1/2 a r |d they 
are called ordinary waves. The surface in k space is a sphere, the group 
velocity is parallel to k, and dispersion arises only if c± depends on w. The 
other family (12.74) is suitably called extraordinary and the surface in k 
space is an ellipsoid; these waves are dispersive. The surfaces are shown in 
Fig. 12.1 la for the case e, > c±. There are two group velocities C0 and Ce 

for each k. As a consequence there will be two phase surfaces as shown in 
Fig. 12.116. For the ordinary waves we have C0cck and the phase equation 
(12.68) is 

x = k t. (12.75) 
«±MoW 

Using (12.73) to eliminate k, we have the phase surfaces 

e±li0(x
1

l + xl + xl)=t2; (12.76) 
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k2 C, 

Fig. 12.11. (a) Dispersion surfaces in k space for a uniaxial crystal, (b) Phase surfaces in x 
space for a uniaxial crystal. 

these are just ordinary spherical waves with speed (e± JUQ) 1/2. For the 
extraordinary waves, 

2.4-.-,-) 
and the phase equation (12.68) is 

( *l ^2 *3 V 

«xMow '«iMo<° ' € i f t ) w / 
From (12.74), the phase surfaces are ellipses 

t±n0x* + i]n0(xj + xj)=t2. 

(12.77) 

(12.78) 

(12.79) 

The canonical s surfaces are obtained from (12.76) and (12.79) with 
x = sc0/. 

For the extraordinary waves the direction of propagation for waves of 
wave number k is given by (12.77). Waves with k at an angle \p to the axis 
of symmetry propagate at an angle £ given by 

tan£= tarn//. (12.80) 
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Fig. 12.12. Dispersion surfaces in It space for a biaxial crystal. 

As a consequence of the splitting, a beam incident on a uniaxial 
crystal will usually be refracted into two separate beams. The refracted 
beams are determined by the continuity of the tangential component k, of 
k. But for the given incident k, there will be two possible wave vectors k 
that satisfy (12.73) and (12.74), respectively. The refracted beams travel in 
the directions of the corresponding group velocities. 

Biaxial Crystals. 

For biaxial crystals with «i,£2'
€3 unequal, the surface (12.66) consists 

of two sheets with four isolated points of intersection instead of the circle 
of contact between the sphere and ellipsoid of Fig. 12.11a. One octant is 
indicated in Fig. 12.12 for the case e,<«2<«3- The point P is one point of 
intersection and there are three others symmetrically placed in the other 
quadrants of the kx,k3 plane. At a singular point the normal can take any 
value lying on a cone of directions at the point. If a beam of light enters 
the crystal normally in this direction, a cone of refracted rays is produced. 

Further details of this become complicated and require a lengthy 
account. These and other questions may be pursued in the excellent 
accounts by Sommerfeld (1954, Chapter 4) and Landau-Lifshitz (1960a, 
Chapter 11.) 



CHAPTER 13 

Water Waves 

Many of the general ideas about dispersive waves originated in the 
problems of water waves. This is a fascinating subject because the 
phenomena are familiar and the mathematical problems are various. We 
now turn explicitly to this topic. First we substantiate results referred to 
earlier, amplify specific details, and include a few problems special to the 
subject. Then we take up the nonlinear theory which first provided some 
insight into the questions of how nonlinearity affects dispersive waves; this 
eventually led to a general point of view on such questions. It will serve the 
same purpose here, providing motivation for the general discussion and for 
the study of similar phenomena in different contexts. 

13.1 The Equations for Water Waves 

We consider an inviscid incompressible fluid (water) in a constant 
gravitational field. The space coordinates are denoted by (xl,x2,y) and the 
corresponding components of the velocity vector u by (ulyu2,v). The 
gravitational acceleration g is in the negative y direction. The inviscid 
equations are given in (6.49); we now assume in addition that the density p 
remains constant and that there is an external force F= -p&j, where j is 
the unit vector in the y direction. The equations are 

V u = 0 , (13.1) 

a.^+ ( . . ,„._i7,_- . (1M) 

In the main problems of water waves, the flow may be taken to be 
irrotational, curlu = 0, and a velocity potential <p introduced with u=V<p. 
This may be argued, as usual, from the equation for the vorticity <o = curlu. 
Equation 13.2 is first rewritten in the form 

| ^ + v ( i u 2 ) + i o X u = - i v / , - g j . (13.3) 
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Then if the curl of this equation is taken to eliminate the pressure, we have 
Helmholtz' equation 

| ^ + Vx(<oXu)=0 . (13.4) 

Since V • u = 0, it may also be written 

^ - ^ + ( u . v ) „ - ( „ . V ) u . (13.5) 

Now to — 0 is a possible solution, and the solution is unique provided, say, 
that all components of Vu are bounded. Therefore if <o = 0 initially, it 
remains so for all time. In water waves, typical problems concern propaga-
tion into water at rest or through a uniform stream. In both cases <o = 0 
initially and the argument applies. We restrict the discussion to irrotational 
flows. 

When u=Vqp, (13.3) may be integrated to 

P-Zh.^B{t)-9l-\{Vvf-gy, (13.6) 

where B(t) is an arbitrary function, and p0 is an arbitrary constant 
separated from B(t) for convenience in applying the free surface condition. 
Clearly, B(t) can be absorbed into <p by choosing a new potential <p' = 
<p- jB(t)dt. Usually we assume this is done and take 

u= V<p, 
(13.7) 

P-PO 1 , „ s2 

P 2 

From (13.1) the equation for <p is Laplace's equation 

V2<p = 0. (13.8) 

When the solution of (13.8) has been found for the relevant boundary 
conditions, the interesting physical quantities u, p are given by (13.7). This 
sounds simple enough, and it appears to have little to do with waves since 
Laplace's equation is involved. Both reactions are wrong because of the 
curious effects of the free surface conditions. 

We consider the case of a body of water with air above it (although 
clearly the interface could be between any two fluids) and let the interface 
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be described by 

f(Xl,x2,y,t)=0. (13.9) 

The interface is defined by the property that fluid does not cross it. Hence 
the velocity of the fluid normal to the interface must be equal to the 
velocity of the interface normal to itself. The normal velocity of a surface 
defined by (13.9) is 

- / , 

The normal velocity of the fluid is 

The condition that these be equal therefore is 

%=fl + ulfx+u2fxi+vfy = 0. (13.10) 

This shows that particles in the surface remain there, and the condition is 
often introduced directly on these grounds. It is easy to have misgivings 
about the direct statement, however, and it seems preferable to derive it as 
above from the basic property of an interface. 

In working with the equations it is convenient to describe the surface 
by_v = Tj(jc,,x2,/), and choose 

f(xvx2,y,t)=-q(xl,x2,t)-y 

in (13.10). This gives the boundary condition in the form 

— =y,+ ul7lxi + u2r,X2=v. (13.11) 

Equation 13.10 or 13.11 is a kinematic condition on the boundary. 
There is also a dynamic condition. Since the interface has no mass, the 
forces in the fluids on the two sides must be equal. Hence if surface tension 
is neglected for the present, the pressure in the water and the pressure in 
the air must be equal at the surface. Any disturbance of the surface clearly 
implies some motion of the air. But the argument is made that the change 
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in the pressure in the air due to the motion is negligible, and the air 
pressure may be approximated by its undisturbed value. This is because 
the density of air is very small compared with that of water, and changes 
of pressure are of order pu2. The assumption can be confirmed in detail by 
including the motion of the air in typical examples (see Section 13.7). If the 
motion of the air is neglected on this basis, the second boundary condition 
becomesp=p0 where/? is the pressure in the water, given by (13.7), and/?0 

is the constant value in the undisturbed air. The two boundary conditions 
at the free surface are then 

V ony = T)(xl,x2,t). (13.12) 

Usually one boundary condition is given for Laplace's equation, but that is 
when the boundary is known. Two conditions are needed at a free surface 
because the surface position TJ has to be determined as well as <p. 

On a solid fixed boundary, the normal velocity of the fluid must 
vanish, that is, n-V<p = 0. In particular, if the bottom is.y = -/I0(JC,,JC2), we 
have 

<P, + 9*/'ox1 + <P;cA>*: = () o n y=-h0(xvx2). (13.13) 

This is the special case of the interface condition (13.10) since we take 
f(xvx2,y,t)—y + h0(xx,x2). For a horizontal flat bottom h0 is a constant 
and 

<py = 0 on y=-hQ. (13.14) 

13.2 Variational Formulation 

In view of the general use of variational principles introduced in 
Chapter 11, it is important to have a variational principle for water waves. 
This does not seem to have been noted explicitly until the relatively recent 
paper by Luke (1967). It is of course well known that Laplace's equation 
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follows from 

sf f J±(V<p)2dxdydt=0, (13.15) 

but Luke points out that the variational principle 

8JfLdxdt = 0, (13.16) 
K 

L=-pf [<Pt+j(v<p)2+gy}<fy, (13.17) 

also gives the all-important boundary conditions. Here R is an arbitrary 
region in the (x,t) space. When (13.17) is substituted in (13.16) the 
integration is over the region /?, of the (x,y,t) space consisting of points 
with (x,t) in R and -h0<y<-q. The extra terms <p, and gy in (13.17), 
compared with Dirichlet's principle (13.15), affect only the boundary 
conditions, since they may be integrated out and contribute only to terms 
from the boundary of /?,. 

For a small change 8q> in <p, 

-8 f f -dxdt= f j IT (8tp, + V(p-V8<p)dy]dxdt 

- / / {/_"j9^+^)«<P^)rfx<a 

R 

(Repeated subscripts i are summed over j'=»l,2.) The first term integrates 
out to the boundaries of R and vanishes if 8tp is chosen to vanish on the 
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boundaries of R. If (13.18) is to vanish for all such 8<p, it follows that 

1V, + <P,, = 0, -h0<y<t\, 

7»/ + <)y?*,-<P, = 0. y = V, (13.19) 

<Px,V/ + <p,=o. y=-h0. 

The first is obtained by choosing 8y = 0 on y = r\ and y= ~h0, and 
applying the usual variational argument. Then, with the first two terms of 
(13.18) eliminated, an appropriate choice of 8<p>0 on y = rj, 8m = 0 on 
y= -h0, gives the boundary condition ony = rj; similarly the choice 8<p = 0 
on y — 7j, Sq> > 0 on y= - h0, gives the boundary condition on y = - /i0. 

For a variation 8TJ in (13.16)—(13.17), it is immediate that 

8[fUxdt=-p[ f [m,+ i(Vm)2 + gy] &r,dxdt = 0, 

and by the usual argument 

<P,+ ^(Vm) +gy = 0 (13.20) 
j j ' - i 

Equations 13.19-13.20 are the equations established in the previous sec-
tion, and we see that this formulation is contained in (13.16)—(13.17). 

The significance of (13.17) is that the quantity in braces isp—p0: the 
principle is one of stationary pressure! The relation of this to Hamilton's 
principle is discussed in detail by Seliger and Whitham (1968). 

LINEAR THEORY 

133 The Linearized Formulation 

For small perturbations on water initially at rest, TJ and <p are small 
and the equations may be linearized for a first investigation. The linearized 
free surface conditions (13.12) are 

1, = %' <P, + CT = 0> (13.21) 
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and we may linearize further by applying these conditions on y = 0 rather 
than on y = TJ. After this further linearization, TJ can be eliminated to give 

<P„ + ̂  = 0 on >> = 0. 

Laplace's equation and the boundary condition (13.13) on the bottom are 
already linear and independent of TJ. Thus we have the linear problem for 
q> alone: 

<Px,x, + <Px,x2
 + %y = 0> ~h0<y<0, 

<P„ + g% = 0, y = 0, (13.22) 

%+hx<pXt+VP*,=°> y=~ ho-

After the solution for <p has been found, the surface is given from (13.21) 
by 

■q(xl,x2,t)= <p,(*i,*2>0>0- (13.23) 

The problem in (13.22) has to be supplemented by appropriate initial 
conditions. 

13.4 Linear Waves in Water of Constant Depth 

In the case of water waves, the waves propagate horizontally in that 
the elementary sinusoidal solutions take the form 

r, = Ae"x-'u', <p= Y(y)eiK'-iul; 

they are oscillatory in x,/ but not in.y. From Laplace's equation, this form 
of <p is a solution provided 

Y"-K2Y=0, K = |K| = (K? + K2
2), /2. 

For water of constant depth h0, the boundary condition on y = - h0 

requires Y'(y) — 0. Hence 

Xoccoshk(h0+y). 
From (13.23), 

A = ^-Y(0) 
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is the amplitude of ij, so we take 

ig cosh K( h0+y) 
Y(y)=-—A-

u cosh xh0 

Then 

■n = AeiKX 

(13.24) 
ig .cosMVKv) ,«.,_„, 

<p= A r—; e ■ w cosh K/I0 

The remaining condition <p„ + g<py = 0 on >»=■() gives the dispersion relation 

w2 = £Ktanh»c/j0. (13.25) 

It was noted in Section 11.1 that differential equations must lead to 
polynomial dispersion relations provided that the dependence is sinusoidal 
in all the independent variables. The transcendental equation (13.25) is 
obtained here because the variation in y is not sinusoidal. One might say 
that the waves are in (x,/) space and the>» dependence provides a coupling 
between the wave motions at different depths. 

133 Initial Value Problem 

The dispersion relation (13.25) has two modes «=■ ± W(K), where 

*P(K) = VsKtanhK/i0. (13.26) 

The possible branch point at K = 0 is spurious, since gK tanh ichQ~gh0K
2 as 

KA0-»0. The function W chosen to have W ~ K V ' g h 0 near the origin is 
single valued and analytic on the real K axis. It has branch points at the 
other zeros and infinities of tanh<c/i0, at KA0 = ± niri, ±{n-±)iri, 
n = 1,2,3.... The functions W(K) and - W(K) are both single valued 
analytic functions of K in the complex K plane cut from — oo /' to - iri/2h0 

and from iri/2h0 to oo /. 
The general solution is obtained from the Fourier transforms corre -

sponding to (13.24) with two modes corresponding to w= ± W(K). TWO 
initial conditions are needed to determine the arbitrary functions F(K) in 
the transforms. Of course any prescribed function 9 must satisfy Laplace's 
equation, otherwise compressibility effects will come into play and change 
the initial distribution rapidly to some new effective initial distribution. For 
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simplicity we take the case of fluid initially at rest with <p = 0. Then, from 
(13.21), ij, = 0 initially. To this we add a prescribed initial surface 

T ? (X,0) = T ? 0(X), / = 0. (13.27) 

For this problem the solution is 

T J ( X , 0 = f" F(K)eiKX-iW'dK+ f°° F(K)eiKX+iW'dK, (13.28) 
• ' - 0 0 • ' - 0 0 

where F(K) is the Fourier transform of ii)0(x). 
For the one dimensional problem, K and x are scalars in (13.28), and 

n*) = £;f~T,o(x)e-iKXdx. (13.29) 

The general solution can be reconstructed from the special case TJ0(X) 
= 8(x), F{K)—\/AIT, which is famous in water waves as the Cauchy-
Poisson problem. Its solution can be put in the form 

•q(x,t) = - (a°cosKxcosW(K)tdic (13.30) 
It Jn 

1 /•« 

noted in (11.19). 
For axial symmetry about a vertical line the two dimensional form of 

(13.28) can be reduced to 

y(r,t) = 2 f °° f *KF(ic)e""cos{cos W(n)tdKd£, 

where r = |x|, K = |K|, and ^ is the angle between x and K. An integral 
representation for the Bessel function J0 is 

JoW-^f^e^dl, 

and the solution may be written 

TJ(M) = 4TT f °°KF((C)./0(K/-)COS W(K)tdK. (13.31) 
•'o 

The inverse formula may be written similarly as 
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Of course these may be obtained also by separation of variables in polar 
coordinates and Fourier-Bessel transforms. For a S function initial condi-
tion Tj0(r) = 8(r)/2wr and the solution is 

*)(M) = T- /""IC/CXKT) COS W ( K W K . (13.33) 
lit Jo 

The asymptotic results of Chapter 11 may be applied to these solu-
tions. In particular, from (11.24)—(11.25), the asymptotic behavior for the 
one dimensional solution is 

i)~29l F{k) i |H%)f « « P { * - " ^ * > ' + 7 / - » 0 0 , y > 0 , 

(13.34) 

where k(x,t) is the positive root of 

W'{k) = (13.35) 

and F(k) is given by (13.29). The interpretation was discussed in detail in 
Chapter 11, and the properties of the group velocity C(k) were discussed in 
(12.4)—(12.6). Since C(k) is a decreasing function of k, the longest waves 
appear at the head of the disturbance and are followed by successively 
shorter waves. The group lines of constant k and the phase lines of 
constant 0 are indicated in Fig. 13.1; a typical wavetrain is shown in Fig. 
13.2. 

Fig. 13.1. Group lines (solid lines) and phase lines (dashed lines) for water waves. 

For finite depth there is a finite maximum group velocity Vgh0 for 

khQ-*0, so that the head of the disturbance moves with velocity V gh0 . 
This is a sharp wavefront only in the approximation (13.34), not in the full 
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Fig. 13.2. Wavetrain near the front of a disturbance in water waves. 

solution. In the full solution the disturbance falls off exponentially, without 
oscillation, ahead of this front and the disturbance is relatively small. Since 

C(/t)= w\k)^Vgh0 and W"(*)->0 as kho-+0, (13.34) is not valid in the 
neighborhood of the transition region. We now investigate the true be-
havior. 

13.6 Behavior Near the Front of the Wavetrain 

Exactly on the line x = Vgh0 t, the correct asymptotic behavior can 
be found from the extended form of the stationary phase argument in 
(11.26), since we have ^" ' (0)^0. If F(Q) is finite and nonzero, this gives 
an amplitude decay 

TJCC/-' /3, (13.36) 

to replace the decay TJOC/-1/2 away from the front. Since 

F(0) = ±f\0(x)dx, (13.37) 

this applies when the total initial elevation is finite and nonzero. 
However, we would like to have a uniformly valid solution through 

the whole transition region. It may be obtained by noting that the entire 
transition region corresponds to small values of k. Both (13.34) for small k 
and (13.36) for k = 0 may be included by expanding the exponent in the 
Fourier transform about K = 0, rather than the stationary point, and retain-
ing up to third powers of K, From (13.26), 

W(K)~c0K-yK3+---, (13.38) 
where 

c0=V&o, y = | / i 0 V ^ , (13.39) 
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Therefore, near the head of the wave moving to the right, we take 

/

oo 
F( K ) exp { IK ( x - c0t) + iyK3/} dn. (13.40) 

- 0 0 

It is also consistent to expand F(K) in its Taylor series and retain only the 
first term. If f1aaT)<£,x)dx is finite and chosen to be equal to one, the first 
term is F(0) = 1 /4w and the solution is 

*}-•>]/= 4 ^ / _ exp{iK(x-c0t) + iyK3t}dK. (13.41) 

This may be expressed in terms of the standard Airy integral 

Ai(z) = — I expl if sz + — s31 j ds= — f cosf sz + — J 3 jds, 

by a change of variable s = (3yt)l^\. Then we have 

* - ; ^ H ^ 4 (,3-42) 
The Airy function Ai(z) has the general form shown in Fig. 13.2. Its 

asymptotic behavior is 

z—»+oo 
Ai (z )~ ' 

■ oo. 

From these, we see that t\j decays exponentially ahead of x = c0t and 
becomes oscillatory behind. Exactly on x = c0t, •fyoc/-1/3 in agreement 
with (13.36). The transition region is of width proportional to (yf)1 / 3 about 
x = c0t. Away from the transition region, as (x- c0t)/(3yt)l/i^>— oo, 

r,/~(4ff)-
|/2{3yKV-^)} "''"si" { f ^'.fn + f [ <13'43> 

It may be verified that this merges correctly with (13.34)—(13.35). 
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If F(K)~FnK
n for integer n as K-»0, the solution (13.40) can be written 

in terms of ty by taking the appropriate number of x derivatives if n > 0, or 
the appropriate number of integrals with respect to x if n < 0. For example, 
the solution for the step function 

i7o(*) = 
0, x>0, 

1, x<0, 
is just 

/•OO 

V~J Vf(x)dx 

1 f00 

= j j Ai(s)ds, 2 = 

The Airy function has the property 

f°° Ai(s)ds = 
J — oo 

x-c0t 

' Or0 , / 3 

l. 

(13.44) 

The factor i appears in (13.42) and (13.44) because these represent only 
the waves moving to the right; those moving to the left complete the full 
initial condition. 

A simpler view of these solutions is to note that the dispersion relation 
(13.38) corresponds to the equation 

■n, + c0i)x + mxxx=0- (13.45) 

We are solving this equation for ij0(-x)s=i^(x) m (13.42) and for TJ0 
= \H( — x) in (13.44). The solutions are members of the family of similar-
ity solutions 

■n = {lytymfm{z), z=[X~CXl-> O3-46) 

(3y0 

after substitution it is easy to relate fm(z) to Airy's equation 

Ai"(z) = zAi(r) (13.47) 
and construct the solutions. 

Equation 13.45 is the linearized Korteweg-deVries equation, which 
will play an important role later. We might note that for any dispersion 
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relation with an expansion in the form (13.38), the long waves are de-
scribed by (13.45) in the linear theory, and the solutions (13.42) and (13.44) 
apply. 

A restriction on the linear theory might also be noted. In (13.42) the 
amplitude of the first few crests decays proportional to r~1/3, whereas the 
dispersive effects (of relative order k2) decrease like /~ 2 / \ Thus in the final 
decay nonlinear effects eventually become as important as the dispersion. 
Under appropriate conditions there is an intermediate range in which the 
asymptotic linear theory applies. The nonlinear effects require an extra 
term proportional to TJIJX in (13.45). The equation is then the full Korteweg-
deVries equation and we shall see later that the decay is eventually halted 
and a series of solitary waves is formed. This nonuniform validity of the 
linear theory near the front of a wavetrain is similar in a general way to 
that discussed in Chapter 2 for hyperbolic equations. 

13.7 Waves on an Interface between Two Fluids 

The theory discussed so far ignores the changes in pressure above the 
water surface due to the motion of the air. We next confirm this in detail 
in a typical case. The argument can be usefully combined with a discussion 
of other effects on the interface between two fluids including the case of 
comparable densities. We consider a fluid with density p' above one with 
density p, and, for simplicity, the fluids are infinitely deep. The flows are 
irrotational with velocity potentials qp',<p, respectively, and the interface is 
y = T). The pressures in the two fluids are 

P'-PO=-P'{<?, +^(*V)2+gy}> 

p-Po=-p\<P<+ 2(V<P)2 + S>']' 

where p0 is the common undisturbed value, and the conditions on the free 
surface are 

P' 

7ll + <Pxl
7lx, + (Pxl'Ox3-'Py 

It is interesting to consider perturbations to main streams U', U in the two 
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fluids. If we consider only one dimensional waves and linearize the 
boundary conditions, we set 

<p'=U'x-lrU'2t + V, <p=Ux-^U2t + Q, 

and retain only the first order terms in 0',<J>,ij. The boundary conditions 
become 

P'(% + { / ' * ; + m ) - P(* , + u*x+CT), ) 

t},+ (/'•>,,-<*>; = (), \ ony = 0. (13.48) 

Since $ ' ,$ satisfy Laplace's equation and tend to zero as y-* + co, 
y-+ - oo, respectively, the elementary solution takes the form 

$ ' = g'gH*x-ut)-i9 <J>_ ge Hvc-ot) + Ky ■n = /4e'<,*X~"'\ 

The boundary conditions (13.48) then give the dispersion relation 

K p + p' \KP + P' (p + p ' ) 2 ' J l ' 

For the case U= U'=0, it is noted that 

In the limit p ' /p-»0, this confirms the elementary solution neglecting 
motion of the air and provides the small correction. 

But it is also interesting that various instabilities are indicated when u 
has an imaginary part. The following cases may be singled out: 

1. U—U' = 0. This is unstable if p'>p, as would be expected. 
2. g = 0,U=£U'. This case is always unstable and is known as 

Helmholtz instability. 
3. p = p', U¥* U'. This is the same as 2 above, since the gravitational 

effects can arise only for different densities. 
4- p^pW^U'. The solution is always unstable for sufficiently 

short waves, but this result would be modified by the stabilizing influence 
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of surface tension for extremely short waves. The effects of surface tension 
are easily incorporated, using the boundary condition given in (13.50). 

13.8 Surface Tension 

Surface tension acts like a stretched membrane on the surface of the 
water. For small deviations y = t\(xvx2,t) from a plane surface the net 
effect is a normal force Ti\xx per unit area. When this is included, the 
pressure condition at the surface becomes 

p+T%xrP» (13-5°) 

and the linearized conditions (13.21) are modified to 

T 
% = %' <P, + gV--%x, = 0 on y = 0. (13.51) 

The functional forms of TJ and <p are the same as before, but the revised 
boundary conditions at the surface lead to the dispersion relation 

co2 = gKtanh«/i0(l + — KA. (13.52) 

The properties and consequences of this were discussed and applied to 
some extent in Chapter 12. 

It was noted that the group velocity now has a minimum value at 
K = km. At the minimum W'(km) = 0 and there is again a transition region 
in which (13.34) does not apply. The behavior of the solution in the 
transition region can be found by an approach similar to that in Section 
13.6. The expansion 

W-W(km) + (K-km)W'(km) + ±(K-km)iW'"(kJ + ---

is used in the Fourier transform solution, and the resulting form related to 
the Airy function. The details are given, for example, in Jeffreys and 
Jeffreys (1956, Section 17.09). 

13.9 Waves on a Steady Stream 

The geometry of various steady wave patterns was determined in 
Chapter 12. The variation of the amplitude along each group line can be 
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determined from the general group velocity concepts. However, as pointed 
out earlier, the initial distribution of amplitude among the different group 
lines can be obtained only from a more complete solution. We now study 
the Fourier transform solution for the uniform stream case, show how the 
simple kinematic description ties in with the full transform solution, and 
determine the amplitudes. We shall take the source to be an external 
steady pressure applied to the surface of the stream, rather than a pre-
scribed displacement, since this more nearly represents the effect of a 
floating body. 

When solving steady wave problems by transforms, care is needed in 
applying a suitable radiation condition to ensure uniqueness. It is interest-
ing to see how the radiation condition in this context parallels the use of 
group velocity arguments in determining where the waves will appear. The 
nonuniqueness arises because the steady state is artificial in that no flow 
situation can have existed for all time. In principle, an ideal way to correct 
this is to solve a more realistic unsteady problem with suitable initial 
conditions applied at some finite time in the past, t= —10, say, then let 
/0-»oo in the solution. This program may be difficult to carry through, 
however, with a lot of unnecessary detail that does not figure in the final 
answer. A simpler version of the radiation condition follows this idea in 
principle and yet requires only a minimum extension of the problem. In 
the present case we take the applied pressure on y = 0 to be 

^ ^ -f(xltx2)e«, £>0. (13.53) 

It corresponds to a source that was effectively zero a long time ago and 
then grew gradually until it is close to/(x,,;c2) at current times. This device 
has the desirable features of the initial value problem, having reasonable 
starting conditions, and yet keeps the time dependence simple. After the 
problem is solved we take the limit e-»0 to get the steady state solution. 

The boundary conditions (13.12) are modified by the inclusion of the 
applied pressure distribution, and the contribution of surface tension is 
included since it was seen in Section 12.3 to have particularly interesting 
consequences for the appearance of upstream waves. For small perturba-
tions about a main stream U in the xt direction, the velocity potential is 
taken to be 

tp-Ux^-jUh + Q (13.54) 

where V$ is small compared with U. The linearized boundary conditions 
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at the free surface are then 

IJ,+ C/T, - * =0, "I 
T on^-O. (13.55) 

The perturbation potential $ still satisfies Laplace's equation and, for 
simplicity, we take the case of infinite depth so that <b-*0 &sy-* — oo. The 
Fourier transform solution which satisfies the latter two, and which varies 
like c", is 

$**ef'[°° B(K)e""t+K>'dK, K- |K| , 
• ' - 0 0 

Tj = e"f°°A(K)eiKXdK. 
• ' - o o 

The boundary conditions (13.55) then relate A and B to each other and to 
the Fourier transform F(K) of/(X). The result is 

/

KF(K)e**dK , , „ 

«, (*C,t/-I€) -W^(K) 

where 
ul-gK+^K3 (13.57) 

is the dispersion relation for waves moving into water at rest. 
The role of « can now be seen. For e = 0 there would be poles 

satisfying 

K|C/2-CO|(K) = 0 (13.58) 

on the path of integration. The presumption would be that the path should go 
one way or the other around each pole, but the open choice leads to 
nonuniqueness. With c > 0, the roots of the denominator in (13.56) are 
complex; the poles have been pushed off the path and the ambiguity does 
not arise. Whether a pole contributes will then be determined by further 
deformations of the path in evaluating the integrals and will correspond to 
a particular choice of path in going around the pole. The values of K 
satisfying (13.58) determine which values of K can make a strong contribu-
tion; the position of the pole above or below the path will determine where 
the contribution appears. The condition (13.58) is essentially the condition 
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(12.23) [or (12.24) with w = 0] that determines which waves can stand 
steady in the stream and so make a large contribution. The analysis 
showing whether the pole is to be included corresponds to the group 
velocity determination of where these waves appear. 

One Dimensional Gravity Waves 

For simplicity we consider first the one dimensional case and neglect 
surface tension. Then (13.56) becomes 

V(x,t) = e" [ 
J—m 

-j dKv K = |K,|. (13.59) 
(* ,£/-«) -gK 

The appearance of K = |K,| should be carefully noted; it stems from the fact 
that both positive and negative values of K, appear in the transform, and in 
the one dimensional case the exponential in the expression for 0 must be 

exp(/K1x, + |K1|>') 
to ensure 4>—»0 as>>—* — oo. 

In evaluating (13.59), we shall choose the special case of /(*,) 
= PS(xt), F(K1) = P/2TT, since the more general case can always be recon-
structed. Then we have 

2" J^i^U-icf-g« 

Since K = |K,| appears in the integral, it is convenient to break the integral 
into the ranges K, >0 and K, <0, and use K as the variable of integration in 
each. Then 

^L = e" r°° KeiKX'dK | £tl r°° Ke~iKX'dK 
p 6 J0 (KU-itf-gK e J0 (KU+U)2- gK 

Since e—>0 ultimately, the c2 term in the denominators may be neglected 
and the e" factor, which has now served its purpose, may be dropped. We 
have 
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The poles of the two integrands are at 

8 . lie 
7 + , 

u2 u' 
8 lie 

u2 u 

respectively, The paths can be rotated into either the positive or negative 
imaginary axis. For xx >0, the path of the first integral can be rotated into 
the positive imaginary axis and the path of the second into the negative 
imaginary axis; both poles contribute. We have 

US i C°° e-mx'dm , . ikx. . i i c am . -ikx 
le 2ir J0 im — k 2m JQ im + k 

= -2sinfoe, + - /" w
 e-

mx<dm, x,>0, (13.61) 
n J0 m*+ k1 

where 

Jfc--^ . (13.62) 
U2 

For x, <0, the paths may be rotated the other way and the poles do not 
contribute: 

U\ 1 r00 

--*-/" -P—2e
mx>dm, x{<0. 

f J0 m2 + k2 
(13.63) 

Relation 13.62 may be written 

'-£: 
it determines the wave number k of waves that can keep a steady position 
against the oncoming stream. Since sinAcx, is a solution of the steady free 
surface problem for all *,, the radiation condition is crucial in showing 
that such standing waves appear only downstream (JC,>0) of the applied 
pressure disturbance. The integrals in (13.61) and (13.63) are needed in the 
complete solution, but they become small for | JC, |»1 . The asymptotic 
expansions of these integrals are found by formally expanding (m2 + k2)~x 

in ascending powers of m2 and integrating the resulting series term by 
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term. This procedure gives 

1 m e-«k,l i 31 51 
dm r-r- —- + 0 m2 + k2 k2x2 k*x\ k6x* 

and it may be justified by Watson's lemma. 
The conclusion is that away from the source there is a standing wave 

pattern downstream only given by 

ii= rsinfoc,, k=—-. (13.64) 
U2 U2 

One Dimensional Waves with Surface Tension. 

When surface tension is included, the expression corresponding to 
(13.60) is 

2^» = l i m ( /*" eiKX'dK + f°° e-""'dK 
P ~o\Jo KU2-2i€U-g-(T/p)K2 J0 KU2 + 2UU-g- (T/P)K2 j " 

(13.65) 

The poles are close to the zeros of 

kU2 = g+-k2; (13.66) 

this is again the condition 

U=c(k) 

used in (12.20) to determine which waves can stand in the stream. 
When U < cm, where cm is the minimum wave speed, the zeros of 

(13.66) are not real. Hence there are no poles close to the real axis in 
(13.65), all the contributions to the integrals fall off rapidly with *,, and 
there is no standing wave pattern. This agrees with the conclusion drawn 
in Section 12.3. 

When U>cm, there are two real roots of (13.66), and they are the 
values kg and kT referred to in (12.21)—(12.22), with kT>kg. In this case, 
the integrands in (13.65) have poles close to kg and kT. They are located at 

2PU , 2pU 
—/'e, K=kT— —i 

(kT-kg)T
 T (kT-kg)T 
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for the first integral, and at the conjugate points for the second integral. 
For x,>0, the first integral may be rotated onto the positive imaginary 
axis picking up the gravity pole near kg but not the other. The second 
integral is rotated on to the negative imaginary axis and also picks up its 
gravity pole. Thus downstream of the source, the gravity waves appear. 
Similarly, for xx <0 the opposite rotations must be used and the capillary 
poles make the contribution. The conclusions agree with the group velocity 
arguments used in (12.21)-( 12.22): gravity waves downstream and capillary 
waves upstream. The asymptotic wavetrains are found to be 

( -2Pp 
sin kgxx, x,>0, 

17' 
(kT-kg)T 

-2Pp 
{kT-K)T 

sin/cjoc,, A: ,<0. 

Ship Waves. 

For the two dimensional problem of gravity waves produced by a 
point source f(xi,x2)= PS(xl,x2) we take F{K) = P/4IT2 in (13.56) and 
UQ = gK. Then (13.56) reduces to 

47r2<72T) u f°° f°° Kexp{i(K}xl + K2x2))dKldK2 (l361\ -n — co *^ — oo 
(Ki-u/uy-gK/v* 

where K = (K2 + K2)1//2. It is convenient to introduce polar coordinates 

x^rcos^, x2=rsin£, 

K|=—KCOSX. K2=icsinx-

The contribution from the range 7r/2<x<37r/2 is the conjugate of the 
range — 7 r / 2 < x O / 2 , a nd m t n e n m i t «—>0, (13.67) may be taken as 

2m2V\ 
P 

where 

m(,- C dX r°° Kexp(-/«/• cos(| + x)) \ = ft lim -JL- n y±-~LdA (13.68) 

0 U2cos2x t/cosx' 
2 /£ (13.69) 
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Since cosx>0, the pole K = K0 is in the lower half of the complex K plane. 
The pattern is symmetrical about the JC, axis, so it is sufficient to con-

sider the range 0 < | < T T . When cos(£+x)>0, that is, - T T / 2 < x < i r / 2 - £ , 
the path of the integral in the K plane can be rotated into the negative 
imaginary axis and the pole contributes; when cos(£+x)<0, that is, 
IT/2 - £ < x < "72, it can be rotated into the positive imaginary axis and 
the pole does not contribute. 

The further details are quite extensive if one keeps careful track of all 
the terms. Here we note the contribution of the pole and gloss over the 
remainder. The contribution of the pole is 

-ML "
/2 i exp{-Hc0rcos(f+x)} J 

i dx 

where the c term in K0 can now be dropped. The exponent 

s(x) = "ocos ( |+x ) = — j — i — 

has a stationary point at x = $ where 

tan( |+^) = 2tan^. (13.70) 

Hence by the standard stationary phase formula we have 

1/2 
gP 

17~ IT U COS**// 

After some simplification, this reduces to 

• , / 2
 P ( l+4tanV)' / 4 

( _ y e x P { - ^ ) - f s g n ^ ) ) 

(2g\" P ( l + 4 t a n ^ ) ' . f , tejm,^« w,,*\ 
\wr} tZ-'costy l-2tan'U\ , / z l 4 ) 

where 

'costy |1 — 2tanVl,/2 

(13.71) 

* - « o ( * ) - 2
g

 2 l , (13-72) 
U cos'4)// 

and »£(£) is determined from (J3.70). 
The wave number determination of k and \p from (13.70) and (13.72) 

agrees with (12.32); the phase krcos(£+\(') agrees with (12.35). The ampli-
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tude is singular at the maximum wedge angle £=£m=19.5° where tan^ 
_2-i /2 j m s j s w ) j e r e the lateral and transverse crests meet at a cusp and 
corresponds in the analysis to the confluence of the two stationary points 
of (13.70). Since s"(\p)-+0, we have a transition region of the same general 
type as that in Section 13.6. At the wedge the phase jumps by m/2. The 
singular behavior on the x{ axis, where ^-»0, is related to the assumption 
of a point disturbance. The singular regions are studied in detail by Ursell 
(1960a). 

NONLINEAR THEORY 

13.10 Shallow Water Theory; Long Waves 

For gravity waves with Kh0—>0, the dispersion relation is approxi-
mately 

u2~gh0K
2 (13.73) 

and the phase speed c0= vgh0 becomes independent of K. The dispersive 
effects drop out in this limit and, in one space dimension, the Fourier 
superposition of solutions for TJ leads to 

7j= f °° F(K)eMx-e*')dK+ f °° G{K)eiKix+c^dK 
• ' - o o • ' - o o 

=f(x-c0t) + g(x + c0t). 

This is the general solution of the linear wave equation 

Uw-<*a„-0. (13.74) 

Clearly there must be some direct way of extracting this equation from the 
full equations and, in fact, it was already obtained in a more general 
setting in Section 3.2. There, in the study of river flow, nonlinearity and 
friction were included. Here we neglect frictional effects but are concerned 
with nonlinearity. 

First we recall the previous derivation. The key step is to approximate 
the vertical component of the momentum equation (13.2) by 

1 ty _ 
— - g = 0. 
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Then 

SHALLOW WATER THEORY; LONG \ 

P-Po* "pg(v-y)-

The horizontal components of (13.2) become 

du, 
IF 

du, dut 

+ 0 — = -
dy 

to, 
8dxt 

455 

(13.75) 

(13.76) 

[using now the mixed notation u = (u,,u2,o), X=(X,,JC2,^) so that /=1,2 
and the summation is lor j—1,2 in (13.76)]. Since the right hand side is 
independent of y, the rate of change of «, following a particle is indepen-
dent of y. Hence if «, is independent of y initially, it remains so. We 
consider this to be the case. Then (13.76) becomes 

du, 8M, <h) 

ir+^+«lra (1377) 

Although the vertical acceleration was neglected in (13.75) compared with 
the terms retained, there is no reason to neglect dv/dy in (13.1). However, 
we may use the integrated form of (13.1), which must give the conservation 
equation 

f + ^ ( H ) - 0 , (13.78) 

where 

A = A0+ij 

is the total depth from y = - A0 at the bottom to y = ij at the top. In detail 

-£{*♦*}♦ 
=^/-V,^+l^:-*'~Kl-' ,"^~Kl--*'4' 

and from the boundary conditions (13.11) and (13.13), this reduces to 

since u, is independent of y in this approximation and i), = A„ (13.78) 
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follows. Equations 13.77 and 13.78 are the shallow water equations for 
T)(x,f), u(x,t). [Equations 3.37 follow by writing gdt]/dx = gdh/dx — gS in 
(13.77) where S= dh0/dx is the slope of the bottom, and adding a friction 
term]. 

It is easy to make an order of magnitude estimate of the approxima-
tion. The error for p in (13.75) is of order ph0v, and, from (13.1), u « — 
h0ux; hence the relative error in (13.77) is of order 

~Px hlUxx, hi 
pu, u, l2 

where / is a length scale for the waves in the x direction. This fits with the 
approximation ( K / I 0 ) 2 « 1 in obtaining (13.73). Thus (13.77)—(13.78) provide 
a nonlinear set for relatively shallow water or, equivalently, for relatively 
long waves. The effects of dispersion do not appear in this approximation. 
In the next section the shallow water equations will be derived as the first 
terms in expansions in (h0/l)

2; small dispersive effects will be included by 
going to the next order. 

The linearized equations lead to (13.74), but we may obtain nonlinear 
solutions using the theory of Part I, since the system is hyperbolic. In 
particular, for one dimensional waves on a horizontal bottom we may take 

h, + (uh)x = 0, 
(13.79) 

u, + uux + ghx = 0. 

The characteristic velocities are u ± vgh , the Riemann invariants are 

u±2Vgh , and a simple wave moving to the right into water with h = h0 is 
given by 

* -««) , „-2V*tf-2VA, 

x-(+[}ylsH{() - 2VA }I. 

All such waves carrying an increase of elevation break. Then a discontinu-
ity may be fitted in, and the shock conditions, derived from the conserva-
tion forms of (13.79), are 

- U[uh] + u2h+±gh2 = 0, 
(13.81) 

- U[h] + [uh] = 0, 
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as noted in (3.53) and (3.54). This is the turbulent bore. 
This breaking phenomenon is one of the most intriguing long-standing 

problems of water wave theory. First, when gradients are no longer small 
the approximation h\/11 is no longer valid, so the solution (13.80) should 
cease to apply long before breaking occurs. Yet breaking certainly does 
occur and in some circumstances does not seem to be too far away from 
the description given by (13.80); moreover, bores, breakers, and hydraulic 
jumps are sometimes reasonably well described by (13.81). But the shallow 
water theory goes too far: it predicts that all waves carrying an increase of 
elevation break. Observations have long since established that some waves 
do not break. So an invalid theory seems to be right sometimes and wrong 
sometimes! It is not hard to see how the neglected dispersion effects inhibit 
breaking, but in the simple theories including some of these effects (see the 
next section), they in turn go too far and show that no waves break! We 
postpone further discussion until the dispersion has been included. Before 
doing this, however, a few more details of shallow water theory will be 
noted. 

Dam Break Problem. 

First, a classic solution for the breaking of a dam does not involve 
bores (strangely enough) and is easily solved by simple wave theory. The 
problem is formulated with initial conditions 

w = 0, —oo<x<oo, j 

/i = 0, 0< ;c<oo , \ a tf = 0. 

/i = / / 0 > 0 , - o o < x < 0 , \ 

Fig. 13.3. Characteristic pattern in the dam-break problem. 
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Then, on any positive characteristic C+ from the region h = H0 (see Fig. 
13.3), the Riemann invariant 

u + lVgli =2Vg~H~0 . (13.82) 

In the region covered by these characteristics, the solution is a simple wave 
on straight C_ characteristic through the origin. They are given by 

^u-Vgh. (13.83) 

But (13.82) and (13.83) provide the whole solution: 

VWo < J <2V^f0 . (13.84) 

The free surface is parabolic between the front h = 0, x = 2tVgH0 , travel-

ing with speed 2vgH0, and the undisturbed dam level h = H0 at 

x=-tVgJT0. 
Again the shallow water theory is not strictly valid in the initial 

instants since the horizontal length scale / is small, but as the flow develops 
HQ/12 becomes small and the real flow is reasonably well described. It 

should be noted that h=>4H0/9, K = 2Vg//0 / 3 , remain constant at the 
dam position x = 0 for all t>0. The speed of the front is modified 
considerably by friction; for attempts to estimate this see Dressier (1952) 
and Whitham (1955). 

Bore Conditions. 

The bore conditions (13.81) conserve mass and momentum across the 
bore and one naturally asks what happens to the energy. The conservation 
of energy for equations (13.79) is 

^u2h+±gh2}+(±u'h + ugh2} = 0. (13.85) 

This would provide a third potential shock condition, but only two 
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conditions can be used with the system (13.79). Rayleigh proposed that in 
fact energy is not conserved across a bore, attributing the loss to the 
observed turbulence, so that the shock condition corresponding to (13.85) 
should not be used. It is easy to show that whereas (13.79) imply (13.85), 
the jump conditions (13.81) imply 

\u3h + ugh2 
U \u2h+±gh2 

, 2 

<0 for h2>hx. (13.86) 

Since bores are required only when h2> hv the loss of energy agrees in 
sign. The energy plays a role similar to the entropy in gas dynamics; in gas 
dynamics any internal energy is included in the detailed description, so 
energy is conserved and the extra variable in the description allows an 
extra shock condition. Turbulent energy is not included in (13.85). 

A convenient form of the bore conditions (13.81) is 

" - « . + , 2h 
**2(*i + hi) 

1/2 

(13.87) 

M 2
= " i + 

*2-*i [gh2{hx + h2) 
2A, 

1/2 

(13.88) 

Further Conservation Equations. 

It is interesting that the shallow water equations (13.79) admit an 
infinite number of conservation equations of the general form 

j-P(u,h)+j^Q(u,h) = 0. 

It is only necessary that 

Qu=uPu + hPh, Qh = gPu + uPh. 

Thus any solution of 

gPuu = hPhh 

will lead to a conservation equation. The most interesting are polynomial 



460 WATER WAVES Chap. 13 

in u and h. They may be obtained consistently by taking 

m-0 
from which it follows that 

gp'^-\ = m{m-\)pm, m = 2,--,n, 

Po=0, K = 0. 

The first few are: 

u -ur + gh 

h uh 

uh u2h + \gh2 

±u2h+±gh2 ^u'h + ugh2 

j u3h + ugh2 j u% + | u2gh2 + |g2A3 

The second, third, and fourth correspond to mass, momentum, and energy, 
respectively. The others have no obvious interpretation. However, since 
each can be used to give a constant integral 

f {P(u,h)-P(0,h0)}dx = conslant 
J— 00 

in any problem in which M-»0, A->A0 at ± oo, an infinite number of 
integrals of the solution are known. One might therefore expect to be able 
to find the solution analytically. Indeed, by means of the hodograph 
transformation (13.79) can be converted into a linear equation and solved 
in principle; the analysis is identical to that of Section 6.12 with y = 2. 

13.11 The Korteweg-deVries and Boussinesq Equations 

We next consider how dispersive effects may be incorporated into the 
shallow water theory. This may be done by setting up a more formal 
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expansion in the small parameter (h0/l)
2 and including the next order 

terms beyond shallow water theory. Before doing this, however, it is 
advantageous for flexibility and insight to use a quicker and more intuitive 
procedure. We consider the case of one dimensional waves with h0 con-
stant. The linearized version of the equations we seek must give the 
dispersion relation (13.25) in the next approximation beyond (13.73): 

<o2 = c f r 2 - j c ^ K
4 . (13.89) 

An equation for TJ with this dispersion relation is 

Vu-cblxx- j < # f t « „ - 0 . (13.90) 

The shallow water equations (13.79) linearize to (13.74). If we can add an 
extra linear term to (13.79) so that they linearize to (13.90), we should have 
a system which includes both the nonlinear effects of relative order a/h0 

(where a is a typical amplitude) and the dispersive effects of relative order 
ho/12. This is easily done. There are various forms equivalent in the 
desired approximation. If we choose to add a term vhxxx in the second of 
(13.79), the linearized equations are 

71, + h0ux=0, 

and « may be eliminated to give 

Therefore we choose v= \clh0 to agree with (13.90). The argument then is 
that the system 

h, + (uh)x-0, 

, (13.91) 
u, + uux + ghx+j c2h0hxxx - 0, 

reduces correctly to (13.90) in the limit a/ho->0, correctly to (13.79) in the 
limit Ao//2-*0, and so combines the first order corrections to (13.74) in 
both a/h0 and in h\/l2. 

One can always substitute the lowest approximation (13.74) into the 
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correction term. Hence an equivalent system to the order considered is 

h, + (uh)x = 0, 
(13.92) 

u, + uux + ghx+ - h0hx„ = 0. 

This is the system favored by Boussinesq, who first formulated these 
equations. The linearized version of (13.92) leads to 

2 1 5 

and the dispersion relation is 

w = , ° , . , ■ (13.93) 
l + ( l / 3 ) « \ 2 

The expansion of this dispersion relation for small (ic/i0)
2 agrees with 

(13.89) to the first two terms; hence the two systems are equivalent in this 
approximation. However, if the equations are in fact used when h\/l2 is 
not small, (13.92) is superior to (13.91). According to (13.89) small pertur-
bations with (K/I0)2>3 will in fact amplify because u becomes imaginary, 
whereas (13.93) retains a real u even though it is inaccurate in the range 
concerned. In numerical work, the various effects of finite differencing and 
truncation introduce small oscillations of small wavelength even if the 
formulated analytic problem satisfies hl/l2<s:\, so (13.92) is preferred. 

Boussinesq's equations include waves moving to both left and right. 
By following the same steps restricted to waves moving to the right only, 
we obtained the Korteweg-deVries equation. For waves moving to the 
right the first two terms in the dispersion relation are 

u = c0K-yK\ y=^c0hl, (13.94) 

corresponding to the equation 

il, + co-nx + Ynxxx = 0. (13.95) 

In the nonlinear shallow water equations (13.79), waves moving to the right 
into undisturbed water of depth h0 satisfy the Riemann invariant 

u = 2^g(h0+r,) -2Vgho, (13.96) 
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and after substitution in either of the equations in (13.79) we have 

iJ,+ {3V*(*o + i») - 2 V ^ } T , X = 0. (13.97) 

Combining (13.95) and (13.97), we have 

7), + {^g(h0+v) -2Vgh0 }ij, + Vlxxx = 0. (13.98) 

If the nonlinear terms are approximated to the first order in a/h^ we take 

U, + ^ l + f ^ ) u « + ™ « , - 0 . (13.99) 

This is the Korteweg-deVries equation. There is no reason to believe that 
retaining (13.98) is preferable, since other terms, proportional to the 
product of a/h0 and h\/l2, for example, may be as important as the 
nonlinear terms in a2/h\. Again one may use TJ, = —c0t\x in the dispersive 
correction term and adopt 

?' '+ c o( i +HK"^T ?"'= a 

The linearized equation then has the dispersion relation 

1 + 7 K 2 / C 0 ' 

This agrees with (13.94) for small K, and, in contrast to (13.94), has 
bounded phase and group velocities if K becomes large. Since « remains 
real in each case, the modification is less compelling than in the 
Boussinesq case but nevertheless is probably desirable for some purposes 
(Benjamin et al., 1972). However, many fascinating exact analytic solutions 
have been found for (13.99), and in general it may be transformed into a 
linear integral equation; at present these features dominate the other 
issues. 

The preceding derivations allow great flexibility and the approach 
naturally allows the various alternatives that were discussed. It also be-
comes clear that the equations apply to many dispersive wave problems 
quite apart from water waves. Any dispersion relation with an odd 
function for w(tc) may be expanded to the two terms in (13.89) or in 
(13.94), and then (13.90) and (13.95) cover the linearized theory. It is then 
only necessary to have some access to the form of the nonlinear terms and 
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those in (13.91) or (13.99) are rather typical. In this way the equations have 
arisen in plasma physics, for example. 

Of course a confirming formal expansion is also desirable and inform-
ative. If, temporarily, Y is measured from the horizontal bottom, we have 
to solve Laplace's equation 

with <pY = 0 on y = 0. The shallow water theory, with yx approximately 
independent of Y, and the small total depth both suggest an expansion 

0 

When this is substituted in Laplace's equation and the boundary condition 
on y=0 is used, we have 

♦-S'-'r&jfiF- (moo) 

where/=/0. The final step is to substitute this expansion into the boundary 
conditions on the free surface. Because they are nonlinear and applied on 
Y = h0 + t}, it is here that the analysis becomes a little involved and terms 
have to be ordered in expansions with respect to the two parameters 
a = a/h0, $ = h\/l1. In carrying through the details, it is best to normalize 
the variables from the start by taking the original variables (primed) to be 

x' = lx, Y' = hQY, / '= —, 

7] = at\, <p = 

The different stretchings in Y and x introduce the crucial step. In the 
normalized variables, the problem is formulated as 

P<PXX + <PYY = °> 0 < y < l + aT/, 

<pY = 0, 7=0 , 

y = l + arj 
1 2 . 1 « 2 n 

1J + 9.+ 2 f l t v * + 2 j 8 q P r " 
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The expansion for <p now appears as an expansion in powers of P, but from 
Laplace's equation and <py = 0 on y=0, we again have 

On substitution in the surface conditions one finds 

»?+/,+ \oSl~ j ( l W { / „ , + < / „ * - « £ } 0+ O(fi2) = 0. 

If all terms in p are dropped and the second equation differentiated with 
respect to x, we have the nonlinear shallow water equations: 

1,+{(! + «»)»•'},-0, 

H>, + awwx + r\x = 0, w=fx-

If the terms in the first power of /? are retained, but to simplify them terms 
of 0(a(i) are dropped, we have 

T,l+{(\ + ar))w}x-±l3wxxx + O(ap,p2)=0, 

w, + awwx + Vx- \/3wxx, + O{ap,p2)=0, w =fx. 
(13.101) 

These are just a variant of Boussinesq's equations. The quantity w is only 
the first term in the expansion of the velocity <px, which is 

rl 
<px = »-P^r*>xx+o(p2). 

The value averaged over the depth is 

u = w-±pWxx+0(ap,p2); 

the inverse is 

w=u+jrpuxx+0(aP,p2). 
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If these are used in the equations, we have 

71l+{(\ + a-q)u}x+O(aB,B2)=0, 

u, + auux + r]x-^Buxxl+O(aB,B2)=0. 

Finally, substituting the lowest order ux= -TJ, + 0(a,B) from the first 
equation into the uxxl term, we have Boussinesq's equations (13.92) in 
normalized form. 

The Korteweg-deVries equation is derived from any of these systems 
by specializing to a wave moving to the right. To lowest order, neglecting 
the terms of order a and B, such a solution of (13.101) has 

W=7J, 7),+ 7)J t=0. 

We look for a solution, corrected to first order in a and B, in the form 

w = Tj + aA + BB + 0( a2 + B2), 

where A and B are functions of 17 and its x derivatives. Then equations 
(13.101) become 

j]l + r]x + a(Ax + 2r1r,x) + ll(Bx-±r,xxx
)j + O(a

2 + ll2)=0, 

7,, + nx + a{A, + mx) + fi^B,- ^ T , „ , ) + 0(a2 + fi2) =0. 

Since TJ,= -17,+ 0(a,B), all / derivatives in the first order terms may be 
replaced by minus the x derivatives. Then the two equations are consistent 
if 

A = ---q2, B=-7)xx. 

Hence we have 

w = V-^an2+^BVxx+0(a2+B2), 
(13.102) 

i,, + nx + ^armx + ±Br,xxx + 0(a2+ B2) =0. 

The second equation is the normalized form of the Korteweg-deVries 
equation (13.99). The first is similar o a Riemann invariant. 
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13.12 Solitary and Cnoidal Waves 

The Korteweg-deVries equation was derived in 1895. Earlier, Stokes 
(1847) had found approximate expressions for nonlinear periodic waves in 
the case of infinitely deep water or water of moderate depth, while 
Boussinesq (1871) and Rayleigh (1876) had found approximate expressions 
for the solitary wave, a wave consisting of a single hump of constant shape 
and constant speed, which was first observed experimentally by Scott 
Russell (1844). The solitary wave is most easily obtained as a special 
solution of the equation obtained by Korteweg and deVries, and these 
authors went on to show that periodic solutions were also possible. 
Although Stokes' approximation does not apply when /? becomes as small 
as o, his solutions overlap with those of Korteweg-deVries when a«/? . We 
consider solutions of the Korteweg-deVries equations first, because of their 
simplicity, even though they came much later. 

Both the solitary waves and the periodic waves described by (13.99) 
are found as solutions of constant shape moving with constant velocity. 
They therefore may be described in the form 

i j - V ( n X = x-Ut. 

From (13.99) we then have 

Ht'Y" £*&'"+j«"-|:r-i|r-o. 
This integrates immediately to 

.-■«•-(H \2r'+7r2-(--i)f+c=o, 
with a further integration to 

jAor2 + f 3 - 2 ^ - l j ? 2 + 4G?+// = 0, (13.103) 

after multiplication by f'; G and H are constants of integration. 
In the special case when f and its derivatives tend to zero at oo, 

G-H = 0. Then the equation may be written 

V ' (13.104) 

^-1 + f 
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Fig. 13.4. Solitary wave. 

It is clear qualitatively that f increases from f = 0 at X = 00, rises to a 
maximum f = a, and then returns symmetrically t o f = 0 a t A ' = - o o (see 
Fig. 13.4). This is the solitary wave. The range in TJ is t\0 = h0a, so a plays 
the same role as in the last section. The velocity of the solitary wave 
depends on the amplitude according to 

The actual solution of (13.104) is 

(13.105) 

1/2 

f = a s e c h 2 ( ^ ) X; 

hence 

Tj = Tj0sech3 3% 
1/2 

(x-Ut) 

(13.106) 

(13.107) 

This is a solution of the Korteweg-deVries equation for all r)0/h0; however, 
the equation is derived under the assumption rj0//;0<scl, and in fact solitary 
waves are found to peak at a maximum height; experimentally it is 
TJO//IOJ=S0.7, and theoretically i)0//i0!*:0.78. 

In the general case, G,H¥=0, 

r2=e(o 
where C(f) is a cubic with simple zeros. For bounded solutions, the zeros 
must be real, and bounded solutions must oscillate periodically between 
two of the zeros of Q. We may, without loss of generality, choose the two 
zeros concerned to be f = 0 (which fixes h0) and f = a (which is double the 
amplitude). The third zero must then be negative; if we take it to be a - /?, 
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it will turn out that /? = AQ//2, where / is the horizontal length scale, and 
the parameters a and (3 have the roles appropriate to the discussion of the 
last section. With these choices, the equation for $(X) is 

i ^ J p ) -««-O(f -« + 0). 0<a<)8, (13. 108) 

U-l + h z l . (13.109) 

The wave length is 

X - i £ f « (13.110) 
•A) 

2ho_ C di_ 

In this nonlinear problem U is the phase speed, since any point on the 
profile moves with this speed. The solution could have been written in the 
form 

f ( * ) = / ( 0 ) = / ( * * - « , ) 

and chosen so that / has period 2n in 0. Then 

u=UK = (\ + hzl\CoKt (13.111) 

and 
2-n 

From (13.110), fi is a function of A and a. Hence the dispersion relation 
(13.111) takes the form 

w=«(K,a). (13.112) 

This is the first instance of a most important result for nonlinear dispersive 
waves: The dispersion relation between frequency <o and wave number K 
involves the amplitude. 

For waves of infinitesimal amplitude, a-»0, (13.108) and (13.109) 
reduce to 

H§)!-««-»". 
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The solution is 

--'-f 
cn 2 

If we introduce K = V3/8 /h0, we have 

y a , a , . 
S = -y + JCOS(KX-Ut), 

U=KU=C0K(\- - K 2 A J , 

(13.113) 

in agreement with the linear theory [see (13.94) and (13.95)]. In this limit, 
the amplitude drops out of the dispersion relation. 

In the other limit of a-»/J, the wavelength A, given by (13.110), tends 
to infinity and we have the solitary wave. 

The solution (13.108) may be expressed in standard form in Jacobian 
elliptic functions. It is 

f = a c n 2 | - ^ r ) X, (13.114) 4 W \ = a cnzl — -

Wo) 
where the modulus s of the elliptic function is 

.P. -0)' (13.115) 

and 

4h0 
X= —K(s), (13.116) 

VJp 
where K(s) is the complete integral of the first kind. In view of (13.114), 
Korteweg and deVries named these solutions cnoidal waves. The form of 
(13.114) confirms )3 as a measure of hi/11. The modulus 5 measures the 
relative importance of nonlinearity to dispersion. In the linear limit s->0, 
cn£—>cos£; in the solitary wave limit .r—>1, cn£-*sech£. 

Again it should be noted that cnoidal waves are a solution of the 
Korteweg-deVries equation for all a and /? restricted only by 0 < a < /?, 
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but the equations are only valid when a and fi are small. Like the solitary 
waves, they really attain a maximum height at which crests peak. The 
theoretical analysis is not complete. As a guide to supplement the result for 
solitary waves, it may be noted that numerical calculations of periodic 
waves on deep water (Michell, 1893) peak when a/X = 0.142. Strictly 
speaking this is outside the range of the Korteweg-deVries theory, but it 
perhaps gives some idea of the values involved. We should interpret it 
according to am{ah0, X?»(2-7r/i0)/(3y8)1/2 (the linear values), as a/?1 / 2«l . 
The critical value for solitary waves a«/?«0.7-0.8 fits in with this rough 
estimate. It was pointed out at the end of Section 13.6 that solutions of the 
linearized theory a//8«:l cease to be valid near the front of a wavetrain 
because the effective a/p increases with / as t—nx>. Since the above 
periodic solutions tend to solitary waves as a//? increases to 1, one might 
expect that the end result is a series of solitary waves. This and other 
problems can now be studied analytically as a consequence of the remark-
able investigations of Kruskal, Greene, Gardner, Miura, and co-workers. 
They developed an ingenious way of finding fairly general solutions of the 
Korteweg-deVries equation, and these include the main features of the 
resolution of an arbitrary finite initial distribution into a series of solitary 
waves. The explicit solution for the collision of two or more solitary waves 
can also be given. This work ties in with related results for other equations 
and other physical situations, so it is described separately (Chapter 17). 

We now continue the discussion of periodic waves. 

13.13 Stokes Waves 

Stokes' investigations in water waves, with the first publication in 
1847, are the starting point for the nonlinear theory of dispersive waves. It 
was in this work, and far ahead of /ther developments, that he found the 
crucial results that, first, periodic wavetrains are possible in nonlinear 
systems and, second, that the dispersion relation involves the amplitude. 
The dependence on amplitude produces important qualitative changes in 
the behavior and introduces new phenomena, not merely corrections to 
some of the numbers. 

It is easiest to present Stokes' approach on the Korteweg-deVries 
equation and then quote the results without actually doing the more 
extensive details required for the full equations for arbitrary depth. Stokes' 
aim was to find the next approximation to the linear periodic wavetrain. 
For the Korteweg-deVries equation this corresponds to an expansion in 
powers of a with a«/?. It could be obtained from the exact solution 
(13.114), but it is both simpler and more instructive to proceed directly on 
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the equation. We look for a solution of (13.99) in the expansion 

7 r = ? = e?,(0) + e2f2(0) + e 3 f 3 ( 0 ) + - - - , 0 - K X - W / , (13.117) 
"o 

where c is the small parameter a/h0 (proportional to a). We then obtain 
the hierarchy 

(w-c0K)f1 ' -yK
3f ;" = 0) 

( « - C 0 K ) f 2 - Y(C3f2"= -C0Kf,f,', 

(w-C0K)?3-YK3?3"=-C0K({,f2)\ 

and so on. A solution of the first is 

f , = cos0, <O = CO0(K), 

where W0(K) is the linear dispersion function 

«o(K) = coK-YK3-

If these values are adopted, the right hand side of the second equation for 
f2 is proportional to sin 20 and a solution f2occos20 can be found. Then in 
the third equation, the right hand side can be expressed as a linear 
combination of sin0 and sin 39. The term in sin 39 can be accommodated 
by a solution f3accos30, but the sin<? term resonates with the operator on 
the left, since on substituting f3cccos# the left hand side is zero. There is a 
solution with f3oc0sin0 but this "secular term" is unbounded in 9. Stokes 
argued that the periodic solution can be found if w is also expanded in a 
power series 

U = U0(K) + CW,((C) + « 2 « 2 ( K ) + • • ■. 

Since trouble arises only at the third order, we may take w, = 0 in advance. 
The hierarchy now reads 

(Wo-c0KKi-Y,c3?r = 0, 

( W 0 - C 0 K ) ^ - y(c3f2"= 2coK£i?i> 

(w0-C0K)f3-Y(C3f3"=-C0K(f,f2)'-W2f,'. 
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If we again take 

f,=cos0, w0=c0K-y»c3, 
we find 

oyic 

The right hand side of the equation for f3 may be written 

3Cn 
(sin0 + 3sin30)+w2sin0. 32YK 

We now choose 

ici 
32JK 

and the resonant term is eliminated. The final result is 

-̂ - = c c o s 0 + - ^ - T c o s 2 0 + - ^ - I c o s 3 0 + - - - , (13.118) 

J^ = \-lK
2h2

0+-Kl + •••• (13.119) 
C0K 6 ° \6K

2hl V 

The second equation shows the crucial dependence of the dispersion 
relation on the amplitude. 

It should be noted that the expansion parameter is really t/K2h\, and 
this corresponds to a/ft. In comparing the results with the expansion of 
(13.114) for small m2 = a/{}, the different choices of the origin for 77, and 
hence different choices of h0, must be included. The use of different origins 
is unavoidable; for the solitary wave limit it is convenient to have the 
origin at the troughs, whereas for the linear limit it is convenient to have it 
at the mean level. 

It should also be noted that (13.118) could be motivated as the 
Fourier series of the periodic wavetrain and this general form assumed 
from the start. 

Arbitrary Depth. 

In the general case the aim is to find small amplitude expansions to 
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periodic solutions of 

<Px* + <P,, = 0, -h0<y<rj, 

2 Tx ■ 2Yy4-1 
1 2 1 1 „ •y = TJ-

We have TJ = TJ(0), tp = rp{0,y), 0 = Kx — wt, where TJ and <p are periodic in 9. 
We may choose the origin y = 0 so that TJ has zero mean value and the 
expansion for TJ is 

Tj = acos0 + fi2a2cos20+ • • •, (13.120) 

where ji2 is a coefficient to be found. With the choice of mean value fj =0, 
it is clear from the second condition on y = TJ that the mean value <p, cannot 
be zero and qp must at least have a term t in its expansion. One may also 
interpret this as a consequence of absorbing a constant of integration when 
the expression for (p~p0)/p was first derived. Alternatively, one could 
keep a nonzero mean value in TJ. Since only derivatives of (p occur in 
physical quantities, terms proportional to / or to x are acceptable in (p. A 
term proportional to x represents a nonzero mean in the horizontal 
velocity. Here it can be normalized to zero. Later in discussing modulated 
wavetrains we shall need both rj^O and ^ = ^ 0 , since they both vary in the 
modulations and cannot be normalized out. The extensions of the formula 
are straightforward, so we take TJ = 0, <px = 0 here. The expansion for <p may 
then be written 

<p= p0a2f+ »<1acoshK(>> + /!o)sin0+ p2fl
2c:osh2K(>' + /io)sin20 + 

(13.121) 

Again to avoid secular terms at the third order, u must also be expanded 
as 

« = w0(ic) + a2w2(K) + - - - . (13.122) 

When all this is carried through it is found that 

^2 /9tanh4K/j0-10tanh2K/i0 + 9 \ , , 
u = 1 + °- °- L V + - - , (13.123) g/ctanh K/J0 I 8tanh4K/i0 
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a n d 

l i , = —K COthlcAnl 1 H ; 1, 
n 2 °\ 2sinh2icA0/ 

g* uo _ 3 "o 
"° 2sinh 2K/I0 ' "' ~ Ksinh»c/>0' "2 = 8 sinh4K/»0 " 

The dispersion relation (13.123) is the main result. For K2AQ<1 we recover 
(13.119), and for K2hfcs>\ we have Stokes' original result for deep water: 

W2 = # C ( I + K V + - - - ) - (13.124) 

The details of the algebra in these derivations become extensive in the 
arbitrary depth case. It can be offset to some extent by substituting the 
Fourier series expansions in the variational principle (13.16)—(13.17) and 
obtaining the coefficients from the variational equations (see Whitham, 
1967). 

The Stokes expressions are limited to small amplitude and cannot 
exhibit the wavetrain of greatest height at which the crests are observed to 
become sharp. However, Stokes contributed a separate argument to show 
that if sharp crests are attained in a steady profile wave, the angle there 
must be 120°. The argument depends crucially on the restriction to a wave 
of constant shape propagating at a constant speed. In these circumstances 
the flow is steady in a frame moving with the crest. The solutions of 
Laplace's equation are then analytic functions of z = x + iy and a rea-
sonably general singular function (taking the origin at the crest) is 

<p + i\f/<xzm. 

In local polar coordinates (r,u), with u measured from the downward 
vertical 

x — rsinu, y= — rcosw, z= — ire'u, 
and we have 

<p= Crm sin mu>. 

If TJ= — rcosw0 locally on the free surface, the pressure condition in steady 
flow requires 

9r + ~? 9a+gn ~ constant. 
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With the above expressions for <p and TJ, we require 

C2m2r2m~2 — gr cos w0 = constant. 

The powers of r show that 

3 

The second boundary condition, which defines the free surface, is 3<p/9w 
= 0 on <o = w0. Hence 

cosmu0 = 0, w o = ^ — = T-2m 3 

The total angle 2w0 is 120°. 
Michell (1893) calculated the periodic wave of greatest height numeri-

cally for water of infinite depth and found the limiting height to be 
attained at a/X = 0.142, as previously noted. 

The result on the angle at the crest is not necessarily true in unsteady 
problems. For standing waves a theoretical argument proposed by Penney 
and Price (1952), but less conclusive than in Stokes' case, suggests 90°; this 
value was confirmed experimentally by Taylor (1953). 

13.14 Breaking and Peaking 

It was remarked earlier that the nonlinear shallow water equations 
which neglect dispersion altogether lead to breaking of the typical hyper-
bolic kind, with the development of a vertical slope and a multivalued 
profile. It seems clear that the third derivative term in the Korteweg-
deVries equation will prevent this ever happening in its solutions. But in 
both cases, the long wave assumption under which the equations were 
derived is no longer valid. Since some waves appear to break in this way, if 
the depth is small enough, one concludes that some dispersion is necessary 
but the Korteweg-deVries term is too strong for short wavelengths. This is 
not surpising in view of the fact that the tc3 term makes (13.94) a bad 
approximation to the full dispersion relation when (K/I0)

2 becomes large. 
On the other hand the dispersion included in the Korteweg-deVries 

equation does allow the solitary and periodic waves which are not found in 
the shallow water theory. For these solutions, however, the Korteweg-
deVries equation cannot describe the observed symmetrical "peaking" of 
the crests with a finite angle there. Again it might be argued that this is a 
small scale phenomenon where the small wavelength components become 
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important and the assumption (K/I)2«:1 is no longer adequate. Doubtless 
this is combined with additional nonlinear effects. 

Stokes waves include the full dispersive effects of u>\ = gic tanh K/I0, but 
being limited to small amplitude, they do not show the solitary waves nor 
do they show the peaking. 

Although both breaking and peaking, as well as criteria for the 
occurrence of each, are without doubt contained in the equations of the 
exact potential theory, it is intriguing to know what kind of simpler 
mathematical equation could include all these phenomena. In light of the 
foregoing comments it seems necessary to include at least the "breaking 
operator" of shallow water theory with the full dispersion relation of linear 
theory. Now the breaking of shallow water theory is given by 

3c0 
■n, + c0rix+ j^-ryrtx = 0, (13.125) 

as noted in deriving (13.99). On the other hand, the linear equation 
corresponding to an arbitrary linear dispersion relation 

7 - c ( « ) 

was given in (11.12) as 

1,,+ C K(x-t)ii((S,t)dt-0, (13.126) 
J — 00 

where 

ff(*)-T~ [°° c(K)eiKXdK. (13.127) 

The two can be combined into 

n, + jr-imx+ I" K(x-th((t,t)dZ-0. (13.128) 

The Korteweg-deVries equation takes 

C(K) "C0- y/c2, K(x) = c08(x) + yS "(x). 

We now propose the improved description 

1/2 
:(«) = (* tanhK/!0j , (13.129) 
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i f/g \ 1 / 2 

Kg(x) = ^- j ^ t anhK/U e'KXdK. (13.130) 
J - 00 

This combines full linear dispersion with long wave nonlinearity. In terms 
of the parameters a and /? used in Section 13.11, we are retaining terms of 
all orders in /? and the nonlinear term proportional to a, while neglecting 
all higher powers of a and all product terms. We could in fact keep terms 
of all order in a by taking the nonlinear operator from (13.97) and using 
the combined equation 

H + Wsfao + i?) ~ 2 V ^ k + f" K(x-&i,tf,t)dt-0; (13.131) 

however, the gain is probably not worth the extra complication. It is easy 
to show by standard methods that the normalized function Kg with 
g= l,/i0= 1 has the properties 

K(x)=K(-x), 

Kg{x)~(2*xyU1 

/ I \~i/2 

CKg{x)dx=\. 
J — GO 

as x—»0, 

'1,x/1 as x^oo, 

The dispersive term is milder now, since Kg(x) does not involve 
8 functions. Indeed the behavior of C(K) for large K controls the behavior of 
K(x) for small x; the change in the high wave number behavior replaces 
the 8"(x) by x~i/2 as x-»0. The analysis of such nonlinear integral 
equations is quite difficult, and the one with K= Kg has not yet been 
analyzed completely. But the question was raised in the general terms of 
what kind of mathematical equation can describe waves with both peaking 
and breaking. We can show that (13.128) can do this for some simpler 
choices of K(x) and infer that the same is true for K= Kg. 

Steady profile solutions of (13.128) are obtained as usual by investigat-
ing solutions with TJ = T}(A"), X = X- Ut. In normalized variables equivalent 
to taking g = /»„= 1, we then have 

(u-^V)ri'(X) = f°° K(X-y)V'(y)dy, (13.132) 
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where y was set equal to £— lit in the integral. The possibility of peaking 
arises because the slope 17' may be discontinuous at 77 = 21/ /3 , and this 
would in fact give the relation between velocity and amplitude for the 
wave of greatest height. The equation can be integrated to 

A + UTJ-^T,2- [X K(X-y)r,(y)dy. (13.133) 
H - ' - 0 0 

Stokes waves for small amplitude can be found starting from the linear 
solution, and it seems reasonable to assume that in fact a critical height is 
reached when TJ = 2 { / / 3 . If K(X) behaves like \XY as X-+0 and tf(X) 
behaves like 2U/3-\X\'1, a local argument in (13.132) suggests that 

2q-\=p + q; (13.134) 

hence q=p + \. According to this, the crest would be cusped with 
T j~£( / - |A ' | 1 / 2 for K=Kg; a delicate result like Stokes'120° angle is too 
much to hope for in such a simplified model. 

Although this is as far as the case K=Kg has been taken, one can go 
further with an approximate kernel. A trick often used in such integral 
equations is to approximate the kernel by 

K0{x) = ^-'^, 

or by a series of these exponentials. The kernel K0(x) is the Green's 
function for the operator d2 / dx2 - v2\ hence the integral is eliminated in 
(13.133) when this operator is applied to both sides. We cannot match the 
singularity of Kg(x) as JC-»0, but we can take v = ir/2 to be reasonably 
close to the behavior as JC-»OO and then choose /i so that 

K0(x)dx--£-l; 

that is, /I = 7T/4, V~IT/2. Since 

d2K0(x) 

dx2 

(13.133) becomes 

-,%(x)--,*S(x), 

{^-'jh^-b')-^ 
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This may be integrated once to the form 

I if— -Ti]\ Tj'2 = quartic in TJ. 

Periodic solutions correspond to oscillations of TJ between two simple zeros 
of the quartic. Solitary waves are found in the limiting case when two zeros 
coalesce at 17 = 0; then TJ rises from this double zero (corresponding to 
X= +00) to a simple zero TJ = TJ0, say, and back to TJ = 0 at X = - 00. All 
this is true provided TJ = 2 ( / / 3 IS outside the range. It can be shown that 
the crests become peaked with a finite angle when TJ = 2 ( / / 3 just coincides 
with the upper zero. All the details will not be given. We merely note that 
the solitary wave of greatest height has 

(These are in units of length h0 and velocity c0). The values obtained by 
McCowan (1894) in an approximate treatment of the solitary wave prob-
lem are TJ0 = 0.78, U= 1.249. One might say the comparison is reasonable. 
The crest has a finite angle of 110°. The finite angle agrees with (13.134), 
sincep = 0, q=l for the kernel K0; the closeness to Stokes' 120° is surely 
fortuitous. However seriously one takes these numbers, it does show that 
an equation like (13.128) can describe periodic and solitary waves with the 
desired peaking. 

Turning now to the other kind of breaking, we note that Seliger (1968) 
was able to show by a rather ingenious argument that for kernels like 
K0(x), a sufficiently asymmetric hump would break in the typical hyper-
bolic manner. He required K(0) to be finite, however (as well as monotonic 
decreasing to zero as x—»oo), and could not extend the argument to Kg. 
Briefly the argument is to consider 

m,(f) = minimum-qx atx = Ar,(/), 

m2(t) =maximum TJX at x = X2(t), 

(see Fig. 13.5), where w,<0 and m2>0. Then, on differentiating the 
normalized form of (13.128) and setting x-X^t), we have 

dm. 1 /*°o 



Sec 13.14 BREAKING AND PEAKING 481 

_ l l _ _ 
X 2 ( t ) X , ( t ) 

Fig. 13.5. Notation in discussion of breaking wave. 

The integrals can be estimated in terms of w, and m2 using the appropriate 
mean value theorem and we have 

dm. 3 . , , , _ 
- ^ < - | « f + ( i n 2 - « 1 ) A ' ( 0 ) , 

^ < - | m f + ( m 2 - / n 1 ) X ' ( 0 ) . 

From the sum of these, 

| - ( w 1 + w2)<(m2-m1){2A:(0)4- | (w1 + m2)J-3w2
2; 

4K(Q)/3 initially, it remains so and 

ml + m2< - jA-(0) (13.135) 

- | w 2 - 2 m , / r ( 0 ) - | / C 2 ( 0 ) 

-§{»>, + j* (0 )} - | /T 2 (0) . (13.136) 

The right hand side of this is negative, and in view of the m] term it is easy 
to show that m, -» - oo in a finite time; the details can be seen as follows. 
Let A /=- fm, - t f (0 ) , then M=M0>0 initially [from (13.135) and m2 

>0]; moreover, 

hence if (m, + m2) < — 

for all /. Then 

dmx 

dt 
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from (13.136). Therefore 

* U ) < " 1 ,
 M<W0~'' A / > T^AV' 

M->oo before / reaches l/A/0- The conclusion is that if (13.135) holds 
initially, that is, if the hump is asymmetric enough, it continually becomes 
more asymmetric and breaks with m, -»- oo in a time less than 

J_ = 1 
M0 - { ( 3 / 2 W 0 ) + *(<))}• 

Again, whatever the validity of the model may be, we have shown that 
equations of the form (13.128) can indeed describe symmetric waves that 
propagate unchanged in shape and peak at a critical height, as well as 
asymmetric waves that break. 

13.15 A Model for the Structure of Bores 

In those cases where breaking rather than peaking occurs, the result-
ing bore takes two distinct forms. These are observed in tidal bores and 
can be produced experimentally by an analog of the shock tube used in gas 
dynamics. In the experiments, first documented by Favre (1935), a gate 
separating water at different levels is pulled up suddenly and bores of 
various strengths are produced by varying the levels. The weaker bores 
have a smooth but oscillatory structure as shown in Fig. 13.6, whereas the 
stronger ones have a rapid turbulent change with no coherent oscillation. 
In both cases the end states satisfy the jump conditions (13.81). The 
change in type seems to occur sharply at a depth ratio /J2/ /I ,?»1.28, 

corresponding to a Froude number U/vghx «1.21. A general discussion 
of the overall balance of mass, momentum, and energy, allowing radiation 
of energy under the wavetrain, is given by Benjamin and Lighthill (1954). 
The actual structure is obviously complex, but again one might ask what 
kind of description would embody both forms. The Korteweg-deVries 
equation is the natural starting place, but it has no solutions like Fig. 13.6 
propagating unchanged in shape. Since dissipation is involved, it is natural 
to add a second derivative term and consider 

% + cJ^\ + ~yx+\c0f,lnxxx-mja~0. (13.137) 
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This may not be a very close model to the frictional effects in water waves, 
but it is of interest in any case, since the Korteweg-deVries equation is a 
canonical one for the general study of dispersive waves. 

Steady progressing solutions are found from 

v = h0£(X), X-x-Ut, 

and the ordinary differential equation for f may be integrated to 

^ o 2 ^ - ^ ^ + | f 2 - ( ^ - l ) ? = 0, (13.138) 

taking f->0 as Z-^oo. A normalized form is 

zii-mzi+z2-z = 0, (13.139) 

where 

, 1 / 2 * 

\F-l) c0h0-

(13.140) 

F U < < ^/2 

F— —, m 

In the phase plane with w = z(, we have 

dw 2 , dz / , , , , , » 
-rr = mw — z+z, ~Jt~w- (13.141) 

Solutions with end states z=0, w = 0, and z=\, w = 0 are possible. These 
are singular points in the (z,w) plane. The solution curve 

dw _ mw — z2 + z 
dz w 

must go from one to the other. In the neighborhood of (0,0) we have 

1 w~~o0z, z<xeaoi, o0=-(m-Vm2 + 4 ); 

this gives the exponential decay to zero as £-»oo. In the neighborhood of 
(1,0), we have 

1 -0,(2-1), (r-l)cce"i«, a1 = ^ ( /M±V^ 7 ^4 ) . 
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1 0 - 5 0 5 i 

Fig. 13.6. Model bore structure. The solution of (13.139) for m= \. 

The approach to z = 1 at £-» - oo is oscillatory or not accordingly as m < 2 
or m > 2. Details may be pursued further, but we already see the two types 
of structure. For a fixed change of level, that is, for specified F-l, small 
enough damping allows an oscillatory solution, but large damping 
suppresses the oscillation. For fixed ji, the criterion on F obtained from 
(13.140) would appear to be the wrong way around for water waves. 
However, in that case /x would be interpreted as an eddy viscosity depen-
dent on the mean flow velocity. A simple estimate of the form of depen-
dence is (i = bu2h2, where u2,h2 refer to conditions behind the bore and b is 
a numerical factor. Then from the bore conditions 

— x>-b{F-l). 
co"o J 

The criterion m<2 for an oscillatory solution becomes (F— l)<3/(8b2). 
Favre's critical value of F= 1.2 would require bzalA, which is perhaps ten 
times greater than would be expected for an eddy viscosity. But we are 
making here only a crude model of the actual physical situation. The 
overall qualitative effect of dissipation seems to be mirrored correctly. 



CHAPTER 14 

Nonlinear Dispersion and the Variational Method 

The nonlinear effects found in the study of water waves are typical of 
dispersive systems in general. Periodic wavetrains, similar to those of 
Stokes and Korteweg-deVries, are found in most systems and these are the 
basic solutions corresponding to the elementary solutions ae'kx~'*" of 
linear theory. In nonlinear theory, the solutions are no longer sinusoidal, 
but the existence of periodic solutions in 9=kx-ut can be shown explic-
itly in the simpler cases and inferred from the Stokes expansion in others. 
The main nonlinear effect is not the difference in functional form, it is the 
appearance of amplitude dependence in the dispersion relation. This leads 
to new qualitative behavior, not merely to the correction of linear formu-
las. Superposition of solutions is not available to generate more general 
wavetrains, but modulation theory can be studied directly. The theory can 
be developed in general using the variational approach of Section 11.7. The 
formulation will be studied in detail in this chapter and the justification as 
a formal perturbation method will be given to complete the earlier discus-
sion. Detailed applications of the theory are then given in Chapters 15 and 
16. 

Another specific consequence of nonlinearity is the existence of sol-
itary waves. Waves with these profiles would disperse in the linear theory, 
but the nonlinearity counterbalances the dispersion to produce waves of 
permanent shape. Solitary waves are found, in the first instance, as limiting 
cases of the periodic wavetrains, but recent work on their interactions and 
their production from arbitrary initial data has shown that their special 
structure is of separate importance. We shall return to these topics in 
Chapter 17. 

For waves of moderately small amplitude in what might be called 
"near-linear theory," further results may be obtained by perturbation 
methods based on small amplitude expansions. In particular we may return 
to the Fourier analysis description and study the small nonlinear interac-
tions of the Fourier components. The interactions transfer energy between 
different components and, through product terms in the equations, 
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generate new components from existing ones. These interactions can be 
followed effectively when only a few components are involved. We shall 
include typical results as appropriate, but the main emphasis is on methods 
that extend to the fully nonlinear case. From a Fourier analysis viewpoint, 
the nonlinear wavetrains and solitary waves are already quite complicated 
distributions of Fourier components with involved interactions maintain-
ing a balance. The developments emphasized here build directly on these 
special structures without attempting to disentangle them into their com-
ponents. However, in the near-linear case there are interesting and inform-
ative relations between the two points of view. 

14.1 A Nonlinear Klein-Gordon Equation 

It is useful to have a simple example to motivate and illustrate the 
steps in the development of the general theory. For this purpose a non-
linear version of the Klein-Gordon equation is particularly useful and is 
even simpler than the Korteweg-deVries equation, which would be the 
other obvious choice. We take the equation 

<p„-<^+K'(<p)=0, (H.l) 

where V (<p) is some reasonable nonlinear function of <p which is chosen 
as the derivative of a potential energy V(<p) for later convenience. Equa-
tion 14.1 is not only a useful model; it arises in a variety of physical 
situations. This is especially true of the case V (<p) = sin <p, which almost 
inevitably has become known as the Sine-Gordon equation! An account of 
the physical problems in which this form arises is given by Barone et al. 
(1971), following a briefer version by Scott (1970, p. 250). Its first 
appearance is not in wave problems at all, but in the study of the geometry 
of surfaces with Gaussian curvature K= — l. In fact some of the trans-
formation methods developed there have been remarkably valuable in 
finding solutions for interacting solitary waves, as will be discussed in 
Chapter 17. More recent problems listed by the same authors include: 

1. Josephson junction transmission lines, where sin <p is the Joseph-
son current across an insulator between two superconductors, the voltage 
being proportional to <p(. 

2. Dislocations in crystals, where the occurrence of sin <p is due to 
the periodic structure of rows of atoms. 

3. The propagation in ferromagnetic materials of waves carrying 
rotations of the direction of magnetization. 
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4. Laser pulses in two state media, where the variables can also be 
described in terms of a rotating vector. 

Scott further describes his construction of a mechanical model with 
rigid pendula attached at close intervals along a stretched wire. Torsional 
waves propagating down the wire obey the wave equation and the pendula 
supply a restoring force proportional to sin <p, where <p is the angular 
displacement. Scott was able to generate the waves corresponding to many 
of the solutions of the Sine-Gordon equation. 

Equation 14.1 has also been discussed by Schiff (1951), with a cubic 
nonlinearity, and by Perring and Skyrme (1962), with the sin <p term, in 
tentative investigations of elementary particles. 

In this chapter the analysis applies for general K(«p) with appropriate 
properties. The choice 

n<p)=4<p2+<v 

is both the simplest to bear in mind and the correct expansion in the 
near-linear theory for even functions K(<p). The small amplitude expansion 
of the Sine-Gordon equation has o = - 1 /24. 

We first check the existence of periodic wavetrains. They are obtained 
as usual by taking 

<p = ¥ (0 ) , 9 = kx-ut. (14.2) 

On substitution we have 

( < o 2 - * 2 ) * w + F ' ( ¥ ) = 0 (14.3) 

and the immediate integral 

±(u2-k2)*1
t+V(*)=A. (14.4) 

We use A for the constant of integration, although earlier it was used to 
denote the complex amplitude in linear problems. Only the real amplitude 
a will appear in the same context, so there should be no confusion. Here A 
is still an amplitude parameter; in the linear case, V(ty) = $¥2, it is related 
to the actual amplitude a by A = \ a1. 

The solution of (14.4) may be written 

^ { i ( ^ - ^ } , / 2 r — ^ - ^ , (i4.5) 
^2 I J {A-V^)Y/2 
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and in the special cases where V($) is either a cubic, a quartic, or 
trignometric, * (9) can be expressed in terms of standard elliptic func-
tions. Periodic solutions are obtained when ¥ oscillates between two 
simple zeros of A - K(^). At the zeros ty9 = 0, and the solution curve has a 
maximum or a minimum; these points occur at finite values of 9, since 
(14.5) is convergent when the zeros are simple. If the zeros are denoted by 
^ , and ^2 ' w e s n a " t a^e t n e c a s e 

* , < * < * 2 , A-V(*)>0, w2-fc2>0 (14.6) 

for the present. The period in 9 can be normalized to 2ir (which is 
convenient in the linear limit) and we then have 

2-n=\Uu2-k2)\/2<() d* in, (14.7) 
I 2 / J {A-V(*)}1/2 

where $ denotes the integral over a complete oscillation of ^f from ^ , up 
to ^ 2 and back. The sign of the square root has to be changed 
appropriately in the two parts of the cycle. The integral may also be 
interpreted as a loop integral around a cut from ¥ , to ^ in the complex ¥ 
plane. 

In the linear case K(^) = ^ 2 , the periodic solution is 
2 

* = acos0, A = T' (14-8) 

the amplitude a cancels out in (14.7), which becomes simply the linear 
dispersion relation 

io2-k2=h (14.9) 

In the nonlinear case, the amplitude parameter A does not drop out of 
(14.7) and we have the typical dependence of the dispersion relation on 
amplitude. 

If the amplitude is small and V has the expansion 

K=i<p2 + a (p 4 +- - , (14.10) 

we have 

<fr = acos9+\oa3cos39+---, (14.11) 

u2-k2=\+3aa2+---, (14.12) 
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^ = i a
2 + f o « 4 + - - - . (14.13) 

These are the Stokes expansions, which may be obtained either by direct 
substitution in (14.3)—(14.4) or by expansion of the exact expressions (14.5) 
and (14.7) obtained above. It should be noted that a is the amplitude of the 
first term in (14.11); it differs slightly from the exact amplitude 

a+ ^raa3+ ■ • •. 
o 

14.2 A First Look at Modulations 

In the basic case of one dimensional waves in a uniform medium, we 
saw in Chapter 11 that modulations on a linear wavetrain can be described 
by the equations 

f + £-0, (.4.14) 

f + ±iCy)=0, (14.,5) 

where to = «„(&) is given by the linear dispersion relation and C0=u'Q(k) is 
the linear group velocity. (A subscript zero is added now to indicate the 
linear values.) The crucial qualitative change of nonlinearity is the depen-
dence of <o on a, which couples (14.14) to (14.15). For moderately small 
amplitudes, w may be expressed in Stokes fashion as 

to = to0(A:)+to2(A:)a2+---, (14.16) 
and (14.14) becomes 

f+K(*)+«;(*)<ia}f£+«a(*)f£ + K(A: )+ to ; (A :V}^+ to 2 (A : )^ r =0 . (14.17) 

The important coupling term is u2(k)da2/dx because it introduces a term 
in the derivative of a; it leads to a correction O(a) to the characteristic 
velocities. The other new term merely corrects the coefficient of the 
existing term in dk/dx and consequently contributes only at the 0(a2) 
level. Similarly, for small amplitudes, the nonlinear corrections to (14.15) 
would be various terms of order a4 which would provide corrections of 
relative order a2 to the coefficients of the existing terms in 9a2/ 9A: and 
dk/dx. Therefore in the first assessment of nonlinear effects we can 
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proceed very simply, using only the new dispersion relation, and take 

§ +«;(*) f £ + « 2 ( * ) f j = 0 , (14.18) 

^ + W i ( * ) | £ + ^ ( * ) * 2 g « 0 . (14.19) 

By the standard procedure of Chapter 5, the characteristic form of these 
coupled equations is found to be 

r «K*) i 

I «2(*) 
dk±da = 0 (14.20) 

on characteristics 

^ = a&k) ± {u>2(k)coZ(k)y*a. (14.21) 

It may be verified that additional terms of relative order a2 added to 
(14.18>-(14.19) contribute terms only of order a2 to (14.20H 14.21). 

This simple formulation already shows some remarkable results. In 
the case U2UQ > 0, the characteristics are real and the system is hyperbolic. 
The double characteristic velocity splits under the nonlinear correction and 
we have the two velocities given by (14.21). In general, an initial distur-
bance or modulating source will introduce disturbances on both families of 
characteristics. If the disturbance is initially finite in extent, for example a 
bulge on an otherwise uniform wavetrain, it will eventually split into two. 
This is completely different from the linear behavior where such a bulge 
may distort due to the dependence of C0(k) on k but would not split. 

A second consequence of nonlinearity in the hyperbolic case is that 
"compressive" modulations will distort and steepen in the typical hyper-
bolic fashion discussed in Part I. This raises the question of multivalued 
solutions and breaking. 

When <O2WQ<0, the characteristics are imaginary and the system is 
elliptic. This leads to ill-posed problems in the wave propagation context. 
Among other things, it means that small perturbations will grow in time 
and in this sense the periodic wavetrain is unstable. The elliptic case turns 
out to be not uncommon and the modulation theory provides an interest-
ing approach to some aspects of stability theory. 

We might note that for Stokes waves in deep water, the dispersion 
relation (13.124) gives 

«o(*) - S,/2*'/2. «»(*) - \ Su2k5'2, (14.22) 
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so this is an unstable case with «o<o2<0. This is surprising in view of the 
long history of the problem and the sometimes controversial arguments 
about the existence of periodic solutions; throughout these discussions the 
instability went unrecognized. For the Klein-Gordon example (14.12), we 
have 

Wo(Jt) = 0 t 2 +l ) ' / 2 , w2{k)=\o{k2+\)~i/2. (14.23) 

The sign of «ow2 IS t n e s a m e a s t n e sign of a; the modulation equations are 
hyperbolic for o>0 and elliptic for o<0. For near-linear waves, the 
Sine-Gordon equation has o<0, so that in all the problems governed by 
this equation the near-linear wavetrains are unstable. 

We shall return to all these questions after the formulation of the 
modulation equations has been studied in detail and extended to the fully 
nonlinear case. 

143 The Variational Approach to Modulation Theory 

The complete modulation equations are obtained in a particularly 
compact and significant form from the variational approach started in 
Chapter 11. We first see how to implement it for nonlinear problems using 
the Klein-Gordon equation as a typical example. General procedures then 
become apparent and we include these in the justification of the method. 

In the Klein-Gordon case the periodic wavetrain is described by 
(14.4)—(14.5) and involves the parameters «, k, and A. We need to find the 
equations satisfied by these parameters for a slowly varying wavetrain. 
Equation 14.1 is the Euler equation for the variational principle 

811 [ ̂ ' ~ h' ~ V((p)} dxdt = °' (14l24) 

as is easily verified from (11.74). The elementary solution corresponding to 
the solution <p = a cos (0 + i\) used in linear problems is q>^ty(9). [A phase 
shift i) can be added to (14.5), but it drops out of the modulation 
equations.] We therefore calculate the Lagrangian and its average value for 
9 = ^(0); this is done keeping w, k, and A constant. We have 

L=±(w2-k2)*j-V{*), 
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and the average value over one period in 9 is 

r = ^ J"'{fa-k'W-n*)}*. (14.25) 

In principle, the function ^ is known completely from (14.5). However, we 
can avoid the integrated form and use (14.4) instead to express L as a 
function of u,k,A. We note the successive steps 

L=^-(2\u,2-k2)*2
9d0-A 

= ±-{w2-k2)(2\ed*-A 

It! J0 

= ±{l{u2-k2))X/2§{A-V{*))y2d<!t-A. (14.26) 

The final loop integral is a well-defined function of A, in which ^ is now 
merely a dummy variable of integration. The notation £.(~>,k,A) is re-
served for the final form of L. 

When u,k,A are allowed to be slowly varying functions of x and t, we 
propose the average variational principle, 

Sj j £{u,k,A)dxdt = 0, (14.27) 

as before. This is viewed as a variational principle for 9(x,t) and A(x,t), 
with co= -$,, k = 9x; the variational equations are 

SA: £A=0, (14.28) 

After the variations have been taken, we again work with u,k,A, and add 
the consistency relation 

| ^ + | ^ = 0 (14.30) 
at ox 

obtained by eliminating 9. The equations and their derivation from (14.27) 
are, of course, the same as in the linear case with the minor change of 
amplitude variable from a to A. The only new ingredient in the nonlinear 
theory is the calculation of t(w,k,A). 
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Equation 14.28 is a functional relation between u,k,A, which can only 
be the dispersion relation. For the Klein-Gordon example with £ given by 
(14.26), we confirm that it does indeed give the correct result (14.7). The 
system (14.28)-{ 14.30) is the exact nonlinear form for the modulation 
equations tentatively proposed in the approximation (14.18)—(14.19). Be-
fore discussing the properties of these equations and their various ex-
tensions we turn now to the question of how the variational approach may 
be justified. 

14.4 Justification of the Variational Approach 

It will be sufficient to consider in detail the case of one dimensional 
waves described by a variational principle 

8jfL(v„<px,<p)dxdt-0. (14.31) 

The cases of more dimensions, more dependent variables and nonuniform 
media can all be treated similarly. The Euler equation for (14.31) is 

3/ " 3 * 
±Ll + ±L2-L3 = 0, (14.32) 

where the L- denote the derivatives 

L\ a„ ' L2 a™ ' L3 am- (14.JJ) 
ft 3 ^ ' 3<p 

Equation 14.32 is a second order partial differential equation for <p(x,t) 
and we assume that this has periodic wavetrain solutions of the 
appropriate type. 

For problems of slow modulations a parameter c will be introduced by 
the initial or boundary conditions (as discussed in various cases in Section 
11.8); c measures the ratio of a typical wavelength or period relative to a 
typical length or time scale of the modulation. We shall eventually suppose 
c to be small, but we make no restriction on the magnitude of the 
amplitude, only that its variations are slow. 

The first step is to describe a modulated wavetrain precisely. If x and / 
are measured on the scale of the typical wavelength and period, the slowly 
varying quantities are functions of €x,tl; modulation parameters such as k 
and « should be functions of this type. Yet <p itself varies due to the 
relatively fast oscillations as well. To incorporate these requirements, <p is 
written explicitly as a function of a phase function 9 and of ex,et. Then 0 is 
chosen as £~'0(£jc,£/) to provide the relatively fast oscillation and to give 
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the correct dependence of k - 9X and u = — B, on ex, tt. We therefore take 

<p = *(9,X,T;t), (14.34) 

9 = (~lQ(X,T), X = tx,T=it. (14.35) 
We define 

v(X,T)=-w(X,T) = @T, k(X,T) = @x (14.36) 

as the negative frequency and wave number. (In this general discussion we 
work with v= -w to preserve the symmetry between x and /.) The scaling 
has been arranged so that 

3/ * 30 97" 3x 30 3 * ' 

the variations due to the oscillations and to the slow modulations appear 
separately. 

In vibration problems for ordinary mechanical systems, x is absent 
and the method amounts to distinguishing two time scales explicitly. It has 
become known as "two-timing," which is a colorful and convenient name 
even when "double-crossing" x variations are also involved. The art of 
two-timing lies in the fact that although one starts and ends with the 
correct number of independent variables, the expanded form can be used 
to advantage at intermediate steps. In the present case <p is ultimately a 
function of x and / through (14.35), but in appropriate parts of the analysis 
<t> is treated as a function of the three variables 9,X,T independently. In 
the usual two-timing procedures, the extra flexibility allows the suppression 
of secular and other terms. Its use in conjunction with variational prin-
ciples will be different but equivalent. 

The geometrical optics (WKBJ) type of expansion discussed in Sec-
tion 11.8 is equivalent to choosing 

«p(x,/)~e'«" , e (" '">2«^n(«.«0 (14.37) 

from the outset. The two-timing version would work with 

*(*,*,7"; «)~«"2«%.(*• H (!4-38> 

to the same ultimate ends. In either case, the exponential dependence on 9 
is limited to linear problems. For nonlinear problems, the counterpart 
would be to take an expansion 

*{9,X,T; ^-^c'^^ie.X.T), (14.39) 
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and determine the functions &n) successively. However, in the equivalent 
variational approach we make no such initial expansion; we work with 
(14.34)—(14.36) directly and avoid much of the tedious manipulation of the 
more standard perturbation procedures. 

When (14.34) and (14.35) are substituted into the basic Euler equation 
(14.32) we have 

9Z,, 3Z-. dL-, 9L-, 
" l / + £ - 3 7 + ^ + e l Y - L 3 = 0, (.4.40) 

where the arguments of the Lj are given by 

Lj = Lj(v<S>9 + €$T, k<t>„ + e$x, 4>). (14.41) 

The relation 9 = e~i@(X,T) was used to obtain (14.40), but it is now 
dropped. This is the crucial step in two-timing. Equation 14.40 is now 
considered as an equation for the function $(9,X, T) of three independent 
variables 0,X,T. The equation also involves the function @(X,T) through 
its derivatives v=®r, k = @x; the original relations of ©,v and k to the 
argument 9 in $ are also dropped. It is clear that if satisfactory solutions 
for $(9,X,T) and @{X,T) can be found, then O ^ - ' e . A ' . r ) solves the 
original problem. The extra flexibility in the choice of @(X, T) is used to 
assure satisfactory behavior of <&(0,X, T). 

The choice of 0(A", T) will appear in different ways depending on the 
particular variant of the method, but they are equivalent. Here we shall 
impose from the outset the requirement that 4> and its derivatives be 
periodic in 9. [Other variants leave 0(A\ T) open at first, find unwanted 
secular terms proportional to 9 in the general expression for 4>, and 
eliminate them by the choice of ©.] The period may be normalized to 2w, 
so we impose the condition that 4> and its derivatives be 27r-periodic in 9. 
To implement this condition, we note that (14.40) may be written in 
conservation form as 

^ { ( i * I + * L 2 ) * , - L } + c ^ ( * # L I ) + e ^ ( * , I 2 ) = 0 . (14.42) 

Then, on integration from 6 = 0 to 2IT, the contributions of the first term 
cancel, from the periodicity requirement, and we have 

Equations 14.40 and 14.43 are the two equations for <b(9,X,T) and 
®{X,T). 
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It is a remarkable and surprising fact that these equations for 4> and 0 
are just the variational equations for the variational principle 

8J/T~f "L(v^9 + €^T'k^g + ^x^)dffdxdTl=0- (14.44) 

Variations 8$ lead to 

in the usual way, and with the particular form of L in (14.44) this is seen to 
be (14.40). Variations 80 give 

±L„+-^Lk = 0, (14.45) 

where 

L = ^ - C\(v<l>g + &T,k<S>e + &x,<S>)d9; (14.46) 
lit JQ 

this is (14.43). But, most striking of all, (14.44) is just an exact form of the 
average variational principle! Not only do we justify the variational 
approach, we obtain a powerful and compact basis for the entire perturba-
tion analysis. Strangely enough, we have made no explicit assumption so 
far that e is small. It is implicit, however, in the choice of the functional 
form of $ and the requirement that $ be periodic in 9. 

In the lowest order approximation to (14.44), we have 

SJJL(O)dXdT=0, (14.47) 

L<°>= J - (2\{v&°\k<bf\&0))d9. (14.48) 

The variational equations are 

S¥0): -^{rL(
1

0)+*z40)}-Lf = 0, (14.49) 

80: ^ Z ™ + - ^ Z ™ = 0; (14.50) 

these are the lowest order approximations to (14.40) and (14.45), of course. 
Since X, T derivatives of 4>(0) do not occur in (14.49), it is effectively an 
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ordinary differential equation for *(0) as a function of 9. An immediate 
first integral [the corresponding approximation to (14.42)] is 

{vLl0) + KL^}'i>^-L^ = A(X,T). (14.51) 

Equations 14.49 and 14.51 are just the ordinary differential equations 
describing the uniform periodic wavetrain, but with the difference that the 
parameters v,k,A are now functions of X,T. The dependence on 9 is 
exactly the same as in the periodic wavetrain; the dependence of v,k,A on 
X,T provides the modulation. The explicit separation of 9 from X, T 
automatically allows integrations with respect to 9 in which v,k,A are held 
fixed; integrations such as those in (14.25) and (14.26) are now seen to be 
in this sense. 

When the solution of (14.51) is combined with (14.47H14.48), we 
have exactly the variational approach proposed earlier. It is now justified 
as the first approximation in a formal perturbation scheme. 

In the actual use of the method there is an important question of 
technique to be explained in general terms. As it stands (14.51) can be used 
to determine both the function $(0) and the dispersion relation between 
p,k,A. [See (14.5) and (14.7) for the Klein-Gordon example.] The manipu-
lations in (14.26) show that by limited use of (14.51) in (14.48) the explicit 
determination of <J>(0) (which is just * changed to the expanded notation) 
can be avoided and the dispersion relation can be incorporated as an 
additional variational equation derivable from (14.47). This is much to be 
preferred. For then the form of the average Lagrangian is simplified and, 
more importantly, all the equations relating the slowly varying parameters 
v,k,A are collected in the variational principle. The question is how to 
describe this procedure in general terms. The problem is how to extract 
from (14.51) enough information on the functional form of $(0) and not 
use complete information on the dispersion relation. We now show how 
this may be done. 

US Optimal Use of the Variational Principle 

In the linear case there is no difficulty in separating the functional 
form of $(0) from the dispersion relation. We know in advance that the 
solution of (14.49) or (14.51) will take the form 

$<o) = acos(0 + ij), 

where a(X, T) is the amplitude related to A (X, T) and used instead of it. 
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The phase parameter -q(X, T) will drop out in forming the average 
Lagrangian (14.48) and plays no role in this lowest order approximation. 
This rather trivial information on $(0) is the only information extracted 
from (14.51) and does not include the dispersion relation. When this 4>(0) is 
substituted in (14.48) we have the function 

1 f2" t{v,k,a) = —— j L{ — vasinO, — kasin0,acos9)d0 
LIT JQ 

for the average Lagrangian. 
In the near-linear case there is also no difficulty. We may use the 

Stokes expansion 

4>(O) = acos(0 + 7)) + a2cos(20 + 7)2) + a3cos(30 + T)3) + • •• 

as the required form of $(0) without including the dispersion relation. The 
relations of a2,a3,...,TJ2,TJ3,..., to a and TJ may be taken from (14.49) or 
(14.51), or they may be left arbitrary and also determined from the 
variational principle. For example, in the Klein-Gordon problem with 
V(<p) given by (14.10), we take 

4>(O) = acos0 + a3cos30 + a5cos50 + 

(It is easy to see in advance that the odd cosine terms are sufficient.) 
Then* 2w 

L«»= ± f { \("2^ * W - ^( 0 ) 2- ot>(O)4\d0 

Variation with respect to a3 shows that a3 = ^aa^ in agreement with (14.11). 
On resubstitution of this expression for a3 in L(0) we have 

Z(v,k,a)= i ( , 2 - k 2 - \)a2- | o f l 4 - j^ola6+ • • •. (14.52) 

Variation of a now gives the dispersion relation (14.12). 
In the fully nonlinear case it is harder to disentangle the functional 

form of 4>(0) from the dispersion relation. However, it can be done by use 
of a Hamiltonian version of the equations. 

•A term proportional to (v2-k2- I)a| is omitted because the subsequent equations show 
that (» 2 -* 2 - l ) = 0(a2). 
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Hamiltonian Transformation. 

The transformation will be applied here only to the lowest order 
approximation in (14.47)—(14.51), so to ease the notation we drop the 
superscript zero on all quantities. The idea is to eliminate the quantity <f># 

in favor of 9L/9$ 8 just as q is eliminated in favor of a generalized 
momentum p = dL/ dq in ordinary mechanics. A new variable is defined 
by 

n = - H - = ,L, + *L2) (14.53) 

and the Hamiltonian H(H,$; v,k) is defined by 

ff-*#|^-L-*,(•*,+ * £ , ) - / . . (14.54) 

From the transformation alone we have 

u 
(14.55) 

and (14.49) provides 

94> 
90 

an 
90 

dH 
9$ 

(14.56) 

These replace the second order equation (14.49) for $ by two first order 
equations for $ and n . The variational principle (14.47) may now be 
written with 

-lit 
L=^- f (11%-H)dO. (14.57) 

Lit Jo 

Moreover, there is an important extension. In the original form the 
variation 8$9 is tied to 5$; hence fin is tied to the variation of $ through 
(14.53), and (14.55) is a consequence of the transformation not a varia-
tional equation. However, we simply observe that both (14.55) and (14.56) 
follow from (14.57) if $ and n are allowed to vary independently. We are 
therefore free to make this extension. The next thing to note is that (14.51) 
is just the energy integral 

H{Ti,<t>;v,k)=A(X,T) (14.58) 
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for (14.55) and (14.56). Moreover, in this form it provides only the function 

Yl{<£>;v,k,A). 

Without using the relation of II to Q>e, which has now been turned into one 
of the variational equations, there is no way to deduce the dispersion 
relation as well. This achieves the required separation of (14.51) into 
information about the form of solutions (now provided by the dependence 
of II on 4>) and the dispersion relation. Finally, since the stationary values 
of (14.57) are known to satisfy (14.58), we may restrict the variations to 
functions which already satisfy (14.58). Then (14.57) may be evaluated as 

£(v,k,A) = j-<f)TL(1>\v,k,A)dQ-At (14.59) 

and Il(it>;v,k,A) is the function determined from (14.58). The variational 
principle becomes 

Sf (Z(i>,k,A)dXdT=0. 

The variation with respect to A is the only remnant of the variations of $ 
and II. The variational equations are now 

SA: £4=0. 

8 6 : ^re'+a*e*=0' 
and the consistency relation 

dk _ di> _ „ 

dT M ' 

is added. These are the equations (14.28)-(14.30) with v= -u>. 
In the Klein-Gordon example, 

L=\{v2-k2)&9-V{<S>), 

the Hamiltonian transformation is 

H=%j±r-L=±(v2-k2yln2+v(<i>). 
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The integral H = A is solved as 

n = {2(p2-k2)y/2{A 

and 

t = ^j)Ud<i>-A 

= 4-{2{v
2-k2W/2($){A-V{<i>)y,2d$-A, 

in agreement with (14.26). 
Naturally the Hamiltonian transformation can be used also in the 

linear or near-linear cases. The expressions for £ may then differ in form 
from those obtained previously, but of course the resulting variational 
equations are equivalent. 

14.6 Comments on the Perturbation Scheme 

The usual procedure in applying perturbation methods is to substitute 
suitable expansions in powers of c directly into the differential equations of 
the problem, obtain a hierarchy of equations for the successive orders, and 
then take steps to ensure uniform validity. It was in this manner that the 
results of the variational approach were first verified by Luke (1966). The 
expansion (14.39) is substituted in the equation for <p to give equations that 
we may write schematically as 

E0{¥0)}=0, Ei{¥l\¥0)} = Fl{¥0)}> and so on. 

The zeroth equation for 4><0) is equivalent to (14.49). It is solved for 4>(0); 
the dispersion relation is obtained between v,k,A, but their dependence on 
X, T is undetermined at this level. The equation for <I>(I) involves only 0 
derivatives of $(1) and so is effectively an ordinary differential equation. Its 
solution has unbounded terms proportional to 9, unless conditions are 
imposed on F,{3>(0)}. These "secular" terms must be suppressed to ensure 
uniform validity of the expansion for large 0. The required condition on 
F,{4>(0)} leads to the further equation for v,k,A, which completes the 
lowest order solution. In the subsequent equations for the $(n), there are 
further parameters and further secular conditions. 

The prior requirement that $ be periodic is equivalent to the suppres-
sion of secular terms. Therefore the successive approximations to the 

vml/\ 



502 NONLINEAR DISPERSION Chap. 14 

periodicity condition (14.43) would appear as secular conditions in the 
more traditional procedure. We see the advantage of starting from (14.42) 
and (14.43) even if that procedure were to be followed. But, better still, 
since (14.42) and (14.43) correspond to the variational principle (14.44), the 
expansion can be substituted directly in (14.44) and the variational prin-
ciple used to generate both the equations for <J>(n) and the secular condi-
tions. Thus the variational approach should not be considered as a 
separate method. It includes the usual expansion approach, for which it 
streamlines the details and allows general results to be formulated. 

There are other advantages. The variational principle (14.44) has been 
established independently of any assumed form for the dependence on c. 
Furthermore, 0 may also be allowed to depend on c; it was taken 
independent of e only for simplicity in the initial presentation. We may use 
expansions in powers of e for $ or 0 or both, but we are also free to take 
other forms. For example, in the near-linear case, we may use expansions 
in powers of the amplitude, or, what amounts to the same thing, Fourier 
series for 4>. This will be the choice in the discussion of higher order 
approximations in Section 15.5. 

14.7 Extensions to More Variables 

The extension to more space dimensions is immediate. The plane 
periodic wave solutions have <p = ̂ (fl) where 0 = 6(\,t) depends on a 
vector x and the propagation is in the direction of the vector wave number 
k = 9x. The average Lagrangian becomes t(a,k,A) and modulations in 
space (i.e., slowly curving phase surfaces) also become possible. The 
modulation equations are (11.80)—(11.82). The justification of the last 
section requires only the obvious changes of replacing x,X,k by x^X^kj 
and performing the corresponding summations when necessary. 

The case of a single higher order equation goes through simlarly with 
only minor extensions. There will be higher order derivatives in (14.31) and 
in all the later steps, but the extensions are straightforward. 

The case of more dependent variables requires detailed comment. 
First, for a linear system in a set of functions <p(a)(x,f), periodic wavetrains 
may be described by 

<p(a) = aacos9+basm9. 

The average Lagrangian calculated from this is a function of the two sets 
aa, ba, as well as u and k. The corresponding variational principle 

Sfft(9t,9xi,aa,ba)dxdt = 0 (14.60) 
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leads to the variational equations 

£.. =o. et =o, a. 

T^'-t^-* < 1 4 - 6 " 

The set of equations £^ = £6> =0 are linear and homogeneous (since £ is 
quadratic in aa, ba) and they may in general be solved to express the aa and 
ba in terms of single amplitude a. These expressions may be reinserted into 
the Lagrangian to give £ as a function £,(w,k,a), and the modulation 
equations are the same as in the single variable case. The substitution is 
permissible, since the restricted choice for aa and ba does satisfy the 
stationary conditions. The equivalence may also be verified directly, since 

_ 3a dba 

£i*--^A + -^A-o. 

and similarly £,t = tk . In the course of the substitutions different expres-
sions for £, may result, depending on which relations are chosen, but the 
final equations are the same. The justification via two-timing proceeds as 
before. 

For nonlinear problems, the usual situation concerns a system of 
equations with a corresponding Lagrangian L{<p/"),<p£,),<p(o)} involving 
only the <p(a) and their first derivatives. However, it is typical that for some 
of the <p, only the derivatives appear in L; they are "potentials" in that 
only the derivatives <p„ <px represent physical quantities. This requires a 
highly nontrivial extension with important mathematical and physical 
consequences. In the uniform wavetrain solution any potential variable qs 
must be expressed as 

$ = px-yt + $(9), 0 = k-x-ut, (14.62) 

in order to ensure complete generality. The physical quantities involve only 

9,= -Y-w<^, $)x = /3 + klv, (14.63) 
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and — y,P represent the mean values. These are important physical 
quantities; in water waves they give the mean fluid velocity and mean 
height, for example. Moreover, a most important nonlinear effect is the 
coupling of modulations in the wavetrain to similar slow variations in these 
mean quantities. Thus in the modulation theory the term fix — yt must be 
generalized to a function 9(x,t) and y,/3 defined by 

Y = - 0 „ fi = K- (14-64) 

The function 9 is similar to 9 and is a pseudo-phase appearing in the 
problem. The quantities y and /3 are a pseudo-frequency and a pseudo-
wave number. Furthermore, each potential <p has the term L^ missing in its 
Euler equation 

in the course of the analysis, this always allows an extra integral and an 
extra parameter B to be introduced similar to A. The triads (y,fi,B) are 
similar, although subsidiary, to the main triad (u,k,A). 

The two-timed form corresponding to (14.62) is 

9(x,o=c-1e(x,r)+^,x,r;e), 
where 

y(\,T)=-@T, /S(X,r) = 0 x , X = €X, T=zt, 

and $ is chosen to be periodic in 9. For a Lagrangian 

£((P/.<Px><P.?l,»,Px)> 
it may be shown that the two-timed equations and the conditions that $ and 
<1> be lir-periodic in 9, are equivalent to an exact variational principle 
similar to (14.44). To lowest order it is 

8J fj-f "L(-u%,k<Pl),<l>,-y-u®e,p + kQ>e)d9dXdT=0. (14.66) 

The variational equations corresponding to 50 and 6<1> determine the 
functions 4> and 4> and we have the two integrals 

(-uLi+kL2-uL4 + k-L5)$9-L = A(X,T), (14.67) 

-wL4 + k-L5 = 5 ( X , r ) . (14.68) 
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The variations 80 and 80 lead to the two secular conditions 

—r-— r =o ir-i-.r=o 3/ - ax Lk u' dTLy ax L» a 

Finally, a Hamiltonian transformation can be introduced as before, based 
on generalized momenta dL/d<P9, 3L/3<J>9, and (14.67)—(14.68) can be 
used to eliminate explicit dependence on $ and $ in favor of including the 
parameters A and B in the variational principle. We then have 

8J (£(u,k,A,y,p,B)dXdT=0, (14.69) 

and the variational equations are 

£^=0, e f i=0, (14.70) 

dftu~dXjtkJ=0' df^'Wj^^' ( , 4- 7 1 ) 

together with the consistency conditions 

9 * , 3<o . 3 A 9Y n , , . _ , , 
3 T - 3 ^ = 0 ' 3T-"3^= 0 ' ( 1 4 - 7 2 ) 

3 ^ _ *k)_ _ aft _ 3/% _ 
3 ^ ~ a ^ " 0 ' 3 ^ " a ^ - a ( 1 4 ' 7 3 ) 

Further details of the procedure and examples are given in the original 
papers (Whitham, 1965,1967,1970). An application to water waves on 
finite depth, where the extra parameters are crucially important, will be 
given in Chapter 16. 

In this more general case, the energy equation that corresponds via 
Noether's theorem to the invariance of (14.69) with respect to shifts in T is 
now 

-^(weu+ye?-e)+-^(-we^-Ye^)=o. (u.74) 

The momentum equation which corresponds to the invariance with respect 
to shifts in Xt is 

The final extension is to note that if the medium is not constant but 
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depends on X, T, these will appear explicitly in the Lagrangian and 
therefore in £. But the variational equations (14.70)-(14.73) are un-
changed. The conservation equations (14.74) and (14.75), however, have 
terms - tT, tx, respectively, on the right hand sides [as may be verified 
directly from (14.70H 14.73)]. 

14.8 Adiabatic Invariants 

It was remarked previously that the quantities tu, tk, are analogous to 
the adiabatic invariants of classical mechanics. This correspondence can 
now be explored. In mechanics the setting is the theory of slow modula-
tions for vibrating systems. The only independent variable is time, so in 
this case the modulations can be produced only by externally imposed 
changes in some parameter \(f). (This corresponds to a varying medium in 
the case of waves.) The classical theory is usually developed by 
Hamiltonian methods, which are not directly applicable to waves, but we 
may instead derive the simplest of the classical results by the methods 
developed here. For an oscillator with one degree of freedom q(t) and one 
slowly varying parameter X(/), the variational principle is 

sf'2L(q,q,X)dt = 0, 
Ji, 

and the variational equation is 

i^-^,-0. (14.76) 

This case is covered by the arguments of Sections 14.3 and 14.4 simply by 
dropping the dependence on x. But it is useful to note the steps separately 
in the usual notation of mechanics. We follow the simple intuitive 
approach of Section 14.3; it is justified by Section 14.4. 

We first calculate the average Lagrangian for the periodic motion with 
A held fixed. If the period is T = 2TT/V, then 

Z = J-(TLdt. (14.77) 

In the periodic motion (\ = constant), (14.76) has the energy integral 

qL^-L=E. (14.78) 
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This may be solved, in principle, to express q as a function of (q,E,\) and 
then the generalized momentum p = L^ can also be expressed as 

p=p{q,E,\). 

If (14.78) is used to replace L in (14.77), we have 

£ = j-[Tpqdt-E 
LIT J0 

= j^(fip(q,E,X)dq-E, (14.79) 

where fpdq means the integral over one complete period of oscillation [a 
closed loop in the (p,q) plane]. We now allow slow variations of X, with 
consequent slow changes of v and E, and use the average variational 
principle 

s(''t(i>,E,X)dt = 0. (14.80) 

It is again crucial to define v as the derivative 9 of a phase 9(t) which 
increases by a constant normalized amount in one oscillation. This step 
looks perhaps less natural than in the waves case, but it becomes clear in 
the two-timing. The variations of (14.80) with respect to E and 9 give 

respectively. The first of these corresponds to the dispersion relation 
(14.28) and the second corresponds to the conservation equation (14.29). In 
view of (14.79) we have 

tp = Y~(£pdq = constant, (14.82) 

which is just the classical result of the adiabatic invariant. As the system is 
modulated, v and E vary individually but 

I{v,E) = ±§pdq (14.83) 

remains constant. From (14.79) and (14.81) the period is given by 

r = ^ = /£, (14.84) 
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which is also classical. (An excellent account of the usual theory may be 
found in Landau and Lifshitz, 1960b, p. 154.) 

In the two-timed form (14.59), the quantity II is defined as 3L/d$9, 
whereas the generalized momentum/? is 3L/9<p,. Since <p, = v$e, to lowest 
order, we have 11 = vp and the expressions (14.59) and (14.79) agree. 

It is clear from this comparison that in the case of waves £u is akin to 
the adiabatic invariant and that the tk are similar quantities for spatial 
modulations. In waves there is no need for an external drain of energy, 
since modulations in time can be balanced by modulations in space. If the 
medium is not constant, however, we have the additional effect of 
parameters analogous to X, but the equation 

ie--^-° < R 8 5 > 
still holds. The equation has become known as the conservation of wave 
action. 

In the special case of a wavetrain uniform in space but responding to 
changes of the medium in time we have 

£u = constant. 

Alternatively, for a wavetrain of fixed frequency moving into a medium 
dependent on one space dimension x, we have 

tk = constant. 

These provide simple determinations of the amplitude. In general, modula-
tions in space and time balance according to (14.85) and produce a 
propagation of the modulations. 

The quantities ty and tp in (14.71) are similar to £u and tk . They 
arise because of the extra dependent variables, just as ordinary dynamical 
systems (involving only the time) may have further adiabatic invariants 
when there are more degrees of freedom. These wave systems have only 
one genuine frequency and so correspond to the degenerate cases of equal 
frequencies in dynamics. 

14.9 Multiple-Phase Wavetrains 

The general case of multiply periodic motions in dynamics would be 
mirrored in wave theory by wavetrains with more than one genuine phase 
function. It is straightforward to extend the formalism to this case but 



Sec 14.10 EFFECTS OF DAMPING 509 

questions of existence suggest caution. For a two-phase wavetrain, for 
example, the starting point would be a quasi-periodic solution 

(p = *(0„02), 0x**kxx-axt, 02=k2x-u2t, (14.86) 

in which * is 2ir periodic in both 0, and 02. One would then go on to 
handle modulation theory as before. However, even in ordinary dynamics 
questions of the existence of quasi-periodic solutions are difficult ones in 
the nonlinear case, involving the well-known problems of small divisors, so 
there may be considerable difficulties hidden under the formalism. If the 
existence of solutions (14.86) and of neighboring modulated solutions is 
simply assumed, modulation equations can be developed as before. Ablo-
witz and Benney (1970) and Ablowitz (1971) have pursued some of the 
consequences. Delaney (1971) notes that the variational formalism goes 
through. If modulated wavetrains can be described by 

<p = <!>(0l,92,X,T;€), 

^ = € - ' 0 , ( ^ , 7 ) , 82-€-le2(X,T), 

it is straightforward to show that the two-timed equation for $ and the two 
periodicity conditions follows from the variational principle 

8J (LdXdT=0, 

Modulation equations can then be developed as before. 

14.10 Effects of Damping 

As in Hamiltonian dynamics, the variational formalism applies natur-
ally to conservative systems; dissipative effects have to be tacked on a little 
awkwardly as nonzero right hand sides to the previous equations. How-
ever, various canonical forms can be maintained and the left hand sides 
can still be written in terms of the Lagrangian. To illustrate this, we 
consider as a specific example the equation 

«P/,-<P«+ V'M- -<#(<P.<P,). 

where eD(<p,<pt) represents small dissipative effects. The two-timed equa-
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tion corresponding to (14.42) is 

■jL{i(„*-**)*5+ V(9)-\i292
T+\<292

x} 

+ c^{r*5 + e*,*r}-«-ip{**5 + «*,*jr} 

= -«$,£>(*> "SV + ^ r ) -

To lowest order, we have 

±(v2-k2)92+V(9) = A(X,T) (14.87) 

and the periodicity condition 

-^;f2%9lde- -^j2'k92
9d9=-j2'9tD(9,v9t)d9. (14.88) 

From (14.87), 99 can be expressed as a function of 9, v, k, A, and the 
integrals in (14.88) can all be written as loop integrals. We have 

JT^ + Jx^ — 6*' <1 4-8 9> 

where 

l{»,k,A) = ±{2{v2-k2))X/1j){A-V{9)}xnd9-A, 

as before, and 
sb(v,k,A) = ^j)D{<$,v<S>e)d<S>. 

To (14.89) are added 

to complete the set of equations for v, k, A. Equation 14.89 shows the loss 
in wave action due to dissipation. 

Here we have returned to two-timing on the equations but retained 
the canonical forms suggested by the Lagrangian for the conservative part. 
This is obviously less desirable than two-timing directly some extended 
principle. Recently Jimenez (1972) has had some success in deriving results 
such as (14.89) by Prigogine's approach to irreversible systems (Donnelly 
et al., 1966). 



CHAPTER 15 

Group Velocities, Instability, and Higher Order 
Dispersion 

Most of Chapter 14 was concerned with questions of formulation. We 
now study the modulation equations and their solutions in some detail and 
emphasize the important differences between linear and nonlinear theory. 
In this chapter we consider the basic case of one dimensional waves in a 
uniform medium and, for simplicity, suppose that pseudo-frequencies and 
wave numbers do not arise. For the present the nonlinear Klein-Gordon 
equation and the problems noted in Section 14.1 can be taken as typical 
applications for the theory. More specific applications in nonlinear optics 
and water waves will be given in the next chapter. Extensions to more 
dimensions, nonuniform media, and higher order systems will be included 
in those particular contexts. 

Modulated wavetrains are described to all orders of approximation by 
the variational principle (14.44). In the lowest order approximation we 
have (14.47)-(14.48), and by means of the Hamiltonian transformation we 
obtain the average variational principle 

3J[£(u,k,A)dxdt-0, 

where w = - 9, and 9X = k. (We drop the two-timing notation and revert to 
the earlier form, except when the precise ordering of terms again becomes 
an issue.) In this lowest approximation the variational equations for A,u,k 
are 

e „ - o , (i5.i) 

£ £ „ - £ £ * = 0 , (15.2) 

f + £ = 0 . (15.3) 

We first study these equations and then return to (14.44) to incorporate 
higher order dispersive effects. 
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15.1 The Near-Linear Case 

Before the main discussion, we note how the near-linear equations 
obtained directly in Section 14.2 fit into the general formalism. The 
near-linear theory is obtained by expanding £ in powers of the amplitude. 
This expansion may be taken as 

t = P(u,k)A + P2(u,k)A2+---. (15.4) 

but it would usually be derived from Fourier series, as in (14.52), in the 
equivalent form 

£ = G(u,k)a2+ G2(u,k)aA + ■■■. 

The dispersion relation £a =0 is solved to give 

u = u0(k) + u2(k)a2 + • • •, 
where 

2G2(to0,fc) 
G(w0,/c)=0, w 2 = - — — 

G„(«o>*) 

Equations 15.2 and 15.3 become 

£ { g(*)a2+ •■•} + £ { g(k)<o'0(k)a2+ • • • } =0, 

^ + ±{UQ(k)+o>2(k)a2+---}=0, 

where g(k)= G„(u0,k) and the relation 

Gk(u0,k) 
« & ( * ) = ■ Gu(w0>*) 

for the linear group velocity has been used. The coefficient g(k) can be 
factored out, in view of the second equation for k, and a sufficient 
approximation, as explained in Section 14.2, is 

17 + £K(*)«')-o, 
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The characteristic equations were found to be 

2 ] (15.5) 

§-«&(*) ± {«,(*)«„•(*) }l/2a. 

If (15.4) is used, we have the equivalent results with a replaced by A1/2 and 
G,G2 replaced by P,P2 in the definition of w2-

We now consider the exact equations (15.1)—(15.3). 

15.2 Characteristic Form of the Equations 

There are two useful forms of the characteristic equations depending 
on whether the symmetry between t and x variables is maintained. If 
symmetry is maintained, it is convenient on this occasion to work with 9 
rather than a and k. Then (15.2) becomes 

The derivatives A,,AX may be eliminated in favor of 9 from (15.1) for, on 
taking its t and x derivatives, we have 

-^OA0a+tkA9lx+tAAA=0, 

The second order equation for 9 becomes 

P9ll-2r9lx + q9xx=0, (15.6) 
where 

P = *~aa^AA ~ *~aA ' 

1 ~ ^kk *~AA ~ *~kA ' 

r = £«* ^AA ~ <~uA *~kA • 

From (15.1), A may be expressed in terms of 9„9X, and then (15.6) is a 
second order quasi-linear equation for 9. The characteristics are 

dx _ -r±yjr3-pq 
dt = p 
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In the linear case 

£*>P(o,k)A, 

P'-Pl 1=-Pl r=-PuPk, 

and we have the double characteristic velocity 

dt Pa' 

this is just the linear group velocity. The near-linear results can be 
recovered similarly. 

If x,t symmetry is abandoned, one useful possibility is to choose k 
and / = £„, as the dependent variables and suppose that 

/ = £ „ , 7 « - £ f c , £A=0 

are solved for the functions 

« (* , / ) , / ( * , / ) , A(k,I). 

Then £ may also be evaluated as 

<m,(k,I)-£{a(k,l),k,A{k,I)}. 
We have 

^Lk=ukI-J, 9H/=w//; O5-7) 

hence from cDrtLJt/ = 91Lrt, 

ak~Jr (15.8) 

The system of equations (15.1)—(15.3) reduces to 

(15.9) 
/, + ukIx + Jkkx = 0. 

The characteristic equations are 

VTk dk±V^, dl = 0 (15.10) 

on 

^=*k±V^Tk. (15.11) 
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This choice of variables keeps a much closer relation with the earlier 
discussions of the linear and near-linear cases. 

In the linear case, £ = P(w,k)A, the dispersion relation P(u,k) = 0 is 
solved in the form 

« = «„(£), 
and we have 

J--PkA---£--<4(k)I. 

Since w/ = 0, the characteristic velocities (15.11) both reduce to u'0(k). The 
system is not strictly hyperbolic, as noted earlier, because there is only one 
differential form, dk = 0, provided by (15.10). However, once k(x,t) has 
been found, / is obtained from integration of 

i,+<4t(k)ik+<4(k)ikM-o 

along the same characteristics. 
In the near-linear case with £ given by (15.4), we have 

tA =/>(«, k) + 2P2(u,k)A + --- =0, 

' = tu-Pu(u,k)A + ■•■, J=-tk = -Pk(w,k)A + ■•-. 

These may be solved to give 

w=w0(/c) + u2(k)I+ • • •, 
(15.12) 

J = u'0(k)I+--. 

The characteristic velocities (15.11) are 

^=u'0(k)±i^(k)u>2(k)I +■■■. (15.13) 

These check with (15.5), for if I = g(k)a2, then 

u- u0(k) + u2(k)a2 H , 
with 

«2(*W(* )S2(* ) , 

and (15.13) becomes the same as (15.5). 
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Hayes (1973) notes that if a partial Hamiltonian transformation 

D€(A:,/) = w £ u - e = w / - e (15.14) 

is introduced at the same time as k and /, we have 

J=%k, w%,. (15.15) 

These may be seen also from (15.7) with £D1t=w/-'3C. The equations 
become 

The characteristic equations are 

V%^ dk±V%i, dl = 0, 

—— = X/t ± V JCtt JC, 

(15.16) 

(15.17) 

dt "Ik — v J^kk J^ll ■ 

In specific cases, other choices of variables may lead to the simplest 
expressions. For the Klein-Gordon example (14.26), 

£~(a2-k2)X/2F{A)-A, 
(15.18) 

F(A) = ±${2(A- V(*))}X/1d*; 

it turns out that the phase velocity U=w/k and A are the most convenient 
variables to work with. From the dispersion relation tA = 0, 

* - X U 

(U2-\)i/2F'(A)' (U2-\)W2F'(A) 

equations 15.2 and 15.3 become 

A{U2-\)X/1] *X\{U2-\)W] ' 

1 l + 3 " 1-0. 
(U2-l)X/2F'\ dx\(U2-lf2F' 
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The characteristic equations are found to be 

dU ( - ^ ) dA=0, (15.19) 

(15.20) 

U2-\ 

dx_\±U(-FF"/F'2f2 

dt rr-<-{- fir" /c"2\1/2 
U±(-FF"/F'2) 

More Dependent Variables. 

When there are more dependent variables and more equations, as in 
(14.70)—(14.73), the number of characteristics is increased corresponding to 
the order of the system. The additional characteristics refer to nonlinear 
coupling of the wavetrain with changes in mean background quantities and 
are quite different from the linear group velocity. The formulas for those 
two velocities (associated primarily with propagation of k and A) that do 
correspond to the linear group velocity are considerably modified. In 
particular, in these cases, the type may be incorrectly given if the extra 
dependence is overlooked and the simpler formulas above are used. 
General formulas for the characteristics will not be developed, since the 
most useful choice of variables depends strongly on the particular problem 
at hand. Typical examples are provided by the later discussions of the 
Korteweg-deVries equation and Stokes waves in water of finite depth. 

153 Type of the Equations and Stability 

The type of equations can be read off according to whether the 
characteristics are real or imaginary. The condition for the system to be 
hyperbolic may be taken in any of the equivalent forms 

r2-pq>0, u,Jk>0, %kk%u>0, (15.21) 

the second being closest in form to the near-linear result w2Uo>0. With 
opposite signs the system is elliptic. 

As remarked in Section 14.2, the periodic wavetrains are unstable in a 
certain sense when the modulation equations are elliptic. To see this, we 
note that the modulation equations take the general form 

^ + a , ( u ) ^ = 0 . (15.22) 
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In a uniform periodic wavetrain u takes constant values u(0), say. For small 
perturbations we take u = u(0) + u(,). The linearized equations for u(1) are 

_ L _ + a(0) _L_ = 0 a ( 0 ) , / (0)) 

This system has solutions 

where 

\<$>-C8„\-0. (15.23) 

The possible values of C are the characteristic velocities evaluated for 
u = u(°) [See (5.12)]. If any of the C's are complex, some of the solutions of 
u(1) grow exponentially in time. Of course as usual in simple linear stability 
analysis this only indicates large deviations from the uniform state will 
occur, not necessarily that the wavetrain becomes chaotic. In the present 
context, the stability and the possible eventual states are considerably 
affected by higher order terms in the modulation approximation, as will be 
discussed in Section 15.5. 

For the nonlinear Klein-Gordon equation (15.20), for wavetrains 
satisfying (14.6) with F(A)>0, we have 

Hyperbolic: F" <0, 

Elliptic: F">0. 
(15.24) 

In particular, when F ( ^ ) = ^ 2 + a^4, the system is hyperbolic for a > 0 
and elliptic for a < 0. For any even function V(^), the first terms of the 
near-linear expansion can be put in this form and the type depends in the 
same way on the sign of o. 

For the Sine-Gordon equation ¥(•%)= 1 - c o s * , it may be shown that 
F"(A)>0; the periodic wavetrains are unstable. This result applies to 
oscillations about * = 0, which satisfy (14.6). We shall later note the 
existence of helical wavetrains in which * increases or decreases mono-
tonically. These give periodic solutions, since the same physical state is 
recovered after each change by 27r. They turn out to be stable in the sense 
considered here. 
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15.4 Nonlinear Group Velocity, Group Splitting, Shocks 

In the hyperbolic case, the characteristic velocities are taken to define 
the nonlinear group velocities. This is the natural extension of the linear 
case. The splitting of the double characteristic velocity of linear theory into 
two different velocities is probably the most important and far-reaching 
result of the theory. As noted in Section 14.2, it predicts the eventual 
splitting of a modulation of finite extent into two separate disturbances, a 
result quite different from linear theory. In problems where the linear 
group velocity is positive, the two nonlinear group velocities will usually 
both be positive also. Then modulations introduced by a source at the 
origin will propagate on both families of characteristics as shown in Fig. 
15.1. Ideally, we take a source at JC = 0 producing a highly nonlinear 
wavetrain up to t = 0; it then modulates amplitude and frequency for a 
finite time t0, after which it returns to producing the original wavetrain. 
Notice that two boundary conditions should be applied at x = 0, so that 
independent distributions of a and w may be introduced. By the usual 
arguments of Part I, there will be a certain interaction period, but the 
disturbance will ultimately separate into two simple waves on the C+ and 
C_ characteristics as shown. This is analogous to Riemann's initial value 
problem (Section 6.12). 

simple wave on C. 

simple wave on C+ 

Fig. 15.1. Group splitting. 

We can make an estimate of the distance to separation in terms of the 
difference between the characteristic velocities. We have 

C+C_ 
C+-C. 

■tn 

where C± are typical values of the characteristic velocities and /„ is the 
time the modulation lasts at the source. The velocities in the near-linear 
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theory (15.5) provide the upper estimate 

2a{u2u0) 

It would be extremely valuable to have experimental evidence of this 
separation, since it is of fundamental importance in assessing the modula-
tion theory. Other related nonlinear effects have been observed in non-
linear optics, but this one does not appear to have been pursued yet. 

Simple wave solutions, produced as described above or otherwise, can 
be obtained analytically by the standard theory of Part I. One Riemann 
invariant is constant throughout, and the modulation variables u,k,a 
remain constant along the individual characteristics of the appropriate 
family. In the linear theory, k remains constant but ace / - ' / 2 along the 
characteristics. This difference between nonlinear and linear behavior is 
probably less easily detectable than the group splitting, and may be 
partially masked by higher order effects. 

Finally, among the group of hyperbolic topics, we have the question 
of breaking and shocks. The dependence of the characteristic velocities on 
the modulation variables introduces the usual hyperbolic distortion, and 
"compressive" modulations in a simple wave solution will develop multi-
valued regions. What happens then is not clear at present. Unlike the 
problems treated in Part I, there is no objection to multivalued solutions as 
such. They would be interpreted as the superposition of two or more 
wavetrains with different ranges of k and a. The actual solutions would not 
be described correctly by (15.1)—(15.3), since these equations were derived 
presupposing a single phase function. But they would presumably be 
covered by the original equation. Certainly superposition is what happens 
in the linear case. Although the question was not raised in the earlier 
discussions, it is conceivable to set up a wavetrain with the linear group 
velocity C0(k) decreasing toward the front. Then, since values of k propa-
gate with velocity C0(k), there would eventually be overlapping parts of the 
wavetrain. There is no problem about superposition in the linear theory 
and the whole process could be studied by the exact solution in Fourier 
integrals. Although the corresponding process would be hard to follow 
through analytically in the nonlinear case, this qualitative behavior seems 
perfectly feasible. Something like the multiphase solutions referred to in 
Section 14.9 would be needed within the overlap region, but the transition 
process poses a difficult problem. 

A second possibility is that higher order terms in the modulation 
approximation become important near breaking and prevent the devel-
opment of a multivalued solution. It is easy to see in general (and will be 
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shown in some detail in the next section) that higher order effects typically 
introduce additional terms involving third derivatives into (15.2) and 
(15.3). They become similar in form to the Boussinesq and Korteweg-
deVries equations. By analogy, it is expected that breaking is suppressed 
by the extra terms. Of course, just as in the case of water waves, the 
additional terms are introduced as small corrections for long length scales, 
and are the first terms in an infinite series of higher derivatives. To accept 
their dominating effect on breaking in all cases may be inconsistent. It is 
more likely that this applies to small symmetric modulations and these 
develop into a series of solitary waves, whereas strong unsymmetrical ones 
break in some sense. 

Finally, we have the question of shocks. Formally, discontinuities in 
u,k,A can be allowed in the solutions of (15.2) and (15.3). These would be 
interpreted as weak solutions and the shock conditions would be taken 
from appropriate conservation equations as described in Section 5.8. This 
is the most fascinating possibility theoretically, but it is probably least 
likely as a description of reality in this particular context. The unsureness 
as to interpretation also makes the choice of appropriate shock conditions 
less clear. Equations 15.2 and 15.3 are already in conservation form, but 
the equations for conservation of energy and momentum are also obvious 
candidates. The latter are 

±(a£u-Z)-JL(uZk)-0, (15.26) 

£ ( * £ . ) - £ ( * e * - £ ) - 0 . (15.27) 

There are, in fact, an infinite number of conservation equations. However, 
(15.2), (15.3), (15.26), and (15.27) are the only ones with clear significance. 
Our system is essentially second order, [(15.1) is not a differential equa-
tion], so two conservation equations must be chosen to provide the two 
shock conditions. The choice is tied to what the shocks are supposed to 
represent. If they are taken to be approximations to solutions still covered 
by the original detailed equation for <p, then we should choose shock 
conditions from (15.26) and (15.27), the argument being that energy and 
momentum are conserved in the more detailed description for <p and 
should therefore be retained in the slowly varying approximation. The 
shock conditions would be 

1 / > £ U - £ ] + [w£J = 0, (15.28) 

U,[kZJ + [k£k-Q]-0, (15.29) 
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where Us is the shock velocity. Conservation of phase, (15.3), and conser-
vation of wave action, (15.2), could not then be maintained across such a 
shock. These were derived for a special form of solution, assuming slow 
variations, so there is no objection to abandoning them across abrupt 
shocks. These shocks would therefore represent a source of oscillations and 
involve jumps of the adiabatic invariants; the latter brings to mind the 
quantum jumps of the adiabatic invariants in quantum theory! It should 
be emphasized again that this is all just formalism with no positive view as 
to the structure of these shocks or even need for their occurrence. 
Moreover, these discontinuities would have irreversible properties, yet the 
original equation for <p is reversible. This would be another example of the 
long-standing problem of how systems reversible in some fine scale of 
description can exhibit irreversibility in "macroscopic" levels of approxi-
mation. 

If, on the other hand, discontinuities are supposed to represent 
phenomena not covered by the original equation, but covered by some 
even more detailed description involving dissipation of some kind, then the 
choice would be different. Although momentum would probably be con-
served, energy presumably would not. It is unlikely that (15.2) is the 
correct alternative, but one could make a case for (15.3). With dissipation, 
smooth oscillatory changes between different constant states may be con-
structed in dispersive models, as shown in Section 13.15. In that case the 
end states are constant, since the dissipation also damps out the oscilla-
tions on the two sides of the transition region. Thus it does not represent a 
change of state within an oscillatory wavetrain as contemplated here. But it 
does indicate the existence of a single-valued phase function and adds 
weight to the choice of (15.3) for a possible shock condition when dissipa-
tion is involved. Again this is entirely speculative and it would be pointless 
to go further in this direction without some more definite information and 
results. 

15.5 Higher Order Dispersive Effects 

We now consider modulation equations in the next order of 
approximation beyond (15.1)—(15.3). For simplicity, we work with the 
example 

<P„-<P,* + <P + 4<V = 0 (15.30) 

and limit the analysis to the near-linear case. But the results are typical and 
more specific physical applications will be shown for nonlinear optics in 
Section 16.4. 
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The variational principle for (15.30) has the Lagrangian 

L - j t f - ^ - ^ - V , (15-31) 

and the exact modulation equations are given by 

8ffLdXdT=0, (15.32) 

(15.33) 

as shown in (14.44). (We revert to the usual frequency w= — p.) For the 
near-linear theory we may use the Fourier expansion 

<S> = acos0 + a3cos30 + a5cos50H , 

as in deriving (14.52). But we now retain also the next order terms in c. The 
coefficients an are proportional to a", and this case is particularly simple, 
since to the order of approximation needed here only the term a cos 9 
contributes. We have 

r = i - ( w
2 - * 2 - l ) a 2 - | a a 4 + i c 2 ( 4 - 4 ) + 0 ( a 6

) t V ) . (15.34) 
4 o 4 

This is a double expansion in which « and a are assumed to be of the same 
order.* The linear term is i (w2- k2- \)a2, the first correction of nonlinear-
ity is — \aaA, and the first correction of higher order dispersion is ie2(a£-
a\). The variational equations are 

8a: (u2-k2-l)a-3aa3-e2(aTT-axx)^0, (15.35) 

80: ^ ( « a
2 ) + ^ (A:a 2 )=0 , (15.36) 

Consistency: | | + |f==0- O5-37) 

It should be noted from (15.35) that ®(X,T) now depends also on e, and 

•Equivalently one could leave a as an 0(1) quantity, take o as a measure of the nonlinearity, 
and use a double expansion in the small parameters a and c2. 
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that a rigid separation into a hierarchy of equations for the different orders 
of € has not been imposed. The variational principle (15.32) is exact and we 
have merely implemented it to the order of approximation noted in (15.34). 

In this particular case, the higher order modulation equations are 
more complicated in form than the original equation (15.30)! Nevertheless, 
the behavior of modulations can be seen more easily from them than from 
the original equation. Of course it is usually the case that there is consider-
able simplification in going to the modulation equations. In any event, 
(15.35)—(15.37) are typical for systems in general. 

When the terms in e are omitted, the modulation equations are 
hyperbolic for a > 0 and elliptic for a<0. The higher order dispersion 
effects introduce third derivatives of a into (15.36)—(15.37), and the modu-
lation equations themselves become dispersive. In the case a > 0 they have 
a similar structure to Boussinesq's equations. The consequences for break-
ing are expected to be similar, as discussed in Section 15.4. The existence 
of periodic solutions and solitary waves will be noted shortly. First, 
however, we consider how the instability found in the elliptic case a < 0 is 
affected by the additional terms. A uniform wavetrain is a solution with 
constant values w(0),A:(0),a(0), satisfying the dispersion relation (15.35). For 
small perturbations w(l),/c(l),a(l), about these values, the linearized equa-
tions (15.35)—(15.37) are homogeneous with constant coefficients involving 
u(0\k(0),ai0). There are elementary solutions with u0\k°\aw all propor-
tional to g'fC*-0'7"), provided C satisfies 

{o>(0)C- km}2-(\ - C)2{ ^ L + l | _ ( i - c 2 ) | =0. (15.38) 

The parameter ju determines the wave number for the modulations. For 
small a<0) and e, the values for C are 

c . ^ + _Lf32^ + jV_r (,5.39) 

With the term in /x. neglected these are just the characteristic velocities, 
imaginary for a<0. The influence of the dispersion introduced by the 
correction in ju. is stabilizing, and the instability is now confined to the 
range 

0<£y<6|a|<o( 0 )V0 ) 2 (15.40) 

in the modulation wave number «/x. 
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For both the cases a>0 and <r<0 it is important to observe that the 
system (15.35)-(15.37) has steady profile solutions propagating without 
change of shape. They are found in the usual way as solutions in which all 
quantities are functions of a moving coordinate X— VT. We have 

« 2 (1 - V2)a" + (u2-k2-l)a-3aa3 = 0, (15.41) 

(uV-k)a2=R, (15.42) 

a-Vk = S, (15.43) 

where R and 5 are constants of integration. The last two may be used to 
eliminate to and k in the first to give 

l x 2 R2-S2a4+(l-V2)(a*+3oa6) 
€2(\-V2)a" = — r — - - . (15.44) 

aJ 

In general, there are periodic solutions (wavetrains in the envelope of the 
original modulated wavetrain!) in which a oscillates between two values of 
a depending on V, R, S. Solitary waves will be limiting cases. 

The solitary wave with a-»0 as X-*± oo is particularly interesting; it 
represents a wave packet as shown in Fig. 15.2. In this case, (15.42) has 
R = 0, since a-»0 at oo. Hence 

K= - ; (15.45) 
03 

then, in turn, from (15.43), <o and k are both constant. For this example, 
the linear dispersion relation is u0=(k2+1)1/2 and the linear group veloc-
ity is 

C =■ = — < 1 

° (k2+lf2 < * • 
We see that the velocity V is a nonlinear counterpart of C0; it will be close 
to it for small amplitudes. Since C0<1, we may take V<\. With u,k 

Fig. 15.2. Solitary wave modulation. 
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constant, (15.41) for a integrates once to 

c2( 1 - K > ' 2 = § ™ 4 - ( w 2 - k 1 - \)a\ (15.46) 

For a-»0 at oo, we need 

u2-k2-l<0. 

At the maximum value of a, we have 

w 2 - ^ - l = | o a 2 ( ( 1 5 . 4 7 ) 

so that solitary waves of this type exist only for the elliptic case a < 0 . The 
velocity (15.45) of the packet is 

V= k - 2 Ham . 
( * 2 + l ) ' / 2 4 ( * 2 + l ) V 2 ' 

it moves a little slower than the linear group velocity. Ostrowskii (1967) in 
an analogous problem in nonlinear optics proposes that the result of 
instability may be a periodic solution which is essentially a sequence of 
such wave packets. 

In the hyperbolic case o > 0, these extreme solitary waves do not exist, 
but periodic wavetrains and solitary wave solutions of (15.44) with a 
bounded away from zero can be found. This is reasonable, since for o > 0 
the modulations distort in the hyperbolic theory (c = 0) but do not grow. 
The higher dispersion can counteract the distortion to produce steady 
profiles, and there is no reason for them to grow to the extreme case with 
a = 0. Their existence supports the view that in some cases breaking will 
not occur but rather the waveform will tend to a steady oscillatory form in 
the breaking region. 

In near-linear theory the higher order dispersive terms arise from the 
quadratic part of the Lagrangian and it is easy to show that the general 
form corresponding to (15.34) is 

L = G(u,k)a2 + G2(u,k)a* + \e2{Guua
2 -2GukaTax + Gkka

2
x} 

if less important terms involving derivatives of w and k are omitted. 

The variational equations are similar to(15.35)-(15.37). 
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15.6 Fourier Analysis and Nonlinear Interactions 

If the amplitudes are small and if only a few Fourier components are 
present, the nonlinear interactions between the components can be studied 
directly. This provides an alternative approach to some of the foregoing 
results. It was by this approach that Benjamin (1967) found an instability 
result of the type given in (15.40) for Stokes waves in deep water. The 
details for water waves by both the modulation and the interaction 
approaches will be discussed in Section 16.11. Here, to illustrate the 
method, we apply Benjamin's arguments to the Klein-Gordon equation, 
where the algebra is simpler. 

For a finite number of Fourier components, <p can be expressed in the 
form 

9-J2*,(')«**, O5-48) 

where v runs over ± 1, ±2, . . . , ±N and we take K _ „ = - K „ , </>_„(') = <P*(0> 
n = \,...,N, to ensure a real <p. For the equation 

< P „ - ^ + < P = - W , (15-49) 

the linear solution (which neglects the right hand side) is 

v , ( / ) - V " * ' . (15.50) 

where 

«n = («n
2+l)' /2 . « - - - « „ , A_m-A;, (15.51) 

and the Ar are constant. The near-linear theory can be developed by 
assuming a to be a small parameter. 

A naive perturbation expansion would express <j> as a power series 

(p = <p(0) + a<p(1) + a V 2 ) + - - - , 

to give the hierarchy 

9 j 0 ) - r i ? + 9< 0 )-0, (15.52) 

*<■>-,>«> + «><'>=-4<p<°>3, (15.53) 
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and so on. The solution of the linear equation (15.52) would be taken in 
the form 

r=^Ape^-^' 

and substituted in the right hand side of the equation for <p(l). However, 
resonance produces secular terms in <p(1) and the expansion is not uni-
formly valid. This is, in fact, just a more general version of the situation 
noted while discussing the Stokes expansion for periodic solutions in 
Section 13.13. A uniformly valid solution is obtained by including any 
third order resonant terms at the earlier level in the equation for (p(0). It 
amounts to adopting a more definite Fourier analysis viewpoint and 
grouping terms according to their contributions to the different com-
ponents e,K,x. That is, we substitute (15.48) in (15.49), and for each of the 
original components e,K,x we have 

-JT +"?%= -° 2 VafpVr (15.54) 
Clt K„ + Kp + Ky - K, 

where u„ is the same as in (15.51). The cubic term will also generate new 
components to be added to (15.48), but they do not resonate (at least at the 
cubic order) and may be neglected in the first approximation. We therefore 
consider the solutions of (15.54). 

To take out the main oscillation, we introduce 

%(t) = A„(t)e-'»'', 

with the important difference from linear theory that Ar(t) is still a 
function of /. We have 

d2A dA 
=± -Ha,-;?- = - a 2 AaA0Aye'^-^-^-^'. 

dt "' K„ + Kp + K, - It, 

The time scale of concern is now 0(o_1) and each / derivative introduces 
an order a. Hence it is sufficient to drop the second derivative of A, and 
take 

dA 
-T--T- 2 AaABAye^-»--»»-u^. (15.55) 

« ' ZU>, H. + K,+ « , - « , 
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True resonance occurs when 

K a ' K p ' K y ~ Ki>' 
(15.56) 

The self-interaction 

(and its permutations) are always of this type. They produce the Stokes 
effect on the frequency. If only one mode K0 were present, we should have 

dt 2u>0
AoA°' wo-tKo+U , 

with solution 

Then 

A0 = a0e-0ia/2u")ao'. (15.57) 

<p = a0cos { K0X-\U0+ - -^- \t) + • • 

This is the Stokes result (14.12). 
In his stability discussion, Benjamin considers the effect of close "side 

bands" with wave numbers ic0±/i on a main wave K0. That is the set of K„, 
n=l,...,N, is {K0,K0 — /i,K0 + /i}, and their negative values are added to 
make up the full set Kr. We denote the corresponding An by A0, A _, A + ; 
their conjugates appear as in (15.51). The equations (15.55) become 

dA 
-r- = -^£-{3AlAZ + 6A0A+A*++6A0A_A*_+6A$A+A_e-ia'}, 

(15.58) 

dA_ ta {6A0AZA_+3AlA*+eia' + 6A+A%A_+3A2_A*_}, (15.59) 
dt 2co. 

where 

fl = w + + u _ - 2 w 0 ; (15.60) 

the equation for A + is obtained by interchanging plus and minus sub-
scripts. The interactions involved can be seen from the A's that contribute. 
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The first term in (15.58) is the self-interaction (Stokes) term; the second 
term comes from (*c0,K0+fl, — K0 — £)—>K0, and so on. The terms with the 
factor e'a' do not exactly satisfy the resonance condition on the frequen-
cies. But if fi is small, so is £2, and the factor is kept to preserve uniformity 
as ji—>0. The numerical coefficients in front of each term give the number 
of permutations in any particular interaction. 

In a stability analysis, it is assumed that A±<?:A0, and the equations 
are linearized to 

dt 2u0
AoAo' 

^ = -^-{6AQA5A_+3A2
0A *+e ' a '} . 

The effects on A0 are second order. We take 

A^a^-"", p=f^, (15.61) 

as in (15.57), with a0 real. For small ji it is sufficient to take w± =w0 in the 
coefficients of the equations for A ± and to approximate fl by 

n - ^ ' C c o ) * 2 - (15.62) 

The linear equations for A ± then become 

dA. 

dt 
= -ip{2A_+A*+e*a-2l>)'}, 

HA 
^ - = -ip{2A + +A*_eaa-2")'}. 

These have solutions in the form A + = a + e'x±', where X+ satisfy 

X2 + (2p-fi)X + p(p-2fl) = 0. (15.63) 

The small side band perturbations grow if the roots of (15.63) are complex; 
that is, if 

K) fl<0. (15.64) 
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For this particular example, w0 = ((Co+ 1)'/2, «o' = «<j"3, so (15.64) gives 

(§-»♦£)<* 
This agrees with (15.39) and (15.40), since £ = €/<. in the comparison. For 
o>0 the side bands always remain small. For a<0, there is instability for 
the range 

A2<6Mwoao-

Again this is a linear instability theory; the nonlinear equations (15.58)-
(15.59) conserve energy, which oscillates between the modes. This agrees 
with the proposal that the end result is a solution with finite amplitude 
oscillations. 

It should be fairly clear that the preceding analysis, although devel-
oped for a specific example, is general. In fact, we can recognize from 
(15.61) that p is always the Stokes correction to the frequency; in Section 
14.2 it was denoted by u2a

2. The expression (15.62) for fl is already in a 
general form. Therefore the criterion (15.64) may be written 

L2a2+^wo/i2jwojii2<0. 

This should be compared with the radical in the characteristic velocity 
(14.21); the extra term in ji2 arises from the higher order dispersion effects. 

The interaction and modulation approaches may be compared by 
noting that the modulation k — k(0)+ kw,a = am + a°\ used to obtain 
(15.39), may be expressed approximately as 

<p= y {a(0) + a(1)} exp/ {0(O) + 0{1)} + complex conjugate 

= ya(O)exp'0(O)+ ia(,)expiff(0> + ^/0(l>a(O)exp<'0(O) +complex conjugate. 

(15.65) 

If we now take 

a(0> = a0, 0< O>=KO*-(W O + P)/ 

for the basic wavetrain, and express the perturbations a( l ) ,0( l ) as 
appropriate linear combinations of e*'*", we obtain the side band descrip-
tion. 
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The interaction theory can be carried through effectively only for the 
near-linear case and only for modulations consisting of a finite number of 
Fourier components. Even so, we note the algebraic complexity compared 
with the modulation approach. This can be mitigated to some extent by 
appealing again to the variational principle. If the expression 

is substituted into the Lagrangian, all terms except the resonant ones will 
be oscillatory in JC. If these are averaged out, we may use the variational 
principle to obtain the equations for the A„. In the simpler cases, such as 
the one above, the saving is not very great. We fairly easily obtain the 
average Lagrangian 

L = \ 2 {A„A; - iu.A.A; + iunAnK} 

- "^ {62A2
nAf + 2 4 2 2 AmA*AnA*n ) 

- j-:{\2AlA*+A*_eiQ' + 12A*2A +A _e~iQ'}, (15.66) 

where the summations are over A0,A +,A _. But the remaining analysis of 
the variational equations is much the same. The main advantage is the 
canonical form. 

The interaction theory is not restricted to neighboring sets of wave 
numbers. With sufficiently general dispersion relations, one can have 
resonances satisfying (15.56) for widely differeing K„. There is then strong 
energy transfer between these modes. Such cases are discussed by Phillips 
(1967) and references given there. A problem in nonlinear optics (Section 
16.5) will provide an illustrative example. This type of interaction between 
widely different wave numbers ties in closely with the multiple phase 
solutions indicated in Section 14.9. 



CHAPTER 16 

Applications of the Nonlinear Theory 

NONLINEAR OPTICS 

16.1 Basic Ideas 

One of the most interesting areas for the study of nonlinear dispersive 
effects is in the field of nonlinear optics. The theoretical ideas fit in 
naturally with the experimental situation and are involved in the deve-
lopment of practical devices. Modulation theory is the natural approach to 
a number of phenomena in view of the high frequencies and wave numbers 
of the basic wavetrains. The self-focusing and stability of beams are 
studied in this way. Nonlinear interactions for the production or amplifica-
tion of sum and difference frequencies are important and can be displayed 
dramatically by changing the color of a laser beam on passage through a 
nonlinear crystal. The experiments generally seem to be more easily and 
precisely controllable than is possible, for example, in water waves, where 
the many modes of fluid motion make it difficult to isolate the particular 
effects desired. 

In the simplest formulations of the theory, the analysis is very close to 
that of the Klein-Gordon example and results can be taken over by 
analogy from that case. We start with the classical model in which the 
electric polarization of the material is represented as the displacement of 
bound electrons by the electric field. The results can be interpreted in a 
broader way later. We consider the basic one dimensional wavetrain and 
take the propagation to be in the x direction with field components E and 
B in the z and y directions, respectively. The electron displacement is in 
the z direction and we describe it by the function r(x,t). Maxwell's 
equations reduce to 

E, + —rt = c£Bx 
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where q is the electronic charge, N is the number of electrons per unit 
volume, c0 is the speed of light in vacuum, and c0 is the permittivity of free 
space. To complete the system, we need the relation of r to E. We suppose 
that an electron driven by the field E is effectively in a potential well that 
provides a nonlinear restoring force. Accordingly, the equation is taken in 
the form 

mrtl+U'(r)=qE. (16.2) 

If the polarization P = Nqr is introduced and B is eliminated from Max-
well's equations, we have 

£„+J-/»„ = <:*£„, (16.3) 
£o 

P„+K' ( />) = V , 2 £ , (16.4) 

where 

qN , Nq2 

nr)-^U(r), , • - - * - ; (,6.5) 

v is the plasma frequency. 
Each oscillator responds also to the cumulative effect of all other 

oscillators. In the elementary treatment, this is incorporated by replacing E 
on the right hand sides of (16.2) and (16.4) by E + P/3i0, which is the field 
inside a spherical cavity surrounded by dielectric with polarization P. For 
our purposes we can suppose the extra term is absorbed into V'(P). 

There are important simplifications in the analysis if the potential well 
is symmetric and V\P) is an odd function of P. We shall take this to be 
the case for the most part and indicate at appropriate places what is 
involved in the more general case. 

Uniform Wavetrains. 

In a uniform wavetrain E= E(9),P= P(0),0 = kx-ut. Equation 16.3 
then integrates to 

(to2 - clk2yQE =-a2P + constant. (16.6) 

If V\P) is an odd function of P, we may take the constant of integration 
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to be zero without loss of generality. In other cases, however, the constant 
may be required and plays an important role. If V'(P) has a term in P2, 
for example, we see from (16.4) that the mean values of £ and P differ by 
a term quadratic in the amplitude; hence a constant proportional to the 
amplitude squared is required in (16.6). If V'(P) is odd, however, we note 
that it is consistent to take zero mean values for E and P, and with this 
assumption the constant in (16.6) must be zero. Then we have 

w -c„Ar 

A.2 

U
2P09+V'(P) + 2

U'P; f « 0 . (16.8) 
c0k J-dk2 

In the linear case, V'(P)= v\P, the solution of (16.8) is sinusoidal in 9 
and we obtain the dispersion relation 

c2lc2 v2 

w w — va 

Damping becomes important in the absorption band around, the resonant 
frequency v0 and eliminates the singular behavior there. Away from the 
resonant frequency, however, its effect is small and can be neglected in the 
first instance. 

In the near-linear case, we may take 

V'{P) = vlP-aP3+--, 

P = bcos0 + b3cos39+--, (16.10) 

£ = acos0 + a3cos30 + 

and deduce the dispersion relation 

W ={ "P | 3 ato"P 

" 2 « 2 -"o 4 ( co 2 -^ ) 4 ' 

In the fully nonlinear case, (16.8) has oscillatory solutions, as discussed for 
the Klein-Gordon equation (14.3); the close similarity between these two 
cases becomes apparent. 
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The Average Lagrangian. 

A variational principle may be formulated in terms of a potential \p, 
the z component of the vector potential. The field components are given 
by E= -\j/rB= -\px, and a suitable Lagrangian is 

L-fati-cfoS-Nq+s+N^ \mr]- U(r) } 

= ^o(^-c2oVx)-^P+^{^P,2-V(P)}. (16.12) 

If V'(P) is an odd function of P, it is sufficient for the uniform wavetrain 
to take \p and P as periodic functions of 6. Corresponding to (16.7) and 
(16.8), we then have 

E=^o r^TTiT> (>6-13) 
to - c j , A r «0 

±o>2P9
2+V(P) + ± ^ \ 1 P 2 = A, (16.14) 

where the second equation has been integrated and the constant of 
integration A enters as the amplitude parameter. The average Lagrangian 
is then obtained by substituting (16.13)—(16.14) in (16.12) and performing 
the usual manipulations. The result is 

£(**-'>-^(5$("-2*'>-;?i-!|H «-*\ <I6J5> 
Again the similarity with the Klein-Gordon case, (14.26), may be noted. 

If V\P) is not odd, the more general form 

+ = px-yt + *(0) (16.16) 

is required. The parameters B and y give nonzero mean values of B and E, 
and they must be treated as a pseudo-wave number and a pseudo-
frequency, as explained in Section 14.7. The second constant of integra-
tion, A say, must now be allowed in (16.6) and the triad (y,B,A) is 
analogous to the main triad (u,k,A). In the modulation theory the coup-
ling of the changes in(w,A:,^) with changes in the mean field parameters 
(y,B,A) is a crucially important effect. We shall not pursue the details 
here; they are similar to the case in water waves which will be discussed 
later. 
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General results can be derived from (16.15) as described in the 
previous chapters. However, most of the results in nonlinear optics have 
been found for the near-linear case. It has the advantage in this particular 
context that although a specific model may be used to motivate the theory, 
a broader interpretation of the formulas is fairly clear. The near-linear 
form of £ is most easily obtained directly by substituting the expansions 
(16.10) into (16.12), rather than approximating (16.15). The calculation of 
£ up to the fourth order in a is particularly simple since the coefficients 
a3,b3, which are third order in a, do not contribute until the sixth order 
terms. [Compare the derivation of (14.52).] To this order, then, we have 

The variational equation tb =0 can be used to determine b in terms of a: 

6 = - - ^ L - a + | °-^-ia
3. (16.18) 

«2-"o2 *(u2-v2
0) 

This result may be resubstituted in the expression for £ to give 

p _ l / , elk2 v2 \ 3 «fr« 4 

L = T 1 j ; rHo0 + Ti" Ja ■ (16.19) 

As a check we note that the dispersion relation ta =0 agrees with (16.11), 
as it should. 

The first term in (16.12), which is also equal to {e0(E
2—CQS2), is the 

basic wave operator for electromagnetic waves in free space. It always 
leads to the term 

i / . 4*a\ 2 

in £, where a is the amplitude of the electric field. The other terms in 
(16.19) incorporate the response of the medium to the oscillating electric 
field. For other models, or to represent known material properties, it seems 
reasonable by analogy to suppose that 

e = j - ( l - ^ - ) ^ 2 + « 2 ( « ) ^ 2 + ^ ( « ) ^ 4 (16-20) 

for some functions g2(«).g4(w). Then the dispersion relation £a =0 allows 
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the identification of g2,g4 with the behavior of the refractive index. If the 
dispersion relation is required to be 

n=-^- = n0(u)+±n2(u)a2, (16.21) 

then we must choose 

£ - \ j »S(«) " Cj^r Uo<*2+ |«o(«)"2(")^4- (16.22) 

The coefficient n0(w) is the linear refractive index and more realistic forms 
may now be taken for it in place of (16.9). For example, to include more 
resonant frequencies Vj, we have 

*o2M= i->,a2-r-T. 2/,-1. 

where fj = Nj/N is the proportion of electrons with resonant frequency v}. 
This also fits the quantum theoretic description in which the Vj are 
transition frequencies and the fj are transition probabilities. Similarly, the 
nonlinear coefficient n2(w) can be chosen to represent other models or 
known material properties. However, the overall restriction to cases in 
which quadratic mean fields do not arise must be carefully noted. 

16.2 One Dimensional Modulations 

In the near-linear theory we can proceed simply as in Section 14.2. In 
optics it is more usual to consider the dispersion relation as expressing k or 
n as a function of w, so we work with u and a as the basic variables in the 
modulation theory. The dispersion relation is written* 

k = k0(u) + kn(Uy, (16.23) 

where 

unJw) , , x w n 2 ( w ) , * , - > A \ 
* o ( « ) - — T 1 - 1 . * » - - 2 T - - < 1 6 - 2 4 ) 

•We use kn rather than k2 to denote the nonlinear coefficient, since k2 will be needed later for 
the Xj component of the vector k. 
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To lowest order the modulation equations, corresponding to (14.18)-
(14.19), are 

£ + £KM„>}-o. 
(16.25) 

_+*0(„)_+*B(M)ir-a 

The characteristic velocities are found to be 

l«*J(W)±{*>)*o(«)}l/2«- O6-26) 

The equations are hyperbolic if A:nA:o>0 and elliptic if knkQ<0. For 
(16.11), the sign of kg is the same as p2,— <o2 and the sign of kn is the same 
as a. Hence we have 

Hyperbolic: a(vl — u2)>0, 
(16.27) 

Elliptic: a ( ^ - u 2 ) < 0 . 

These results were first obtained by Ostrowskii (1967). The normal case for 
optics is w2< »<o,a>0, and the equations are hyperbolic. However, 
Ostrowskii (1968) reports on experiments at radiofrequencies with ferrites 
and semiconductor diodes, where both cases can be obtained. The hyper-
bolic distortion and elliptic instability are both found, and stable modu-
lated forms seem to result, in line with the discussion of higher order 
effects given in Section 15.5. 

The higher order effects lead to quadratic terms in the derivatives of a 
and b in the expression (16.17) for £. The modulation equations are then 
similar in structure to those discussed in Section 15.5. Qualitatively, the 
phenomena are the same and the details will not be given for this case. The 
main results were obtained by Ostrowskii (1967), and Small (1972) shows 
how the variational approach may be used. We shall, however, take up in 
the next section the analogous problem of spatial modulations and the 
self-focusing of beams. Higher order effects are important for these and we 
outline the theory. 

The fully nonlinear results corresponding to (16.26)—(16.27) can be 
taken from Section 15.2 using the appropriate Lagrangian. For the simple 
model discussed earlier this is given by (16.15). 
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16.3 Self-Focusing of Beams 

If the nonlinear term in the dispersion relation (16.21) is positive, with 
«2(w)>0, then the phase speed c = w//c = c0/« increases as the amplitude 
falls off from the center toward the outskirts of the beam. Intuitively this 
suggests the beam will tend to focus. Of course the argument is only rough 
and we now consider such questions in more detail. 

For spatial modulations, we suppose that locally the wave can be 
described by a periodic wavetrain propagating in the direction of the 
vector wave number k. The average Lagrangian is determined from this, 
and in the simplest cases when pseudo-frequencies are not involved, it 
takes the form £(«,k,a) where to is the frequency and a is the amplitude of 
the electric field. In the near-linear case, £(w,k,a) is given by (16.22) with 
k = \V\. 

For solutions in which w,k,a are independent of t, we have 
w = constant and the modulation equations deduced from the average 
variational principle are 

(16.28) 

(16.29) 

If the medium is isotropic so that £ depends only on the magnitude k of 
the vector k, (16.29) reduce to 

where 

p = - j t - ' e f c . (16.31) 

The dispersion relation (16.28) provides a relation between a and k; hence, 
in principle, p can be taken as a function of k (although it may not always 
be convenient to do the actual elimination of a). 

It is interesting to note that the equations in (16.30) are the same as 
the equations for compressible irrotational steady flow of a gas, with the 
wave number k replacing the fluid velocity vector and p replacing the 
density. The relation of p to k provided by (16.31) corresponds to the 
Bernoulli equation between density and speed in the fluid flow problem 
(see Section 6.17). In this analogy, the beam corresponds to a fluid jet in a 
gas. But care is needed in taking qualitative results directly from fluid flow, 

£a=o, 

3x, ■ 

3/c, 

dXj 

dkj _ 

8x, 
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because p is usually an increasing function of k in optics, whereas density 
and velocity have the opposite variation in a gas. However, the various 
techniques of finding solutions may be usefully taken over. 

The type of equations (16.30H 16.31) governs their mathematical 
structure. This is separate from the question of whether the original 
time-dependent equations are elliptic. Moreover, the ellipticity of the 
steady equations does not indicate instability; the type affects only the 
properties of the solution and the form of the boundary conditions. 

For two dimensional or axisymmetric beams, we shall take x in the 
axial direction and r in the transverse or radial direction. The wave 
number vector will have corresponding components (kuk2), and (16.30)-
(16.31) become 

dk, dk, 

-d-nr-* (,632) 

±(pkl) + ±(pk2) + -y±-0, (16.33) 

p = p(k), (16.34) 

where m = 0 for the two dimensional beam and m — 1 for the axisymmetric 
beam. 

The Type of the Equations. 

The characteristics are most easily found by temporarily reintroducing 
the phase 9, with 

and writing (16.33) as 

Then characteristic curves in the (x,r) plane must satisfy 

/ kj p'\ . 2kxk2 p' I k\ p' \ , 

These are imaginary and the equation is elliptic if 

l + A: ->0; 
P 
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they are real and the equation is hyperbolic if this quantity is negative. 
For the near-linear theory described by the Lagrangian (16.22), we 

have 

k 2<o2 

and therefore 

c0k i 
— - = n 0 ( u ) + -n2(u)a 

CO L 

<o2«2(«) 
= /i0(w) + — p. 

«oco 

If «2(w)>0, then p'(k)>0 and the steady equations are elliptic. We shall 
consider only this case. We note from (16.26) that the original time-
dependent equations are hyperbolic if, in addition, &o(w)>0. 

Focusing. 

The "streamlines" determined by the vector field k are the orthogonal 
trajectories of the family of phase surfaces 8 = constant. In isotropic media, 
the group velocity has the same direction as k and these streamlines are 
rays. We can picture the phase surfaces moving out along these rays and 
the question of focusing is related to convergence of the rays. To analyze 
this, it is convenient to transform (16.32)—(16.34) and introduce 
coordinates (£,TJ) based on the rays and phase surfaces. If we introduce 

(16.37) 

pklr
m = 71r, pksm=-T]x, 

the equations (16.32)—(16.33) are satisfied identically; the successive posi-
tions of a phase surface are given by £ = constant and the streamlines by 
•») = constant. The relations (16.37) may be written in inverse form as 

_ cosx sinx 
Xt~~k~' X " = = ~ ^ r ' 

_ sinx _ cosx 
r* k~~' r i _

 p £ r m ' 

(16.35) 

(16.36) 
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where x is the inclination of k to the x axis. Thus the consistency relations 
may be written 

dx = P^3fc 3x 
3£ k 9TJ ' i-kUM (l"8) 

If p decreases away from the axis, then so does k, from (16.36) and the 
assumption that n2>0. Therefore, from the first equation in (16.38), 
9x/9£<0; tnis shows that the rays bend toward the axis and the beam 
focuses. If n2 < 0, there is a corresponding defocusing. 

Thin Beams. 

Some interesting solutions of the equations have been constructed by 
Akhmanov et al. (1966) under the further assumption that the beam is thin. 
It is assumed that the nonlinear effects provide a small correction to a 
linear plane wave of constant wave number K and the r derivatives are of 
greater order than x derivatives due to the thinness of the beam. We take 

0= -ut + Kx + Ks(x,r), 

where sx and sr are both small but sx and s2 are comparable. [This can be 
done formally by choosing 

9 = - u t + Kx + Kt2s[x, ^ J, 

where e is an amplitude parameter.] With this approximation we have 

and the near-linear dispersion relation n = c0k/u=n0+ $n2a
2 gives 

1 -. 1 ni i 

**+V'-ii-a> ( 1 6 - 3 9 > 
assuming that c0K/u = n0(u). Since pec a2 from (16.35), p may be replaced 
by a2 in (16.33). Under the approximation sx<&sr, (16.33) may then be 
taken as 

^+sr*£ + (srr+fsr)a
2 = 0. (16.40) 
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Equations 16.39 and 16.40 are to be solved for s and a2. 
Near the axis we may expect s to be given by 

2 R(x) 

where R(x) is the radius of curvature of the phase surface at the axis. 
Surprisingly, there is an exact solution in which s(x,r) has just these two 
terms. From (16.39) we see that a2 must also be quadratic in r, and (16.40) 
provides relations for the various coefficients. The results are 

a ' - / -4^{'-#U}' (,6-42) 
, i n2 4 I /'(*) ..,.„ 

°-2^7^)' -RTXI'JXJ'
 (,6-43) 

where 

r0 is the initial radius of the beam, a0 the initial amplitude on the axis, and 
R0 the initial radius of curvature of the phase surface. 

If the phase surfaces at * = 0 are plane (/?0
_1=0), the solutions of 

(16.44) are 

™ = 0: ^ ( ^ ) 1 / ^ { ^ , - ^ l / 2 - S i n " ^ / 2 + f } ' (,6-45) 

m - l : XJ0*\ ^(l-f2)i/2. (16.46) 

The beam focuses and the solution becomes singular at the point where 
/(JC)->0; at this point the radius of curvature R(x)-+0 and the amplitude 
a-»oo. The distance to the point of focus is 

x,= l ^ \ ^ , for m - l . (16.48) 
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In the neighborhood of the singularity, higher derivatives of a become 
important and must be added to (16.39)-(16.40). As we shall see, the extra 
terms introduce dispersive effects which counteract the focusing and allow 
continuous solutions. 

Before doing this, we mention an ingenious solution of the two 
dimensional equations (wi = 0) that was found by Akhmanov et al. If we 
introduce 

v-sy, r = a2, 

then (16.39M 16.40) are equivalent to 

n2 
vx + wy-yry=0, Y=v-- , 

jx + vry + rvy = 0, 

where we have replaced r by y for the two dimensional case. These are 
similar to the equations of unsteady one dimensional gas dynamics, apart 
from the change in sign of y. They may be linearized exactly by the 
hodograph transformation to 

yr-vxr-yxv = 0, 

yv-vxv + rxT = 0. 

Since they are linear, these equations offer the possibility of general 
solutions by superposition. However, in the particular solution referred to 
here, Akhmanov et al. presumably noted the extra convenience of 
variables 

p = xr, q=y-vx, 

to write the hodograph equations 

?T--/>o = 0> 1C+PT = 0> 

but they then retransformed them to 

vP-^Tr0' TP+V<,=°-

With t> = -<bp, T = $ 9 , we have 

i pp >^ii 
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This has a separable solution 

<D = (H 2 +^ 2 )tanh| , 

which represents a beam. In the original variables the solution is given in 
terms of parameters p and q by 

t a n h - , a2 = T = \ai+ —r»2)sech2- , 
h \ h2 I h 

P vp , 
x=-, y=— + q. 

T T 

In the initial plane x = 0, we have 

sy = 0, a2 = agsech2- . 

The beam starts with rays parallel to the x axis and has a realistic 
amplitude distribution. It may be shown that the beam focuses at the point 

xf=TTn~=\T~\ —• (16.49) 
2 Y 1 / 2 ao \2ni! ao 

For the present solution to agree with (16.42) near the axis, we must take 
h = r0, and we see that the focal point compares well with (16.47). 

16.4 Higher Order Dispersive Effects 

We return temporarily to the specific model with Lagrangian (16.12) 
to see the effect of higher order terms in the modulation approximation. In 
the near-linear theory the expansions (16.10) are substituted as before, but 
now derivatives of the coefficients a,a},...,b,by..., are retained as ex-
plained in Section 15.5. For steady beams, these modulation parameters 
are functions of position x only and it is clear from (16.12) that x 
derivatives arise only from the term - CQI|>2 (generalized to more space 
dimensions). On substituting 

\L= — sin#+ -T— sin 30+ .. . , 
w 3w 

chosen to agree with (16.10), we see that the expression for the average 
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Lagrangian in (16.17) acquires the additional term 

1 «o*o , 

The elimination of b via (16.18) does not involve this term. Therefore it is 
also added to (16.19). Finally, interpreting the form of (16.19) more 
generally as before, we have 

£ - \ {«o2(«)- ̂ r W+ !«o(«)«2(«)«o«4- \ ^ 4 (16-5°) 

The variational equations are now 

8a: l ^ - ^ - J f l + n ^ a ' + ^ a ^ - O , (16.51) 

80: ^ (*,«') «0, (16.52) 
ox, 

ok, 9k, 
Consistency: ^ - -^ - 0. (16.53) 

ox, ox, 

The extra term in (16.51) is dispersive in nature and counteracts the 
focusing. To focus initially, it will be necessary for the nonlinear term 
n0n2a

i to dominate the dispersion term Cya^/a*. If the beam has initial 
radius r0 this gives the estimate 

n2 k% 

for the critical strength required. As the beam focuses the reduced trans-
verse scale increases the effect of a^. and the focusing to a singular point 
may be prevented. In general, the beam may be expected to oscillate in thick-
ness under the fluctuating dominance of the nonlinearity and the dispersion. 

As a particular case, we should expect that there is a solution repre-
senting a uniform beam with all quantities independent of distance along 
it For a two dimensional or axisymmetric beam, the equations would 
reduce to 

*2=0, *, — k—constant, 

^♦«*)+(<-£Ww«-a 
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If a* denotes the amplitude at which 

c2k2 

~-=n2+n0n2a*2, (16.55) 
or 

we have 

arr+jar = 2yK2a(a*2-a2), (16.56) 

where y = n2/2n0, K2 = u2nl/cl, as before. In the two dimensional case 
m = 0, the equation can be integrated further to 

a2=yK2a\a2-a2), (16.57) 

where aQ = a*V2 is the maximum amplitude; a* is the amplitude at the 
point of inflexion in the profile. The solution is 

a = a0sech(y'/2A'a0>'). (16.58) 

This is the anolog of the solitary wave in unsteady problems. If a constant 
of integration is allowed in (16.57) one can obtain solutions which are 
oscillatory and periodic in_y. These are the analogs of cnoidal waves. 

For the axisymmetric beam, m=\, solutions of (16.56) have been 
found numerically by Chiao, Garmire, and Townes (1964) and by Haus 
(1966). The former calculate the solution corresponding to (16.58) and it 
has monotonic decay from a0 at r = 0 to zero as r-»oo. Haus finds 
oscillatory solutions of successively decaying amplitude and these repre-
sent a beam surrounded by diffraction rings. Small (1972) notes that 
(16.56) in normalized form, with 3-a/a*,r=rKa*(2y)l/2, is associated 
with the variational principle 

sf ^52 + 52-^a4W = 0, 
'o 

and he uses a Rayleigh-Ritz procedure to show that 

a = 0.Sme-°-2495f2+\3\56e-hmOF2 

is a good approximation to the Chiao, Garmire, Townes solution. In these 
dimensionless variables the strength required is 

/• 00 

•= I a2rdr^ 1.86. 
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Thin Beams. 

The thin beam approximation to (16.51)-( 16.52) is obtained under the 
same assumptions that led to (16.39)—(16.40). There is now an extra second 
derivative term added to (16.39) and we have 

K2(2sx + s?)a=^K2a3+(arr+^a\ (16.59) 
"o \ r i 

If we take 

* = aeiKs, 

the two equations combine into 

2iK^- + V2
L*+ — tf2|*|2* = 0, (16.61) 

OX fin 

where 

■" 3r2 r dr' 
This nonlinear Schrodinger equation has a certain canonical structure, in 
the same sense as the Korteweg-deVries equation, and arises in a variety of 
different problems. Surprisingly, a wide class of exact solutions can be 
derived for the two dimensional beam (m = 0) by the same method devel-
oped by Gardner, Greene, Kruskal, and Miura (1967) for the Korteweg-
deVries equation. This was pointed out by Zakharov and Shabat (1972), 
who go on to give a thorough analysis of the equation. An account will be 
given in Chapter 17. 

By the time the various approximations have been made it is simpler 
to derive (16.61) directly from Maxwell's equations with an assumed 
nonlinear relation between P and E. For the two dimensional beam, we 
have 

E„+j-P„ = cl(Exx + E„) 

and add 

p = ("o _ l)*oE + nQn2c0a
2E 

to give (to a sufficient approximation) 

nlE„ + n0n2a
2E„ = c*(Exx + Eyy). 
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Then if 

we have 

E - | *(x,y)eiKx ~"" + | V*(x,y)e ~iKx +'"', 

"o 

If ¥XJt is neglected, then (16.61) follows. 

16.5 Second Harmonic Generation 

One of the spectacular experiments in nonlinear optics is the produc-
tion of a blue beam from a red beam on passage through a nonlinear 
crystal. This is a good example of the production of second harmonics due 
to nonlinear effects and the theory is in the spirit of the general discussion 
in Section 15.6. The experiment was first performed by Franken, Hill, 
Peters, and Weinreich (1961). A full account of the theory is given by 
Yariv (1967, Chapter 21). We note the main points briefly. 

In this case the appropriate nonlinear effect is a quadratic dependence 
of P on E, and it is assumed that the components are given by 

/» , - («*-Oe^ + V ^ . (16.62) 

Ammonium dihydrogen phosphate, for example, exhibits this effect with 
diJk nonzero when ij, and k are unequal. The anisotropy of the relation 
corresponds to the anisotropy of the crystal. It would be modeled by an 
unsymmetric potential well with a term 

K(P)cc/»,/»/. 

in the three dimensional version of (16.4). In general, nQ depends on the 
frequency « due to the dispersion, but in many cases the djJk are indepen-
dent of u. 

Maxwell's equations may be reduced to 

but a little care is needed in using (16.62) directly when a number of 
interacting modes of different frequencies are involved, because of the 
dependence of n0 on u. However, if P, is split into two parts /*, = P? + P", 
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where /*,' refers to the linear part and P" to the nonlinear, we know that 
for any particular frequency 

i (d2Ei i d2P'\ nlu2 , 
1 ' ' ' ' ' ' ^-E,^-k%, (16.64) c2 \ dt2 €0 dt2 

where k(u) is the corresponding wave number for linear waves. We now 
take a number of interacting plane waves whose y and z components are 
given by 

£,-y24a,(*)exp(/*.-'-«.0. 

where a = ± 1, ±2, . . . , 

*_„ = *„, <*-n=-*n, A<-"> = A<">*, 

and kn,un satisfy the linear dispersion relation. On substitution in (16.63), 
we have 

The nonlinear term P" produces modulations of the amplitudes A(a). The 
modulations are assumed to be slow compared with the wavelength and 
the second derivatives with respect to x are neglected. Assuming that 

we have 

dA^a) 

2 ik«~b- exP ('*«* -'"«') 

- - T ? (^ + ̂ )%kAJfi)A^^p{i(k0 + ky)x-i(Up + Uy)t}. 4 p, 

(16.65) 

For three interacting waves with frequencies satisfying the resonance 
condition 

w,+w2 = w3, (16.66) 
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the terms proportional to e'"'' give 

dA(" iiL~e 

Similarly, 

dAJ2) ̂  ;>0c0 

dx 2n0 

dAJ3) ̂  JHQCQ 

dx 2«n 

^d^A^A^tx^i^-k.-k^x), 

^Aj^A^cxpi-iik.-k^-k^x). 

If we assume that A(3)=0 initially at x = 0 and that the primary waves 
A(1),A(2) are very little depleted by the interaction, we may take A(1),A(2) 

constant in the equation for dk(y)/dx and obtain 

^-^Aj^A^^jp-, A*-*,-*,-*,. 

The amplitude is proportional to (sinixA/c)/|AA:. If the interacting waves 
satisfy the resonance condition 

bk = k3-kx-k2 = 0 (16.67) 

exactly, A0) increases linearly with x at first, but the other interaction 
equations (reducing A,,A2 as A3 builds up) must then be included. The 
energy oscillates between the interacting modes. Eventually, loss of energy 
to higher harmonics and dissipation of energy must be incorporated. 

In the case of second harmonic generation, the second harmonic is 
produced by self-interaction in which 

wl = to2 = u), «3 = 2w. 

In normal circumstances, however, kk = k(2ui)-2k(u)^0 due to the dis-
persion, and the second harmonic generation would remain fairly small. To 
improve on this and obtain true resonance, Giordmaine (1962) and Maker 
et al. (1962) proposed the ingenious device of using birefractive crystals 
(described in Section 12.8) to match an ordinary ray at frequency w with 
an extraordinary ray at frequency 2w. The matching condition 

kM(2o)-2km(o)-0 
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n o <<"> j k 
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\ I / / optical 
\ \ I S axis 

Fig. 16.1 Index matching of ordinary and extraordinary rays. 

is equivalent to 

/ i w ( 2 t t ) - n < 0 > ( « ) - 0 , 

where subscripts e and 0 indicate extraordinary and ordinary rays, respec-
tively. The variation of nw(2w) and H(0)(U) with the angle from the optical 
axis is as shown in Fig. 16.1. The vector k as shown gives the required 
direction for resonance. For a ruby laser beam (X = 6940 A) in a crystal of 
potassium dihydrogen phosphate the angle is 50.4°. Full details as well as 
alternative possibilities are given by Yariv (1967). 

With these improvements of the resonance condition, the experiments 
gave beautiful confirmation of the theory. A striking photograph taken by 
R. W. Terhune is reproduced in the frontispiece of Yariv's book. 

WATER WAVES 

16.6 The Average Variational Principle for Stokes Waves 

We now apply the variational approach to some problems in the 
theory of water waves. The variational principle is given in (13.16)—(13.17) 
of Section 13.2, and the approximate developments of Stokes and Korte-
weg-deVries, backed by subsequent mathematical existence proofs, assure 
the existence of periodic dispersive wavetrains. Since <p is a potential and 
only its derivatives appear in the Lagrangian, the most general form for a 
periodic wavetrain is 

<p = /3x-yt + <l>(0,y), 9=kx-at, 
(16.68) 

V = N(0), 

where $(ff,y) and #(0) are periodic functions of 0. The parameter /J is the 
mean of the horizontal velocity <px, and y is related to the mean height of 
the waves. In the uniform case, a frame of reference can be chosen in 
which /? = 0 and the mean height is zero. This was done in the earlier 



554 APPLICATIONS OF THE NONLINEAR THEORY Chap. 16 

discussion [see (13.120) and (13.121)]. Notice that y^O even for this 
choice. In the modulation theory, changes in the mean velocity and the 
mean height are coupled with changes in the amplitude. Accordingly (i,y, 
and a related parameter for the mean height must be left open. The 
nonlinear coupling of amplitude modulations with mean velocity and 
height is an important physical effect and the mathematics fits it quite 
naturally. It is the prime example of the situation noted in (14.62) and the 
following discussion of Section 14.7. 

In the lowest order modulation approximation, the average 
Lagrangian is found by substituting the periodic solution (16.68) into the 
expression (13.17). In the first instance we shall consider a horizontal 
bottom and choose the origin y = 0 at the bottom so that h0 = 0. We have 

£ - T - ( VLd9, (16.69) 

where 

rN(e) i i 2 i i 
L=j p^y + ̂ e-^iP + k^f-j^-gy^dy 

= p(y-^2)iV-ipgyV2+(W-/3fc)pJ^\^ 

-pj [jk^2
9+^dy. (16.70) 

Since exact expressions for $(9,y) and N(9) are not known, further 
progress is made by adopting either the near-linear expansions of Stokes or 
the long wave theory of Boussinesq and Korteweg-deVries. We pursue the 
Stokes development. The periodic functions <b(9,y) and N(9) are expanded 
as Fourier series in the form 

00 A 

<&(9,y)= V — cosh nky sin nO (16.71) 
l 

N(9) = h + acos9+^ancosn9. (16.72) 
2 

The main parameters will ultimately be the triads (u,k,a) and (y,/$,h); a is 
the amplitude parameter and h is the mean height of the surface. It may be 
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assumed in advance that the coefficients an,An will be tya") for small 
amplitudes; (16.71 HI6.72) are substituted in (16.69H 16.70) to obtain an 
expression for £ to any desired order in a. The main interest is in the first 
nonlinear effects, which are of order a4 in £, so it is convenient to 
calculate 2 up to this order. The coefficients Au A2, a2, appear in the ex-
pression, in addition to the two main triads, but they may be eliminated by 
solving the variational equations 

2.4, =0, 2A2 = 0, 2a2 = 0 

for/I,, A2, a2 and resubstituting the results in Q. These steps are tedious but 
unavoidable, whatever approach is used. It is, on the whole, a little simpler 
to obtain the relations for Al,A2,a2 from the variational principle, rather 
than directly from the equations as outlined in Section 13.13. This route 
also has the advantage that £ is determined once and for all, and all other 
quantities such as mass, momentum, and energy flux are simply derived 
from it without repetition of similar algebraic manipulations. 

The eventual expression for £ is 

e-P(7-l^)*-i«*»+l£ 

1 k2E2 (9T*-10T2+9 
2 pg \ 8T4 

where 

E=-pga\ r=tanhA:A. 

It will be seen below that E is the energy density for linear waves moving 
into still water; it becomes a convenient amplitude parameter in place of a. 
In general, changes of the mean quantities (y,/i,h) are coupled to the 
wavemotion and it will be seen that the changes are 0(a2). It is therefore 
consistent to replace h by the undisturbed depth h0 in the coefficient of the 
term in a4 and replace T by 

T0=taahkh0 

in that term. It is important, however, to keep h in the earlier terms. In the 
original derivation of the expression for £ (Whitham, 1967), it was 
supposed that y and /S were O^a2), since the case of interest there was 
propagation into initially still water. But (16.73) is in fact true without that 
restriction. The extension allows the study of waves on currents, for 

gki&nhkh I 

+ 0(E3), (16.73) 



556 APPLICATIONS OF THE NONLINEAR THEORY Chap. 16 

example, where the changes in B due to the waves will be 0(a2), but B 
itself will include the nonzero undisturbed value of the stream velocity. 

There is some slight difference in the form of £ depending on the 
choice of the zero level of the potential energy. In deriving (16.73) from 
(13.17) the zero level was taken at the bottom, assumed to be horizontal. If, 
more generally, the mean surface is y = b and the bottom is y = — h0, the 
term \pgh2 in (16.73) is replaced by 

\pgb2-\pghl; (16.74) 

the other terms are the same with h = h0+b. This modification must be 
used when the bottom is not horizontal and therefore no longer available 
as the reference level for potential energy. We shall take the bottom to be 
horizontal and use (16.73) unless the contrary is stated specifically. 

16.7 The Modulation Equations 

For a modulated wavetrain the term Bx — yt in (16.68) must be 
replaced by a pseudo-phase \l>(x,t) and y,B defined by 

just as kx-ut is replaced by the phase 0(x,l) (see Section 14.7). The 
average variational principle 

8Jj t(u,k,E;y,B,h)dxdt = 0 (16.75) 

is to be used for variations in 8E,80,8h,8\p, and we have 

8E: 

S6: 

8h: 

8v//: 

tE=0, 

i p _ i p =n 
9/ " 9x * "' 

£*=o, 

The dispersion relation £ £ = 0 gives 

(»-Bkf j ( 9r0
4-ior0

2 

gktanhkh 47^ 
+ 9 

dk 9w n 

9r dx ' 

f4-

— + 0(E2), 
Pg 

(16.76) 

(16.77) 

(16.78) 

(16.79) 

(16.80) 
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in agreement with (13.123). The companion relation £A =0 gives 

£} y-^fi 2+gh+±\-j^-\^ + 0(E2). 

Since y = — ^,,/? = i^, this is a Bernoulli type of equation for the mean flow 
potential ^, modified by the wave contribution proportional to a2. In such 
relations it seems to be convenient to express coefficients depending on T0 

in terms of 

«o(*) = (s*tanhA:/!0)
1/2, c0(k) = (gk-1 lanh kh0) , 

1 f 2kh0 

the linear values for waves moving into still water of depth h0. We have 

2 \ co ) Pho 
y=\p2 + gh+±\ ^>-l\^- + 0(E

2). (16.81) 

16.8 Conservation Equations 

The wave action density and flux in (16.77) are 

gktanhkh 2 (gktanhkh)2 dk ° 

= - f (P + C0) + O(E2). (16.83) 
w, o 

These take the usual form in terms of the energy density E. 

Mass Conservation. 

The companion quantities in (16.79) are 

ey -pA, - tp =php+ £- + 0(E2). (16.84) 
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We see therefore that the first equation in (16.79) is the equation for 
conservation of mass and that the waves add a net contribution E/c0 to 
the mass flow. It is particularly valuable, then, to introduce the mass 
transport velocity defined by 

U = P+JL. (16.85) 
pc0h 

Energy and Momentum. 

The energy density and flux, defined in (14.74), are found to be 

\PnU2
+± u£u+y£y-Z = \phU2+\pgh2 + E+0(E2), (16.86) 

-w^-Y£^=p/ll/^C/2 + g/.)+t/(-^-iJ£+(t/+C0)£+O(£2). 

(16.87) 

The momentum density and flux [see (14.75)] are found to be 

k£„ + p£=php+-=PhU+0(E2), (16.88) 
ô 

-ktk-ptp + t=phU2+^pgh2+i^--^\E+0(E2). (16.89) 

The simplicity of form obtained by introducing U in place of (i is to 
be particularly noted. For then the contributions of the mean flow, the 
waves, and their interactions are clearly seen. From (16.86), E is confirmed 
as the energy density contributed by the waves. The wave momentum 
E/c0 in (16.88) takes the usual form, but the complete term is also 
conveniently written as phU. The expression for the momentum flux 
(16.89) contains the interesting term 

< - & - * > ■ 

(16.90) 

which was first pointed out and exploited by Longuet-Higgins and Stewart 
(1960, 1961), who refer to it as radiation stress. It should then be noted that 
it contributes a rate of working US in the energy flux (16.87); this is a wave 
interaction term in addition to the usual energy flux (£/+ C0)E. Whenever 
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a mechanical system is described relative to a frame moving with its center 
of mass, the total energy is 

i 2 m(U+vf= | t / 2 5 > + U^mv+ ± ^mv2, 

the middle term being U times the relative momentum; the three terms in 
(16.87) are the counterparts of this simpler case. 

From the various expressions obtained above, the original equations 
(16.77H 16.79) may be written 

* < „ ) + £ ( , * , + £ ) - * | + | l - 0 , (16.92) 

where w and y are given by (16.80)—(16.81) and terms 0(E2) are omitted. 
An alternative set, introducing the energy and momentum equations in 
place of wave action and the consistency equation between /? and y, is 

*, + Wjc = 0, (16.93) 

(ph), + (phU)x = 0, (16.94) 

(pM/), + ( p « / 2 + i W A 2 + s ) =0, (16.95) 

^phU2+^pgh2 + E^ +Lhu(±U2 + gh))+US+(U+C0)E] = 0. 

(16.96) 

In the early work concerning waves on currents there was some 
question about the correct form for a "wave energy" equation for E. One 
way of deducing the correct form is to eliminate h and U as much as 
possible in (16.96) from the preceding equations. It is easily found that 

E,+ {(U+C0)E}x+SUx-0 (16.97) 

is correct. The need for the extra term SUX was pointed out by Longuet-
Higgins and Stewart (1961). Of course (16.97) is equivalent to the wave 
action equation in (16.91), which appears to be more fundamental in the 
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present approach. To see the equivalence we note that the wave action 
equation can be expanded to 

E,+ {(fi+C0)E}x + A: 9tQp ( /i d"o 
w0 dk u0 dh £/8x-0. 

The coefficient in square brackets is equal to (2C0/c0— £) and /? = 
U+ 0(E), so the two agree. 

16.9 Induced Mean Flow 

Equations 16.92, or alternatively the pair (16.94X 16.95), can be 
viewed as determining the changes in h and U induced by the waves. These 
are the long wave equations [see (13.79)] with the additional wave term S. 
We are concerned here with the changes in h and U induced by the 
wavetrain. For waves moving into still water of depth A0, we may suppose 
U and b — h — h0 to be small and linearize the equations to 

b, + h0Ux-0, 
(16.98) 

For many purposes it is sufficient to take S as a known forcing term 
already determined from the linear dispersive theory for the distributions 
of k and E. Since 

*, + C„(*)*x-0, E, + (CoE)x=0 

in that theory, and since S is of the form f(k)E, it follows that 

{g(k)S)l+{g(k)CoS}x = 0 

for any function g(k). It is then easily verified that a solution of (16.98) is 

h-h-h h° J-
b~H h°~ g*0-C0

2(fc)'pV 
(16.99) 

E C0{k) S 
U=R+—=L- = — — . 

^A gh0-C${k) ph0 

To these may be added the solutions of the homogeneous equations, that 
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is, functions of x± vgh0 t. It is clear from (16.99) that the group velocity 

and the long wave velocity V gh0 should not be too close compared with 
a2. But this is required for the validity of the Stokes expansion; in the limit 
Cg-^ghg, the Korteweg-deVries development is needed. 

In starting up a wavetrain, transient long waves will be propagated 

with velocities ± \gh0 , but (again assuming C0 and vgh0 are well 
enough separated) the mean flow and mean height accompanying the 
wavetrain are given by (16.99). The starting transients set up on moving an 
obstacle through water are discussed in detail by Benjamin (1970). 

16.10 Deep Water 

For deep water, AcA0»l, the induced changes in h and /? become 
negligible. This should be expected in advance, but it is confirmed expli-
citly by (16.99). The average Lagrangian (16.73) becomes 

e- = } ( ^ - I ) £ - ^ + 0(£3)- (16J00) 

There is no interaction between mean flow and the waves described by 
<L,W. As far as the waves are concerned, we may work entirely with £w. It 
fits the simple form of earlier problems, where pseudo-frequencies do not 
arise, and u,k,E are the only wave parameters. The dispersion relation 
from ££ =0 is 

u* = gk 1 + + ••• 
I PS ) 

= gk(l + k2a2+---), (16.101) 

in agreement with earlier results. The modulation equations for E and k 
are given by (16.77). 

On a given current U0, the preceding arguments refer to /? - U0 rather 
than /? itself and, in the limit of deep water, tw is modified to 

a 1 f ( w - U0k) ) 1 Ur-2 
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16.11 Stability of Stokes Waves 

For deep water waves, the simple theory of Section 14.2 applies. From 
(16.101), 

<o0(*) = (gA:)l/2, U2(k)=±(gkf2k. 

The quantity CJ'QU2<0; therefore modulations grow in time. For finite 
depth, the coupling with the induced mean flow becomes important and 
has a stabilizing effect. 

The stability is decided by the type of the full set (16.91)-{ 16.92), 
which is a fourth order system for k,E,fi,h. The type in turn is decided 
from the characteristics. It is straightforward, but lengthy, to find the 
characteristic velocities directly by the standard method. The analysis can 
be simplified and given a more significant form by breaking the argument 
into two parts. First, (16.99) is a sufficient approximation for the relations 
of h,fi to E. At the same time, this first step brings out the result that two 

of the characteristic velocities are ± vgh0 . The expressions for h,fi may 
be used in the equations (16.91) for k and E to determine the other two 
characteristic velocities. 

With b = h — hQ and /3 taken to be O(E), the dispersion relation (16.80) 
may be approximated by 

„ - « b + */M.^C0-Ic0)j- + —, -^ + 0(E). 

From (16.99), this reduces to 

where 

o> = w0(k) + Sl2(k) — + 0(E2), (16.103) 
Pco 

9r0
4-10r0

2 + 9 i f(2C0-(l/2)c0) | 
2 sr0

3 kh0[ gh0-c> 

Since 6,/J have been eliminated, we now have the simple modulation 
equations for k,E of the type discussed in Section 14.2 and can read off 
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the result for the characteristic velocities with no further calculation! The 
characteristic velocities are 

-*£-) ■ (l6,04) 

Here <o0 = (gA:tanh/:/j0)
1/2 and U'Q is always negative. Thus the characteris-

tics are imaginary for fl2 > 0 and real for fl2 < 0. The formula for Q2 shows 
clearly the stabilizing effect of the mean flow as kh0 decreases from the 
deep water limit. The critical value for stability is determined by the value 
of kh0 for which fl2 = 0. This value is found numerically to be kh0 = 1.36. 
For kh0> 1.36 modulations grow; for khQ< 1.36 they propagate in typical 
hyperbolic fashion. 

The instability for deep water waves was first deduced by Benjamin 
(1967) by the Fourier mode analysis described in Section 15.6. This was 
then realized to be the significance of the elliptic modulation equations 
and the critical value kh0— 1.36 was deduced for the finite depth case. The 
value was then confirmed by Benjamin using his Fourier mode approach. 
This sequence shows the valuable interplay between the two approaches. 

It should again be remarked that the "unstable case" refers to growth 
of the modulations and not necessarily to chaotic motion. To assess the 
eventual behavior, higher order dispersive terms must be included as 
described in Section 15.5. From that analysis we infer that the next stage 
would be the development of modulations where the envelope of the 
wavetrain is a sequence of solitary waves. 

16.12 Stokes Waves on a Beach 

For a wavetrain approaching a beach, we may take the modulation 
parameters to be independent of t. From the modulation equations, we 
then have the four relations 

w, - tk, y, - £p = constants 

to determine k(x), E(x), f!(x), h(x) in terms of their original constant 
values out at sea and the depth distribution hQ(x). To the lowest approxi-
mation, the first two relations are 

1/2 
w = «0 = (gk tanh kh0) = constant, 

E (16.105) 
- tk = —C0=constant, 
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which are sufficient to determine the distributions of k(x), E(x) in terms of 
the depth distributions h0(x). Since w0 is constant, the relation for E can 
also be interpreted as one of constant energy flux £C0, but it now seems 
that wave action is more fundamantal for such "adiabatic" processes. The 
relations y = constant, - tp = constant determine the accompanying small 
changes in h — h0 and /?. The results are 

1 /2C0 \ r-
b = h-h0=-±\—--1 

0 - E 

2\ co I Pgh0' 
(16.106) 

pc0hQ ' 

[The slight modification noted in (16.74) is used in calculating y.] There is 
a depression of the mean surface and a countercurrent to balance the mass 
flow induced by the waves. 

On a shelving beach the amplitude increases as the depth decreases. 
At sufficiently high amplitudes, which can be variously estimated as 
a/X = 0.142 from Michell's deep water calculations or a//i0 = 0.78 from 
McCowan's solitary wave estimates, the waves peak and the Stokes theory 
ceases to apply. 

16.13 Stokes Waves on a Current 

A similar discussion applies to waves propagating along a nonuniform 
current U0(x), which may be assumed to be due to variations in the depth 
h0(x) or fed by upwelling from below. In this case, we have 

u = kU0(x) + io0(k) = kU0(x) + { gA:tank/c/i0(x)}'/2 = constant 

(16.107) 

for the determination of k(x), and 

- tk = — { U0(x) + C0(x)} =constant (16.108) 

for the determination of amplitude. For deep water 

Wo=U*0'/2' c o = ( l ) ' C o = 2 C ° : 



Sec 16.14 THE VARIATIONAL FORMULATION 565 

we may express the results in the form 

1/2 
kU0+(gk) = constant, 

(16.109) 
Ec0(2 U0 + c0) = constant. 

These were first found by Longuet-Higgins and Stewart (1961) after 
detailed direct analysis of the equations of motion. For waves moving 
against a current the result is singular, predicting £-»oo, when the magni-
tude of the group velocity equals the stream velocity. At this stage the next 
order terms of order E2 become crucial and ensure a finite result. This 
question has been studied by Crapper (1972) and Holliday (1973). 

KORTEWEG-DEVRIES EQUATION 

To conclude this chapter, the modulation theory is developed for the 
Korteweg-deVries equation. There are a number of special features in the 
derivation, and some nontrivial tricks were needed to get exact formulas 
for the characteristic relations. Because of the central position of the 
equation in the subject and the possible tie with further developments in 
the exact analysis of the equation, it seems worthwhile to document these. 

16.14 The Variational Formulation 

It is convenient to choose the particular normalization in which the 
equation becomes 

1,, + 6 ^ + 1 , ^ -0 . (16.110) 

There is no variational principle for the equation as it stands and 
some potential representation is required. The simplest choice is t) — q>x; the 
equation becomes 

9 „ + 69»V„ + 9««x-0 (16.111) 

and a suitable Lagrangian is 

£=-|<P,<P*-<P,3+^£- (16.112) 

One could also introduce x = <Pxx
 m (16.111), work with a pair of functions 

qp, x. and use a Lagrangian involving only first derivatives. That has the 
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advantage of fitting the general discussion in Section 14.7, but it is simpler 
to work with (16.112) and add a few special manipulations. 

The need for a potential representation is basic to the structure of the 
problem and affects the number of parameters in the uniform wavetrain. 
We must take 

<jp = ^ + 4>(0), \p = (}x-yt, 6=kx-ut. 
Then 

r) = P + kt>$, (16.113) 

and the parameter B refers to the mean value of TJ. In terms of TJ the 
uniform wavetrain solution of (16.110) is given by 

and there are two immediate integrals 

^ + 3 r , 2 - | r , + B = 0, 

A: \ 2 + 2 I ) 3 - | T , 2 + 2BV-2A=0, (16.114) 

where A,B are constants of integration. For this solution, the Lagrangian 
(16.112) may first be expressed in terms of TJ as 

and then, from (16.114), in the equivalent form 

L-khg+^B+^y-fyfy-A. (16.115) 

We now require the average Lagrangian 

2-n J0 

From (16.113), 

LIT JQ 
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from (16.114), 

±f2*k*njd9-±<f>k\dn-kW, 

where* (16.116) 

W(A,B,U) = j^${2A-2B-n+Url
2-2-ni}i/2dn, 

</=£. 
Finally, then, 

t=klV(A,B,U) + BB+jBy-^UB2-A. (16.117) 

The variational equations for the triad (y,B,B) are 

SB: B=-kWB, 

dB 3y 
Consistency: — + — = 0 . 

9/ ox 

From the last two we may take y—UB — B, without loss of generality, so 
we have 

B=-kWB, y=-kUWB-B, 
and 

j;(klVB) + -^(kUWB + B)=0. (16.118) 

For the triad (u,k,A) it is convenient to replace the variational equation 
for 89 by the momentum equation 

±(ktu+B£y) + ±(£-k£k-B£B)=0. 

We have 

8A: kWA = \, (16.119) 

*The symbol U is now used for the nonlinear phase velocity as opposed to its use for the mass 
flow velocity in Sections 16.9-16.13. 
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Momentum: j.(kWu) +-$-(kUWu-A)=0, (16.120) 

Consistency: ^ + y-(kU) = 0, u = kU. (16.121) 

Equations 16.118, 16.120, and 16.121 may be viewed as three equations for 
A,B,U, with k given by (16.119). A more symmetric equivalent form is 

St dx A dx 

dWv dWv dA 

-w+u-d~^fx-°' <16122> 
dwA dwA 9 f / 

dt dx A dx 

In terms of these variables, the wave number, frequency, and mean value 
fj = B are given by 

1 U W„ k = h "=h p—«rA' (,6-,23) 

The amplitude a is obtained by relating the zeros of the cubic in W to the 
coefficients A,B,U. The natural choice of basic parameters in the physical 
description would be k,B,a; the trio A,B,U is an equivalent set. The 
dispersion relation u = u(k,B,a) is provided implicitly by the second ex-
pression in (16.123). 

The equations in (16.122) have a reasonably symmetric appearance, 
whereas the original variational equations in B and y look awkward. This 
seems to be associated with the hybrid nature of the Korteweg-deVries 
equation as an approximation to the original water waves formulation. In 
deriving the approximation, the fluid velocity is expressed in terms of the 
depth [see (13.102)], so that the triad y,B,B becomes intermingled in an 
unsymmetrical way. For instance, B is introduced as the mean height in 
(16.113), yet its natural role is that of the mean fluid velocity. This duality 
is smoothed out in the more symmetric form (16.122). A related point is 
that because of the potential representation, we have to work at first with a 
fourth order system; the more balanced form is recovered only when we 
revert to a third order system. 
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16.15 The Characteristic Equations 

The system (16.122) is hyperbolic in general and we now consider the 
characteristic equations. The function W and its derivatives WA, WB, Wv 

can all be expressed in terms of complete elliptic integrals and the 
characteristic form of the equations could be ground out directly, but with 
considerable labor. Surprisingly, however, if the zeros p,q,r of the cubic 

ii
i-]rUri

2+Bj}-A=0 (16.124) 

are used as new variables in place of A,B, U, and if various (nontrivial) 
identities among the second derivatives of W are introduced, the equations 
may be put in a simple form from which the characteristic relations and 
velocities are seen immediately. It turns out that the equations may be 
written 

{q+r\+P{q+r)x = Q, 

|>-2 ( , + g + r ) - * * Wq-Wt \ °6-1 2 5 ) 

plus similar equations for r+p and p + q in cyclic permutations. Thus the 
Riemann invariants are 

q + r, r+p, p + q, (16.126) 

simply, and the corresponding characteristic velocities P,Q,R are the 
coefficient in (16.125) and its permutations. 

At this point it is useful to express the quantities concerned in terms of 
elliptic integrals. We introduce 

a=P-^-, * 2 = ^ f P>q>r, (16.127) 

a is an amplitude variable and .? is the modulus of the elliptic integrals. 
Then it may be shown that 

D(s) 

where D(s),K(s) are the complete elliptic integrals in standard notation 
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(Jahnke and Emde, 1945). If we rather use fi,a,s as basic variables, we 
have 

p = fi + 2a^, 9 = /3 + 2 a ( | - l ) , r = /? + 2 a ( - | - 1 ) . (16.128) 

The wave number and phase velocity are given by 

k-WA-*lK-' ( , 6 1 2 9 ) 

t / - | - 2 ( p + 9 + r ) « 6 j 8 + 4 a ^ - - ^ ) . (16.130) 

The Riemann invariants and characteristic velocities are as follows: 

Riemann Invariant Characteristic Velocity 

q+ r P = U ;— 
s2D 
4a(\-s2)K 

r + p Q=U--+ — 

p + q R=U-

s2(K-D) 
Aa(\-s2)K 

s2(s2D-K) 

In general the velocities P,Q,R are distinct and P<Q<R. Thus the 
system is hyperbolic. The limits s2^>0 and s2->\ are both singular in that 
two of the velocities become equal. The limiting equations are then not 
strictly hyperbolic, although, due to the uncoupling of one of the equa-
tions, they may still be solved by integration along characteristics. This is 
the situation encountered earlier in the linear theory, to which the limit 
s2—»0 corresponds. 

Small Amplitude Case. 

If we take a-*0,s2^>0 but keep the wave number k given by (16.129) 
finite and nonzero, we have 

2a"2 

s — . 

In the extreme limit s2-*0, we find 

P,Q-+6l3-3k2, /?—60. 
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The linear theory would neglect changes in /? and we would have the linear 
group velocity — 3 k2 as a double characteristic. In the next order correc-
tion, the near-linear theory, we find 

/>~6y8-3/t2-3 

(16.131) g~6/?-3A;2 + 3 

*~*+i$\ 
The corresponding approximation in the original equations gives the set 

A + 6/3& + ¥ = 0, 

k, + \6pk-ki + 
2 k 

= 0, (16.132) 

(a2), + {(6f}-3k2)a2}x + 6a2f}x = 0. 

The terms in square brackets are the near-linear corrections to linear 
theory. In the linear theory, the equation for /? uncouples and may be 
solved independently; it provides the characteristic velocity R = 6fi. Usu-
ally, however, the solution y3 = 0 is appropriate and we have the usual 
modulation equations for a and k. The near-linear corrections introduce 
the important qualitative changes that make the system genuinely hyper-
bolic and split the remaining group velocities. The modification of the 
equation for (i is crucially important. If only the correction to the 
frequency (in the second equation) were introduced, the pair of equations 
would have imaginary characteristics and would appear to present a case 
of instability. In the terminology of Section 14.2, we have oi0=—ki, 
<o2 = 3/2A:, Wo'w2<0. But the coupling with /? stabilizes the modulations 
and the full system is hyperbolic. We can simply calculate the characteris-
tics of (16.132) and check (16.131), but it is again instructive to take the 
approach used in Section 16.11. If /? is entirely induced by the wave 
motion, we may use the second and third equations in (16.132) to show 
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that (a2)x = (a2/3k2)„ to lowest order. Then from the first equation 

/>-4. 
2k1 

After this is substituted in the second equation the effective change in 
frequency is 

r> am . 3 a2 3 a2 

0 , - 6 / * * + — - - — . 

The equations for a and k are now hyperbolic with characteristic velocities 
-3k2±3a in agreement with (16.131). 

16.16 A Train of Solitary Waves 

In the other limit s2—>l, the wavetrain becomes a sequence of near-
solitary waves. In this case, K and D are asymptotically given by 

K = A+0(l-s2), D = A-0(l-s2), A = log-

In the solitary wave limit it is natural to take the amplitude to be the height 
of the crests above the troughs and to take the wave number to apply to 
the number per unit length (rather than number per 2w). Accordingly we 
introduce 

a, = 2a, /c,= k_ 
2m 

Then from (16.129) we have 

1/2 

A = ' ; . (16.133) 
4AC, 

Errors of order \-s2 are exponentially small in (2a])
1/2/kl and we work 

to that order. Then 

p~/3 + al-2kl(2aiy
/2; q,r~(l-2kl(2alf

/2; (16.134) 
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U~6B + 2al-l2kl(2ax)
i/2; (16.135) 

P^-X6k,{2axfi
X-^{la^\ 

1 l - 4 A c 1 ( 2 a 1 ) - ' 

Q,R~6B + 2al-l2ki(2al)
l/2 (16.136) 

We note that 

-n.l/2\\ I I -„.W\\ 
q=r+0 expI—^— I , Q = R + 0 expl 

* i 

In the near-linear limit changes in B propagate primarily on the fastest 
characteristic (velocity R), whereas a and A: are carried primarily by the 
two slower ones. By contrast, in this limit B is carried primarily by the 
slowest characteristic (P), and a, and kx propagate out ahead. In the 
forward region we may integrate along the P characteristic and deduce 
that q + r remains equal to its initial value. But in this limit q^r 
throughout so that q and r individually remain equal to the initial value. 
The normalization would usually be such that q = r=0; hence they remain 
zero. Then from (16.134) we have 

B^2kl(2ay
/2 (16.137) 

and 

p~ax; q,r~0; U~2ax; Q,R~2ai. 

The corresponding approximate equations can be shown to be 

* i , + ( 2 f l i * . ) , - 0 , 
(16.138) 

a i < + 2«iau = 0 -

In this approximation, the system is not strictly hyperbolic, but a, may be 
found first by integration along the characteristics dx/dt = 2av and then kx 

can be found by integration along the same characteristics. The structure is 
similar to the one found in the linear theory. However, this time it is a, 
that remains constant on the characteristics and kx decreases like \/t. 

As in the case of the linear limit, the next order approximation beyond 
(16.137)—(16.138) modifies the structure of the equations; the characteris-
tics are separated and the system becomes truly hyperbolic. 
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The equations in (16.138) are so simple by now that one would assume 
there is some direct derivation without going through the general case first, 
and this is indeed true. The Korteweg-deVries equation may be written in 
conservation form as 

*?, + (3T?2 + O X = 0, (16-139) 

and if it is averaged over a number of waves we have 

0»), + ( V ) x « 0 . (16.140) 

Now a solitary wave with q~ r = 0 and p = ax is given by 

f i a \ l / 2 i a \i/2 \ 
T, = a i s e c h 2 n ^ - j * - 4 ( y ) < • (16-141) 

If the average values are calculated from 

/

oo /.oo 

T)dx, T)2 =kx I T) dx, 
- oo ■' — oo 

using this solution, we have 

S/2 \6kl(aif
2 

'-«ffl- ?-T(S) 
Equation 16.140 becomes 

(*,a{/2)( + (2*ia?/2)x-0. (16.142) 

From (16.141), the phase velocity t/ = 2a,; therefore the consistency equa-
tion ku + (k{U)x = 0 becomes 

ku + {2a{k,)x = 0. (16.143) 

This pair for kx and ax is equivalent to the pair in (16.138). Notice that in 
this derivation it is implicitly assumed that q and r remain equal to zero in 
the modulation. 

An important particular solution of the equations is 

a^Tr k*~TA?i\ (,6,44) 
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where / is an arbitrary function. This is easy to interpret. A solitary wave 
of amplitude a, moves with velocity 2a,. Therefore (16.144) represents a 
sequence of solitary waves each retaining a constant amplitude and mov-
ing on the path x = 2axt. The decrease in A:, is due to the divergence of 
solitary waves of different amplitude. The solution is represented in Fig. 
17.1, where it is deduced from the discussion of exact solutions. However, 
it is completed there by a discontinuity in a, and kx. We therefore consider 
what the jump conditions are for our equations. 

There is the usual question of which conservation equations should be 
maintained across the discontinuity. If we accept (16.142)—(16.143), the 
jump conditions are 

- K [ V ! / 2 ] + [2M? / 2 ]=0 , 

-V[kl] + [ 2 ^ , 1 = 0 , 

where V is the velocity of the discontinuity. A jump from a,=0 to a 
nonzero value a{0) would therefore have V=2a\°\ This is the phase 
velocity and the result indicates that the solution (16.144) may be cut off at 
any one of the solitary waves in the sequence. It is this choice that is 
confirmed by the exact solution in Section 17.5. The function / and the 
amplitude a{0) can be determined only from the initial conditions, which 
are provided in Section 17.5. Of course the exact analysis is superior to the 
modulation theory of solitary waves in the case of the Korteweg-deVries 
equation. But the confirmation of the results in this case substantiates 
similar uses of the modulation theory in problems where exact solutions 
are not known. 

It might be noted finally that if the solitary wave solution is written 

and it is used to calculate an average Lagrangian defined by 

£ = * i f°° Ldx, 
■ ' - 0 0 

we find 
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The variational equations are 

8a: tol = 2tf,A;1, 

89: ( * n + (f"?/2)x = 0> 

Consistency: ku + u]x = 0. 

These are equivalent to (16.142)—(16.143). 



CHAPTER 17 

Exact Solutions; Interacting Solitary Waves 

17.1 Canonical Equations 

One of the most remarkable developments in recent work on non-
linear dispersive waves is the discovery of a variety of explicit exact 
solutions for some of the simple canonical equations of the subject. The 
main equations concerned are the following: 

1. The Korteweg-deVries equation, now normalized to 

V, + O7rnx + Vxxx = 0, (17.1) 
where a is a constant, 

2. The cubic Schrodinger equation 

iu, + uxx + r\u\2u = 0, (17.2) 

3. The Sine-Gordon equation 

<p„- <pxx + sin<p = 0. (17.3) 

Explicit solutions representing the interaction of any number of solitary 
waves can be constructed, and a precise prediction can be made of the 
number of solitary waves that will eventually emerge from any finite initial 
disturbance. 

These equations are canonical for the subject in that they combine 
some of the simplest types of dispersion with the simplest types of 
nonlinearity. The Korteweg-deVries equation combines linear dispersion 

< O = - K 3 (17.4) 

with a typical nonlinear convection operator. Equation 17.2 combines 
dispersion represented by 

W = K2 (17.5) 
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with a simple cubic nonlinearity. In both cases, the dispersion relation can 
be viewed as a Taylor series approximation to a more general dispersion 
relation, (17.4) referring to those odd in K and (17.5) to those even in K. [A 
term proportional to K added to (17.4) or (17.5) can be normalized out by 
choosing a moving frame of reference.] For this reason the equations are 
not mere models but frequently can be derived as valid approximations for 
long waves. The linear dispersion relation W2 = K 2 + 1 in (17.3) is still a 
fairly obvious general form, apart from its original relevance to relativistic 
particles in the Klein-Gordon equation; a number of problems in which 
the appropriate nonlinear term is sin<p were noted in Section 14.1. 

Ever since the Cole-Hopf solution of Burgers' equation, countless 
people must have tried similar tricks to solve (17.1), but the eventual 
method of solution requires much more than a simple trick. Gardner, 
Greene, Kruskal, and Miura(1967) developed an ingenious series of steps to 
tie the equation to an inverse scattering problem. The end result is the 
transformation of (17.1) to a linear integral equation, but it seems incon-
ceivable that anyone would discover it without intermediate steps. By 
hindsight, one can see that the substitution 

aV=\2(\ogF)xx, (17.6) 

which is a reasonable generalization of the substitution 

c = -2v(logq>)x 

for Burgers' equation, offers an easy route to the special solutions repre-
senting the interaction of solitary waves. The equation for F is not linear 
but it has some special structure, and solutions in series of exponentials 
lead to solitary waves. However, it is not clear how to extract more general 
information from the equation for F. 

Equation 17.2 was solved by Zakharov and Shabat (1971) by a similar 
inverse scattering technique, relying to some extent on the general ideas of 
Lax (1968). 

The explicit solution of (17.3) for two interacting solitary waves was 
first noticed by Perring and Skyrme (1962), apparently on the basis of their 
numerical computations. Lamb (1967,1971) subsequently showed how a 
Backlund transformation could be used consistently to produce further 
solutions. Recently Lamb (1973) and Ablowitz et al. (1973) have shown 
how inverse scattering theory can be used. 

The surprising overall result is that if a number of initially well-spaced 
solitary waves are allowed to interact, they will eventually emerge from the 
interaction and recover their original shapes and velocities. The only relic 
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of their interaction is a constant displacement from the positions they 
would otherwise have had. The analogy with the collision of particles is 
intriguing. The main solutions and methods of derivation will be described 
in this chapter. 

We add two related topics. Toda (1967a, 1967b) considers mass-spring 
chains which are discrete versions of some of our problems. If the exten-
sion of the «th spring from its equilibrium length is /•„(/), the equations 
may be written 

^ , = 2 ^ ) - ^ + . ) - ^ - ! ) , (17-7) 

where /(/•) is the force law for each spring. The continuous limit of this 
difference equation would be a wave equation, nonlinear if f(r) is a 
nonlinear function of r. In the nonlinear case the existence of uniform 
wavetrain solutions of (17.7) can be shown on the basis of a Stokes type of 
expansion in powers of amplitude. But Toda found ingenious exact expres-
sions in elliptic functions for the case 

/ ( r ) - - a ( l - * " * ) . (17.8) 

Moreover, these solutions have solitary waves as limiting cases and Toda 
was able to find solutions representing interactions with behavior similar to 
that of the continuous ones. 

Finally, the equation 

( 1 - <p?)tpxx + 2<px<p,<pxl - ( 1 + <PX
2)<P„ = 0 (17.9) 

was proposed by Born-Infeld (1934) via the variational principle 

SJ j{\-tf + <p*}i/2dxdt = 0. (17.10) 

The idea was to extend the simple wave equation (with Lagrangian 
i <P? ~ i <P2) a nd introduce nonlinear effects while preserving the Lorentz 
invariance properties. This equation admits waves of arbitrary shape 
moving with velocities of +1 or — 1. They may be chosen as "solitary 
waves" but lack the specific intrinsic structure of the previous cases. 
However, Barbishov and Chernikov (1967) have shown that explicit solu-
tions for interactions can be found, again with shape-preserving properties 
and a shift in position due to the interaction. A brief description is added 
even though there may be no deep relation with the others and they are 
not dispersive waves. 
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KORTEWEG-DEVRIES EQUATION 

17.2 Interacting Solitary Waves 

We first give the solutions derivable from the transformation (17.6). 
The parameter a can be normalized out of both (17.1) and (17.6), of 
course, but different choices corresponding to a =1,6, - 6 have all been 
used in the literature and it is convenient to leave it open here for ease in 
making cross-references. The derivation of (17.1) for water waves and its 
more general significance through (17.4) as an approximation for long 
waves in other contexts have been explained in Section 13.11. 

The transformation from TJ to F is most easily made in two stages. 
First 7}=px is introduced and the equation integrated to 

1 i 

then the nonlinear transformation 

op =12(logF)x 

is made. Terms up to the fourth degree in F and its derivatives arise, but 
the special feature of the transformation is that the terms of third and 
fourth degree cancel. The result is the quadratic equation 

HF,+ Fxxx)x- Fx{Ft + Fxxx)+l{Fl- FxFxxx)=0. (17.11) 

One notes the appearance of the basic operator 

a a3 

3/ 3*3 

and a certain balance to the equation. A possible (but rather tenuous) 
motivation for the transformation starts from the solution for a single 
solitary wave, which may be written 

0 — 0 
a7j = 3a 2 sech 2 -yA 9 = ax-ah, (17.12) 

where a and 90 are parameters. This is the x derivative of 

6a t a n h ( - ^ - ^ j - l , 
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which is in turn the x derivative of 121ogF where 

F= l+exp{- (0 -0 o )} 

a 
= \+e\p{-a(x-s) + a3t), s= — . (17.13) 

a 
This "derivation" focuses on one working rule for finding exact solutions 
in this area: to consider transformations which make the special solitary 
wave solutions appear as simple exponentials. One might note for com-
parison that the transformation c = - 2j»(log<f>)x for Burgers' equation puts 
the steady shock solution (4.23) into the form 

c. 
<p = exp( —a,jc + i>a*t) + exp(-a2x + valt), a,= y - . (17.14) 

Whatever motivation is used, we see immediately that (17.13) is a 
solution of (17.11) for any a and s. It is a solution corresponding to the 
operator 

3 93 

3' 8x3 * 

it satisfies F, + Fxxx = 0, and the third pair of terms in (17.11) vanishes due 
to the homogeneity in the derivatives. 

If (17.11) were linear, we could superpose solutions with different a 
and s, but due to the nonlinearity there will be interaction terms. A normal 
interaction approach would be to take 

/r=l + F ( , )+F ( 2 )+---
with the hierachy 

{/?"+£!!,},=o, 

{l*»+Fxx\}x=-3{^-Fx»F«\}, 

and so on, to solve. Let us take two terms like (17.13) for Fw: 

F{X)=fx+h j C - e x p f - a / x - ^ + a/f}, 7=1,2. (17.15) 

The equation for F(2) is 

{^(2) + ^ 2 2 } J t = 3a1«2(a2-a1)2 /1 /2 , (17.16) 
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and its solution is 

F^=(^yfj2 (1717) 
(«2 + " l ) 

The surprising thing is that all the remaining equations in the hierarchy 
then have zero on the right hand side, so that 

(a-, —a,) 
F=l+ / ,+ / 2 +-p V , / 2 (17.18) 

(«2 + « l ) 

is an exact solution of (17.11). 

The significant point in this solution is that the interaction terms 
produce only the product term/,/2 on the right of (17.16) and not terms in 
ff and /2

2, which could also be expected. This result generalizes to higher 
orders and the nonlinear terms in the equation never produce products of 
/ 's containing a repeated subscript. Thus with an input of only two terms 
as in (17.15) the only needed combinations are / , , /^ / ,^ , and we have an 
exact solution. If we start with 

j - i 

then Fi7) contains all terms fjk withyV=& but not f?; F(3) contains all terms 
f/kfi, with j^k¥^l but not f? or fffk; and so on. Thus the sequence 
terminates at 

F(N)ccfJ2---fN 

(having covered all products without repeated /'s), and there is an exact 
solution in the form 

J j¥>k j¥*k¥>l 

As if this were not amazing enough, it can also be shown that the solution 
may be written 

JP=det|JFm„j, (17.19) 
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where* 

2a, 

in n 

This result was first found by the more general approach referred to above 
and described in the next section, but it may be verified directly in (17.11) 
(see Hirota, 1971). 

With N modes fJ9 the solution represents the interaction of N solitary 
waves. We discuss the case N — 2. The solution for F is given in (17.18) and 
the corresponding expression for TJ given by (17.6) is 

O «?/l + «Ul + 2(«2" «l)Vlh + {(«2 - «.)/(«2 + «,)}2(«!/.2/2 + «?/. fi) 
1 2 ( l + / . + / 2 + { ( « 2 - « . ) / ( « 2 + « . ) } 2 / . / 2 ) 2 

where 

fj = exp { - aj(x - Sj) + aft}. 

A single solitary wave (17.12) may be written in terms of /as 

(17.21) 

a "I 

where the maximum of <nj occurs for / = 1. We note that 

Maximum amplitude of OTJ = 3a2, 

Position of maximum = s + ah, (17.23) 

Velocity of the wave = a2. 

The solution (17.21) is approximately a solitary wave with parameter a, for 
regions of the (x, t) plane where / , =* 1 and f2 is either large or small. To 

'There are a number of equivalent forms for the Fm„ which lead to the same final expression 
for i|. 
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verify this, observe the following: 

1. F o r / , - 1 , / 2 « 1 , 

2. F o r / , - 1 , / 2 » 1 , 

0_ { ( « 2 - « l ) / ( « 2 + » l ) } «? /■ / ! 

^ ( / 2 + { ( « 2 - « l ) / ( « 2 + « , )} 2 / , / 2 ) 2 

The latter is the solitary wave a, with sx replaced by 

S, = 5 , - — l o g - l- ; 17.24 

this represents a finite displacement of the profile in the x direction. 
Similarly, where f2 — 1 and / , is either large or small, we have the solitary 
wave a2 with or without a shift in s2. Where/ , = 1 &ndf2— 1, we have the 
interaction region; where / , and / 2 are both small or both large we have 
07} = 0. 

The behavior of the interacting solitary waves described by (17.21) 
can now be seen. We take a 2 > a , > 0 for definiteness and note from 
(17.23) that the solitary wave a2 is stronger and moves faster than the wave 
a,. As f - » - oo, there is no interaction region in which / , = 1, f2=* 1, and 
(17.21) describes 

Solitary wave a, on x = sx + ajt, / i ~ l , / ^ l , 

2 

Solitary wave a2 on x = s2 logl — - J + a f / , / , » 1 , / 2 — 1 ; 
a2 \ a 2 - a , / 

elsewhere OTJ =« 0 (/, and f2 both large or small). 
This represents a larger solitary wave a2 overtaking a smaller one a,. 
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As t—> + oo, we have: 

2 
1 (a2 + al\ 

Solitary wave a, on x = st logl \+aft, f\ — \, /2S>1» 
a, \ a 2 _ « i / 

Solitary wave a2 on x = s2 + a2t, / , < 1, f2 — 1; 

elsewhere OTJ = 0. 
The remarkable result is that the solitary waves emerge unchanged in 

form with the original parameters a, and a2, the faster wave a2 now being 
ahead. The only remnant of the collision process is a forward shift 

1 / a 2 + a, \ 
— log for the wave «„ 
«2 \ « 2 - a i / 

and a backward shift 

-Llog(^i ) 2 

«1 l « 2 - « l / 
for the wave a,. 

The interaction occurs in the neighborhood of 

s-, — s, otiS, — a?s 
'=-—, r , x = 

2-M M1J2 
2 2 ' 2 2 " 

a j - a f «2-«F 

In this region/,— l,/2— 1, and (17.21) describes how the two peaks merge 
into a single peak and then reemerge in the reversed order. 

Similar results can be inferred from (17.19)—(17.20) for the case of N 
waves. The eventual behavior as /—>oo consists of N solitary waves lined 
up in order with strength and velocity increasing toward the front and 
separating further as t increases. 

173 Inverse Scattering Theory 

In setting up the theory, we temporarily let 

« = - | T , (17.25) 
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to agree with the original papers; the equation is then 

u,-6uux + uxxx = 0. (17.26) 

From the analogy with Burgers' equation, the substitution 

TXX 

is a popular first attempt toward finding solutions, but this alone does not 
lead far. Gardner, Greene, Kruskal, and Miura (1967) took it further with 
the choice 

TXX » 

U= —— +A 

and noted that rewritten this is the reduced Schrodinger equation 

^ + (A-u)^ = 0. (17.27) 

At this point, presumably the emphasis changed and (17.27) was con-
sidered not as a transformation that would produce a simpler equation for 
\p, but rather as an associated scattering problem from which information 
on ip could be used to diagnose properties of u. In this view, the wave 
profile u(x,t) provides the scattering potential. The time t appears as a 
parameter; there is a different scattering problem for each /. This time 
parameter is completely separate from the time T that might have been 
eliminated in reducing the wave equation 

9 x * - * „ - « ( * . 09 = 0 (17.28) 

to (17.27), via <p(x,T,t) = 4>(x,t)eiVKr. We shall return to (17.28) later, but 
for the present we adopt the reduced version (17.27). 

To use (17.27), we have to find the equation for \p from (17.26). Since 
values of A would belong to the spectrum of the scattering problem (17.27) 
and the problem changes with t, it is appropriate in the first instance to let 
X be a function of /. When (17.27) is substituted in (17.26), it is found after 
a certain amount of ingenuity that the equation may be taken in the form 
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We now restrict the discussion to solutions of (17.26) with u->0 as |x|-»oo 
and u integrable. Under this condition the spectrum of (17.27) is discrete in 
A<0 and continuous in A>0. For the point eigenvalues, A= — K2, the 
corresponding eigenfunctions $n satisfy 

KM, kl-*. 

f V» <** = finite >0 . 
■ ' - 0 0 

Therefore integrating (17.29) from — oo to oo, we deduce that \ is 
independent of t. For the continuous spectrum we may choose a A>0 
independent of / and consider the behavior of the corresponding solutions 
$ with /. In either case, we deduce from (17.29), with d\/dt = 0, that 

0 s * , + *««-3(K+A>k-C*, (17.31) 

where C is independent of x. We now know that any solution 4> of (17.27) 
for fixed A will develop in time according to (17.31). In analyzing the 
eigenvalue problem (17.27), it is convenient to introduce A = /z2 and to 
work with a function x which satisfies (17.27) and the condition 

x~e*u : , Sp>0, as x-> + oo. (17.32) 

In order that this function, introduced for f=0 say, should retain the same 
normalization (17.32) as it develops in time, we require (17.32) to be an 
asymptotic solution of (17.31) for all /. This requires the choice C= — 4I/A3 

and our pair of equations becomes 

*„ + (M 2 -« )+-0 , (17.33) 

+, + *«« - 3 (« + f*2) **+4l> V " 0- (17.34) 

We now have to explain how this curious formulation allows u{x, t) to be 
calculated. 

The method depends on the result that the scattering potential u in 
(17.33) can be constructed from knowledge of the reflection coefficient for 
waves incident from x= +oo, together with certain information about the 
point spectrum. This is the inverse scattering problem, the original problem 
being to determine an unknown scatterer from its reflection properties. In 
the present context the required information on solutions $ is determined 
not from experiment but from the second equation (17.34). To be specific, 
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we consider the problem of finding u(x,t),t>0, given u(x,0). The proce-
dure is as follows. For the given u(x,0), we first solve the eigenvalue 
problem (17.33), and determine the point eigenvalues /*=/«„, the corre-
sponding eigenfunctions \pn, and the reflection coefficient fi for incoming 
waves. One choice for the eigenfunctions is 

where x is specified by (17.32); the normalization constants are then given 
by 

As regards the reflection coefficient /?, we determine the solution ^ of 
(17.33) with u(x,0), which has the following behavior at ± oo: 

{ a{k)e ,kx, X-+-00, 

for k real and positive. This determines the reflection coefficient fl(k) and 
the transmission coefficient a(k). This is the direct scattering problem: 
finding K„,y„,/i(k) for the given u(x,0). The inverse problem would be to 
determine u(x,0) from the knowledge of K„,y„,(2(k). 

We now turn to the development of these solutions in time. We know 
that the K„ are unchanged. From (17.34) and (17.33), 

4 f °° X2 dx = [ - 2XXxx + 4X
2 + 6^x

2f_ x - 8,>3 f °° x
2dx. 

" ' J — oo J — oo 

For the eigenfunctions, /i=iKn, and \l*n(x,t) = x(x,t,iK„)~*0 as ;c->±co; 
therefore the normalization constants are 

The solution ^(k,x,t) for scattered waves will have some behavior 

*(k,x,t)~f(k,t)e-ikx + g(k,t)eikx, x^oo, 

but this must be an asymptotic solution of (17.34) with ft = k. On substitu-
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tion we deduce that 

/ (*, / ) = e-8'*\ g(k,t) = B. 

The reflection coefficient is 

The inverse scattenng theory provides the construction of u(x,t) from 

K„, c„(t), b(k,t). 

In summary then, the direct scattering problem for u(x,0) determines 
Kn,c„(0),b(k,O); (17.34) provides their development in time; the inverse 
problem determines u(x,t) from these quantities. 

Of course a major input is now the solution of the inverse problem. 
This is provided by the famous Gelfand-Levitan paper (1951) and its 
various extensions. Their paper is phrased in terms of determining the 
scattering potential u from the spectral function p(\), which has jumps of 
magnitude c„ at the point eigenvalues \= - K% and a continuous spectrum 
0 < A < O O related to b. Kay and Moses (1956) and Marchenko (1955) 
provided direct constructions from Kn,cn,b; a thorough review is given by 
Faddeyev (1959). The result is that 

u(x,t)=-2-£-K(x,x,t), (17.35) 

where the function K(x,y,t) satisfies the linear integral equation 

K(x,y,t) + B(x+y,t) + f K(x,z,t)B(z+y,t)dz = Q, y>x, (17.36) 
• ' J C 

in which 

B(x +y,t)~ 2cn(t)cxp{-Kn(x+y)} 

+ y - T b(k,t)exp{ik(x+y)}dk 

+ 4~ f°° B(k)exp{ik(x+y) + %ik3t)dk; (17.37) 

the initial function u(x,0) provides the appropriate Kn,yn,B(k). 
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The derivation of (17.35)—(17.37) from the spectral approach requires 
more extensive discussion than would be appropriate here. But Balanis 
(1972) has shown that, formally at least, the results can be obtained very 
simply by working with the "unreduced" equation (17.28) and diagnosing 
the potential u(x,t) from its reflection properties for an incident S function 
instead of an incident periodic wave. Essentially the idea is to work in an 
equivalent time domain instead of the frequency domain. Balanis' treat-
ment of the inverse scattering can be included in a reappraisal of the 
method of solution from this point of view. 

An Alternative Version. 

We consider (17.33) and (17.34) as the Fourier transforms of 

9 , + <f>XXX - 3 K V , + 3<P*TT - 4<J>TTT = 0 , 

coupling the function u(x; t) with a function <p(x,r; t) such that 

■ ' - 0 0 

This pair of equations may be written more symmetrically as 

M<p = (pxx-<p„-u(p = 0, (17.38) 

N<p=q>t + d3<p-3ud<p = 0, (17.39) 

where 

a _ _ 9 _ _ _ 9 _ 
9A; 3T 

It is straightforward to show that 

(NM- MN )<p = - (M, - 6 u u x + uxxx)<p + 3uxM(p. 

Therefore (17.38)—(17.39) imply the Korteweg-deVries equation and we 
have a direct argument for their adoption. We now proceed by analogy 
with the previous approach. The behavior of <p at x = + oo determines the 
scattering potential u in (17.38) from Balanis' version of the inverse 
scattering problem in the (X,T) plane. The development of <p with / is 
provided by (17.39). 
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We now give Balanis' argument for (17.38) and for the present do not 
display the parameter t. Consider an incident wave <p = 8(x + r) from 
x = + oo and let the reflected wave be B{x — T). That is, 

<P~<P00 = $(X + T) + B(X-T) as x->+oo. (17.40) 

We propose that the corresponding complete solution of (17.38) may be 
written 

q>(x,T)-<pQa(x,r)+ [ " ^ ( j c O ^ a r ) ^ . (17.41) 

(This is equivalent to a crucial step in the Gelfand-Levitan work.) By direct 
substitution in (17.38) we verify that there is such a solution provided 

Ku-Kxx + u(x)K = 0, £>x, 

u(x)=-2-^K(x,x), (17.42) 

K, tf,-»0, f-»oo. 

This is a well-posed problem, therefore K exists. From the causality 
property of the wave equation (17.38) we know that <p must be equal to 
zero for x + T < 0. Hence 

?»( j t ,T )+ f°V(*,£)<Poo(£,T)^=0, X + T<0. 
Jx 

Introducing the expression for cpx in (17.40), we have 

f 00 

B(X-T)+K(X,-T)+ I K(x,t)B(t-T)dt = 0, X + T<0. 
J x 

With T = ->>, this is the Gelfand-Levitan equation (17.36). 
To incorporate this into the solution of the Korteweg-deVries equa-

tion, we note that the development of the function B with / is given by 
(17.39). But at x = +00, w-»0; therefore B satisfies 

B„-B„ = 0, 
(17.43) 

B, + 33fl = 0. 
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For / = 0, B is determined from the direct scattering problem for (17.38) in 
terms of u(x,G) as 

* ( * - T ) - 2 T « e * P { - * . ( * - T ) } + 7 - r P(k)exp{ik(x-T)}dk. 

The solution of (17.43) for / > 0 is 

B ( * - T , / ) - 2 Y , , e x p { - i ( ; ( x - T ) + 8 # } 

+ j^f°°P(k)exp{ik(x-T) + &ik3t}dk. 

With T = —y, again, this is exactly (17.37). 
Apart from its speed, this version gives a more symmetrical look to 

(17.39) as opposed to the rather awkward (17.34), and it brings out more 
clearly the mapping to a simpler linear problem (17.43). The basic disper-
sive operator 

9 a3 

*t 8x3 

appears in (17.39) and (17.43) but in an extended form 

± + (±-±)\ 
dt \dx dr) 

The extended form shows why the factor 8 appears in the / dependence in 
(17.37). 

We refer to (17.35M 17.37) as the solution even though the linear 
integral equation (17.36) is still difficult to handle in general. However, 
various results can be obtained. First, the special case /?(&) = 0 can be 
solved explicitly and gives the interaction of solitary waves discussed in the 
last section; each point eigenvalue corresponds to a solitary wave. Second, 
the number of solitary waves ultimately emerging from an arbitrary initial 
disturbance u(x,0) can be determined from its spectrum. Third, it may be 
shown (Segur, 1973) that the contributions of the continuous spectrum to 
u(x,t) die out for large /. The first two topics are considered in the next 
sections. 
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17.4 Special Case of a Discrete Spectrum Only 

In this case (17.37) may be written 

*(*+J0-2«.(*KO0. 

where the explicit dependence on t is not displayed. The factor exp8»c'/ 
may be taken in gn or h„ or divided between the two. The solution of 
(17.36) may then be taken in the form 

and we have 

^m(x)+gJx)-^,2lWn(x)f'Xgm(z)hn(z)dz = 0. 
n x 

If the matrix P(x) is defined by 

Pmn(x) = 8mn+ rgm(z)h„(z)dz, 

and /, g, h denote column vectors with components fm, gm, hm, we have 

w(x)=-P-l(x)g(x) 
and 

K(x,x) = hT(x)w(x)=-hT(x)p-l(x)g{x). 
Since 

faP™(x) = -Sm{x)hn{x), 

K(x,x) may be expressed as 

K(x,x)=Tracelp-lY-} 

2a \P\ dx 
l - n m ' ' 

\P\ dx]] 
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where \P\ denotes the determinant of P and 9mI is the cofactor of Pml. 
Therefore 

u=-24-K(x,x) = -2-^-z\og\P\. 
dx dx1 

Since u— — OTJ/6, this is the transformation (17.6) and it remains to verify 
that | P | agrees with the function F quoted in (17.19)-(17.20). 

There are various choices that lead to the same expression for u. If we 
express B in (17.37) by taking 

Zmix) = Ymexp( - Kmx + 8K3J), hn(x) = exp( - K„X), 

we have 

mn mn 
m n 

Exponential factors may be taken in or out of the determinant without 
affecting the final expression for u; \og\P\ converts them into additive 
terms linear in x, which are eliminated by the double derivative in 
deducing u. Therefore, if each column of P is multiplied by e"-x and each 
row by e~"mX, we have the equivalent form 

|P|oc 
Y m e X P ( - 2 K m * + 8*mO 

O + 
mn K», i K„ 

This agrees with (17.20), with 

A symmetrical form for P is obtained from 

gm(x) = M * ) = Yi/2exp( - «mx + 4K» / ) , 
leading to 

^ n = ^ + % ^ - e x p { - ( K m + (cn)x + 4 ( ^ + K„3)r} . 
m n 
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17.5 The Solitary Waves Produced by an Arbitrary Initial Disturbance 

To determine the solitary waves emerging from an initial distribution 
Tj = 7j0(x) we have merely to find the point eigenvalues of the Schrodinger 
equation 

* „ + { * - « o ( * ) } * - 0 , (17.44) 
where 

°Vo(x) , v 
— 7 — = -u0(x). 

After emerging from the interactions the solitary wave corresponding to 
X— -KI will be given, according to (17.12), by 

{77} 

— M= — = a(1sech2(ic#|jc — 4ic'f +constant), an-2K^. (17.45) 

Some specific examples will now be noted, quoting results for the eigen-
value problem that may be found in most standard books on quantum 
theory. 

/. u0(x)= - QS(x). 

If Q > 0, there is one point eigenvalue K = Q/2. Hence a single solitary 
wave is produced. The amplitude of u in (17.45) is Q2/2. If Q<0, there 
are no point eigenvalues and no solitary waves. 

2. Rectangular Well. 

If u0(x) is a rectangular well of width / and depth A, the eigenvalues 
must satisfy (Landau and Lifshitz, 1958, p. 63) 

s i n £ = ± ^ , tan£<0, (17.46) 

or 

c o s £ = ± y , tan$>0, (17.47) 
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where 

S = Ax/2l, i=±S\l\-t- >0. H*fH 
The number of eigenvalues is controlled by the parameter S. As 5 
increases, corresponding to stronger initial disturbances, the number of 
solitary waves increases. For all S > 0 there is at least one solution of the 
eigenvalue equations; hence there is always one solitary wave. For small S, 
it is a solution of (17.47) with 

£-f, K^^SA1'2, a^±S2A, S«l. 

As S increases a second solitary wave is produced when 5 reaches w, 
and a solution of (17.46) first appears at £ = w/2. At this value 

£, = 0.934, K, = 0.804,4'/*, a, = 1.30^,1 
■n >S = w. 

£2=2"' K 2 = 0 ' d2 = 0, ) 

More solitary waves come in as 5 increases; the number N is given by 

N = largest integer < —hi . 

The dependence of 5 on A and / for the rectangular well suggests that, 
more generally, 

/

OO 

\u\"2dx 

will be an interesting measure of disturbances and wave shapes in this 
context. Indeed, if we calculate this quantity for the single solitary wave 
(17.45), the parameter K drops out and we have 

/

OO 

\u\"2dx = 2"\ (17.48) 
- 00 

independent of amplitude. In this measure, therefore, solitary waves have a 
unit size. For a train of N solitary waves we have Z = 21/2wAf; there is a 
Planck's constant for solitary waves! 

The parameter 5 is the value of the integral in the initial disturbance. 
For large 5, we have S~TTN from the above results, so that in the large 
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time behavior the value of Z in the train of solitary waves is 

Z = 2,/277^~2'/2S. (17.49) 

This shows the close relation between the ultimate Z and the initial S. But 
we also see that the "action" f\u\l/2dx is not conserved. This is also seen 
for small S: there is always one solitary wave produced, even when S is 
smaller than the unit required in (17.48). The required value must be built 
up in the initial separation process, possibly with compensating drain on 
the continuous part of the spectrum. We shall find, however, that the result 
N~S/IT, for large S, is a general one for initial disturbances u0(x) 
consisting of a single well and S defined by 

/

oo 

l2dx. (17.50) 

For the 8 function case in the first example we may take u0 as the limit of 
- Q(m/ir)x,2e~mx as wi-»oo. For this, S-»0 as m-*oo and the production 
of only one solitary wave fits in with the results for the other examples. 

3. u0— — Asech2x/l. 

In this case the eigenvalues are given (Landau and Lifshitz, 1958, p. 
70) by 

K n = ^ 7 { ( l + 4 ^ / 2 ) 1 / 2 - ( 2 « + l ) } > 0 . 

The value of S defined by (17.50) is 

S = nAl'2l. 

The number of solitary waves is given by 

JV = Largest integer < 

As before, there is always one solitary wave for small S, more come in as S 
increases; as S-xx> we again have 

•n 
and (17.49) holds. 
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4. Continous Distribution of Solitary Waves. 

When the initial disturbance is large (S-»oo), there are many closely 
spaced eigenvalues which satisfy the Bohr-Sommerfeld rule 

<fipdx = (fi}/\-u0(x) dx = 2-n(n+)r\ (17.51) 

(see Landau and Lifshitz, 1958, p. 162). Hence the number of solitary 
waves (the largest value of n for X = 0) is 

N~~ f 0 0 | w o r / 2 ^ = - - (17.52) 
it J-x ir 

This proves that the result found in the last two examples is general. 
The largest value of |A| for the bound states in (17.51) is um, where 

um = lMoLax> s o t n e range of K is 0< K < uxJ2 and the range of amplitudes in 
(17.45) is 

0<a<2um. (17.53) 

The number of eigenvalues in (X,X + d\) is approximately 

(f dx dx. 

Therefore the number of solitary waves with amplitudes in (a,a + da) is 
approximately /(a) da where 

*«9 VKF M - i < b - ^ = = - . (17.54) 

a result first found by Karpman (1967) (see also Karpman and Sokolov, 
1968). This distribution is over the range 0<a<2u m and the total number 
is 

N=(2U,"f(a)da=^r\u0\
l/2dx, 

in agreement with (17.52). 
After the initial interaction each solitary wave of amplitude a moves 
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with velocity 2a and it is found at 

x = 2at as /-»oo. 

Therefore the distribution of amplitude is given by 

a=tt' Q<ft<
2um- (17.55) 

We have the triangular distribution noted in Fig. 17.1 and discussed in 
Section 16.16. 

The number of waves k(x,t) in (x,x + dx) is given by 

kdx=f(a)da; 
hence 

W-TAI;)'
 (17-56) 

where/is given by (17.54). This fixes the arbitrary function (16.144). 

Fig. 17.1 Series of solitary waves in solution of the Korteweg-deVries equation. 

17.6 Miura's Transformation and Conservation Equations 

The path to- finding the preceding solutions of the Korteweg-deVries 
equation was very much stimulated by the existence of an infinite number 
of conservation equations. One way of obtaining these is by Miura's 
transformation, which is of independent interest. If one substitutes 

u=-^ = v2 + vx (17.57) 

in the Korteweg-deVries equation, the result may be written 

(2v+±yv,-6v\ + vxxx)=0. 
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Hence the equation 

c,-6v\ + vxxx-0 (17.58) 

may also be studied by relating it to the Korteweg-deVries equation. 
The infinite number of conservation laws can be generated by a 

modification of this. If the substitution 

o7)=w+iewx+^tlw2 (17.59) 

is made, then 

(1 + f c± + j e V ) { W | + (W+i«V)Wx+ww}-0. 

We choose w to satisfy 

w, + ( v v + | c V j w ; t + wXJtJC = 0. 

A simple conservation equation for w is 

w,+ ( y w 2 + - l c V + w ^ = 0. (17.60) 

If now w is solved recursively in terms of $=ori using (17.59), we have 
formally 

0 

where the vv„ depend on J and its x derivatives. When this is substituted in 
(17.60), each coefficient of e" provides a conservation law. The first few 
conserved densities are 

?, {$\ \V~tt, ^4-3&2+f&, 

l.t5 -f,t2t2+—tt2 108 1.2 
XXX 5" ' '* 5 "" 35 

The existence of an infinite number of conserved quantities 

■' — 00 

evidently added confidence that explicit solutions would be found. 
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CUBIC SCHRODINGER EQUATION 

17.7 Significance of the Equation 

The relevance of the equation 

/w, + uJtJt + «'|u|2»=0 

as an approximation for modulated beams in nonlinear optics was ex-
plained in Section 16.4. Here we remark on its general significance for 
time-dependent dispersive waves. The general solution for a linear disper-
sive mode is 

f°° F(k)eikx-iaik)'dk, (17.61) 
• ' - 0 0 

where u = u(k) is the dispersion relation. For a modulated wavetrain with 
most of the energy in wave numbers close to some value k0, F(k) is 
concentrated near k — k0 and (17.61) may be approximated by 

$ = I F(k)explikx-L0 + (k-k0)u'0+ ^k-k0fu>'A\dk, 
J — oo 

where u0=u(k0), «o=u'(&0), . . . . This in turn may be written 

<J> = <pexp{/(*0x-<v)}, (17.62) 

where 

<p= I F(/c0+ic)exp| Z'KX-/(KWQ + — K2«Q I' \dn 

and we have substituted k = k0 + K. The function q> describes the modula-
tions in (17.62); it satisfies the equation 

'(?>, + «&¥>,)+£«oV„-0, (17-63) 

and it corresponds to the dispersion relation 

1 , 
W=Ku'n+±K2uZ. (17.64) 
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The equation for $ corresponds to the original expansion 

w = w0 + (k - k0)u'0 + - (k - fc0)
2Wo; 

it is 

/*,-(«o-V>i+ |^oj*+'W-W)i-{w»$»= 0 ' 

The extra terms are eliminated by the transformation (17.62). 
If this approximation to the linear dispersion is combined with a cubic 

nonlinearity we have 

i(<pl + w'(fpx)+ - w > x x + ?|(p|29 = 0. (17.65) 

Since q> = ae"tx~'lv' is still a solution, we see that the nonlinear correction 
to the dispersion relation modifies (17.64) to 

W=Ku'0+^K2ui;-qa2. 

Therefore the modulations are stable or unstable in the sense of Sections 
14.2 and 15.3 according to 

<7«o<0: Stable, 

?wo>0: Unstable. 

Equation 17.65 can be normalized by first choosing a frame of 
reference moving with the linear group velocity u'0 to eliminate the term in 
<px and then rescaling the variables to obtain 

iu, + uxx + v\u\hi = 0, (17.66) 

where the sign of v is the same as qu'^. 

17.8 Uniform Wavetrains and Solitary Waves 

These are found as usual by looking for solutions depending on a 
moving coordinate X = x— Ut, with the slight extension here that we allow 

'v(X), X = x-Ut, 



Sec 17.9 INVERSE SCATTERING 603 

where r and s are constants. This may be interpreted as a slight flexibility 
in the choice of the exponential factor in (17.62). On substitution, the 
ordinary differential equation for v is 

c" + i(2i— U)v' + (s-r2)v + v\v\2v = 0. 

We now choose 

U U2 

r =T' s=T~a' 
the first being the important one to eliminate the term in v'. Then v may be 
taken to be real and 

v"-av + w3=0. 

This gives a typical cnoidal wave equation for v. It may be integrated once 
to 

v'2=A+av2-^v4, 

which can be solved in elliptic functions. The limiting case of the solitary 
wave is possible when v>0; we take A = 0, a>0, and the solution is 

° = ( v ) sechai/2(x~Ut)- (17.67) 

This solution represents a wave packet for u similar to that shown in Fig. 
15.2; it propagates unchanged in shape with constant velocity. 

It is interesting that |w|2 is proportional to sech2, the same function 
that describes solitary waves for the Korteweg-deVries equation. The 
important difference here, however, is that the amplitude and the velocity 
are independent parameters. 

It should be particularly noted that the solutions (17.67) are possible 
only in the unstable case v > 0. This suggests again that the end result of an 
unstable wavetrain subject to small modulations is a series of solitary 
waves. It is confirmed by the analysis of Zakharov and Shabat described in 
the next section. 

US Inverse Scattering 

Zakharov and Shabat (1972) in one more ingenious paper in this field, 
show how, following Lax (1968), the inverse scattering approach may be 
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applied in analogy with the method for the Korteweg-deVries solution. The 
method may be used on any equation 

u, = Su 

where the equation is equivalent to the relation 

^-i[L,A]-i(LA-AL), (17.68) 
at 

where L and A are linear differential operators including the function 
u(x,t) in the coefficients and aL/ot refers to differentiating u with respect 
to t in the expression for L. Once this factorization is obtained (a highly 
nontrivial step), the method proceeds as follows. 

Consider the eigenvalue problem 

L^ = \i|/. (17.69) 

On differentiation with respect to / we have 

.,d\ ^ .. ty ., , ..3L , 

= iLx^,-(LA-AL)xl> 

= L(ixl>,-Axl,)+\A\l>. 

Therefore 

A /^ | = (L-A)(/*,-/W<). 

If t// satisfies L»l/ = Xip initially and is allowed to develop with t according to 

ty-^*, (17.70) 

then ^ continues to satisfy L\l/=\\f/ with unchanged X. Equations 17.69 and 
17.70 are the pair of equations coupling the function u(x,i) in the 
coefficients with a scattering problem. The solution proceeds as before. 
The behavior of ^ determines the scattering potential in (17.69); the 
development of $ in time is given by (17.70). 

The crucial step is still to factor L according to (17.68). Zakharov and 
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Shabat note, presumably by inspection, that matrix operators 

605 

L-i l+p 

0 

0 

\-p 3JC 

0 u* 

u 0 I-P2 

A = ~P 
1 

0 

0 

1 dx' 

M2 

I+P 

-iu, 

iu: 

>l2 

\ - P 

will do it! 
From this point their analysis parallels the Korteweg-deVries discus-

sion, although major modifications are introduced in handling the inverse 
scattering problem for (17.69). First of all, the \j/ in (17.69) is a 2-vector 
with components ipu ifo. Second, a transformation to new vector compo-
nents is convenient, even though the corresponding L is no longer self-ad-
joint and its eigenvalues are complex. However, the inverse scattering tech-
niques can still be carried through to construct u(x, t). 

The results are similar qualitatively to those for the Korteweg-deVries 
equation. The solutions for interacting solitary waves are derived explicitly 
and are obtained when only the point spectrum contributes. The expres-
sion for |M|2 is again in the form 

i « i 2 «^ login 

where |P| is a determinant of exponentials, related this time to the 
operator 

. a a2 

The solution again confirms that solitary waves retain their structure and 
emerge in exactly their original form with possible delays due to the 
interaction. 
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The solution of the initial value problem is found as before and it 
seems clear that for large times the contributions of the point spectrum 
dominate. That is to say, the disturbance tends to become a series of 
solitary waves. The analysis is confined to solutions for which |w|-»0 as 
|x|-»oo, but it seems fair to deduce that a series of solitary waves is the end 
result of the instability of wavetrains to modulations. 

SINE-GORDON EQUATION 

The physical problems in which the Sine-Gordon equation occurs 
were described in Section 14.1. The class of solutions with <p oscillating 
periodically about <p = 0 is included in the discussion there. We now 
consider more general solutions. In particular, since <p is an angular 
variable, solutions in which tp increases by 2m in each cycle represent 
periodic solutions physically. Thus helical waves in which <p continually 
increases are included as periodic wavetrains. A limiting case is a single 
kink with <p changing by 2m from x = - oo to x = oo; this is a solitary wave. 
Solutions representing interacting solitary waves show the same preserva-
tion properties of the previous cases, and the topological interpretation of 
the conservation of kinks is particularly appealing. 

17.10 Periodic Wavetrains and Solitary Waves 

The equation is taken in normalized form 

<P„-<P*x + sin<P = 0, 

and the steady profile solutions <p = $(X),X = x- Ut, satisfy 

t(u2-l)<i>2
x + 2sm2^<i> = A, 

where A is a constant of integration related to the amplitude. The follow-
ing cases can be distinguished. 

/. 0<A <2 , U2- 1 >0 . These are periodic solutions with <f> oscil-
lating about $ = 0 over the range - <I>0 < $ < $0> where 

/ J \ 1 / 2 

«0-2sin-'(f) • 
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2. 0<A<2, U2-\<0. These are periodic solutions with $ oscil-
lating about $ = -n in the range 

■n - <J>0 < $ < w + $0. 

3. A<0, U2-l<0. These are helical waves with 

•'-*{TMW*2*I1H"'-
$ monotonically increasing or decreasing. 

4. A >2, U2- 1 >0. These are also helical waves with 

5. Limiting case A =0, U2—\<0. Solutions are 

t a n ( | ) = ± e x p { ± ( l - ( / 2 ) - ' / V - A ' o ) } . 

They represent single kinks of magnitude 2ir. With both of the signs 
chosen positive it is a positive kink from <P = 0 at x = — oo to $ = 2IT at 
x = + oo; with both signs chosen negative it is still a positive kink but from 
$=— 2ir at JC= —oo to $ = 0 at x=+oo . Opposite signs give negative 
kinks. 

6. Limiting case A =2, U2-l>0. The solution is 

t a n ( * ± ^ ) = e x p { ± ( f / 2 - l ) - 1 / V - ^ o ) } 

and this represents a kink between $ = — it and $ = ti. 

The stability arguments of Section 14.2 and Section 15.3 showed that 
the periodic waves in case 1 above are unstable to modulations. These 
arguments can be extended to the other types of solution and show that 
cases 1 and 2 are unstable, whereas the helical waves 3 and 4 are stable. It 
should be remembered that these stability arguments apply only to rela-
tively long modulations. They do not give a complete discussion of 
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stability nor do they cover the limiting cases 5 and 6. We should expect 
that case 6 is completely unstable since it requires 4> = ± IT at infinity. In 
Scott's pendulum model, for example, this would correspond to the 
pendula in the upright vertical position. We concentrate now on the 
solitary waves (case 5). 

17.11. The Interaction of Solitary Waves 

Perring and Skyrme (1962) apparently guessed that their numerical 
solutions for two interacting solitary waves could be fitted by 

m sinhx(\-U2)~i/2 

* = t a n £ « l / L _ ^ (17.71) 
4 cosht / / ( l -C/2)"1 / 2 

and then verified that this is an exact solution! To see that it represents the 
interaction of two solitary waves, notice that its behavior as r-» ± oo is 
given by 

■ oo: 

• + oo: 

Each of these represents solitary waves moving in opposite directions. The 
positive kink moving with velocity U is incident from x = — oo and 
emerges as a positive kink. The factor U outside the exponentials may be 
absorbed into the exponential as a displacement in x. The positive kink 
from — oo is displaced an amount 

2 V 1 - 1 / 2 log-^ 

by the interaction. 
The form involving i|/ = tan((p/4) suggests that the transformation of 

the equation to one for «// may be useful in general. The equation satisfied 
by ip is 

(1 + *2)(*„ - +„ + +) - 2t(tf - tf + ^2) = 0. (17.72) 

This has a balanced structure and brings out the most nearly related linear 
operator 

- ^ r - A r + 1. (17.73) 
dt2 dx2 
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It is reminiscent in these respects of the role played by the F equation 
(17.11) in the discussion of the Korteweg-deVries equation. The single 
solitary wave solutions of (17.72) are given by 

^ = ± e x p ( ± - ^ ^ r ) , (17.74) 

so that the transformation may again be stimulated by the rough working 
rule of finding the transformation for which solitary wave solutions be-
come exponentials, and in fact satisfy (17.73). 

The Perring-Skyrme solutions can be found by separation of variables, 
that is, 

even though the equation for >p is nonlinear. The equation is satisfied 
provided 

/-2 = M /4+0+*)/2-' , 
g'2=pgA + \g2-H, 

where A, /x, v are separation constants. These have solutions in elliptic 
functions, of which the Perring-Skyrme solutions are special cases. 

However, a more consistent approach to interacting solitary waves 
was not based on (17.72), but was developed by Lamb (1967, 1971) using 
Backlund transformations. 

17.12 Backlund Transformations 

These transformations were introduced originally as generalizations of 
contact transformations and were associated particularly with studies of 
the geometry of surfaces. As remarked earlier (Section 14.1) the Sine-
Gordon equation arises in connection with surfaces of Gaussian curvature 
— 1. An account of Backlund transformations and their uses is given in 
Forsyth (1959, Vol. VI, Chapter 21). In the application to the Sine-Gordon 
equation, it is convenient to choose the normalized form 

32tp 
= sin<jp; £ = ^ T ~ ' 1f=^T~ • (17.75) 

In general a Backlund transformation for a second order equation for 
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<p(£,Tj) is of the form 

<Pf=^(«P'»«P.«P{.<P,.f^)» 

<K =(?(<?>'. <P><P£><JV«\ in-

consistency of the two expressions leads to a new differential equation for 

<p'(£>*?)- The philosophy seems to be to find interesting equivalent equations 

in this way. Indeed, the reduction of Burgers' equation 

to the heat equation 

can be written as a Backlund transformation 

In general, however, the reduction of the original equation to a linear 
one is perhaps too much to hope for. But another use is to find equations 
that can be mapped into themselves, so that any known solution for <p 
(even a trivial one) may provide a new solution w'. The determination of 
the transformation which maps (17.75) into itself is set as a problem in 
Forsyth with a reference to Bianchi and Darboux. It is easily shown that 
the appropriate Backlund transformation is 

(17.76) 

where X is an arbitrary parameter. We note that they give, respectively, 

-ĝ <P{ = *«, + H% + %) COS - y -

w — m to + w 
= <pft + 2 s i n — ^ — c o s — 2 — ' 

3 , , i , , v y ' - y 
jl%= -%i+ i(<Pi-vOcos-Y~ 

. y' + y y ' - y 
= - y,{+2 s i n — 5 — c o s —T— • 

9<p' 

"oT = 

9?' 
9TJ 

9<p 
= — + 2A sir 

ok 

9y 2 
" 9T, A ' 

y ' + y 
1 2 ' 

. y ' - y 
sin—-— 
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The two expressions for <p̂  are equal (and therefore consistent) if 

Moreover, adding the two, we see that 

<p̂  = sin<p'. 

Lamb's procedure is to generate new solutions successively from (17.76). 
First, since <p0 = 0 is a solution, another solution <p, may be found from 

9<Pi , , . "Pi 9<Pi 2 . <Pi 
— =2As ,n y , " g j ^ s m y . 

This is easily shown to be the solitary wave 

tan . 
4 -Cexp^+ij-C^-^lj-), 

Next, if <p is taken to be <p, in (17.76), the solution <p' = <p2 is found to 
be the Perring-Skyrme result for two interacting solitary waves. In general 
the solution <p„_, for n- 1 solitary waves generates the solution <p„ for n. 
In terms of >// = tan(<j>/4), \f/' = tan(<p'/4) the transformation (17.76) is 

^ = ( l + ^ ) " , { ( l + ^ ' 2 ) ^ + X ( l - ^ 2 ) ^ ' + X^(l-»| ' ' 2)}, 

Either one is a Riccati equation for ^', or, alternatively, i '̂2 can be 
eliminated between the two to give a linear first order partial differential 
equation for ip'. The solution for the latter can always be found in principle 
but the actual expressions for the <pn become successively more compli-
cated. 

17.13 Inverse Scattering for the Sine-Gordon Equation 

Recently Lamb (1973) and Ablowitz et al. (1973) have shown how the 
inverse scattering approach may be used. The key step is the factorization 
into a scattering problem involving the desired solution q> and an evolution 
equation for the eigenfunctions. If the Sine-Gordon equation is taken in 
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the normalized form 

<px, = sin«p 

(reverting to x and / to make the analogy with the previous cases more 
apparent), the appropriate scattering equations are 

dv2 i 

and the evolution equations for the vector eigenfunction (vl,v2) are 

"37 = 4x (yiCOS(P + v2sin(P\ 

9t>2 (' 
"97 = 4^(t>isin«p— v2cos(p). 

The results of Zakharov and Shabat may be applied directly to reconstruct 
<p(x,t). Again the alternative approach corresponding to (17.38)—(17.39) 
appears to be simpler. 

TODA CHAIN 

Systems of mass points with nonlinear forces between nearest neigh-
bors are of interest as models for lattice vibrations in crystals, with 
questions of the partition of energy among the various modes of vibrations, 
of thermal expansion under excitation, and the like, being of physical 
interest. They may be viewed as spatially discrete analogs of the con-
tinuous systems considered in this book. A single chain described by (17.7) 
is the simplest case for wave propagation. It is written in terms of a 
mass-spring system, but other interpretations are possible, such as propa-
gation in a lumped transmission line as discussed by Hirota and Suzuki 
(1970,1973). The latter authors have also performed experiments verifying 
the predictions on solitary waves and their interactions. 

In the linearized limit/(r) = — yr, (17.7) becomes 

™fn = y(rn+l + rn-l-2rn)-
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The traveling wave solution 

rn = acos$, 0 = at-pn 

is well known. It works because on substitution we have 

^ - c o s 0 = cos(0-/>) + cos(0+/?)-2cos0, (17.77) 

and the right hand side reduces to a multiple of cos# from the sum and 
difference formulas for the trigonometric functions. We have the 
"dispersion relation" 

— = 2 ( l - c o s p ) = 4 s i n 2 5 . (17.78) 

The parameter p is analogous to the wave number for continuous lines. 
Stokes-type expansions of the form 

rn = acos0 + a2cos29 + ■ • • 

can be developed for small amplitudes a; they provide nonlinear correc-
tions to (17.78) and modulation theory can be developed as in the con-
tinuous case (Lowell, 1970). However, to obtain fully nonlinear solutions 
and, in particular, solitary waves is a much more difficult problem than in 
the continuous case. One would expect they exist but explicit examples 
would be welcome. The difficulty is that one requires functions and their 
addition formulas to handle the right hand side corresponding to (17.77). 
Toda (1967a, 1967b) has provided such solutions for the case 

/(/•) = -<*(!-<?-" ' ) • (17.79) 

17.14 Toda's Solution for the Exponential Chain 

It is convenient to convert the difference equation (17.7) into an 
equivalent form in which sn =/(/■„) is introduced. First we have the system 

. , (17.80) 
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For the exponential force (17.79), 

s„=f'(r„)r„=-ape-^rn 

= -(3(a + sn)rn. 

Therefore (17.80) may be combined into 

YYl n 

For a steady progressing wave 

s„ = S(9), 0 = ut-pn, 

the function S(9) must satisfy the ordinary differential difference equation 

mu2 S 
P a+uS 

- = S(9+p) + S(9-p)-2S(9). (17.82) 

According to Toda, we now remember that 

. ->,« x , -,,» s ~,-> d I sn9cn9dr\9sn2p 
dn2(9+p)-dn2(9-p)=-2k2~' 

dp \ l -A^sn^sn^ / ' 

where sn, en, dn are the Jacobian elliptic functions and k is the modulus 
of these functions. If 

£ (0= f^dn2zdz, 

the integral of this equation with respect to p is 

, sn0cn0dn0sn^p 
E(9+p) + E(9-p)-2E(9)=-2k2 / . (17.83) 

1 — k zsnT?sn7? 
Moreover, 

E'{9) = dn29=\-k2sn29, 

E"(9)=-2k2sn9cn9dn0. 

Therefore the right hand side of (17.83) is 

E"{6) =J__j 
q+E'(9)' q srfy 
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We see that the equation for E(9) is essentially (17.82). The function E(9) 
is not periodic in 9, but the related Jacobian zeta function 

E(K) 
Z{9) = E{9)-6~-L (17.84) 

A 

has period 2K, and the change from E(9) to Z(0) modifies the equation 
trivially. The solution for sn may be taken in the form 

where 

sn = S(9) = bZ(2K9), 9 = o>t-pn, (17.85) 

-(fftahr,+ff"■ (l786) 

-m[ 
1/2, \ - ' / 2 

2-hr _ , + f • (,787) 

, snv Kp A / 

The expression for r„ is determined by 

- « ( l - e - / 5 ' ' " ) = ^ = 2 A ^ ( d n 2 2 A » - ^ V (17.88) 

The functions Z(f) and dn2f have period 2A"; here the phase has been 
normalized so that one period corresponds to unit increase in 9 rather than 
the 2IT of linear theory. The amplitude of Z(f) is a function of k so the 
amplitude of sK is a function A(k,p). Combined with (17.87), we have a 
dispersion relation between u>, p, A expressed in the parametric form 

A=A(k,p), u = u(k,p). 

In the linear limit /:—»0, we have 

',-t' 

sn2?~ 

dn2?~ 

ASh 

-sin' 

- 1 -

k2 

" 4 

!f, 

A2 

sir 

sin2 

i2f. 

A,£~ 

:f, 

" 2 

E 
K 
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Hence 

bk2 

s„ —sm2ir9, 9 = ut—pn, 

' /2 , / „ A X ' / 2 

and 

ft -Br\ irubk2 ~ n a(\-e pr") yrn —cos2w0. 

These may be rewritten 

s„~A sin2w(ut—pn), — yrn~2iruA cos2ir(wt-pn), 

■~4sin2wp, k2~4\—\ ~^— « 1 ; \ ma } 
m(2no)) A _ 2 ,2 J P \1/2 A 

sin irp 

apart from minor renormahzations, the results reproduce the linear solu-
tion. 

When /c-*l, K—*cc and we must take the case of finite limits for 

2Ku-*ti, 2Kp-+P. 

The elliptic functions have the limiting forms 

sn£-»tanhf, dnf-sechf , Z(?)-*tanh?; 

the relations (17.86)-{17.87) become 

* - » ( ^ f ) sinh/>, 0 = ( ^ ) sinh/>. 

Hence 

sn~~^ir tanh(fi/ - Pn), 

-a(l-pe-r")~ZJf-sech2(Qt-Pn). 

These are the solitary waves. 
On the basis of various approximate forms and special cases, Toda 

builds up convincing evidence that these solitary waves interact as in the 
continuous cases with the original forms emerging after ir teractions. 
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BORN-INFELD EQUATION 

The Born-Infeld equation 

( I " <P?)<PXX +
 2<Px<P,<Px, ~ ( 1 + vl)9u = 0 

has solitary wave solutions of a kind, but they are very different from those 
previously discussed. It is a simple matter to check that either 

<p = 0 ( x - / ) or (p = $(x + t) 

are exact solutions for any function 0. In particular the function $ may be 
chosen as a single hump to give a solitary wave appearance. But there is no 
natural structure involved. The equation is hyperbolic for solutions with 

and perhaps some aspects properly belong in Part I. Notice that the 
solitary waves have constant characteristic velocities ± 1 and avoid the 
usual breaking expected for nonlinear hyperbolic waves. 

17.15 Interacting Waves 

The solutions of Barbishov and Chernikov (1967) can be obtained 
quite naturally by a hodograph transformation, although the simplicity of 
the transformed equation is unexpected. First, if new variables 

£ = * - / , 7i = x + t, 

" = <Pt> v = <p1l 

are introduced, we may take the equivalent system 

(17.89) 
v \ - (1 + 2wo) uv + u\ = 0. 

The roles of the dependent and independent variables are then 
interchanged to give 

(17.90) 
v \ + (l+2uv)^ + u\ = 0, 
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or, equivalently, the single equation 

u2iull + (l + 2uv)ia) + v2loe + 2uit + 2viv-0. (17.91) 

Assuming that the relevant solutions are to be found in the hyperbolic 
regime, it is now a natural step to find the characteristics for the linear 
system (17.90) and the linear equation (17.91). They are the integral curves 
of the differential form 

u2dv2 - (1 + 2uv) du dv + v2du2 = 0, 

and they are found to be curves r = constant, s = constant, where 

r - , , - . (17.92) 

If r,s are introduced as new variables to replace u,v, the equations (17.90) 
become 

/•2t + T,r = 0, 
(17.93) 

The surprising result is that on elimination of TJ to deduce the new form of 
(17.91), we have simply 

is = 0. (17.94) 

The hodograph transformation guarantees a linear equation, but it could 
well have been an impossible one for practical purposes. 

The general solution may be taken as 

x-t = Z=F(r)-fs2G'(s)ds, (17.95) 

x + t = ri = G(s)-fr2F'(r)dr, (17.96) 

where F(r), G(s) are arbitrary functions. Since 

<P,= uir + vnr=T^—£r + s 
\-rs*r l-rs 

■nr 

= rF'(r), 

and, similarly, 

<Ps = sG'(s), 
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the corresponding expression for <p is 

<p=frF'(r)dr+fsG'(s)ds. (17.97) 

Finally, it is convenient to introduce 

F(r) = p, G(s) = a, 

r -* ' , (p) , s = V2(o), 

and take the solution in the form 

9> = *,(p) + *2(o), (17.98) 

x-t = p- f V2
2(o)do, (17.99) 

• ' - 0 0 

x + t = a+ Cv?(p)dp. (17.100) 
Jp 

If $,(p) and $2(a) a r e localized, say they are nonzero in 

- K p < 0 , 0 < o < l , 
respectively, then 

(p = <&l(x-t) + $2(x + t) fort<0. 

The wave $, is incident from x = — oo and the wave 4>2 from x= + oo. As 
/-♦ + oo, the solution approaches 

<p = 4» l {^- / + |%2
2(a)rfa}+<I>2{x + r - |% ' l

2 ( p ) r fp} . (17.101) 

Each wave receives a displacement in the direction opposite to its direction 
of propagation equal to 

(X V?(r)dT. 
J — rr\ 

In this respect the interaction is similar in its residual effect to the other 
examples of interacting solitary waves. But in most other respects, these 
solutions and the Born-Infeld equation seem to belong to a different class. 

One final comment on the actual solution given in (17.98)—(17.100): 
the mapping from the (x,t) plane to the (p,o) plane may become singular 
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in the course of the interaction, even though (17.101) shows that the 
solution is again single-valued in the aftermath. This would be interpreted 
as shock formation and tied to the fact that during the interaction the 
characteristic velocities depart from the values ± 1 and may form en-
velopes. In such cases the subsequent behavior would require modification 
and (17.101) should not be accepted as it stands. However, breaking would 
require sufficiently large amplitudes and there will be a range of solutions 
for which this does not occur. 

In this particular example, the linear superposition performed in the 
transformed equation (17.94) makes the preservation of the identity of the 
waves obvious. Indeed in all cases the preservation of structure can 
presumably be traced to linear superposition in some appropriately trans-
formed space. But the nature of the mapping and the linear solutions 
involved is crucial. The solution for the confluence of shocks in Section 4.7 
corresponds to the superposition of solutions of the linear heat equation. 
But, because the latter solutions are exponential and not localized, the 
shocks combine to form a single new shock instead of passing through 
each other. 

In concluding this chapter one can only comment again on the 
remarkable ingenuity of the various investigators involved in these recent 
developments. The results have given a tremendous boost to the study of 
nonlinear waves and nonlinear phenomena in general. Doubtless much 
more of value will be discovered, and the different approaches have added 
enormously to the arsenal of "mathematical methods." Not least is the 
lesson that exact solutions are still around and one should not always turn 
too quickly to a search for the e. 
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