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Preface

This book is an abridged version of our two-volume opus Convex Analysis and
Minimization Algorithms [18], about which we have received very positive feedback
from users, readers, lecturers ever since it was published — by Springer-Verlag in
1993. Its pedagogical qualities were particularly appreciated, in the combination
with a rather advanced technical material.

Now [18] has.a dual but clearly defined nature:

— an introduction to the basic concepts in convex analysis,

— a study of convex minimization problems (with an emphasis on numerical algo-

rithms),

and insists on their mutual interpenetration. It is our feeling that the above basic
introduction is much needed in the scientific community. This is the motivation for
the present edition, our intention being to create a tool useful to teach convex anal-
ysis. We have thus extracted from [18] its “backbone” devoted to convex analysis,
namely Chaps ITI-VI and X. Apart from some local improvements, the present text
is mostly a copy of the corresponding chapters. The main difference is that we have
deleted material deemed too advanced for an introduction, or too closely attached to
numerical algorithms.

Further, we have included exercises, whose degree of difficulty is suggested by
0, 1 or 2 stars *. Finally, the index has been considerably enriched.

Just as in [18], each chapter is presented as a “lesson”, in the sense of our old
masters, treating of a given subject in its entirety. After an introduction presenting
or recalling elementary material, there are five such lessons:

— A Convex sets (corresponding to Chap.III in [18]),

— B Convex functions (Chap.IV in [18]),

— C Sublinearity and support functions (Chap. V),

— D Subdifferentials in the finite-valued case (VI),

—E Conjugacy (X).

Thus, we do not go beyond conjugacy. In particular, subdifferentiability of extended-
valued functions is intentionally left aside. This allows a lighter book, easier to
master and to go through. The same reason led us to skip duality which, besides, is
more related to optimization. Readers interested by these topics can always read the
relevant chapters in [18] (namely Chaps XTI and XII).



VI Preface

During the French Revolution, the writer of a bill on public instruction com-
plained: “Le défaut ou la disette de bons ouvrages élémentaires a été, jusqu’a
présent, un des plus grands obstacles qui s’opposaient au perfectionnement de
I'instruction. La raison de cette disette, c’est que jusqu’a présent les savants d’un
mérite éminent ont, presque toujours, préféré la gloire d’élever I’édifice de la sci-
ence a la peine d’en éclairer ’entrée.!” Our main motivation here is precisely to
“light the entrance” of the monument Convex Analysis. This is therefore not a ref-
erence book, to be kept on the shelf by experts who already know the building and
can find their way through it; it 1s far more a book for the purpose of learning and
teaching. We call above all on the intuition of the reader, and our approach is very
gradual. Nevertheless, we keep constantly in mind the suggestion of A. Einstein:
“Everything should be made as simple as possible, but not simpler”. Indeed, the
content is by no means elementary, and will be hard for a reader not possessing a
firm mastery of basic mathematical skill.

We could not completely avoid cross-references between the various chapters;
but for many of them, the motivation is to suggest an intellectual link between appar-
ently independent concepts, rather than a technical need for previous results. More
than a tree, our approach evokes a spiral, made up of loosely interrelated elements.

Many sections are set in smaller characters. They are by no means reserved to
advanced material; rather, they are there to help the reader with illustrative examples
and side remarks, that help to understand a delicate point, or prepare some material
to come in a subsequent chapter. Roughly speaking, sections in smaller characters
can be compared to footnotes, used to avoid interrupting the flow of the develop-
ment; it can be helpful to skip them during a deeper reading, with pencil and paper.
They can often be considered as additional informal exercises, useful to keep the
reader alert.

The numbering of sections restarts at 1 in each chapter, and chapter numbers are
dropped in a reference to an equation or result from within the same chapter.

Toulouse and Grenoble,
March 2001 J.-B. Hiriart-Urruty, C. LemaréchaL

1 “The lack or scarcity of good, elementary books has been, until now, one of the greatest
obstacles in the way of better instruction. The reason for this scarcity is that, until now,
scholars of great merit have almost always preferred the glory of constructing the mon-
ument of science over the effort of lighting its entrance.” D.Guedj: La Révolution des
Savants, Découvertes, Gallimard Sciences (1988) 130 — 131.
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0. Introduction: Notation, Elementary Results

We start this chapter by listing some basic concepts, which are or should be well-
known —but it is good sometimes to return to basics. This gives us the opportunity of
making precise the system of notation used in this book. For example, some readers
may have forgotten that “i.e.”” means id est, the literal translation of “that is (to say)”.
If we get closer to mathematics, S\ {z} denotes the set obtained by depriving a set

S of a point 2 € S. We also mention that, if f is a function, fl(y) is the inverse
image of y, i.e. the set of all points z such that f(z) = y. When f is invertible, this
set is the singleton {f~1(y)}.

After these basic recalls, we prove some results on convex functions of one real
variable. They are just as basic, but are easily established and will be of some use in
this book.

1 Some Facts About Lower and Upper Bounds

1.1 In the fotally ordered set R, inf E and sup F are respectively the greatest lower
bound - the infimum — and least upper bound — the supremum — of a nonempty
subset F/, when they exist (as real numbers). Then, they may or may not belong
to E; when they do, a more accurate notation is min E and max E. Whenever the
relevant infima exist, the following relations are clear enough:

inf (EU F) = min {inf E,inf F},
FCE — nfF>ifE, (1.1
inf (ENF) > max {inf E,inf F'}.

If E is characterized by a certain property P, we use the notation
E ={r e R : rsatisfies P}.

Defining (in R considered as a real vector space) the standard operations on
nonempty sets
E+F:={r=e+f:e€E feF},
tE:={tr : r€ E} forteR

(the sign “:=" means “equals by definition”), it is also clear that

J. -B. Hiriart-Urruty et al., Fundamentals of Convex Analysis
© Springer-Verlag Berlin Heidelberg 2001



2 0. Introduction: Notation, Elementary Results

inf(E+ F)=inf E +inf F,
inftE=tinfE ift>0, (1.2)
inf(—E)=—supFE,

whenever the relevant extrema exist.

The word positive means “> 07, and nonpositive therefore means “< 0”; same
conventions with negative and nonnegative. The set of nonnegative numbers is de-
noted by R* and, generally speaking, a substar deprives a set of the point 0. Thus,
for example,

N, ={1,2,...} and Rf ={teR:t>0}.
Squared brackets are used to denote the intervals of R : for example,
RDla,bl={teR:a<t<<b}.

The symbol “}” means convergence from the right, the limit being excluded;
thus, ¢ | O means ¢ — 0 in R} . The words “increasing” and “ decreasing” are taken
in a broad sense: a sequence (ty) is increasing when k > k' = ¢, > tr. We use
the notation (%), or (g )k, or (tx)xen, for a sequence of elements ¢4, ¢, . . .

1.2 Now, to denote a real-valued function f defined on a nonempty set X, we write
Xszw f(x)eR
The sublevel-set of f atlevel r € R is defined by
S,(f) = {z € X : f(z) <r}.
If two functions f and g from X to R satisfy
f(z) < g(z) forallz e X,

we say that f minorizes g (on X), or that g majorizes f.
Computing the number

inf {f(z) : z€ X}=:F (1.3)

represents a minimization problem posed in X: namely that of finding a so-called
minimizing sequence,i.e. () C X such that f(z) — f when k — +oo0 (note that
no structure is assumed on X). In other words, f is the largest lower bound inf f(X)
of the subset f(X) C R, and will often be called the infimal value, or more simply
the infimum of f on X. Another notation for (1.3) is inf,cx f(z), or also inf x f.
The function f is usually called the objective function, or also infimand. We can
also meet supremands, minimands, etc.

From the relations (1.1), (1.2), we deduce (hereafter, f; denotes the infimum of
f over X; fori =1,2):
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inf {f(z) : ¢ € X; UXy} =min{fi, fo},
Xi1CXo = hH2=f,
inf {f(z) : € X1 N X2} > max {f1, fo},
inf {f(z1) + f(z2) : ©1 € Xy andz2 € X2} = f1 + f2, (1.4)
inf {tf(z) : x€ X} =tf, fort>0,
inf{—f(z) : x€ X} =—sup{f(z) : z € X},

whenever the relevant extrema exist. The last relation is used very often.

The attention of the reader is drawn to (1.4), perhaps the only non-totally trivial
among the above relations. Calling E; := f(X;) and Es := f(X>2) the images
of Xy and X5 under f, (1.4) represents the sum of the infima inf E; and inf Es.
There could just as well be two different infimands, i.e. (1.4) could be written more
suggestively

1nf{f(:c1) + g(wg) :x1 € X1 and a9 € X2} = ]?1 + g2
(g being another real-valued function). This last relation must not be confused with
inf {f(z) +g(z) : 2 € X} > f+7;

here, in the language of (1.4), X; = X» = X, but only the image by f of the
diagonal of X x X is considered.

Another relation requiring some attention is the decoupling, or transitivity, of
infima: if g sends the Cartesian product X x Y to R, then

inf {g(z,y) : z€ Xandy €Y} =

. . . . 1.5
= lnfzeX[lnfer 9(z,y)] = mfer[lnfzeX g(z,y)]. (1)

1.3 An optimal solution of (1.3)is an £ € X such that

f@ =f< flx) forallz € X,

such an Z is often called a minimizer, a minimum point, or more simply a minimum
of f on X. We will also speak of global minimum. To say that there exists a min-
imum is to say that the inf in (1.3) is a min; the infimum f = f(Z) can then be
called the minimal value. The notation

min {f(z) : z € X}

is the same as (1.3), and says that there does exist a solution; we stress the fact that
this notation — as well as (1.3) — represents at the same time a number and a problem
to solve. It is sometimes convenient to denote by

Argmin {f(z) : z € X}

the set of optimal solutions of (1.3), and to use “argmin” if the solution is unique.
It is worth mentioning that the decoupling property (1.5) has a translation in
terms of Argmin’s. More precisely, the following properties are easy to see:
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—If (%, J) minimizes g over X XY, then §j minimizes g(Z, -) over Y and Z minimizes
over X the function

p(z) = inf {g(z,y) : y€Y}.

— Conversely, if £ minimizes o over X and if § minimizes g(Z, -) over Y, then (Z, §)
minimizes g over X x Y.

Needless to say, symmetric properties are established, interchanging the roles of x
and y.

1.4 In our context, X is equipped with a topology; actually X is a subset of some
finite-dimensional real vector space, call it R”; the topology is then that induced by
a norm. The interior and closure of X are denoted by int X and cl X respectively;
its boundary is bd X .

The concept of limit is assumed familiar. We recall that the limes inferior (in the
ordered set R) is the smallest cluster point.

Remark 1.1 The standard terminology is lower limit (“abbreviated” as lim inf!) This termi-
nology is unfortunate, however: a limit must be a well-defined unique element; otherwise,
expressions such as “f(x) has a limit” are ambiguous. O

Thus, to say that £ = lim inf,_, .« f(x), with z* € cl X, means: for all ¢ > 0,

there is a neighborhood N (z*) such that f(z) > £ — ¢ for all x € N(z*),
and
in any neighborhood N (z*), there isx € N(2*) such that f(z) < £ +¢;

in particular, if z* € X, we certainly have £ < f(x*).

Let z* € X.If f(z*) < liminf, .~ f(z), then f is said to be lower semi-
continuous (1.s.c) at £*; upper semi-continuity, which means f(z*) > lim sup f(x),
is not much used in our context. It is well-known that, if X is a compact set on
which f is continuous, then the lower bound f exists and (1.3) has a solution. Ac-
tually, lower semi-continuity (of f on the whole compact X) suffices: if (z) is a
minimizing sequence, with some cluster point * € X, we have

F(&") < limin f(zp) = lim f(z) = f.

Another observation is: let E be such thatcl E C X;if f is continuous on cl E,
then

inf{f(z) : x € E}=nf{f(z) : x € clE}.

This relation is wrong if f is only Ls.c, though: then, only (1.1) gives useful rela-
tions.

Related with (1.3), another problem is whether a given minimizing sequence
(zr) converges to an optimal solution when k¥ — +o0. This problem is really dis-
tinct from (1.3): for example, with X := R, f(0) := 0, f(z) := 1/|z| for z # 0, the
sequence defined by x;, = k is minimizing but does not converge to the minimum 0
when k = +o0.
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2 The Set of Extended Real Numbers

In convex analysis, there are serious reasons for wanting to give a meaning to (1.3),
for arbitrary f and X . For this, two additional elements are appended to R: +00 and
—00.

If E C R is nonempty but unbounded from above, we set sup E = +00; sim-
ilarly, inf E = —oo if E is unbounded from below. Then consider the case of an
empty set: to maintain a relation such as (1.1)

inf (E U 0)[= inf E] = min {inf E,inf @} forall® # E C R,

we have no choice and we set inf § = +oco. Naturally, sup} = —oo, and this
maintains the relation inf (—E) = — sup F in (1.2).

It should be noted that the world of convex analysis is not symmetric, it is uni-
lateral. In particular, 400 and —oo do not play the same role, and it suffices for our
purpose to consider the set R U {+00}. Extending the notation of the intervals of
R, this set will also be denoted by ] — 00, +00].

To extend the structure of R to this new set, the natural rules are adopted:

order: z < +ooforallz € RU {+00};
addition:  (+00) + z =z + (+00) = oo forall z € RU {400} ;
multiplication: t-(+00) = +ooforall0 <t € RU{+oco}.

Thus, we see that

— the structured set (RU{+o0}, +) is not a group, just because +0oo has no opposite;

— it is a fortiori not a field, a second reason being that we avoid writing £ x (400)
fort <0.

On the other hand, we leave it to the reader to check that the other axioms are
preserved (for the order, the addition and the multiplication); so some calculus can
at least be done in RU {+00}.

Actually, R U {400} is nothing more than an ordered convex cone, analogous
to the set Rf of positive numbers. In particular, observe the following continuity
properties:

(zk,yx) = (z,9) n[RU{+00}]? = ax+yr —z+yinRU{+oo};
(tr,zx) = (t,z) nRf x (RU{+00}) = trzr = tzinRU{+o0}.

In this book, starting from Chap. B, the minimization problems of §1 — and in
particular (1.3) — will be understood as posed in RU{+00}. The advantage of this is
to give a systematic meaning to all the relations of §1. On the other hand, the reader
should not feel too encumbered by this new set, which takes the place of the familiar
set of real numbers where algebra is “easy”. First of all, RU{+00} is relevant only as
far as images of functions are concerned: any algebraic manipulations involving no
term f(z) is “safe” and requires no special attention. When some f(z) is involved,
the following pragmatic attitude can be adopted:
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— comparison and addition: no problems in R U {400}, just as in R;

— subtraction: before subtracting f(x), make sure that f(z) < +00;

— multiplication: think of a term like ¢ f (z) as the multiplication of the vector f(z)
by the scalar ¢; if ¢ < 0, make sure that f(x) < +o00 (note: in convex analysis, the
product of functions f(x)g(z) is rarely used, and multiplication by —1 puts (1.3)
in a different world);

— division: same problems as in R , namely avoid division by 0;

— convergence: same problems as in R, namely pay attention to 0o — oo and 0 -
(+00);

— in general, do not overuse expressions like ¢ f(z) with ¢ < 0, or r — f(x), etc.:
they do not fit well with the conical structure of R U {+o0}.

3 Linear and Bilinear Algebra

3.0 Let us start with the model-situation of R, the real n-dimensional vector space
of n-uples z = (£,...,£"). In this space, the vectors e, ..., e,, where each e;
has coordinates (0,...,0,1,0, ...,0) (the “1” in i*! position) form a basis, called
the canonical basis. The linear mappings from R™ to R” are identified with the
n X m matrices which represent them in the canonical bases; vectors of R” are thus
naturally identified with  x 1 matrices.

The space R™ is equipped with the canonical, or standard, Euclidean structure
with the help of the scalar product

n

g= (.., y=@0.. 0" = gTy=) &y

i=1
(also denoted by z - y). Then we can speak of the Euclidean space (R™,7 ).

3.1 More generally, a Euclidean space is a real vector space, say X, of finite dimen-
sion, say n, equipped with a scalar product denoted by (-, -). Recall that a scalar (or
inner) product is a bilinear symmetric mapping (-, -) from X x X to R, satisfying
{z,z) > 0 forz # 0.

(a) If a basis {b1, ..., b, } has been chosen in X, along which two vectors z and y
have the coordinates (£!,...,£7) and (n,...,n"), we have

(@,y) =Y &1 (bi,b;).

7,j=1

This can be written {z,y) = =" Qy, where Q) is a symmetric positive definite n X n
matrix (S, (RR) will denote the set of symmetric matrices). In this situation, to equip
X with a scalar product is actually to take a symmetric positive definite matrix.

The simplest matrix () is the identity matrix I, or I,,, which corresponds to the
scalar product
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n
(@y)=2"y=> &7,
=1

called the dot-product. For this particular product, one has (b;, b;) = d;; (J;; is the
symbol of Kronecker: §;; = 0if ¢ # j, d;; = 1). The basis {by,...,b,} is said to
be orthonormal for this scalar product; and this scalar product is of course the only
one for which the given basis is orthonormal.

Thus, whenever we have a basis in X, we know all the possible ways of equip-
ping X with a Euclidean structure.

(b). Reasoning in the other direction, let us start from a Euclidean space (X, (-, -))
of dimension n. It is possible to find a basis {b, . . ., b, } of X, which is orthonormal
for the given scalar product (i.e. which satisfies (b;, b;) = 6;5 foré,j =1,...,n). If
two vectors  and y are expressed in terms of this basis, (z,y) can be written 2" y.
Use the space R™ of §3.0 and denote by ¢ : R* — X the unique linear operator
(isomorphism of vector spaces) satisfying ¢(e;) = b; fori = 1,...,n. Then

zTy = (p(x),p(y)) forall zandyin R,

so the Euclidean structure is also carried over by ¢, which is therefore an isomor-
phism of Euclidean spaces as well. Thus, any Euclidean space (X, (-, -)) of dimen-
sion n is isomorphic to (R™,™ ), which explains the importance of this last space.
However, given a Euclidean space, an orthonormal basis need not be easy to con-
struct; said otherwise, one must sometimes content oneself with a scalar product
imposed by the problem considered.

Example 3.1 Vector spaces of matrices form a rich field of applications for the
techniques and results of convex analysis. The set of p X g matrices forms a vector
space of dimension pg, in which a natural scalar product of two matrices M and N
is (tr A := 3" | Ay; is the trace of the n x n matrix A)

p q
(M,N):=trM™N =% > M;Ny;. 8]

i=1 j=1

(c). A subspace V of (X, (-,-)) can be equipped with the Euclidean structure de-
fined by
VxV>3(z,y)r—(z,y).

Unless otherwise specified, we will generally use this induced structure, with the
same notation for the scalar productin V and in X.

More importantly, let (Xi, (-, }1) and (X2, {-,-}2) be two Euclidean spaces.
Their Cartesian product X = X3 x X3 can be made Euclidean via the scalar product

((m17m2)7 (ylay2)) = (:1:7y) = «ZL‘,y» = (1'1a3h>1 ~+ <$27y2>2 .

This is not compulsory: cases may occur in which the product-space X has its own
Euclidean structure, not possessing this “decomposability” property.
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3.2 Let (X, {-,-}) and (Y, {-,-))) be two Euclidean spaces, knowing that we could
write justas well X = R? and Y = R™.

(a). If A is a linear operator from X to Y, the adjoint of A is the unique operator
A* from Y to X, defined by

(Ay,z) = (y, Az)) forall (z,y) € X xY .

There holds (A*)* = A. When both X and Y have orthonormal bases (as is the
case with canonical bases for the dot-product in the respective spaces), the matrix
representing A* in these bases is the transpose of the matrix representing A.

Consider the case (Y, {(-,-)) = (X, {-,-)). When A is invertible, so is A*, and
then (A*)™! = (A~1)*. When A* = A, we say that A is self-adjoint, or symmetric.
If, in addition,

(Az,z) >0 [resp. 20] forall0#z € X,

then A is positive definite [resp. positive semi-definite] and we write A > 0 [resp.
A > 0]. When X =Y is equipped with an orthonormal basis, symmetric operators
can be characterized in terms of matrices: A is symmetric [resp. symmetric positive
(semi)-definite] if and only if the matrix representing A (in the orthonormal basis)
is symmetric [resp. symmetric positive (semi)-definite].

(b). When the image-space Y is R, an operator is rather called a form. If £ is a
linear form on (X, (-, -)), there exists a unique s € X such that {(z) = (s,z) for
all z € X.If q is a quadratic form on (X, (-, -)), there exists a unique symmetric
operator (J such that

q(z) :== 3(Qz,z) forallz € X
(the coefficient 1/2 is useful to simplify most algebraic manipulations).

Remark 3.2 The correspondence £ < s is a triviality in (R™," ) (just transpose
the 1 x n matrices to vectors) but this is deceiving. Indeed, it is the correspondence
X S X* between a space and its dual that is being considered. For two vectors
s and z of X, it is good practice to think of the scalar product (s, z) as the action
of the first argument s (a slope, representing an element in the dual) on the second
argument z; this helps one to understand what one is doing. Likewise, the operator
@ associated with a quadratic form sends X to X*; and an adjoint A* is from Y*
to X*. O

3.3 Two subspaces U and V of (X, (-, -)) are mutually orthogonal if {(u,v) = 0 for
allu € U and v € V, arelation denoted by U L V. On the other hand, U and V'
are generators of X if U + V = X. For given U, we denote by U~ the orthogonal
supplement of U, i.e. the unique subspace orthogonal to U such that U and U+ form
a generator of X.

Let A : X — Y be an arbitrary linear operator, X and Y having arbitrary scalar
products. As can easily be seen,
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Kerd:={zeX:Az=0€Y}

and
ImA*:={re X : z=A"s forsomes €Y}

are orthogonal generators of X . In other words,
Ker A = (ImA*)*.

This is a very important relation; one must learn to use it quasi-mechanically, re-
membering that A** = A and U**+ = U. For example, if A is symmetric, Im 4 is
the orthogonal supplement of Ker A.

Important examples of linear operators from (X, (-, -}) to itself are orthogonal
projections: if H is a subspace of X, the operator py : X — X of orthogonal
projection onto H is defined by:

pgz =0 for x€ H*,
pgx=x for z€H,
pu is completed by linearity in between.

This py is symmetric and idempotent (1.e. pg o py = pr). Conversely, a linear op-
erator p which is symmetric and idempotent is an orthogonal projection; of course,
it is the projection onto the subspace Im p.

3.4 If A is a symmetric linear operator on X, remember that (Im A)* = Ker A.
Then consider the operator pym, 4 of orthogonal projection onto Im A. For given
y € X, there is a unique £ = z(y) in Im A such that Az = pry, 4y; furthermore,
the mapping y +— x(y) is linear. This mapping is called the pseudo-inverse, or
generalized inverse, of A (more specifically, it the pseudo-inverse of Moore and
Penrose). We denote it by A~ ; other notations are A+, A#, etc.

We recall some useful properties of the pseudo-inverse: Im A~ = Im A4;
A~ A = AA" = pim a; and if A is positive semi-definite, so is A~

4 Differentiation in a Euclidean Space

A Euclidean space (X, {-,-)) is a normed vector space (certainly complete) thanks
to the norm
X3z e |l :=+(z,2),
called the Euclidean norm associated with {-, -). We denote by
B(z,r):={ye X : ly—zl <r}

the ball of center ¢ € X and radius r > 0. In particular, B(0, 1) is called the unit
ball, whose boundary is the unit sphere

B(0,1):={ye X : |ly]=1}.
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The norm and scalar product are related by the fundamental Cauchy-Schwarz in-
equality (no “t”, please)

[(s, )] < ||s|l |]z|| forall (s,z) € X x X .

Remember that all norms are equivalent in our finite-dimensional space X: if || - ||
is another norm, there are positive numbers £ and L such that

fzll < llzll < Lll=] forallz € X .

However, the Euclidean norm || - || plays a special role.

4.1 We will denote by () a generic function (from some normed space to another)
which tends to 0 when its argument tends to 0. For example, the continuity of f at
z can be expressed by

fle+h)= f(z) +e(h).

When we need to distinguish speeds of convergence, multiplicative factors can be
used. For example,
||h||%e(h) fora=1,2,...

denotes the functions tending to O faster than ||k||, ||]|?, ... A more handy notation
for ||h||*e(h) is o(||k]|*) (pronounce “little oh of ...”).

Beware that these are only notations, and algebraic manipulation with them
should be done very carefully. For example () = re(-) for all 7 # 0, hence in
particular e(-) — (-) = (-)! Always keep the definitions in mind; for example, to
say that a function h — @(h) is o(||h||) means:

Ve >0 36 >0 suchthat ||h| <6 = |le(B)|| <ellh|l.

With this last notation, a function f : 2 — R, defined on an open set {2 C X,
is said to be differentiable at x € {2 if there exists a linear form £ on X such that

f(z+h) = f(z) + £(h) + o(|[R]]) -

This linear form ¢, denoted by f'(z), D f(z) or df(z), is called the differential of
f at x. According to §3.2(b), it can be represented by a unique element of X; this
element is called the gradient of f at z, denoted by V f(x), and is therefore defined
by

fl(@)(h) = (Vf(z),h) forallhe X.

Example 4.1 Let H C X be a subspace, equipped with the Euclidean structure
induced by (X, (-,-)) as in §3.1(c). If f is differentiable at x € H, its gradient
V f(z) is obtained from

flz+h) = f(z) +(Vi(z),h) +o(l|Al])- 4.1)

Then define the function fg : H — R to be the restriction of f to H. This fg
is differentiable at = and its gradient V fz7 () is the vector (of H!) satisfying



4 Differentiation in a Euclidean Space 11

f(@+h) = f(&)+ (Vfu(z),h) +o(l[All) forall he H .

Its computation is simple: in view of the properties of an orthogonal projection,
(Vf(z),h) = (puVf(z),h) forallhe H.

Plugging this into (4.1), we see that V fy(z) = puaV f(x). 0

It is important to realize that the representation of f'(z) by V f(z) changes if
(-,-) is changed. The gradient depends on the scalar product; but the differential
does not.

If the space is equipped with an orthonormal basis, along which « has the coor-
dinates £1,. .., £, then f'(x) is represented by the row-matrix

of af

and V f(z) is the vector of R* whose coordinates are (3f/9¢%)(z) fori = 1,...,n.

4.2 More generally, a function F' from §2 C X to some other Euclidean space, say
Y = R™, is differentiable at « € {2 if there exists a linear operator L from X to Y
yielding the first-order approximation

F(z 4+ h) = F(z) + L(h) + o(J|h]]) -

The differential L of F' at z is also called the Jacobian operator of F' at x, again
denoted by F'(x), DF(z), or also JF'(z). Nothing is really new with respect to the
scalar case of §4.1; denoting by f1,..., f,, the component-functions of F' along
some basis of Y, F' is differentiable at z if and only if each f; is such and

JF(z)(h) = (f1(z)(h),..., f,(x)(h)) forallhe X.

The matrix representation of JF'(z) along the bases of X and Y is an m x n matrix,
whose (i, j)*" element is (9 f; /0¢7)(x).

Given a scalar-valued function f, differentiable on §2, consider the function y —
f'(y), sending 2 to the space of linear forms on X . If this new function is in turn
differentiable at x, we obtain the second-order differential (of f at ). This defines
a bilinear form via

X x X 3 (h, k) = [(f) (@) (W](k) = f"(z)(h, k),

which is also symmetric; as such, it induces a quadratic form on X (for which we
will use the same notation).

If X is equipped with a scalar product (-, -), §3.2(b) tells us that the quadratic
form f"(x) defines a symmetric operator: the Hessian of f at z, denoted by V2 f(z),
or Hf(z). Just as the gradient, the Hessian depends on the scalar product; and there
holds the second-order approximation of f at x:

fz+h) = f(2) + (Vf(z),h) + 3(V>f(@)h, h) + o([|Rl*) -

With an orthonormal basis and x = (¢!,...,£"), V2f(x) is represented by a
symmetric matrix whose (i, j)*" element is (8% f/0¢'0¢7)(x), called the Hessian
matrix of f at .
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5 Set-Valued Analysis

5.1 If S is a nonempty closed subset of R", we denote by

ds(z) := min -z
s(2) = min Ily - =]

the distance from z to S. Given two nonempty closed sets S; and S, consider
e (51/S52) :=sup{ds,(z) : = € 51},
called the excess of Sy over Sy: geometrically,
en(S1/Ss) <& means S; C S+ B(0,¢).

The Hausdorff-distance Ay between Sy and Ss is then the symmetrization of
the above concept:

AH(Sl, Sz) = max {eH(Sl/SQ),eH(S’g/Sl)} .

One checks immediately that Ag(S1, S2) € R U{+o00}, but Ag is a finite-valued
function when restricted to bounded closed sets. Also

AH(Sl,SQ) =0 << Sl = SQ,
Ag(S1,82) = Ar(S2,51),
Ap(S1,S53) < An(S1,S2) + Au(Ss, Sa) .

In other words, Ay does define a distance on the family of nonempty compact
subsets of R™.

5.2 A mapping F' which, to x € X, associates a subset of R”, is called a multi-
valued, or set-valued mapping, or more simply a multifunction; we use the notation

X3z — Flz)CcR?

(watch the arrow, longer than in §1.2). The domain dom F of F isthe setof x € X
such that F'(z) # . Its image (or range) F'(X) and graph gr F are the unions of the
sets Fi(z) C R and {z} x F(z) C X x R" respectively, when z describes X (or,
more precisely, dom F). A selection of F is a particular function f : dom F' — R”
with f(z) € F(x) for all .

The concept of convergence is here much more tricky than in the single-valued
case. First of all, since a limit is going to be a set anyway, the following concept is
relevant: the limes exterior of F(x) for x — z* is the set of all cluster points of all
selections (here, z* € cl dom F). In other words, y € limext,_,,~ F(x) means:
there exists a sequence (x, ¥ )k such that

yr € F(zg), o, > z* andyr, >y whenk — +0o.

Note that this does not depend on multi-valuedness: each F(x) might well be a
singleton for all z. For example,
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lintligxt{sin(l/t)} =[-1,+1].

The limes interior of F(z) for x — z* is the set of limits of all convergent
selections: y € limint,_, .- F'(x) means that there exists a function z — f(x) such
that

f(z) € F(z) forallz and f(z) —» y whenz — z*.

Clearly enough, one always has lim int F'(z) C limext F'(x); when these two sets
are equal, the common set is the limir of F'(z) when z — z*.

Remark 5.1 The above concepts are classical but one usually speaks of lim sup and lim inf.
The reason is that the lim ext [resp. lim int] is the largest [resp. smallest] cluster set for the
order “C”. Such a terminology is however misleading, since this order does not generalize
“g”,

For example, with X = {1,1/2,...,1/k,...} (and ™ = 0), what are the lim sup and
lim inf of the sequence ((—1)*) for k — +o00? With the classical terminology, the answer is
confusing:

—If (—1)* is considered as a number in the ordered set (R, <), then
limsup(~-1)* =1 and liminf (-1)F = —1.
—If (—1)* is considered as a singleton in the ordered set (2%, C), then
limsup (—1)¥ = {-1,41} and liminf (-1)* = 0. u]

Beware that the above limes may cover somewhat pathological behaviours. Take
for example the multifunction

10,40[>t — F(t):={0,1/t} C R.

Then lim exty o F'(t) = {0}, a set which does not reflect the intuitive idea that a
lim ext should connote. Note: in this example, Ay [F(¢),{0}] = e[F(¢)/{0}] —
+o00 when ¢ | 0. The same pathological behaviour of the Hausdorff distance occurs
in the following example:

F(t):=[0,1/t] fort>0 and F(0)=[0,4o00[.

Then F(0) = limy o F(t) but Ag[F(t), F(0)] = +00.

5.3 The multifunction F' is said to be bounded-valued, closed-valued, convex-
valued etc. when the sets F'(x) are bounded, closed, convex etc. If its graph is a
closed set, we say that the multifunction is closed. In order to avoid the nasty situa-
tions mentioned above, a convenient property is local boundedness: we say that the
multifunction F is locally bounded near «* when:

For some neighborhood IV of z* and bounded set B C R,

5.1
N cdomF and F(N)CB. -

If F' is locally bounded near every z* in a set S, we say that F' is locally bounded
on S. Then a multifunction F' satisfying (5.1) is
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— outer semi-continuous at £* when
limext F(z) C F(z"),
T—x*
— inner semi-continuous at x* when
F(z*) C limint F(z) .
T—=T*

— continuous when it is both outer and inner semi-continuous.
When F' is closed-valued, these definitions can be made more handy thanks to
(5.1), namely: for all € > 0, there is a neighborhood N (z*) such that z € N(z*)

implies
F(z) C F(z*)+ B(0,¢) [outer semi-continuity]

F(z*) C F(z) + B(0,¢).  [inner semi-continuity] (52)

It is straightforward to check that (5.2) has an equivalent in terms of excesses:

e[F(z)/F(z*)} <€ [outer semi-continuity]
e[F(z*)/F(z)] < €. [inner semi-continuity]

In words, outer semi-continuity at * means: all the points in F(z) are close
to F'(z*) if the varying z is close to the fixed z*. When moving away from z*,
F does not expand suddenly. Inner semi-continuity is the other way round: F(x)
does not explode when the varying z reaches z*. If the mapping is actually single-
valued, both definitions coincide with that of a continuous function at *. In practice,
outer semi-continuity is frequently encountered, while inner semi-continuity is less
natural.

5.4 Finally, we mention a situation in which limits and continuity of sets have a
natural definition: when X is an ordered set, and z — F'(z) is nested. For example,
take X = R* and let ¢t — F'(t) satisfy F(t) C F(t') whenevert > ¢ > 0. Then
the set

ltiﬂ;l F@):=clU{F(t) : t >0}

coincides with the limit of F' defined in §5.2.

6 Recalls on Convex Functions of the Real Variable

We recall that a function f, defined on a nonempty interval I, is said to be convex
on I when
flaz + (1 -a)2’) < af(z) + (1 -a)f(z") (6.3)

for all pairs of points (z,z') in I and all @ €10, 1].
A fundamental convexity criterion is as follows:



6 Recalls on Convex Functions of the Real Variable 15

Proposition 6.1 (Criterion of Increasing Slopes) A function f is convex on an in-
terval I if and only if, for all xy € 1, the slope-function

x f(@) = fzo) =: s(z) (6.4)
r — Xy
is increasing on I\{zo}.
Proof. Draw a picture and work out the necessary algebra. |

Convex functions enjoy some remarkable regularity properties:
Theorem 6.2 A function f, convex on an interval I, is continuous on int I.

Proof. Let g € int I and take a, b such that g €]a,b[C int I. For z | zo (so
x € lxg, b]), write

z=ab+(l—-a)zg and xz¢=pPfa+ (1 -z,

with a | 0 and $ | 0. Then apply the relation of definition (6.3) to see that

@) < f(o0) +alr®) ~ fGa0)] and L0 < Pfa) + s

hence, passing to the limit:
limsup f(z) < f(zo) and f(zo) < liminf f(z).
Same technique for = 1 zg. O

Theorem 6.3 A function f convex on an interval I admits a finite left-derivative
and a finite right-derivative at each o € int I:

D_f(zo) i= lim LB @) _ ) f@) = flao)

= (6.5)
ztzo T — Zo z<xo T —Zo
e J@) = flmo) . o f(@) = f(wo)
Dy flzo) := lm == = = (6:6)
They satisfy
D_ f(wo) < D, f(o). ©7)

Proof. Apply the Criterion 6.1 of increasing slopes: the difference quotient involved
in (6.5), (6.6) is just the slope-function s of (6.4). For any two points z, =’ in
int dom f satisfying x < zg < z', s(z) and s(z') are finite numbers satisfying
s(z) < s(z'). Furthermore, when & 1 zg [resp. z | xo], s(x) increases [resp. s(z')
decreases], hence they both converge, say as described by the notation (6.5), (6.6);
this also proves (6.7). O

These results have converse statements:
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Theorem 6.4 Let a function f be continuous on an open interval I and possess an
increasing right-derivative, or an increasing left-derivative, on I. Then f is convex
onl.

Proof. Assume that f has an increasing right-derivative D f. For z, ' in I with
z < z' and u €z, z'[, there holds

f(u) f( ) < sup D+f(t) < 1nf D+f( ) f(ml) — f(u)

U—x t€ e t€ lu, ' —u

(the first and last inequalities come from mean-value theorems — in inequality form
— for continuous functions admitting right-derivatives). Then (6.3) is obtained via a
multiplication by 2’ — z > 0, knowing that u = ax + (1 — &)’ for some « €10, 1].
The proof for D_ f is just the same. O

The case where the two half-derivatives coincide is worth mentioning:

Corollary 6.5 Let a function f be differentiable with an increasing derivative on
an open interval 1. Then f is convex on I. O

Theorem 6.6 Let a function f be twice differentiable with a nonnegative second
derivative on an open interval I. Then f is convex on I.

Proof. Immediate from Corollary 6.5. O

Exercises

1. Givena function X > x — f(z), consider the following minimization problems:

: inf, .7,
(7) {glfef)(g) and (P2) %ﬁg)ff xR,

- Show that they have the same infimal value.
— Show that, if (P;) has an optimal solution, then the infimum in (P) is attained.
— Show that Z solves (P) if and only if there is 7 € R such that (Z, 7) solves (P%).

2*_ Prove the decoupling property (1.5).
Setting f1(z) := inf g(z,-) and taking (T, ) € Argmin g, show that

Z € Argmin f; and 7 € Argmin g(Z, -) .

Imagine counter-examples to see that converse implications need not hold.
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3* Given afunctiong : X x Y — R, establish the relation

sup (§2§< 9(z, y)) < jnf (52}3 9(z, y))
(start from the inner inequality inf g(-,y) < sup g(z, -), which can be used as a mnemonics:
when one minimizes, one obtains something smaller than when one maximizes!)

Setting fi(z) :=sup g(x,-) and fa(y) := inf g(-,y) and taking § € Argmin f5
(assumed nonempty), compare Argmin g(-, ) and Argmin f; [hint: use the function
g(z,y) = zy to guess what can be proved and what cannot.]

4. Leta, b, c be three real numbers, with a > 0. For the function R € z — ¢(x) :=
az? + 2bx + ¢, show the equivalence of the two statements

(i) g(z) > O forallz > 0,

(i) ¢ > 0and b + y/ac > 0.

5. Let A: R® — R” be a self-adjoint operator, b € R™, and consider the quadratic
function
R*® 5 2 — q(z) := (Az,z) — 2(b,x) .
Show that the three statements
(i) inf {g(z) : z € R?} > —00,
(ii)A>=0andbeImA,
(ii1) the problem inf {g(z) : x € R™} has a solution,

are equivalent. When they hold, characterize the set of minimum points of ¢, in
terms of the pseudo-inverse of A.

6. Let f :]0,+00[ = R be continuous. Show the equivalence of the statements

() f(vzy) < 3[f(2) + f(y)] forallz > 0andy > 0,
(ii) the function t — g(¢) := f(e’) is convex on R.

7. In S,,(R), we denote by S *(R) [resp. S;(R)] the set of positive [resp. semil-
definite matrices. Characterize the properties A € S}*(R) and A € S} (R) in terms
of the eigenvalues of A. What is the boundary of S} (R)?

Now n = 2 and we use the notation A = [z Z] for matrices in Sz (R).

Give necessary and sufficient conditions on z, y, z for which 4 € S} (R).

Draw a picture in R® to visualize the set S5 (R), and its intersection with the
matrices of trace 1 in Sa(R).

Show that the boundary of S5 (R) is the set of matrices of the form vv™, with v
describing R2. Give expressions of z, y, z for these matrices, as well as for those of
them that have trace 1.



A. Convex Sets

Introduction. Our working space is R™. We recall that this space has the structure of a real
vector space (its elements being called vectors), and also of an affine space (a set of points);
the latter can be identified with the vector-space R™ whenever an origin is specified. It is not
always possible, nor even desirable, to distinguish vectors and points.

We equip R™ with a scalar product (-, -), so that it becomes a Euclidean space, and also
a complete normed vector space for the norm ||z|| := (z,z)'/2. If an orthonormal basis is
chosen, there is no loss of generality in assuming that {z, ) is the usual dot-product z " y;
see §0.3.

The concepts presented in this chapter are of course fundamental, as practically all the
subsequent material is based on them (including the study of convex functions). These con-
cepts must therefore be fully mastered, and we will insist particularly on ideas, rather than
technicalities.

1 Generalities

1.1 Definition and First Examples

Definition 1.1.1 The set C C R" is said to be convex if az + (1 — a)z’ isin C
whenever z and 2’ are in C, and a €0, 1{ (or equivalently a € [0, 1]). o

Geometrically, this means that the line-segment
[z,2'] =={az+ (1 —-a)z’ : 0<a< 1}

is entirely contained in C' whenever its endpoints = and z’ are in C. Said otherwise:
the set C' — {c} is a star-shaped set whenever ¢ € C (a star-shaped set is a set
containing the segment [0, z] for all its points ). A consequence of the definition
is that C' is also path-connected, i.e. two arbitrary points in C' can be linked by a
continuous path.

Examples 1.1.2 (Sets Based on Affinity) Clearly, the convex sets in one dimen-
sion are exactly the intervals; let us give some more fundamental examples in several
dimensions.

(a) An gffine hyperplane, or hyperplane, for short, is a set associated with (s,7) €
R™ x R (s # 0) and defined by
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20 A. Convex Sets

Hy, ={zeR": (s,x) =7}.

An affine hyperplane is clearly a convex set. Fix s and let 7 describe R ; then the
affine hyperplanes H, , are translations of the same linear, or vector, hyperplane
H; . This H; ¢ is the subspace of vectors that are orthogonal to s and can be de-
noted by Hy o = {s}*. Conversely, we say that s is the normal to Hs o (up to
a multiplicative constant). Affine hyperplanes play a fundamental role in convex
analysis; the correspondence between 0 # s € R™ and H, ; is the basis for duality
in a Euclidean space.

(b) More generally, an affine subspace, or affine manifold, is a set V such that the
(affine) line {az + (1 — &)z’ : @ € R} is entirely contained in V' whenever  and
z' are in V' (note that a single point is an affine manifold). Again, an affine manifold
is clearly convex.

Take v € V; it is easy — but instructive — to show that V' — {v} is a subspace
of R™, which is independent of the particular v; denote it by V4. Thus, an affine
manifold V" is nothing but the translation of some vector space V), sometimes called
the direction (-subspace) of V; we will also say that Vj; and V' are parallel. One can
therefore speak of the dimension of an affine manifold V': it is just the dimension of
Vo. We summarize in Table 1.1.1 the particular cases of affine manifolds.

Table 1.1.1. Various affine manifolds

Name Possible definition Direction Dimension
point {z} (xeR") {0} 0
affine azy + (1 — a)zs vector line I
line o€ R, X1 75 x2 R(wl — xz)
affine {z eR” : (s,z) =r} vector hyperpl. 9
hyperplane (s#0,reR) {s}* n

(¢) The half-spaces of R™ are those sets attached to (s,r) € R* x R, 5 # 0, and
defined by

{r e R" : (s,z) <r} (closed half-space)

{z € R* : (s,z) <r} (open half-space);

“affine half-space” would be a more accurate terminology. We will often use the
notation H ~ for closed half-spaces. Naturally, an open [resp. closed] half-space is
really an open [resp. closed] set; it is the interior [resp. closure] of the corresponding
half-space; and the affine hyperplanes are the boundaries of the half-spaces; all this
essentially comes from the continuity of the scalar product (s, -). O

Example 1.1.3 (Simplices) Call @ = (a1,...,ax) the generic point of the space
R* . The unit simplex in R¥ is

k
Ap = {aER’“ Y a =1, aiZOfori:I,...,k}.
i=1
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Equipping R* with the standard dot-product, {e1, . .., e} being the canonical basis
and e := (1,..., 1) the vector whose coordinates are all 1, we can also write
Ap={a€R :eTa=1ea>0fori=1,...,k}. (1.1.1)

Observe the hyperplane and half-spaces appearing in this definition. Unit simplices
are convex, compact, and have empty interior — being included in an affine hyper-
plane. We will often refer to a point a € Ay, as a set of (k) convex multipliers.

It is sometimes useful to embed A in R™, m > k, by appending m — k zeros
to the coordinates of o € R¥, thus obtaining a vector of A,,. We mention that a
so-called simplex of R™ is the figure formed by n + 1 vectors in “nondegenerate
positions”; in this sense, the unit simplex of R¥ is a simplex in the affine hyperplane
of equation e” @ = 1; see Fig. 1.1.1.

Fig. 1.1.1. Representing a simplex

If we replace e« = 1in (1.1.1) by e" a < 1, we obtain another important set,
convex, compact, with nonempty interior:

r={a€eR :eTagl, a;>0fri=1,...,k}.

In fact, @ € A}, means that there is a1 > 0 such that (o, ap41) € Agyy. In this
sense, the simplex A} C R¥ can be identified with Ay via a projection operator.

A (unit) simplex is traditionally visualized by a triangle, which can represent Ag
or Aj; see Fig. 1.1.1 again. |

Example 1.1.4 (Convex Cones) A cone K is a set such that the “open” half-line
{az : @ > 0} is entirely contained in K whenever z € K. In the usual representa-
tion of geometric objects, a cone has an apex; this apex is here at O (when it exists: a
subspace is a cone but has no apex in this intuitive sense). Also, K is not supposed
to contain 0 — this is mainly for notational reasons, to avoid writing 0 x (400) in
some situations. A convex cone is of course a cone which is convex; an example is
the set defined in R™ by

(sj,z) =0forj=1,...,m, (Smyj,z)<0forj=1,...,p, (1.1.2)
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where the s;’s are given in R™ (once again, observe the hyperplanes and the half-
spaces appearing in the above example, observe also that the defining relations must
have zero righthand sides).

Convexity of a given set is easier to check if this set is already known to be a cone: in
view of Definition 1.1.1, a cone K is convex if and only if x + y € K whenever x and y lie
in K, ie. K + K C K. Subspaces are particular convex cones. We leave it as an exercise
to show that, to become a subspace, what is missing from a convex cone is just symmetry
(K = —-K).

A very simple cone is the nonnegative orthant of R
Q,={z=(&,...,&") : € >0fori=1,...,n}.

It can also be represented in terms of the canonical basis:
n
2, = {Zaiei tay 2 0fori= 1,...,n}
i=1

or, in the spirit of (1.1.2):
2, ={z€R" : {es,z) 20fori=1,...,n}.

Convex cones will be of fundamental use in the sequel, as they are among the
simplest convex sets. Actually, they are important in convex analysis (the “unilat-
eral” realm of inequalities), just as subspaces are important in linear analysis (the
“bilateral” realm of equalities). ]

1.2 Convexity-Preserving Operations on Sets

Proposition 1.2.1 Let {C;};cs be an arbitrary family of convex sets. Then their
intersection C := N{C; : j € J} is convex.

Proof. Immediate from the very Definition 1.1.1. O

Intersecting convex sets is an operation of utmost importance; by contrast, a
union of convex sets is usually not convex.

Example 1.2.2 Let (s1,71),..., (8m,Tm) be m given elements of R” X R and consider the
set
{z eR" : (sj,z) <rjforj=1,...,m}. (1.2.1)

It is clearly convex, which is confirmed if we view it as an intersection of m half-spaces; see
Fig. 1.2.1.

We find it convenient to introduce two notations; A : R® — R™ is the linear operator
which, to z € R™, associates the vector with coordinates (s;,); and in R™, the notation
a < b means that each coordinate of a is lower than or equal to the corresponding coordinate
of b. Then, the set (1.2.1) can be characterized by Az < b, where b € R™ is the vector with
coordinates r1, ..., m. ]
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Fig. 1.2.1. An intersection of half-spaces

It is interesting to observe that the above construction applies to the examples of §1.1:
— an affine hyperplane is the intersection of two (closed) half-spaces;
— an affine manifold is the intersection of finitely many affine hyperplanes;
— a unit simplex is the intersection of an affine hyperplane with a closed convex cone;
— a convex cone such as in (1.1.2) is an intersection of a subspace with (homogeneous) half-
spaces.

Piecing together these instances of convex sets, we see that they can all be considered
as intersections of sufficiently many closed half-spaces. Another observation is that, up to
a translation, a hyperplane is the simplest instance of a convex cone — apart from (linear)
subspaces. Conclusion: translations (the key operations in the affine world), intersections
and closed half-spaces are basic objects in convex analysis.

Convexity is stable under Cartesian product, just as it is under intersection.

Proposition 1.2.3 Fori =1,...,k, let C; C R™ be convex sets. Then Cy X - - - X C},
is a convex set of R™M x --- x R,

Proof. Straightforward. O

The converse is also true; C; x --- x C} is convex if and only if each C; is
convex, and this results from the next property: stability under affine mappings. We
recall that A : R® — R™ is said to be affine when

Alaz + (1 — a)z') = cA(z) + (1 — a)A(z")

for all z and ' in R” and all @ € R. This means that z — A(z) — A(0) is linear, so
an affine mapping can be characterized by a linear mapping Ao and a point yp :=
A(0) € R™:

A(z) = Aoz +yo forallz € R™.

It goes without saying that images of affine manifolds under affine mappings are
affine manifolds (hence the name!) So is the case as well for convex sets:



24 A. Convex Sets

Proposition 1.2.4 Let A : R® — R™ be an affine mapping and C a convex set of
R™. The image A(C) of C under A is convex in R™.

If D is a convex set of R™, the inverse image ;i(D) ={zeR": A(z) € D}
is convex in R™.

Proof. For z and ' in R™, the image under A of the segment [z,z'] is clearly

the segment [A(z), A(z')] C R™. This proves the first claim, but also the second:

indeed, if z and 2’ are such that A(z) and A(z’) are both in the convex set D, then

every point of the segment [z, 2'] has its image in [A(z), A(z")] C D. o
Immediate consequences of this last result are:

— the opposite —C' of a convex set is convex;

— the sum (called direct sum, or Minkowski sum, denoted with the symbol & by
some authors)

Ci + O, IZ{IL‘:.'E1+.'E2 : $1€Cl,$2602}

of two convex sets Cy and Cs is convex; when Cy = {c2} is a singleton, we will
sometimes use the lighter notation C; + ¢ for Cy + {2 };
— more generally, if a; and a; are two real numbers, the set

a1Ci + axCy = {alxl 4+ asxs : 11 € Cy,29 € Cz} (1.2.2)

is convex: it is the image of the convex set C; x C3 (Proposition 1.2.3) under the
linear mapping sending (z1,z2) € R” x R” to a3 z1 + aszs € R™.

We recall here that the sum of two closed sets need not be closed, unless one of the sets
is compact; and convexity does not help: with n = 2, take for example

Cro={(m) :£20,7>0,¢7>1} and C>:=Rx {0}

Example 1.2.5 Let C be convex in R™! xR™2 and take for A the projection from R™! x R"2
onto R"1, parallel to R"2?: A(x,y) = z, see Fig. 1.2.2.
Then realize that the “slice” of C along y

Cy) :={z € R™ : (z,y) € C}
and the “shadow” of C over R™!
Ci:={z eR" : (z,y) € C forsome y € C}

are convex. If, in particular, C = C x (s is a product, we obtain the converse to Proposi-
tion 1.2.3. ]

We finish with a topological operation.

Proposition 1.2.6 If C is convex, so are its interior int C and its closure c1C.
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] ny

Fig. 1.2.2. Shadow and slice of a convex set

Proof. For given different z and z’, and a €10, 1[, we set 2" = ax + (1 — a)z’ €
lz, 2'[.

Take first z and z’ in int C. Choosing > 0 such that B(z',§) C C, we show
that B(z"”, (1 — a)d) C C. As often in convex analysis, it is probably best to draw a
picture. The ratio ||z" — z||/||z’ — z|| being precisely 1 — a, Fig. 1.2.3 clearly shows
that B(z", (1 — a)d) is just the set az + (1 — a)B(z’, §), obtained from segments
with endpoints in int C: 2" € int C.

Now, take z and ' in c1 C: we select in C' two sequences (z) and (z},) con-
verging to « and z' respectively. Then, oz + (1 — @)z}, is in C and converges to

z", which is therefore in cl C. O
——— ()
1-a o

Fig. 1.2.3. Convex sets have convex interiors

The interior of a set is (too) often empty; convexity allows the similar but much more
convenient concept of relative interior, to be seen below in §2.1. Observe the nonsymmetric
character of z and z’ in Fig. 1.2.3. Tt can be exploited to show that the intermediate result
]z, z'[ C int C remains true even if € cl C; a property which will be seen in more detail in
§2.1.
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1.3 Convex Combinations and Convex Hulls

The operations described in §1.2 took convex sets and made new convex sets with
them. The present section is devoted to another operation, which takes a nonconvex
set and makes a convex set with it. First, let us recall the following basic facts from
linear algebra.

(i) A linear combination of elements x,, ..., x) of R” is an element Zle T,
where the coefficients «; are arbitrary real numbers.
(ii) A (linear) subspace of R™ is a set containing all its linear combinations; an
intersection of subspaces is still a subspace.
(iii) To any nonempty set S C R™, we can therefore associate the intersection of
all subspaces containing S. This gives a subspace: the subspace generated by
S (or linear hull of S), denoted by lin S — other notations are vect S or span S.
(iv) For the C-relation, lin S is the smallest subspace containing .S; it can be con-
structed directly from S, by collecting all the linear combinations of elements

of S.
(v) Finally, z1, .. ., zx are said to be linearly independent if Ele a;z; = 01m-
plies @1 = --- = a; = 0. In R”, this implies £ < n.

Now, let us be slightly more demanding for the coefficients a;, as follows:

(i’) An affine combination of elements zy, . . ., of R” is an element Zle ;T;,
where the coefficients «; satisfy Zle a; = 1.

As explained after Example 1.2.2, “affinity = linearity + translation”; it is there-
fore not surprising to realize that the development (i) — (v) can be reproduced starting
from (i’):

(i1’) An affine manifold in R™ is a set containing all its affine combinations (the
equivalence with Example 1.1.2(b) will appear more clearly below in Propo-
sition 1.3.3); it is easy to see that an intersection of affine manifolds is still an
affine manifold.

(iii’) To any nonempty set S C R™, we can therefore associate the intersection of
all affine manifolds containing S. This gives the affine manifold generated by
S, denoted aff S: the affine hull of S.

(iv’) For the C -relation, aff S is the smallest affine manifold containing .S; it can
be constructed directly from S, by collecting all the affine combinations of
elements of S. To see it, start from zg € 5, take lin (S — o) and come back
by adding x¢: the result zg + lin (S — zg) is just aff S.

(v’) Finally, the k + 1 points xg, Z1, - - . , ) are said affinely independent if the set
zo+lin{zg — zg, 21 — xo, ..., Tk — 2o} = To+lin{z1 — zg,...,2x — xo}
has full dimension, namely k. The above set is just aff {zg,z1,...,2¢};

hence, it does not depend on the index chosen for the translation (here 0).
In linear language, the required property is that the k vectors z; — zg, % # 0
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be linearly independent. Getting rid of the arbitrary index 0, this means that
the system of equations

k k
dawi=0, Y a;=0 (1.3.1)
i=0 i=0
has the unique solution ap = a3 = - -- = @ = 0. Considered as elements of
R**! = R™ x R, the vectors (zo, 1), (z1,1),-. ., (xk, 1), are linearly inde-

pendent. In R”, at most n + 1 elements can thus be affinely independent.

If o, 21, ..., Tk, are affinely independent, = € aff {xo, z1, ..., zr} can be written

in a unique way as
k k
= E a;x; with E a; =1.
i=0 i=0

The corresponding coefficients a; are sometimes called the barycentric coordinates
of z — even though such a terminology should be reserved to nonnegative a;’s. To say
that a set of vectors are affinely dependent is to say that one of them (any one) is an
affine combination of the others.

Example 1.3.1 Consider the unit simplex Ag on the left part of Fig. 1.1.1; calle; = (1,0,0),
e2 = (0,1,0), e3 = (0,0, 1) the three basis-vectors forming its vertices. The affine hull of
S = {e1,e2} is the affine line passing through e; and es. For S = {e1, e2, €3}, it is the
affine plane of equation a3 + a2 + az = 1. The four elements 0, ey, ez, e3 are affinely
independent but the four elements (1/3,1/3,1/3), €1, 2, e3 are not. ]

Passing from (i) to (i”) gives a set aff S which is closer to S than lin S, thanks to
the extra requirement in (i’). We apply once more the same idea and we pass from
affinity to convexity by requiring some more of the «;’s. This gives a new definition,
playing the role of (i) and (i’):

Definition 1.3.2 A convex combination of elements x1, ..., x; in R? is an element
of the form
k k
Zaimi, where Zaizl and o; >0 fori=1,...,k. O
=1 i=1

A convex combination is therefore a particular affine combination, which in turn
is a particular linear combination. Note in passing that all convex combinations of
given zy, ...,z form a convex set: the image of A, under the linear mapping

RF 5 (ay,...,00) = a1z + -+ apzp € R™ .

The sets playing the role of linear or affine subspaces of (ii) and (ii’) will now
be logically called convex, but we have to make sure that this new definition is
consistent with Definition 1.1.1.

Proposition 1.3.3 A set C C R is convex if and only if it contains every convex
combination of its elements.
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Proof. The condition is sufficient: convex combinations of two elements just make

up the segment joining them. To prove necessity, take x1,...,2, in C and a =
(a1,...,ar) € Ag. One at least of the a;’s is positive, say a; > 0. Then form
a1 (23] 1
9 1= 1 + T = ——(x + asx
Y ay + az ar+a; [= arm (m + aom)]

which is in C' by Definition 1.1.1 itself. Therefore,

o1 + az a3 [ 1 3 }
g 1= 2 + T3 =33 i=1 XiTs
Y o +a2+a3y a1+ as + az 2= o im 0%
is in C' for the same reason; and so on until
a1+ ap— O 1k
Ypi= ———————— g+ —xp (=130 aim]. 0

1 1

The working argument of the above proof is longer to write than to understand. Its ba-
sic idea is just associariviry: a convex combination £ = ) a;x; of convex combinations
x; = Y, Bijys; is still a convex combination z = ) > (a;Bi;)yi;. The same associativity
property will be used in the next result.

Because an intersection of convex sets is convex, we can logically define as in
(ii1), (iii’) the convex hull co S of a nonempty set S: this is the intersection of all the
convex sets containing S.

Proposition 1.3.4 The convex hull can also be described as the set of all convex
combinations:

coS :=N{C : C is convex and contains S}
= {m € R" : forsome k € N,, there exist 1,...,x1 € Sand  (1.3.2)
a=(ay,...,ar) € Ay such thar Zle ;T = m} )

Proof. Call T the set described in the rightmost side of (1.3.2). Clearly, T' O S.
Also, if C is convex and contains .S, then it contains all convex combinations of
elements in S (Proposition 1.3.3), i.e. C' D T'. The proof will therefore be finished
if we show that T" is convex.

For this, take two points z and y in T', characterized respectively by (z1, 1), .. .,
(g, ax) and by (y1,61),-- -, (ye, Be); take also A €]0,1[. Then Az + (1 — A)y isa
certain combination of k + £ elements of .S; this combination is convex because its
coefficients Aq; and (1 — A)j3; are nonnegative, and their sum is

e

k
A e+ (1= bi=A+1-r=1. O
i=1

j=1

Example 1.3.5 Take a finite set {x1,...,Z,, }. To obtain its convex hull, it is not
necessary to list all the convex combinations obtained via @ € Ay for all k =
1,...,m.In fact, as already seen in Example 1.1.3, A, C A,, if k& < m, so we can
restrict ourselves to k = m. Thus, we see that
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m
co{x1,...,Tm} = {Z ajz; : a=(al,...,0) eAm}.
Jj=1

Make this example a little more complicated, replacing the collection of points
by a collection of convex sets: S = C; U --- U (), where each C; is convex.
A simplification of (1.3.2) can again be exploited here. Indeed, consider a convex
combination Zle a;z;. It may happen that several of the x;’s belong to the same
C;. To simplify notation, suppose that xx_; and xx are in C; assume also a > 0.
Then set (B;, ;) := (a;,x;),i=1,...,k — 2 and

Br—1 = Qp—1 + ok, Y1 1= ﬁkl_l (agp—1zK-1 + ki) € C1,

k k-1 o . .
sothat ) a;z; = ) ,_; Biyi. Our convex combination (a, z) is useless, in the

sense that it can also be found among those with k — 1 elements. To cut a long story
short, associativity of convex combinations yields

C()S:{Zai:l,‘i ta€ 4, wiECiforizl,...,m}.
=1

From a geometric point of view, the convex hull of C; U Cs (m = 2) is simply
constructed by drawing segments, with endpoints in C and Cy; for C; U Cy U Cs,
we smear triangles, etc. O

When S is infinite, or has infinitely many convex components, £ is a priori un-
bounded in (1.3.2) and cannot be readily restricted as in the examples above. Yet, a
bound on k exists for all S when we consider linear combinations and linear hulls —
and consequently in the affine case as well; this is the whole business of dimension.
In the present case of convex combinations, the same phenomenon is conserved to
some extent. For each positive integer k, call Sy the set of all convex combinations
of k elements in S: wehave S = S; C So C --- C S C --- The Si’s are not
convex but, “at the limit”, their union is convex and coincides with co S (Proposi-
tion 1.3.4). The theorem below tells us that k& does not have to go to +oco: the above
sequence actually stops at Sp,11 = coS.

Theorem 1.3.6 (C. Carathéodory) Any © € coS C R” can be represented as a
convex combination of n + 1 elements of S.

Proof. Take an arbitrary convex combination = Zle a;x;, withk >n+1. We
claim that one of the x;’s can be assigned a O-coefficient without changing z. For
this, assume that all coefficients «; are positive (otherwise we are done).
The k > n + 1 elements x; are certainly affinely dependent: (1.3.1) tells us that
we can find 81, ..., Bk, not all zero, such that Zle Bixz; = 0 and Zle B; = 0.
There is at least one positive 3; and we can set } := a; — t*f; fori = 1,... k,
where
o

t* :=max{t>0: o —tB; >0fori=1,...,k} = min -L.
mx{ = i ﬂz/ 3 } le>0 ﬂj
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These computations are illustrated by Fig. 1.3.1. Clearly enough,

[automatic if 3; < 0,

>0 fori=1,...
a; 20 fors ook by construction of t* if 8; > 0]

k k k
' * .
E o = E a; —t E Bi=1;
i=1 =1 =1
k k
’ * .
E oz =1 —t E Bir; = T;
=1 =1

ago = 0 for some g . [by construction of £*]
In other words, we have expressed x as a convex combination of ¥ — 1 among
the x;’s; our claim is proved.
Now, if K — 1 = n + 1, the proof is finished. If not, we can apply the above
construction to the convex combination z = Zf;ll oz; and so on. The process
can be continued until there remain only n + 1 elements (which may be affinely

independent). O

Fig. 1.3.1. Carathéodory’s Theorem

The theorem of Carathéodory does not establish the existence of a “basis” with n + 1
elements, as is the case for linear combinations. Here, the generators x; may depend on
the particular  to be computed. In R?, think of the comers of a square: any one of these
4 > 2+1 points may be necessary to generate a point in the square; also, the unit disk cannot
be generated by finitely many points on the unit circle. By contrast, a subspace of dimension
m can be generated by m (carefully selected but) fixed generators.

It is not the particular value n + 1 which is interesting in the above theorem, but rather
the fact that the cardinality of relevant convex combinations is bounded: this is particularly
useful when passing to the limit in a sequence of convex combinations. This value n + 1
is not of fundamental importance, anyway, and can often be reduced — as in Example 1.3.5:
the convex hull of two convex sets in R*°® can be generated by 2-combinations; also, the
technique of proof shows that it is the dimension of the affine hull of S that counts, not n.
Along these lines, we mention without proof a result geometrically very suggestive:

Theorem 1.3.7 (W. Fenchel and L. Bunt) If S C R" has no more than n connected com-
ponents (in particular, if S is connected), then any x € co S can be expressed as a convex
combination of n elements of S. a
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This result says in particular that convex and connected one-dimensional sets are the
same, namely the intervals. In R2, the convex hull of a continuous curve can be obtained by
joining all pairs of points in it. In R*, the convex hull of three potatoes is obtained by pasting
triangles, etc.

1.4 Closed Convex Sets and Hulls

Closedness is a very important property: most of the convex sets of interest to us
in the subsequent chapters will be closed. It is therefore relevant to reproduce the
previous section, with the word “closed” added. As far as linearity and affinity are
concerned, there is no difference; in words, equalities are not affected when limits
are involved. But convexity is another story: when passing from (i), (i’) to Defini-
tion 1.3.2, inequalities are introduced, together with their accompanying difficulty
“<vs. <7

To construct a convex hull co S, we followed in §1.3 the path (iii), (iii’): we took
the intersection of all convex sets containing S. An intersection of closed sets is still
closed, so the following definition is also natural:

Definition 1.4.1 The closed convex hull of a nonempty set S C R” is the intersec-
tion of all closed convex sets containing S. It will be denoted by €6 .S. O

Another path was also possible to construct co .S, namely to take all possible
convex combinations: then, we obtained co S again (Proposition 1.3.4); what about
closing it? It turns out we can do that as well:

Proposition 1.4.2 The closed convex hull T S of Definition 1.4.1 is the closure
cl (co S) of the convex hull of S.

Proof. Because cl(coS) is a closed convex set containing S, it contains €0 .S as
well. On the other hand, take a closed convex set C' containing S; being convex,
C contains co S; being closed, it contains also the closure of co S. Since C was
arbitrary, we conclude NC' D clco S. m]

From the very definitions, the operation “taking a hull” is monotone: if S; C Sz, then
aff S1 C aff S, c1 51 C clS2, c0S1 C coS2, and of course €651 C €0 S2. A closed
convex hull does not distinguish a set from its closure, just as it does not distinguish it from
its convex hull: €6 S = €0(cl S) = €(co S).

‘When computing €6 via Proposition 1.4.2, the closure operation is necessary (co S need
not be closed) and must be performed after taking the convex hull: the operations do not
commute. Consider the example of Fig.1.4.1: S = {(0,0)} U {(¢&,1) : £ > 0}. Itis a closed
set but co S fails to be closed: it misses the half-line (R, 0). Nevertheless, this phenomenon
can occur only when S is unbounded, a result which comes directly from Carathéodory’s
Theorem:

Theorem 1.4.3 If S is bounded [resp. compact], then co S is bounded [resp. compact].
Proof. Letz = ?:11 a;z; € coS. If S is bounded, say by M, we can write

n+1 n+1

lell < S aulleill < MY oi = M.
i=1 i=1
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Fig. 1.4.1. A convex hull need not be closed

Now take a sequence (z¥) C coS. For each k we can choose «¥,...,2%,; in S and
a® € A,y1 such that £* = Z:‘:ll a¥z¥. Note that A, 4, is compact. If S is compact, we
can extract a subsequence as many times as necessary (n + 2 times is enough) so that (a’“) k
and each (z¥);, converge: we end up with an index set K C N such that, when k — +oo0,

(xi—c)ke}{ -—x; € S and (Olk)keK —ac An+1 .

Passing to the limit for k € K, we see that (z*)rex converges to a point z, which can be
expressed as a convex combination of points of S: £ € co.S, whose compactness is thus
established. u]

Thus, this theorem does allow us to write:

SboundedinR* =— ¢6S=clcoS=coclS.

Remark 1.4.4 Let us emphasize one point made clear by this and the previous sec-
tions: a hull (linear, affine, convex or closed) can be constructed in two ways. In
the inner way, combinations (linear, affine, convex, or limits) are made with points
taken from inside the starting set .S. The outer way takes sets (linear, affine, convex,
or closed) containing S and intersects them.

Even though the first way may seem more direct and natural, it is the second
which must often be preferred, at least when closedness is involved. This is espe-
cially true when taking the closed convex hull: forming all convex combinations is
already a nasty task, which is not even sufficient, as one must close the result af-
terwards. On the other hand, the external construction of €6 S is more handy in a
set-theoretic framework. We will even see in §4.2(b) that it is not necessary to take
in Definition 1.4.1 all closed convex sets containing S: only rather special such sets
have to be intersected, namely the closed half-spaces of Example 1.1.2(c). O

To finish this section, we mention one more hull, often useful. When starting
from linear combinations to obtain convex combinations in Definition 1.3.2, we
introduced two kinds of constraints on the coefficients: e"a = 1 and «; > 0. The
first constraint alone yielded affinity; we can take the second alone:

Definition 1.4.5 A conical combination of elements 1, . . ., T is an element of the
form Zle «;x;, where the coefficients o; are nonnegative.

The set of all conical combinations from a given nonempty S C R” is the
conical hull of S. It is denoted by cone S. O
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Note that it would be more accurate to speak of convex conical combinations and convex
conical hulls. If & := Zle o is positive, we can set 3; := «; /@; then we see that a conical
combination of the type ¢ iz = &Yr_, fixi, with @ > 0 and § € Ay, is then
nothing but a convex combination, multiplied by an arbitrary positive coefficient. We leave it
to the reader to realize that

coneS =R (coS) = co (R S).

Thus, 0 € cone S; actually, to form cone S, we intersect all convex cones containing S, and
we append 0 to the result. If we close it, we obtain the following definition:

Definition 1.4.6 The closed conical hull (or rather closed convex conical hull) of a
nonempty set S C R” is

k
(ﬁfeS::clconeS:cl{Zaiz,- ;= 0, miGSforizl,...,k}. O
i=1

Theorem 1.4.3 states that the convex hull and closed convex hull of a compact set co-
incide, but the property is no longer true for conical hulls: for a counter-example, take the
set {(&,1) € R? : (£ — 1)? + n* < 1}. Nevertheless, the result can be recovered with an
additional assumption:

Proposition 1.4.7 Let S be a nonempty compact set such that 0 & co S. Then
cone S =R (coS) [= coneS].

Proof. The set C' := co S is compact and does not containing the origin; we prove that R* C
is closed. Let (txxx) C RT C converge to y; extracting a subsequence if necessary, we may
suppose zx — = € C; note:  # 0. We write

Tk
* Tl

which implies tx = ||lyl|l/||zl| =: t > 0. Then, tyxx — tx = y, whichisthusinR*C. 0O

Y
AT
ll=ll

2 Convex Sets Attached to a Convex Set

2.1 The Relative Interior

Let C be a nonempty convex set in R™. If int C' # (), one easily checks that aff C'
is the whole of R™ (because so is the affine hull of a ball contained in C): we are
dealing with a “full dimensional” set. On the other hand, let C' be the sheet of paper
on which this text is written. Its interior is empty in the surrounding space R*, but
not in the space R? of the table on which it is lying; by contrast, note that ¢l C is the
same in both spaces.

This kind of ambiguity is one of the reasons for introducing the concept of rel-
ative topology: we recall that a subset A of R" can be equipped with the topology
relative to A, by defining its “closed balls” B(z,d) N A, for z € A; then A becomes
a topological space in its own. In convex analysis, the topology of R™ is of moderate
interest: the topologies relative to affine manifolds turn out to be much richer.
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Definition 2.1.1 The relative interior ri C (or relint C) of a convex set C C R” is
the interior of C for the topology relative to the affine hull of C. In other words:
z € riC if and only if

z €aff C and 36 > 0 such that (aff C) N B(z,8) C C'.

The dimension of a convex set C' is the dimension of its affine hull, that is to say
the dimension of the subspace parallel to aff C. O

Thus, the wording “relative” implicitly means by convention “relative to the affine hull”.
Of course, note that riC' C C. All along this section, and also later in Theorem C.2.2.3,
we will see that aff C is the relevant working topological space. Already now, observe that
our sheet of paper above can be moved ad libitum in R® (but not folded: it would become
nonconvex); its affine hull and relative interior move with it, but are otherwise unaltered.
Indeed, the relative topological properties of C are the properties of convex sets in R¥, where
k is the dimension of C or aff C. Table 2.1.1 gives some examples.

Table 2.1.1. Various relative interiors

C aff C dim C nC

{=} {z} 0 1z}

[z, -’IU,] affine line 1 ,
z# generated by z and z' Jo, o[

affine manifold

A .
n of equatione” @ = 1

n—1 {a€A,:a; >0}

B(zo,9) R" n int B(zo, §)

Remark 2.1.2 The cluster points of a set C are in aff C' (which is closed and contains C), so
the relative closure of C is just ¢l C: a notation relcl C would be superfluous. On the contrary,
the boundary is affected, and we will speak of relative boundary: tbd C := c1C\riC. O

A first demonstration of the relevance of our new definition is the following:
Theorem 2.1.3 [fC # §, then1iC # 0. In fact, dim (riC) = dim C.

Proof. Let k := dimC. Then C contains & 4+ 1 elements affinely independent
Zg, ..., k. They generate a simplex co {zo,..., x5} =: A; see Fig.2.1.1;aff A =
aff C because A C C and dim A = k. The proof will be finished if we show that
A has nonempty relative interior.

Take Z := iy S°F_, i (the “center” of A ) and describe aff A by points of the

form
k

k
THy=2+) ay)ri =Y |2y +a®)]w,

=0 i=0

where a(y) = (ao(y), - - -, ax(y)) € REFL solves
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aff C

Fig. 2.1.1. A relative interior is nonempty

k k
Z%‘%‘:y, E a;=0.
i=0 i=0

Because this system has a unique solution, the mapping y — «a(y) is (linear and)

continuous: we can find § > 0 such that ||y|| < & implies | (y)| < 7 for
i=0,...,k,hence T+ y € A.Inother words, Z €riA CriC.
It follows in particular dimri C = dim A = dim C. O

Remark 2.1.4 We could have gone a little further in our proof, to realize that the relative
interior of A was

k k
{Zaixi s> e=1, a4 >0fori:0,...,k}.
i=0 i=0

Indeed, any point in the above set could have played the role of z in the proof. Note, inciden-
tally, that the above set is still the relative interior of co {xo, ..., zx}, even if the z;’s are not
affinely independent. O

Remark 2.1.5 The attention of the reader is drawn to a detail in the proof of Theo-
rem2.1.3: A C C implied ri A C riC because A and C had the same affine hull,
hence the same relative topology. Taking the relative interior is not a monotone op-
eration, though: in R, {0} C [0, 1] but {0} = ri {0} is not contained in the relative
interior ]0, 1] of [0, 1]. ]

We now turn to a very useful technical result; it refines the intermediate result
in the proof of Proposition 1.2.6, illustrated by Fig. 1.2.3: when moving “radially”
from a point in ri C straight to a point of cl C, we stay inside ri C.

Lemma 2.1.6 Let z € clC and «' € riC. Then the half-open segment
Jz, 2] ={az+(1—-a)' : 0<a< 1}

is contained inriC.
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Proof Take z" = az + (1 — a)z’, with 1 > « > 0. To avoid writing “N aff C”
every time, we assume without loss of generality that aff C' = R™.
Since xz € clC, foralle > 0,z € C + B(0,¢) and we can write

B(z",e) = az + (1 — o)z’ + B(0,¢)
CaC+(l—a) +(1+a)B(0,¢)
=aC+ (1—-a){z'+B(0,}2¢)}.
Since ' € int C, we can choose € so small that z’ + B(0, 32¢) C C. Then we
have
B(z",e)CaC+(1-a)C=C

(where the last equality is just the definition of a convex set). O

Taking z € clC in the above statement, we see that the relative interior of a
convex set is convex; a result refining Proposition 1.2.6.

Remark 2.1.7 We mention an interesting consequence of this result: a half-line issued from
z’ € riC cannot cut the boundary of C in more than one point; hence, a line meeting ri C
cannot cut ¢l C' in more than two points: the relative boundary of a convex set is thus a fairly
regular object, looking like an “onion skin” (see Fig.2.1.2). O

Fig. 2.1.2. The relative boundary of a convex set

Note in particular that [z,z'] C riC whenever z and z' are in riC, which
confirms that ri C is convex (cf. Proposition 1.2.6). Actually, riC, C and c1 C' are
three convex sets very close together: they are not distinguished by the operations
‘Saf ’9, &‘ri99 and “Cl,"

Proposition 2.1.8 The three convex sets ri C, C and cl C have the same affine hull
(and hence the same dimension), the same relative interior and the same closure
{and hence the same relative boundary).

Proof. The case of the affine hull was already seen in Theorem 2.1.3. For the oth-
ers, the key result is Lemma 2.1.6 (as well as for most other properties involving
closures and relative interiors). We illustrate it by restricting our proof to one of the
properties, say: ri C' and C have the same closure.

Thus, we have to prove that cl C C ¢l (ri C). Let z € ¢l C and take z' € ri C (it
is possible by virtue of Theorem 2.1.3). Because ]z, '] C ri C (Lemma 2.1.6), we
do have that x is a limit of points in ri C' (and even a “radial” limit); hence z is in
the closure of ri C'. O
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Remark 2.1.9 This result gives one more argument in favour of our relative topology: if we
take a closed convex set C, open it (for the topology of aff C'), and close the result, we obtain
C again — a very relevant topological property.

Among the consequences of Proposition 2.1.8, we mention the following:

— C and cl C have the same interior — hence the same boundary: in fact, either both interiors
are empty (when dim C' = dim cl C < n), or they coincide because the interior equals the
relative interior.

—If C1 and Cs are two convex sets having the same closure, then they generate the same
affine manifold and have the same relative interior. This happens exactly when we have the
“sandwich” relation ri Ch C C2 C ¢l Cy. O

Our relative topology fits rather well with the convexity-preserving operations
presented in §1.2. Our first result in these lines concerns intersections and is of
paramount importance.

Proposition 2.1.10 Ler the two convex sets Cy and Cs satisfy riCy NriCy # ).
Then
ri(CiNCy) =riCy NriCy 2.1.1D)

cd(CinCy) =clCinclCs. (2.1.2)

Proof. First we show that c1Cy NclCy C ¢l (Cy N Cs) (the converse inclusion is
always true). Given € clCy N ¢l Cs, we pick 2’ in the nonempty ri C; Nri Cs.
From Lemma 2.1.6 applied to C; and to Cs,

Jz, 2"l CriCiNriCs .
Taking the closure of both sides, we conclude
z€c(rCyNriCy) Ccl(CiNCy),

which proves (2.1.2) because = was arbitrary; the above inclusion is actually an
equality.

Now, we have just seen that the two convex sets ri C7 Nri Ce and C; N C; have
the same closure. According to Remark 2.1.9, they have the same relative interior:

ri(CiNCy)=ri(riCiNriCy) CriCy NriCsy.

It remains to prove the converse inclusion, so let y € riCy N riCs. If we take

x' € C; [resp. C2], the segment [z',y] is in aff C; [resp. aff C] and, by definition
of the relative interior, this segment can be stretched beyond y and yet stay in C}
[resp. C2] (see Fig. 2.1.3). Take in particular =’ € ri (C, N Cs), ' # y (if such an =’
does not exist, we are done). The above stretching singles out an z € Cy N Cs such
that y € ]z, z'[. Then Lemma 2.1.6 applied to C1 NC> tells us that y € ri (C1 N Cy).
O

Observe that, if we intersect infinitely many convex sets — instead of two, or a finite
number —, the proof of (2.1.2) still works, but certainly not the proof of (2.1.1): the stretching
possibility is killed. In (2.1.1), the lefthand side is nonempty (unless C; N C2 = B), hence
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Fig. 2.1.3. The stretching mechanism

nonemptiness of ri C1 Nri C'» appears as necessary; as for (2.1.2), look again at Remark 2.1.5.
Such an assumption is thus very useful; it is usually referred to as a qualification assumption,
and will be encountered many times in the sequel. Incidentally, it gives another sufficient
condition for the monotonicity of the ri-operation (use (2.1.1) with C1 C C5).

We restrict our next statements to the case of the relative interior. Lemma 2.1.6
and Proposition 2.1.8 help in carrying them over to the closure operation.

Proposition 2.1.11 Fori=1,...,k, let C; C R™ be convex sets. Then
ri(Cy x - xCr) = (xiCy) x --- x (1riCy) .
Proof. 1t suffices to apply Definition 2.1.1 alone, observing that
aff (Cy x -+ x Cy) = (aff C1) x -+ x (aff Cf) . O

Proposition 2.1.12 Let A : R® — R™ be an affine mapping and C' a convex set of
R™. Then
ri[A(C)] = A(xiC). (2.1.3)

If D is a convex set of R™ satisfying ;i(ri D) # ), then

ri[A(D)] = AGiD). 2.1.4)

Proof. First, note that the continuity of A implies A(clS) C cl[A(S)] for any
S C R™. Apply this result to ri C, whose closure is ¢l C' (Proposition 2.1.8), and use
the monotonicity of the closure operation:

A(C) C A(clC) = Al (riC)] C cl[A(ri C)] C cd[A(C)];

the closed set cl[A(riC)] is therefore cl[A(C)]. Because A(riC) and A(C) have
the same closure, they have the same relative interior (Remark 2.1.9): ri A(C) =
ri[A(riC)] C A(riC).

To prove the converse inclusion, let w = A(y) € A(riC), with y € riC. We
choose z' = A(z') € ri A(C), with 2’ € C (we assume z' # w, hence ' # y).
Using in C the same stretching mechanism as in Fig.2.1.3, we single out z € C
such thaty € ]z, z'[, to which corresponds z = A(z) € A(C). By affinity, A(y) €
JA(z), A(z')[ =]z, 2'[ . Thus, z and 2’ fulfil the conditions of Lemma 2.1.6 applied
to the convex set A(C): w € ri A(C), and (2.1.3) is proved.

The proof of (2.1.4) uses the same technique. O



2 Convex Sets Attached to a Convex Set 39

As an illustration of the last two results, we see that the relative interior of a1 C1 4+ a2C>
is a1 riCi + aoriCa. If we take in particular &y = —ag = 1, we obtain the following
theorem:

0€ri(C1—Cz2) < (iCi)N(riC2) #0, (2.1.5)

which gives one more equivalent form for the qualification condition in Proposition 2.1.10.
We will come again to this property on several occasions.

2.2 The Asymptotic Cone

Let x be a point in a closed convex cone K. Draw a picture to see that, for all d € K, the
half-line z + R*d is contained in K: z +td € K forallt > 0. Conversely, if z + Rtd C K,
ie. if

de

K-z
— =K - {iz} forallt >0,
then (K is closed), d € K. In words, a closed convex cone is also the set of directions along
which one can go straight to infinity. We now generalize this concept to non-conical sets.
In this section, C will always be a nonempty closed convex set. For x € C, let

Coo(z):={d€R" : z+td € Cforallt>0}. (2.2.1)

Despite the appearances, Coo (z) depends only on the behaviour of C “at infinity™: in fact,
z + td € C implies that z + 7d € C for all 7 € {0, ¢] (C is convex). Thus, Coo () is just
the set of directions from which one can go straight from z to infinity, while staying in C.
Another formulation is: c
-
Coale) = [ 52,

t>0

(2.2.2)

which clearly shows that Co () is a closed convex cone, which of course contains 0. The
following property is fundamental.

Proposition 2.2.1 The closed convex cone Coo(z) does not depend on x € C.
Proof. Take two different points z1 and z» in C; it suffices to prove one inclusion, say
Coo(z1) C Cuxo(x2). Letd € Coo(x1) and t > 0, we have to prove z2 + td € C. With
¢ €]0, 1{, consider the point

o=z +td+ (1 —e)(ma—x1) =€ (z1 + Ld) + (1 — €)x2.
Thus Z. € C (use the definitions of Css (1) and of a convex set); pass to the limit:

:cz—t—td:lig)l@Ec]C:C. O

It follows that the notation Co is more appropriate:

Definition 2.2.2 (Asymptotic Cone) The asymptotic cone, or recession cone of the closed
convex set C is the closed convex cone Co defined by (2.2.1) or (2.2.2), in which Proposi-
tion 2.2.1 is exploited. O

Figure 2.2.1 gives three examples in R?. As for the asymptotic cone of Example 1.2.2, it
is the set {d € R™ : Ad < 0}.

Proposition 2.2.3 A closed convex set C is compact if and only if Coo = {0}.
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Fig. 2.2.1. Some asymptotic cones

Proof. If C is bounded, it is clear that C's cannot contain any nonzero direction. Conversely,
let (z) C C be such that ||zx|| — +oco (we assume z; # 0). The sequence (dx :=
zr/l|zkl]) is bounded, extract a convergent subsequence: d = limgex d with K C N
(ld|} = 1). Now, given z € C and t > 0, take k so large that ||zk|| > ¢. Then, we see that

1 _ t t
z+id= ,l‘e“}([(l Tr)® + ToxT mk]

lies in the closed convex set C, hence d € Co. ]

Remark 2.2.4 Consider the closed convex sets (C' — z)/t, indexed by ¢t > 0. They form a
nested decreasing family: for ¢; < ¢z and y arbitrary in C,

ta — 11 t1

!
y—2_9¥ z+2yeC.
t2

x ’
= where y =
to t1 t2

Thus, we can write (see §0.5 for the set-limit appearing below)

Coozﬂc_‘”: lim £=2 (2.2.3)

t to+oo0
t>0

which interprets C as a limit of set-valued difference quotients, but with the denominator
tending to 0o, instead of the usual 0. This will be seen again later in §5.2. O

In contrast to the relative interior, the concept of asymptotic cone does not always fit well
with usuval convexity-preserving operations. We just mention some properties which result
directly from the definition of Co.

Proposition 2.2.5 —If {C;};cy is a family of closed convex sets having a point in common,
then
(Nje7Ci) oo = Njes (Cj)oo -

—If forj =1,...,m, C; are closed convex sets in R"7, then
(Ci x - xCm)y =(C1)oo X+ X (Crm)oo -

~Let A : R™ — R™ be a linear operator. If C is closed convex in R™ and A(C) is closed,

then
A(Cw) C [A(O)]oo -
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—1If D is closed convex in R™ with nonempty inverse image, then

[4(D)]_ = A(Dwo). o

Needless to say, convexity does not help to ensure that the image of a closed set under a
continuous mapping is closed: take A(&,n) = £ (linear) and C = {(¢,n) : 7 > 1/€ > 0}.

2.3 Extreme Points

In this section, C' is a nonempty convex set of R” and there would be no loss of
generality in assuming that it is closed. The reader may make this assumption if he
finds it helpful in mastering faster the definitions and properties below; the same
remark holds for §2.4.

Definition 2.3.1 (Extreme Point) We say that z € C is an extreme point of C if
there are no two different points z; and x5 in C such that z = 1/2 (z1 + x2). O

Some other ways of expressing the same thing are:

— The representation z = ax1 + (1 — a)z2 is impossible with two distinct points z1 and z2
in C and a €]0, 1] : indeed, convexity of C implies that z; and x2 in the definition can be
replaced by two other points in the segment [z1, z2}; this amounts to replacing the number
1/2 by some other a € }0, 1{. In short:

z is an extreme point of C if and only if
[t=ari+(1—a)ze, 1 €C,0<a<1l] = z==xz1=12.

— There is no convex combination z = Ele a;x; other than 1 = -+ - = x [= x].
— Even when deprived of the point z, the set C remains convex.

Examples 2.3.2
—Let C be the unit ball B(0, 1). Multiply by 1/2 the relation

Lar + 22l = > + 22> — Sz — o | @3.1)

to realize that every z of norm 1 is an extreme point of B(0, 1). Likewise, if Q) :
R™ — R™ is a positive definite symmetric linear operator, any = with (Qz,z) = 1
is an extreme point of the convex set {z € R" : (Qz,z) < 1}.
On the other hand, if (Q-,-)'/2 is replaced by the ¢;-norm, the corresponding
unit ball has finitely many extreme points.
—If C is a convex cone, a nonzero z € C' has no chance of being an extreme point.
— An affine manifold, a half-space have no extreme points. O

The set of extreme points of C' will be denoted by ext C'. We mention here that
it is a closed set when n < 2; but in general, ext C' has no particular topological or
linear properties. Along the lines of the above examples, there is at least one case
where there exist extreme points:

Proposition 2.3.3 If C is compact, then ext C # .
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Proof. Because C' is compact, there is Z € C maximizing the continuous function
z > ||z||2. We claim that Z is extremal. In fact, suppose that there are z; and zo
in C with Z = 172 (z1 + x2). Then, with z; # z2 and using (2.3.1), we obtain the
contradiction

_ 2 _ _ _
1217 = |3 (21 + 22)[|” < gUllzal* + lle=l?) < 51212 + N1z)?) = llz]l*. o

The definitions clearly imply that any extreme point of C' is on its boundary, and
even on its relative boundary. The essential result on extreme points is the following,
which we will prove later in §4.2(c).

Theorem 2.3.4 (H. Minkowski) Let C be compact, convex in R™. Then C' is the
convex hull of its extreme points: C = co (ext C'). O

Combined with Carathéodory’s Theorem 1.3.6, this result establishes that, if
dim C = k, then any element of C' is a convex combination of at most k + 1
extreme points of C.

Example 2.3.5 Take C = co {1, ..., }. All the extreme points of C' are present
in the list zq, ..., Z,,; but of course, the z;’s are not all necessarily extremal. Let
¢ < m be the number of extreme points of C, suppose to simplify that these are
Z1,...,Z,. Then C = co{x1,...,x,} and this representation is minimal, in the
sense that removing one of the generators 1, ..., x, effectively changes C. The
case 4 = n + 1 corresponds to a simplex in R®. If 4 > n + 1, then for any =z € C,
there is a representation x = Zle a;z; in which at least 4 — n — 1 among the s
are Zero. O

A higher-dimensional generalization of extreme points can be defined. Consider
again Definition 2.3.1, and replace “the point x € C” by “the convex subset F' C
C”. Our definition is then generalized as follows: the convex subset F' C C is
extremal if there are no two points z; and 2 in C\ F such that 1/2 (z1 + z5) € F.

Once again, the number 1/2 has nothing special and can be replaced by any other
a €]0, 1. The above statement can be rephrased in reversed logic as: if 21 and z»
in C are such that az; + (1 — a)xy € F for some a €0, 1], then 21 and z are in
F as well. Convexity of F then implies that the whole segment [z, z2] is in F', and
we end up with the traditional definition:

Definition 2.3.6 (Faces) A nonempty convex subset F' C C is a face of C if it
satisfies the following property: every segment of C, having in its relative interior
an element of F', is entirely contained in F'. In other words,

(z1,22) € C x C  and

Y €]0.1]: az1 + (1 — a)zs € F} = [z1,22] C F. (2.32)

]

Being convex, a face has its own affine hull, closure, relative interior and di-
mension. By construction, extreme points appear as faces that are singletons, i.e.
O-dimensional faces:
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rzeextC <= {z}isafaceofC.

One-dimensional faces, i.e. segments that are faces of C, are called edges of C'; and
so on until (k — 1)-dimensional faces (where k = dim C), called facets ... and the
only k-dimensional face of C', which is C itself.

A useful property is the “transmission of extremality”: if x € C' C C is an
extreme point of C, then it is a fortiori an extreme point of the smaller set C'. When
C' is a face of C, the converse is also true:

Proposition 2.3.7 Let F be a face of C. Then any extreme point of F is an extreme
point of C.

Proof. Take x € F' C C and assume that x is not an extreme point of C' there are
different z1, 22 in C and a €]0, 1 such that z = az; + (1 — a)z2 € F. From the
very definition (2.3.2) of a face, this implies that ; and x5 are in F':  cannot be an
extreme point of F. O

This property can be generalized to: if F' is a face of F, which is itself a face of C, then
F’ is a face of C. We mention also: the relative interiors of the faces of C form a partition
of C. Examine Example 2.3.5 to visualize its faces, their relative interiors and the above
partition. The C of Fig.2.3.1, with its extreme point , gives a less trivial situation; make
a three-dimensional convex set by rotating C' around the axis A: we obtain a set with no
one-dimensional face.

Fig. 2.3.1. A special extreme point

2.4 Exposed Faces

The rationale for extreme points is an inner construction of convex sets, as is partic-
ularly illustrated by Theorem 2.3.4 and Example 2.3.5. We mentioned in the impor-
tant Remark 1.4.4 that a convex set could also be constructed externally, by taking
intersections of convex sets containing it (see Proposition 1.3.4: if S is convex, then
S = co0S). To prepare a deeper analysis, coming in §4.2(b) and §5.2, we need the
following fundamental definition, based on Example 1.1.2.

Definition 2.4.1 (Supporting Hyperplane) An affine hyperplane H, , is said to
support the set C when C is entirely contained in one of the two closed half-spaces
delimited by H ,: say
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(s,y) <r forally e C. 24.1)

It is said to support C ar ¢ € C when, in addition, z € H; ,: (2.4.1) holds, as well
as (s,x) =r. O

See Fig.2.4.1 for an illustration. Up to now, it is only a formal definition; existence of
some supporting hyperplane will be established later in §4.2(a). Naturally, the inequality-
sign could be reversed in (2.4.1): H, , supports C when H_; _, supports C. Note also that
if x € C has a hyperplane supporting C, then € bd C.

Fig. 2.4.1. Supporting hyperplanes at various points

Definition 2.4.2 (Exposed Faces, Vertices) The set ' C C' is an exposed face of
C if there is a supporting hyperplane H; . of C such that F' = C N Hy .

An exposed point, or vertex, is a 0-dimensional exposed face, i.e. a pointz € C'
at which there is a supporting hyperplane H; ,. of C such that H; ,. N C reduces to

{z}. a

See Fig.2.4.1 again. A supporting hyperplane H, , may or may not touch C.
If it does, the contact-set is an exposed face. If it does at a singleton, this singleton
is called an exposed point. As an intersection of convex sets, an exposed face is
convex. The next result justifies the wording.

Proposition 2.4.3 An exposed face is a face.

Proof. Let F' be an exposed face, with its associated support Hy ,.. Take z; and z5
in C:
(s,z;) <r fori=1,2; (2.4.2)

take also a €]0, 1] such that azy + (1 — a)ze € F C H, ,:
(s,az1 + (1 —a)z2) =7.

Suppose that one of the relations (2.4.2) holds as strict inequality. By convex com-
bination (0 < a < 1!), we obtain the contradiction (s, az; + (1 — a)z2) <r. O

The simple technique used in the above proof appears often in convex analysis: if a con-
vex combination of inequalities holds as an equality, then so does each individual inequality
whose coefficient is positive.
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Remark 2.4.4 Comparing with Proposition 2.3.7, we see that the property of transmission
of extremality applies to exposed faces as well: if z is an extreme point of the exposed face
FcCC,thenz € extC. ]

One could believe (for example from Fig.2.4.1) that the converse to Proposition 2.4.3
is true. Figure 2.3.1 immediately shows that this intuition is false: the extreme point z is
not exposed. Exposed faces form therefore a proper subset of faces. The difference is slight,
however: a result of S. Straszewicz (1935) establishes that any extreme point of a closed
convex set C is a limit of exposed points in C'. In other words,

expC C ext C C cl (exp C)

if exp C denotes the set of exposed points in C. Comparing with Minkowski’s result 2.3.4,
we see that C = co(exp C) for C convex and compact. We also mention that a facet is
automatically exposed (the reason is that n— 1, the dimension of a facet, is also the dimension
of the hyperplane involved when exposing faces).

Enrich Fig.2.3.1 as follows: take C’, obtained from C by a rotation of 30° around A ;
then consider the convex hull of C U C”, displayed in Fig. 2.4.2. The point P; is an extreme
point but not a vertex; P is a vertex. The edge E; is not exposed; E is an exposed edge. As
for the faces F and F3, they are exposed because they are facets.

Fig. 2.4.2. Faces and exposed faces

Remark 2.4.5 (Direction Exposing a Face) Let F' be an exposed face, and H, ,
its associated supporting hyperplane. It results immediately from the definitions that
(s,y) < (s,z) forally € C and all z € F. Another definition of an exposed face
can therefore be proposed, as the set of maximizers over C of some linear form: F'
is an exposed face of C' when there is a nonzero s € R” such that

F={zeC: (s,z) =supyec(s,y)}- (2.4.3)

A relevant notation is thus F o (s) to designate the exposed face of C associated
with s € R"; it can also be called the face of C' exposed by s. For a unified notation,
we will consider C itself as exposed by 0: C' = F¢(0). 0

Beware that a given s may define no supporting hyperplane at all. Even if it does,
it may expose no face (the supremum in (2.4.3) may be not attained). The following
result is almost trivial, but very useful: it is “equivalent” to extremize a linear form
on a compact set or on its convex hull.
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Proposition 2.4.6 Let C be convex and compact. For s € R”, there holds

max (s,z) = max (s, z).

zEC< ’ ) zEextC< ’ )

Furthermore, the solution-set of the first problem is the convex hull of the solution-
set of the second:

Argmax (s, z) = co { Argmax oy (s, 2) } -
zeC
Proof. Because C is compact, (s,-) attains its maximum on F¢(s). The latter
set is convex and compact, and as such is the convex hull of its extreme points

(Minkowski’s Theorem 2.3.4); these extreme points are also extreme in C' (Propo-
sition 2.3.7 and Remark 2.4.4). a

3 Projection onto Closed Convex Sets

3.1 The Projection Operator

Denote by py the (orthogonal) projection onto a subspace V' C R™. The main
properties of the operator  — py (z) are to be linear, symmetric, positive semi-
definite, idempotent (py o py = py), nonexpansive (||py (z)|| < ||z for all z);
also, it defines a canonical decomposition of R” via z = py (z) 4+ py 1 (z). We will
generalize this operator to the case where V' is merely convex.

In what follows, C' is a nonempty closed convex set in R"™. For fixed z € R*, we
consider the following problem:

inf {}|ly —z||* : y€ C}, (3.1.1)

i.e. we are interested in those points (if any) of C that are closest to z for the Eu-
clidean distance. Let f, : R* — R be the function defined by

R* 5y~ fo(y) = 3lly — |- (3.1.2)

For ¢ € C, take the sublevel-set S := {y € R" : f,(y) < fz(c)}. Then (3.1.1) is
clearly equivalent to inf,ccns fz(y), which has a solution since f, is continuous
and S — hence C' N S — is compact. We deduce the existence of a closest point in C
to z; the inf in (3.1.1) is a min.

Note that convexity of C' plays no role in the above existence result. Uniqueness,
however, depends crucially on convexity: let y; and y5 be two solutions to (3.1.1).
Use (2.3.1) with z; = y; — x to obtain

fa(yo) = 51fo (1) + Fo(y2)] — §lly2 — w1ll?,

where yo := 1/2 (y1 + y2) € C; this implies uniqueness.
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We have thus defined a projection operator, namely the mapping z — pc(z)
which, to each z € R", associates the unique solution pc(z) of the minimiza-
tion problem (3.1.1). It is possible to characterize pc(x) differently, as solving a
so-called variational inequality; and this characterization is the key to all results
concerning pc.

Theorem 3.1.1 A point y, € C is the projection pc(z) if and only if
(T — Yo, ¥ —Yz) <0 forallyeC. (3.1.3)

Proof. Call y, the solution of (3.1.1); take y arbitrary in C, so that y, +a(y —y,) €
C for any a €10, 1{. Then we can write with the notation (3.1.2)

fe(We) < fo(ye +a(y —ye)) = %”yz —z+aly - Z/z)||2 .
Developing the square, we obtain after simplification
0 < a<yz — LY — yz) + %a2||y - yz||2 .

Divide by a (> 0) and let a | 0 to obtain (3.1.3).
Conversely, suppose that y, € C satisfies (3.1.3). If y, = =z, then y, certainly
solves (3.1.1). If not, write for arbitrary y € C"

02T~ Yo, ¥ ~¥Yz) = (T~ Yo, Yy — T+ T —ys) =
=l = yell® + (& — Yo,y — ) 2 |l — e — Iz — yll Iz — vell ,

where the Cauchy-Schwarz inequality is used. Divide by ||z — y.|| > 0 to see that
yg solves (3.1.1). 0

Fig. 3.1.1. The angle-characterization of a projection

Incidentally, this result proves at the same time that the variational inequality (3.1.3) has
a unique solution in C'. Figure 3.1.1 illustrates the following geometric interpretation: the
Cauchy-Schwarz inequality defines the angle 6 € [0, 7] of two nonzero vectors u and v by

(u,v)

llull o]}

Then (3.1.3) expresses the fact that the angle between y — y, and x — y, is obtuse, for any
y € C. Writing (3.1.3) as

cosf :=

€ [-1,+1}.

(z —po(),y) < (2 — pe(e),pe(e)) forallye O, (3.1.4)

we see that pe (x) lies in the face of C exposed by z — pe(z).
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Remark 3.1.2 Suppose that C is actually an affine manifold (for example a subspace); then
y» — y € C whenever y — y, € C. In this case, (3.1.3) implies that

(€ — Y2,y —Yz) =0 forallye C. (3.1.5)
We are back with the classical characterization of the projection onto a subspace, namely
that z — y, € C* (the subspace orthogonal to C). Passing from (3.1.3) to (3.1.5) shows
once more that convex analysis is the unilateral realm of inequalities, in contrast with linear

analysis. 0

Some obvious properties of our projection operator are:

—the set {x € R" : po(x) = z} of fixed points of pe is C itself;
— from which it results that pc o pc = pe, and also that
— pc is a linear operator if and only if C' is a subspace.

More interesting is the following result:

Proposition 3.1.3 For all (z1,z2) € R* x R®, there holds
lIpc(z1) — pe(2)|” < (poler) — po(xa), 21 — 22) .
Proof. Write (3.1.3) withz = 21,y = po(z2) € C:

(pc(z2) — pc(r1), 21 — po(z1)) < 0;

likewise,
(pc(z1) — pc(z2), 22 — po(xe)) <0,

and conclude by addition
(pc(z1) — pe(®2), T2 — 71 + po(z1) — po(22)) < 0. O
Two immediate consequences are worth noting. One is that
0 < {pc(x1) — polxe),z1 — x2) forall (zy,z2) € R* x R,

a property expressing that the mapping pc is, in a way, “monotone increasing”.
Second, we obtain from the Cauchy-Schwarz inequality:

lIpc (1) = pe (@)l < llz1 — 22, (3.1.6)

i.e. p¢ is nonexpansive; in particular, ||pc(z)|| < ||z|| whenever 0 € C. However,
it is not a contraction: the best Lipschitz constant

llpc(z1) — pe(z2)l|
llz1 — z2|

L= sup{ : x1 # x2, 1 and zo outofC'}

is equal to 1 (suppose C'is a subspace!), unless more is known about the “curvature”

of C.
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3.2 Projection onto a Closed Convex Cone

As already mentioned in Example 1.1.4, convex cones are important instances of
convex sets, somehow intermediate between subspaces and general convex sets. As
a result, the projection operator onto a closed convex cone enjoys properties which
are finer than those of §3.1, and which come closer to those of the projection onto a
subspace.

Definition 3.2.1 (Polar cone) Let K be a convex cone. Its polar (called negative
polar cone by some authors) is:

K°:={seR": (s,z) <Oforallz € K} . 0

Let us note some straightforward properties:

— First of all, the polar cone depends on the scalar product: changing (-, -) changes
K.

— One easily sees that K° is a closed convex cone (use in particular continuity of
the scalar product).

~If K is simply a subspace, then K° is its orthogonal K*: polarity generalizes
orthogonality in a unilateral way; remember Remark 3.1.2. Incidentally, it will be
seen later in §4.2(d) that the polar of K° is nothing but the closure of K.

— Polarity establishes a correspondence in the set of closed convex cones, which is
order-reversing: K’ C K implies (K')° D K° (and the converse is true if the
relation K°° = K is admitted for K closed).

— Finally, the only possible elementin K N K° 1s 0.
Examples 3.2.2 (see Fig.3.2.1).

(a). Consider the conical hull of m points z1, . . ., Z,, in R”:
K= {Z ajz; « aj = 0forj = 1,...,m}.
=1

We leave it as an exercise to check the important result:

K°={seR": (s,z;) <O0forj=1,...,m}.

(b). As a particular case, take the usual dot-product for (-,-), R™ being equipped
with the canonical basis. Then the polar of the nonnegative orthant

2, ={x=(&,...," : &€ >0fori=1,...,n}
is the nonpositive orthant
N =) ={s=(01,.--,04) : 0; <0fori=1,...,n}.

Naturally, such a symmetry 1s purely due to the fact that the basis vectors are mutu-
ally orthogonal.
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Fig. 3.2.1. Examples of polar cones

(c). Let K be arevolution cone: with s € ]Rﬁ of norm 1 and 8 € [0, 7/2],
K,0):={z e R" : (s,z) > ||z|lcosb}.
Then [K(0)]° = K_s(w/2 - 6). 0
The characterization 3.1.1 takes a special form in the present conical situation.
Proposition 3.2.3 Let K be a closed convex cone. Then y, = pi(x) if and only if
y: €K, -y, € K°, (—yzyz)=0. (3.2.1)
Proof. We know from Theorem 3.1.1 that y, = px (z) satisfies
(T~ Ye,y —yz) <0 forally € K. 3.2.2)

Taking y = ay,, with arbitrary o > 0, this inequality implies (¢ — 1){z — Y, Yz) <
0 for all o > 0. Since « — 1 can have either sign, this implies (z — y,,y,) = 0 and
(3.2.2) becomes

(y,2 —yz) <0 forally e K, ie z-—y, € K°.
Conversely, let y, satisfy (3.2.1). For arbitrary y € K, use the notation (3.1.2):

f(y) = %”x — Yo+ Yz — y”2 2 fo(ye) + (T = Yo, ¥z — ¥);5
but (3.2.1) shows that

(T~ Yz, ¥z —y) = —(T — Ya,y) 2 0,

hence fr(y) > fo(ys): Yo solves (3.1.1). a

Remark 3.2.4 We already know from (3.1.4) that px () lies in the face of K exposed by
z — pk(z); but (3.2.1) tells us more: by definition of a polar cone, z — px () is also in the
face of K° exposed by px (z) (a symmetry confirming that K°° = K).

Take for an illustration K = 2, of Example 3.2.2(b): denote by (n*,...,«™) the co-
ordinates of px (z). They are nonnegative because px (z) € £24; each term (£¢ — n*)x* is
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nonpositive because z — px(x) € §2_. Because their sum is zero, each of these terms is
actually zero, i.e.

Fori=1,...,n, & —x'=0 or # =0 (orboth).

This property can be called a transversality condition. Thus, * is either & or 0, for each i;
taking the nonnegativity of 7 into account, we obtain the explicit formula

7' =max{0,£'} fori=1,...,n.
This implies in particular that 7* — ¢ > 0,ie.z —7 € £2_. u}

We list some properties which are immediate consequences of the characteriza-
tion (3.2.1): for all x € R"™,

px(x)=0 ifandonlyif z¢€ K°;
pk(az) = apk(z) foralla > 0;
Pk (—z) = —p-k(2).
They somehow generalize the linearity of the projection onto a subspace V. An
additional property can be proved, using the obvious relation (—K)° = —K°:

Pk (z) + pro(z) =2. (3.2.3)

It plays the role of py (z) + py . () = z and connotes the following decomposition
theorem, generalizing the property R* =V ¢ V*.

Theorem 3.2.5 (J.-J. Moreau) Let K be a closed convex cone. For the three ele-
ments z, x1 and x2 in R", the properties below are equivalent:
Dz=z1+z2withz) € K, 25 € K° and (21,22) = 0;
(ii) 71 = px(x) and x2 = pg- ().
Proof. Straightforward from (3.2.3) and the characterization (3.2.1) of 1 = px (2).
O

4 Separation and Applications

4.1 Separation Between Convex Sets

Take two disjoint sets S; and So: S; N Se = . If, in addition, S; and Ss are
convex, some more can be said: it turns out that a simple convex set (namely an
affine hyperplane) can be squeezed between S; and Sz. This extremely important
property follows directly from those of the projection operator onto a convex set.

Theorem 4.1.1 Let C C R™ be nonempty closed convex, and let © & C. Then there
exists s € R™ such that

(s,z) >sup {{s,y) : ye C}. 4.1.1)
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Proof. Set s ==z — pco(x) # 0. We write (3.1.3) as
0> (s,y —x+5) = (s,9) = (s,2) +[Is]*.

Thus, (s,z) — ||s]|> > (s,y) forall y € C, and our s is a convenient answer for
@.1.1). 0

Naturally, s could be replaced by —s in (4.1.1) and Theorem 4.1.1 could just
be stated as: there exists s’ € R™ such that (s',z) < inf,ec(s’,y). Note that s is
certainly nonzero; by positive homogeneity, we may require ||s|| = 1.

Geometrically, we know that an s # 0 defines hyperplanes H, , as in Exam-
ple 1.1.2(a), which are translations of each other when r describes R. With s of
(4.1.1), pick

r=rs:=1((s,z) +sup,ec(y, s)) .

Then
(s,z) —rs >0 and (s,y)—rs <0 forally € C,

which can be summarized in one sentence: the affine hyperplane H; ., separates the
two convex sets C and {z}. These two sets are in the opposite (open) half-spaces
limited by that hyperplane.

Remark 4.1.2 With relation to this interpretation, Theorem 4.1.1 is often called the Hahn-
Banach Theorem in geometric form. On the other hand, consider the righthand side of (4.1.1);
it suggests a function o : R™ — R U {400}, called the support function of C:

oo(s) :=sup{(s,y) : y€ C},
which will be studied thoroughly in Chap. C. If x € C, we have by definition
(s,z) < oc(s) foralls e R";

but this actually characterizes the elements of C: Theorem 4.1.1 tells us that the converse is
true. Therefore the test “z € C?” is equivalent to the test “(-, z) < o¢?”, which compares
the linear function (-, z) to the function o¢. With this interpretation, Theorem 4.1.1 can be
formulated in an equivalent analytical way, involving functions instead of hyperplanes; this
is called the Hahn-Banach Theorem in analytical form.

A convenient generalization of Theorem 4.1.1 is the following:

Corollary 4.1.3 (Strict Separation of Convex Sets) Let Cy, Cy be two nonempty
closed convex sets with Cy N Cy = 0. If Cy is bounded, there exists s € R™ such
that

sup {s,y) < min(s,y). 4.1.2)
yeC y€C2

Proof. The set C; — C> is convex (Proposition 1.2.4) and closed (because C> is
compact). To say that C'y and C'; are disjoint is to say that 0 ¢ C; — C4, so we have
by Theorem 4.1.1 an s € R™ separating {0} from C; — C:

sup {(s,y) : y € C1 — Ca} < (s5,0) =0.
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This means:
0 > sup,, cc, (5, ¥1) +5up,,cc, (5, —v2)
= SUPy,ec, <S7 yl) - lnfy2€C2 (S? y2> .

Because (> is bounded, the last infimum (is a min and) is finite and can be
moved to the lefthand side. O

Fig. 4.1.1. Strict separation of two convex sets

Once again, (4.1.2) can be switched over to infyec, (s,y) > maxyec, (s, y). Using the
support function of Remark 4.1.2, we can also write (4.1.2) as o¢, (s) + o¢,(—s) < 0.
Figure 4.1.1 gives the same geometric interpretation as before. Choosing r = r; strictly
between ¢, (s) and —o¢, (—s), we obtain a hyperplane separating C; and C; strictly: each
set is in one of the corresponding open half-spaces.

Fig. 4.1.2. Strict separation needs compactness

When C; and C; are both unbounded, Corollary 4.1.3 may fail — even though the role of
boundedness was apparently minor, but see Fig.4.1.2. As suggested by this picture, C; and
C3 can nevertheless be weakly separated, i.e. (4.1.2) can be replaced by a weak inequality.
Such a weakening is a bit exaggerated, however: Fig.4.1.3 shows that (4.1.2) may hold as
(s,y1) = (s,y2) forall (y1,y2) € C1 x C; if s is orthogonal to aff (C1 U C2).

For a convenient definition, we need to be more demanding: we say that the two
nonempty convex sets Cq and C» are properly separated by s € R™ when

sup (s,y1) < (s,y2) and inf (s,y1) <
1€C

inf sup (s, y2).
y1€C ¥2€C2 v 2€C2

y2€

This (weak) proper separation property is sometimes just what is needed for technical
purposes. It happens to hold under fairly general assumptions on the intersection C; N Cb.
‘We end this section with a possible result, stated without proof.

Theorem 4.1.4 (Proper Separation of Convex Sets) If the two nonempty convex sets Ci
and Cs satisfy (ri C1) N (ri C2) = O, they can be properly separated. O

Observe the qualification assumption coming into play. We have already seen it in Propo-
sition 2.1.10, and we know from (2.1.5) that it is equivalent to 0 & ri (C1 — Cs).
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Fig. 4.1.3. An improper separation

4.2 First Consequences of the Separation Properties

The separation properties introduced in §4.1 have many applications. To prove that
some set S is contained in a closed convex set C, a possibility is often to argue
by contradiction, separating from C' a point in S\, and then exploiting the simple
structure of the separating hyperplane. Here we review some of these applications,
including the proofs announced in the previous sections. Note: our proofs are of-
ten fairly short (as is that of Corollary 4.1.3) or geometric. It is a good exercise to
develop more elementary proofs, or to support the geometry with detailed calcula-
tions.

(a) Existence of Supporting Hyperplanes First of all, we note that a convex set
C, not equal to the whole of R™, does have a supporting hyperplane in the sense
of Definition 2.4.1. To see it, use first Proposition 2.1.8: c1C # R™ (otherwise, we
would have the contradiction C D riC = riclC = riR* = R"). Then take a
hyperplane separating clC' from some z ¢ clC" it is our asserted support of C.
Actually, we can prove slightly more:

Lemma 4.2.1 Let z € bd C, where C # § is convex in R" (naturally C # R").
There exists a hyperplane supporting C' at .

Proof. Because C, clC' and their complements have the same boundary (remember
Remark 2.1.9), a sequence (z) can be found such that

zpEclC fork=1,2,... and lim z; ==z.
k—+o00

For each k we have by Theorem 4.1.1 some sy, of norm 1 such that (sg, z, —y) >0
forallye C CclC.
Extract a subsequence if necessary so that s — s (note: s # 0) and pass

to the limit to obtain (s,z — y) > 0 for all y € C. This is the required result
(s,z) =7 = (s,y) forally € C. o

Remark 4.2.2 The above procedure may well end up with a supporting hyperplane contain-
ing C: (s,z —y) = 0 for all y € C, a result of little interest; see also Fig.4.1.3. This
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can happen only when C is a “flat” convex set (dim C < n — 1), in which case our con-
struction should be done in aff C, as illustrated on Fig.4.2.1. Let us detail such a “relative”
construction, to demonstrate a calculation involving affine hulls.

aff C

HSI’

Fig. 4.2.1. Nontrivial supports

Let V be the subspace parallel to aff C, with U = V* its orthogonal subspace: by
definition, (s,y —z) = 0 foralls € U and y € C. Suppose € rbd C (the case x € ri C
is hopeless) and translate C to Co := C — {z}. Then Cj is a convex set in the Euclidean
space V and 0 € rbd Cp. We take as in 4.2.1 a sequence (z;) C V'\ c1 Co tending to 0 and
a corresponding unitary s € V separating the point z from Co. The limit s # 0isin V,
separates (not strictly) {0} and Co, i.e. {«} and C: we are done.

We will say that Hy, is a nontrivial support (at z) if s € U, i.e. if sy # 0, with the
decomposition s = sy + sy. Then C is not contained in H, ,: if it were, we would have
r = (s,y) = (sv,y) + (sv,z) forall y € C. In other words, (sv, -) would be constant on
C; by definition of the affine hull and of V/, this would mean sy € U, i.e. the contradiction
sy = 0. To finish, note that sy may be assumed to be 0: if sy 4 sy is a nontrivial support,
s0 is sy = sv + 0 as well; it corresponds to a hyperplane orthogonal to C. O

(b) Outer Description of Closed Convex Sets Taking the closed convex hull of
a set consists in intersecting the closed convex sets containing it. We mentioned in
Remark 1.4.4 that convexity allowed the intersection to be restricted to a simple
class of closed convex sets: the closed half-spaces. Indeed, let a given set S be
contained in some closed half-space; say S C H . := {y € R* : (s,y) < r} for
some (s,7) € R™ x R with s # 0. Then the index-set

Zs:={(s,r) €R* xR : S C Hy,}

={(s,r) : (s,y) <rforally € S} 4.2.1)

is nonempty. As illustrated by Fig.4.2.2, we can therefore intersect all the half-
spaces indexed in X's. This defines a certain set C*:

S C C* = n(sﬂ')GZSHS_,’I‘ =
{z € R"* : (s,z) < r whenever (s,y) < rforally € S}.
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Fig. 4.2.2. Outer construction of a closed convex hull

Theorem 4.2.3 The closed convex hull of a set S # 0 is either the whole of R™ or
the set C* defined above.

Proof. Suppose €6 S # R": some nontrivial closed convex set contains S. Then
take a hyperplane as described in Lemma4.2.1 to obtain a closed half-space con-
taining S: the index-set X' is nonempty and C'* is well-defined.

By construction, C* O ¢6.S. Conversely, let z ¢ €0 S; we can separate {z}
and €0 S: there exists so 7# 0 such that (so,z) > sup,cg(So,y) =: ro. Then
(s0,70) € XZg;butz ¢ H ., hence z & C*. O

s0,70°

The definition of C*, rather involved, can be slightly simplified: actually, X's is redun-
dant, as it contains much too many r’s. Roughly speaking, for given s € R™, just take the
number

r=rs:=inf{r e R : (s,7) € Xs}

that is sharp in (4.2.1). Letting s vary, (s, 7s) describes a set £3, smaller than X5 but just as
useful. With this new notation, the expression of C* = €6 .S reduces to

@S ={z€eR" : (s,2) <sup,cs(s,y)}.

We find again the support function of Remark 4.1.2 coming into play. Chapter C will follow
this development more thoroughly.

Assuming S closed convex in Theorem 4.2.3, we see that a closed convex set
can thus be defined as the intersection of the closed half-spaces containing it:

Corollary 4.2.4 The data (s;,r;) € R* x R for j in an arbitrary index set J is
equivalent to the data of a closed convex set C via the relation

C={z ek : (s;,z)<rj forje J}.

Proof. 1If C is given, define {(s;,7;)}s := X¢ asin (4.2.1).If {(s;,7;)} s is given,
the intersection of the corresponding half-spaces is a closed convex set. O

Note in the above characterization that C = R™ with J = @ can be included as
an extreme case. Also, the case of a finite J is important:

Definition 4.2.5 (Polyhedral Sets) A closed convex polyhedron is an intersection
of finitely many half-spaces. Take (s1,71),..., (8m,"m) in R” x R, with s; # 0
fori =1,...,m; then define
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P:={zeR": (sj,z) <rjforj=1,...,m},

or in matrix notation as in Example 1.2.2, P = {z € R : Az < b}.
A closed convex polyhedral cone is the special case where b = 0. g

(c) Proof of Minkowski’s Theorem We turn now to the inner description of a con-
vex set and prove Theorem 2.3.4, asserting that C' = coext C when C' is compact
convex.

The result is trivially true if dim C' = 0, i.e. C' is a singleton, with a unique
extreme point. Assume for induction that the result is true for compact convex sets
of dimension less than k; let C' be a compact convex set of dimension k£ and take
x € C. There are two possibilities:

—1Ifz € rbd C, §4.2(a) tells us that there exists a nontrivial hyperplane H supporting
C at z. The nonempty compact convex set C' N H has dimension at most k — 1,
sox € C'N H is a convex combination of extreme points in that set, which is an
exposed face of C. Using Remark 2.4.4, these extreme points are also extreme in
C.

~Ifz € riC (= C\ rbd C), take in C a pointz’ # ; this is possible for dim C' > 0.
The affine line generated by = and ' cuts rbd C in at most two points y and z
(see Remark 2.1.7, there are really two points because C' is compact). From the
first part of the proof, ¥ and z are convex combinations of extreme points in C';
and so is their convex combination x (associativity of convex combinations).

(d) Bipolar of a Convex Cone The definition of a polar cone was given in §3.2,
where some interesting properties were pointed out. Here we can show one more
similarity with the concept of orthogonality in linear analysis.

Proposition 4.2.6 Let K be a convex cone with polar K°; then, the polar K°° of
K° is the closure of K.

Proof. From the definition itself of a polar cone,
zeK = (s,z)<0forallse K° = =z€K°;

thus K C K°°, therefore cl K C K°° (a polar cone is always closed).
Conversely, let zg € K°°. If g ¢ cl K, there is a separating hyperplane (d, «)
such that
{d,xo) >a > (d,z) forallz € K CclK.

This implies @ > 0 (take £ = 0) and we may assume o = 0 (if ¢ € K has
(d,z) > 0,take tx € K witht — +00). Thus d € K° and the property {d, zo) > 0
gives the contradiction. O

Of course, if K is already closed, K°° = K. This has several interesting conse-
quences:
— With relation to (a) above, we observe that every supporting hyperplane of K at
x € bd K also supports K at 0: when dealing with supports to a cone, it is enough
to consider linear hyperplanes only.
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— Besides, consider the index-set X of (4.2.1): its r-part can be restricted to {0};
as for its s-part, we see from Definition 3.2.1 that it becomes K°\{0}. In other
words: barring the zero-vector, a closed convex cone is the set of (linear) hyper-
planes supporting its polar at 0. This is the outer description of a closed convex
cone.

— This has also an impact on the separation Theorem 4.1.1: depending on s, the
righthand side in (4.1.1) is either 0 (s € K) or +00 (s ¢ K). Once again, linear
separating hyperplanes are sufficient and they must all be in the polar cone.

Let us summarize these observations:

Corollary 4.2.7 Let K be a closed convex cone. Then

zreK << (s,z)<0forallse K°. a

4.3 The Lemma of Minkowski-Farkas

Because of its historical importance, we devote an entire subsection to another con-
sequence of the separation property, known as Farkas’ Lemma. Let us first recall
a classical result from linear algebra: if A is a matrix with n rows and m columns
and b € R”, the system Aa = b has a solution in R™ (we say that the system is
consistent) exactly when

belmA=[KerA™]" ;
this can be rewritten {b}* D Ker A", or
{eR* : ATz =0} C{zeR" : b'xz=0}.

Denoting by s1,..., S, the columns of A and using our Euclidean notation, we
write the equivalence of these properties as

belin{s1,...,sn} ifandonlyif
(b,z) =0 whenever (s;,z)=0forj=1,...,m.

Moving to the unilateral world of convex analysis, we replace linear hulls by
conical hulls, and equalities by inequalities. This gives a result dating back to the
end of the XIXth Century, due to J. Farkas and also to H. Minkowski; we state it
without proof, as it will be a consequence of Theorem 4.3.4 below.

Lemma 4.3.1 (Farkas 1) Let b, s, ..., sy, be given in R". The set
{x eR": (s;,2) <0 forj=1,...,m} (4.3.1)

is contained in the set
{zx eR® : (bz) <0} 4.3.2)

if and only if (see Definition 1.4.5 of a conical hull)

becone{si,...,sm}- (4.3.3)
]
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To express the inclusion relation between the sets (4.3.1) and (4.3.2), one also
says that the inequality with b is a consequence of the joint inequalities with s5;. An-
other way of expressing (4.3.3) is to say that the system of equations and inequations
in o

m
b= ajs;, a;>0forj=1,...,m (4.3.4)
j=1

has a solution.

Farkas’ Lemma is sometimes formulated as an alternative, i.e. a set of two state-
ments such that each one is false when the other is true. More precisely, let P and
@ be two logical propositions. They are said to form an alternative if one and only
one of them is true:

P — notQQ and notP = (@
or, just as simply:
P < notQ [or @ <= notP].

This applies to Farkas’ Lemma:

Lemma 4.3.2 (Farkas II) Letb, sq, ..., Sy be given in R™. Then exactly one of the
following statements is true.

P :=(4.3.4) has a solution o € R™ .

The system of inequations
Q:=< (b,x)>0, (s;,2)<0forj=1,....,m
has a solution ¢ € R™ . o

Still another formulation is geometric. Call K the convex cone generated by
81,--.,5m; as seen in Example 3.2.2, K° is the set (4.3.1). What Farkas’ Lemma
says is that

be K [ie.(4.3.3)holds] if and only if
(b,x) <0 whenever x € K° [i.e.be K°°].

More simply, Farkas’ Lemma is: K°° = K; but we know from §4.2(d) that this
property holds under the sole condition that K is closed. The proof of Farkas’
Lemma therefore reduces to proving the following result:

Lemma 4.3.3 (Farkas III) Let sq, ..., sy be given in R™. Then the convex cone
K :=cone{sy,...,8m} = {Z ajs; o 2 0fory= 1,...,m}
Jj=1

is closed.
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Proof. 1tis quite similar to that of Carathéodory’s Theorem 1.3.6. First, the proof is
easy if the s;’s are linearly independent: then, the convergence of

=Y afs; fork— oo (4.3.5)
j=1

is equivalent to the convergence of each (a?) & to some o;, which must be nonneg-
ative if each o} in (4.3.5) is nonnegative.

Suppose, on the contrary, that the system Z;nzl B;3s; = 0 has a nonzero solution
B € R™ and assume f; < 0 for some j (change 8 to —§ if necessary). As in the
proof of Theorem 1.3.6, write each x € K as

z—Za]s]—Zaj+t YBils; = Zasj,
ij=1

i#i(e)
where
—a —o
i{z) € Argmin ——9—]—, t*(z) == iz) ,
gi<o D Bi(z)
so that each o = a; + t*(z)B; is nonnegative. Letting = vary in K, we thus

construct a decomposmon K = U, K;, where K; is the conical hull of the m — 1
generators s;, j # i.

Now, if there is some % such that the generators of K; are linearly dependent,
we repeat the argument for a further decomposition of this K;. After finitely many
such operations, we end up with a decomposition of K as a finite union of polyhe-
dral convex cones, each having linearly independent generators. All these cones are
therefore closed (first part of the proof), so K is closed as well. ]

We are now in a position to state a general version of Farkas’ Lemma, with non-
homogeneous terms and infinitely many inequalities. Its proof uses in a direct way
the separation Theorem 4.1.1.

Theorem 4.3.4 (Generalized Farkas) Let be given (b,r) and (sj,p;) in R* xR,
where j varies in an (arbitrary) index set J. Suppose that the system of inequalities

(sj,xy < p; foralljeJ (4.3.6)

has a solution x € R™ (the system is consistent). Then the following two properties
are equivalent:

(i) (b, z) < r for all x satisfying (4.3.6);

(ii) (b, r) lies in the closed convex conical hull of S := {(0,1)} U {(s;, p;) }jeJ-

Proof. [(ii) = (i)] Let first (b, 7) be in K := cone S. In other words, there exists a
finite set {1,...,m} C J and nonnegative ag, a1, . . . , &, such that (we adopt the
convention ) 4 = 0)
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m m
b= E a;s; and r=ap+ E ojp; -
j=1 j=1

For each x satisfying (4.3.6) we can write
(bzy <r—ag <. 4.3.7)
If, now, (b, r) lies in the closure of K, pass to the limit in (4.3.7) to establish the
required conclusion (i) for all (b, r) described by (ii).

[(i) = (ii)] If (b,r) & cl K, separate (b, r) from cl K: equipping R” x R with the
scalar product

((b,7), (d, 8))) := (b, d) +rt,
there exists (d, —t) € R* x R such that

sup [(s,d) — pt] < (b,d) —rt. (4.3.8)
(s,p)EK

It follows first that the lefthand supremum is a finite number . Then the conical
character of K implies k < 0, because ak < k for all a > 0; actually k = 0
because (0,0) € K. In summary, we have singled out (d,t) € R” x R such that

t>0 [take (0,1) € K]
(%) (sj,d) —pjt <OforalljeJ [take (sj, pj) € K]
(%%) (b,dy —rt > 0. [don’t forget (4.3.8)]

Now consider two cases:

—Ift > 0, divide (%) and (*x) by t to exhibit the point z = d/¢ violating (i).

—If t = 0, take xq satisfying (4.3.6). Observe from (x) that, for all « > 0, the point
z(a) = mo + ad satisfies (4.3.6) as well. Yet, let « — +oco in the expression
(b,z(a)) = (b,xz0) + a(b,d) to realize from (xx) that z(a) violates (i) if « is
large enough.

Thus we have proved in both cases that “not (i1) = not (i)”. O

We finish with two comments relating Theorem 4.3.4 with the previous forms
of Farkas’ Lemma. Take first the homogeneous case, where r and the p;’s are all
zero. Then the consistency assumption is automatically satisfied (by z = 0) and the
theorem says:

@) [(sj,z) <O0forj € Jl == [(b,z) < 0]
is equivalent to
(ii’) b e cone{s; : je€J}.

Second, suppose that J = {1,...,m} is a finite set, so the set described by
(4.3.6) becomes a closed convex polyhedron, assumed nonempty. A handy matrix
notation (assuming the dot-product for {-,-)), is ATz < p, if A is the matrix whose
columns are the s;’s, and p € R™ has the coordinates p;, ..., py. Then Theo-
rem 4.3.4 writes:
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(M {zeR": ATz<ptC{zeR* : bz <r}
is equivalent to
(i1”) Ja € R™ suchthata > 0, Aa=b, pTa < r.

Indeed, it suffices to recall Lemma 4.3.3: the conical hull involved in (i1) of
Theorem 4.3.4 is already closed. Beware that the last relation in (11”) is really an
inequality.

5 Conical Approximations of Convex Sets

Given a set S and z € S, a fruitful idea is to approximate S near z by a “simpler”
set. In classical differential geometry, a “smooth” surface S is approximated by an
affine manifold “tangent” to .S. This concept is most exploited in the differentiation
of a “smooth” function f : R* — R, whose graph has a “tangent” affine hyperplane
in R® x R near (z, f(x)):

grf=~{(y,r) : r = flz) =(Vi(),y — )}

Because convex sets have no reason to be “smooth”, some substitute to affine
manifolds must be proposed. We know that affine manifolds are translations of sub-
spaces; say, we approximate S near x by

Hs(z) = {z} + Vs(z) = S,

where Vg(z) is a subspace: the subspace tangent to S at z. It is therefore time to
remember §3.2: in the unilateral world of convex analysis, the natural substitutes for
subspaces are the closed convex cones. Besides, another important object is the set
of normals to S at z, i.e. the subspace orthogonal to Vs(z); here, orthogonality will
be replaced by polarity, as in Moreau’s decomposition Theorem 3.2.5.

5.1 Convenient Definitions of Tangent Cones

In order to introduce the convenient objects, we need first to cast a fresh glance at the
general concept of tangency. We therefore consider in this subsection an arbitrary
closed set S C R”.

A direction d is classically called tangent to S at € S when it is the derivative
at x of some curve drawn on S; it follows that —d is a tangent as well. In our
unilateral world, kalf-derivatives are more relevant. Furthermore, sets of discrete
type cannot have any tangent direction in the above sense, we will therefore replace
curves by sequences. In a word, our new definition of tangency is as follows:

Definition 5.1.1 (Tangent Directions) Let .S C R be nonempty. We say that d €
R”™ is a direction tangent to S at x € S when there exists a sequence (zj) C .S and
a sequence () such that, when k — +c0,
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T —
23

T =z, trxl0, —=d. (5.1.1)
The set of all such directions is called the tangent cone (also called the contingent
cone, or Bouligand’s cone) to S at z € S, denoted by Tg(z). O

Observe immediately that 0 is always a tangent direction (take z = z!); also, if
d is tangent, so is ad for any a > 0 (change ¢, to tx/a!). The terminology “tangent
cone” is therefore legal. If z € int S, Tg(x) is clearly the whole space, so that the
only interesting points are those on bd S.

If we set in Definition 5.1.1 dj, := (zp — )/t [— d], 1e. 2 = z+tpdp [€ ST,
we obtain the equivalent formulation:

Proposition 5.1.2 A direction d is tangent to S at = € S if and only if
A(dr) = d, () 4 0 suchthat x+typdy € S forall k. 0

A tangent direction thus appears as a set of limits; a limit of tangent directions
is therefore a “limit of limits”, and is a limit itself:

Proposition 5.1.3 The tangent cone is closed.

Proof. Let (dy) C Ts(z) be converging to d; for each £ take sequences (xg )y and
(te,r ) associated with dy in the sense of Definition 5.1.1. Fix £ > 0: we can find k,
such that 1

Ty ke — X

Bk 2 _a] < 5-

“ toke >

Letting £ — oo, we then obtain the sequences (z¢ k, )¢ and (¢4, )¢ Which define d
as an element of Tg(x). a

The examples below confirm that our definition reproduces the classical one when S is
“well-behaved”, while Fig. 5.1.1 illustrates a case where classical tangency cannot be used.

X + Tg(x)

Fig. 5.1.1. Tangency to a “bad” set

Examples 5.1.4 Given m functions ¢y, . . . , ¢, continuously differentiable on R™, consider
S:={z€eR" : ¢i(z)=0fori=1,...,m}.

Let £ € S be such that the gradients Vei(z), ..., Vem (z) are linearly independent. Then
Ts(z) is the subspace
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{deR" : (Vei(z),dy=0fori=1,...,m}. (5.1.2)
Another example is
S:={z €R" : c1(z) < 0}.
Atz € S such that ¢c1(z) = 0 and Vei(z) # 0, Ts(x) is the half-space
{deR” : (Vei(z),d) < 0}. (5.1.3)

Both formulae (5.1.2) and (5.1.3) can be proved with the help of the implicit function
theorem. This explains the assumptions on the Ve; (z)’s; things become more delicate when
several inequalities are involved to define S. O

Naturally, the concept of tangency is local, as it depends only on the behaviour
of S near z. From its Definition 5.1.1, T s(x) appears as the set of all possible cluster
points of the difference quotients ((y —z)/t), withy € S and ¢ | 0; using set-valued
notation (see §0.5):

Ts(z) = limext
10

5.1.4)

Another interpretation uses the distance function dg(z) = minges|ly — z|:
Tg(z) can also be viewed as the set of d’s such that
d td
lim inf ds(z + td)

=0. (5.1.5)
t40

Knowing that dg(z) = 0 when z € S, the infimand of (5.1.5) can be interpreted as
a difference quotient: [dg(z + td) — dg(z)]/¢. Finally, (5.1.5) can be interpreted in
a set-formulation: for any € > 0 and for any § > 0, there exists 0 < # < ¢ such that

z +td € S + B(0,te), m.de§%ﬁ+3m¢y

Remark 5.1.5 In (5.1.4), we have taken the tangent cone as a lim ext, which corre-
sponds to a lim inf in (5.1.5). We could have defined another “tangent cone”, namely

— I

lim int
10
In this case, (5.1.5) would have been changed to
dg(z + td
b ( )

lim su
t10

=0 [: limuo ds(.’E + td)/t] (516)

(where the second form relies on the fact that ds is nonnegative). In a set-formulation
as before, we see that (5.1.6) means: for any £ > 0, there exists § > 0 such that

S —
de tx+Bm@ forall 0 <t < 4.
We will see in §5.2 below that the pair of alternatives (5.1.5) — (5.1.6) is irrele-
vant for our purpose, because both definitions coincide when S is convex. O

Remark 5.1.6 Still another “tangent cone” would also be possible: one says that d is a feasi-
ble direction for S at x € S when there exists § > O such that z+¢d € S [i.e.d € (S—z)/t]
forall 0 < ¢ < 4.

Once again, we will see that the difference is of little interest: when S is convex, T's(z)
is the closure of the cone of feasible directions thus defined. O
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5.2 The Tangent and Normal Cones to a Convex Set

Instead of a general set S, we now consider a closed convex set C C R". In this
restricted situation, the tangent cone can be given a more handy expression. The
key 1s to observe that the role of the property £ | 0 is special in (5.1.5): when
both z and z + trdy are in C, then z + 7dj, € C for all 7 €]0, t;]. In particular,
C C {z} + T¢(z). Indeed, the tangent cone has a global character:

Proposition 5.2.1 The tangent cone to a closed convex set C at x € C' is the closure
of the cone generated by C — {z}:

Teo(z) = cone (C — z) = cl [RT (C — z)]

1t is therefore convex.

Proof.- We have just said that C — {z} C T¢(z). Because T (z) is a closed cone
(Proposition 5.1.3), it immediately follows that ¢l [R* (C' — z)] C T¢(x). Con-
versely, for d € T¢(x), take (xx) and (#x) as in the definition (5.1.1): the point
(z, — )/t is in R (C — x), hence its limit d is in the closure of this latter set. O

Remark 5.2.2 This new definition is easier to work with — and to master. Furthermore, it
strongly recalls Remark 2.2.4: the term in curly brackets in (5.2.1) is just a union,

C—-z
t

cone (C —z) := U

t>0

and, thanks to the monotonicity property of the “difference quotient” ¢t — (C' — z)/t, it is

also a limit of nested sets: c
cone (C — &) = lim —— z
t10 t

to be compared with the definition (2.2.3) of the asymptotic cone. Having taken a union, or
a limit, the closure operation is now necessary, but it was not when we took an intersection.
Also, the limit above is unambiguous (it is a union!), and can be understood as the lim ext or
the lim int; see Remark 5.1.5. As for Remark 5.1.6, we see that the cone of feasible directions
for the convex C at x is just the very last set in brackets in (5.2.1). ]

As a closed convex set, T (z) can also be described as an intersection of closed
half-spaces — remember §4.2(b). In the present conical situation, the half-spaces can
be taken as homogeneous — remember §4.2(d).

Definition 5.2.3 (Normal Cone) The direction s € R" is said to be normal to C' at
z € C when
(s,y—z) <0 forallyeC. 5.2.2)

The set of all such directions is called normal cone to C at z, denoted by N¢(z).
a
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That N¢(z) is a closed convex cone is clear enough. A normal is a vector s such that the
angle between s and y — x is obtuse for all y € C. A consequence of §4.2(a) is that there
is a nonzero normal at each z of bd C. Indeed, Theorem 3.1.1 tells us that v — pc(v) €
Ne(pe(v)) forallv € R™.

By contrast, N¢(z) = {0} for z € int C. As an example, for a closed half-space C =
H;, = {y € R" : (s,y) < r}, the normals at any point of H,, are the nonnegative
multiples of s.

Proposition 5.2.4 The normal cone is the polar of the tangent cone.

Proof. If (s,d) < O forall d € C — z, the same holds for all d € R* (C — z), as

well as for all d in the closure T (x) of the latter. Thus, No(z) C [Te(z)]°.
Conversely, take s arbitrary in [T (z)]°. The relation (s,d) < 0, which holds
for all d € T¢(x), a fortiori holds for all d € C — z C Te(x); this is just (5.2.2).
O

Knowing that the tangent cone is closed, this result can be combined with Propo-
sition 4.2.6 to obtain a third definition, in addition to Definition 5.1.1 and Proposi-
tion 5.2.1:

Corollary 5.2.5 The tangent cone is the polar of the normal cone:
Te(z) ={de R" : (5,d) <0 foralls € No(x)}. ]

This describes T () as an intersection of homogeneous half-spaces and the
relationship with §4.2(b) is clear. With the notation thereof, r; = 0 for each s, and
the index-set E’%C @) is nothing more than N¢ (z); see again §4.2(d).

It is interesting to note here that normality is again a local concept, even though (5.2.2)
does not suggest it. Indeed the normal cone at z to C N B(z, §) coincides with N¢ (). Also,
if C" is “sandwiched”, i.e. if C — {z} C C' — {z} C T¢(x), then N¢r(z) = Ne(z) ~ and
Tei (z) = Teo(z). Let us add that tangent and normal cones to a nonclosed convex set C
could be defined if needed: just replace C by cl C in the definitions.

Another remark is that the tangent and normal cones are “homogeneous” objects, in that
they contain 0 as a distinguished element. It is most often the translated version z + T¢(x)
that is used and visualized; see Fig. 5.1.1 again.

Let us summarize the concepts introduced so far.

— First, there is the tangent cone, defined via a difference quotient, either set-valued
(C — x)/t, or using the distance: dc(x + ¢ -)/t. This cone has several equivalent
definitions: (i) as the outer limit of (C' — z)/t (i.e. using liminf d¢ (z + ¢-)/%),
(ii) as the inner limit of (C — x)/t (i.e. using lim sup de(z + ¢ ) /t), or (iii) as the
closed conical hull of C — z.

— Then there is the normal cone, which is the polar of the tangent cone.

— Alternatively, one could define first the normal cone, as the cone polar to C' — x
(or to R* (C' — z), knowing that polarity does not distinguish a set from its closed
conical hull). Then the tangent cone would be defined as the polar to this normal
cone.
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Needless to say, it is convexity of C that makes all these definitions equivalent.
If C were not convex, we would obtain just as many different objects.

Examples 5.2.6 (a). If C = K is a closed convex cone, Tg (0) = K: the polar K°
of a closed convex cone is its normal cone at 0. On the other hand, if 0 # z € K,
then Tk () contains at least one subspace, namely R{z}. Actually, we even have

Ng(z) ={se€ K° : (s,z) =0} forz#0.

To see it, observe that Tk () D {z} means Ng(z) C {z}*; in other words, the
relation “(s,y — z) < 0 forally € K” defining Nk () reduces to “(s,y) < 0
[= (s,z)] forally € K”.

A cone is a set of vectors defined up to a multiplicative constant, and the value of this
constant has often little relevance. As far as the concepts of polarity, tangency, normality are
concerned, for example, a closed convex cone T' (or IV) could equally be replaced by the
compact 7' N B(0,1); or also by {x € T : ||z|| = 1}, in which the redundancy is totally
eliminated.

(b). Take a closed convex polyhedron defined by m constraints:
C={zeR": (sj,z) <rjforj=1,...,m} (5.2.3)
and define
J)y:={j=1,...,m:(sj,z) =r;}

the index-set of active constraints at z € C. Then

Te(z) ={deR" : (s;,d) <O0forje J(z)},

Ne(z) = cone{s; : j€ J(z)} = { >oajs oy = 0}.
j€J(z)
(c). Let C be the unit simplex A, of Example 1.1.3 and @ = (ay,...,a,) €
A,. If each «; is positive, i.e. if a € ri 4, then the tangent cone to A, at « is
aff A, — {a}, i.e. the linear hyperplane of equation ), a; = 0. Otherwise, with
e:=(1,...,1) e R™:

TAn(a)Z{dZ(dl,...,dn) : erZO, di20ifai:()}.

Using Example (b) above, calling {ey, ..., e,} the canonical basis of R* and de-
noting by J(a) := {j : a; = 0} the active set at @, we obtain the normal cone:

Na, () = cone [{e} U{—€} Ujesa) {—€;i}]
= { X eqopusie Bits © B < 0forj € J(a)}. o
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5.3 Some Properties of Tangent and Normal Cones

Let us give some properties of the tangent cone, which result directly from Proposi-
tion 5.2.1.

— For fixed z, T¢(z) increases if and only if N (z) decreases, and these properties
happen in particular when C' increases.

— The set cone (C — z) and its closure T (z) have the same affine hull (actually
linear hull!) and the same relative interior. It is not difficult to check that these last
sets are (aff C' — z) and R{ (ri C' — z) respectively.

~Tc(z) = aff C — z whenever z € ri C (in particular, T (z) = R™ if z € int C).
As aresult, approximating C by = + T (z) presents some interest only when z €
rbd C. Along this line, we warn the reader against a too sloppy comparison of the
tangent cone with the concept of tangency to a surface: with this intuition in mind,
one should rather think of the (relative) boundary of C' as being approximated by
the (relative) boundary of T¢(z).

— The concept of tangent cone fits rather well with the convexity-preserving oper-
ations of §1.2. Validating the following calculus rules involves elementary argu-
ments only, and is left as an exercise.

Proposition 5.3.1 Here, the C’s are nonempty closed convex sets.
(i) For x € C1 N Cy, there holds

Te,ne,(x) C Te,(2) NTe,(2) and Nejne,(x) D Ney (2) + Ney (2) -
Gi) With C; C R™, i = 1,2 and (21, 22) € Cy x Cs,
Teyxcs (21,22) = Tey (21) X Tey (22),
Neyxep (x1,22) = Ney (1) x Ne, (z2) .
(iii) With an affine mapping A(z) = yo + Aoz (Ao linear) and x € C,
Tao)[A@)] = dl [AsTe(@)] and NaioA()] = ANo(@)]-
(iv) In particular (start from (ii), (iit) and proceed as when proving (1.2.2)):
Toy+0y (21 + 22) = cl[To, (x1) + To, (22)],
Ne,+o,(x1 + 22) = Noy (1) N Ne, (z2) - D

Remark 5.3.2 To obtain equality in (i), an additional qualification assumption is necessary.
One was used in Proposition 2.1.10, see also (2.1.5):

OEI‘i(Cl —Cz) or (riCl)ﬂ(riCQ) —',é@ (5.3.1)
(the proof of the corresponding statement becomes a bit longer). O

Some more properties of tangent and normal cones are worth mentioning, which
patch together various notions seen earlier in this chapter.

Proposition 5.3.3 For x € C and s € R, the following properties are equivalent:
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(i) s € No(z)
(i1) z is in the exposed face Fo(s): (s, x) = maxyec(s,y),
(ii) z = po(z + s) .

Proof. Nothing really new: everything comes from the definitions of normal cones,
supporting hyperplanes, exposed faces, and the characteristic property (3.1.3) of the
projection operator. O

This result is illustrated on Fig. 5.3.1 and implies in particular:

pe (z) = {z} + No(z) forallz € C.

Also,
z#7 = [{z}+Ne@)]Nn[{z'} +Nc(2)]=0

(otherwise the projection would not be single-valued).

-1

) () + Ne¥) = Po(¥)

{}+Tcx)

Fig. 5.3.1. Normal cones, projections and exposed faces

Remark 5.3.4 Let us come back again to Fig.4.2.2. In a first step, fix ¢ € C and consider
only those supporting hyperplanes that pass through z, i.e. those indexed in N¢(z). The
corresponding intersection of half-spaces just constructs Tc(z) and ends up with {z} +
Tc(z) D C. Note in passing that the closure operation of Proposition 5.2.1 is necessary
when rbd C presents some curvature near .

Then, in a second step, do this operation for all z € C:

cc )lz+Te(@). (53.2)

zeC

A first observation is that = can actually be restricted to the relative boundary of C': for
z € 1iC, Tc(x) expands to the whole aff C — z and contains all other tangent cones. A
second observation is that (5.3.2) actually holds as an equality. In fact, write a pointy ¢ C as
y = pc(y) + s with s = y — pc(y); Proposition 5.3.3 tells us that s € N¢([pc(y)], hence
the nonzero s cannot be in T¢[pe(y)]: we have established y € pe(y) + Telpe(y)), v is
not in the righthand side of (5.3.2). In a word:

C= () k+To@),

z€rbd C

which sheds some more light on the outer description of C discussed in §4.2(b). ]
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Exercises

1. In each of the three cases below, the question is whether D C R™ is convex:
—when C; € D C Cs, with C; and C5 convex;
— when the projection of D onto any affine manifold of R” is convex;

—when D is closed and satisfies the “mid-point property”: $T+y € D whenever z

and y lie in D;

—whenD ={z : |lz~-Z||+|lz —y|]] < lforallye S} (Zz € R*,S C R
arbitrary);

~when D = {z : £+ .5 C C} (S arbitrary, C' convex).

2* Express the closed convex set {(£,7) € K2 : £ > 0,7 > 0,&n > 1} asan

intersection of half-spaces. What is the set of directions exposing some point in it?
Compute the points exposed by such directions (draw a picture).

3*x_ Give two closed convex cones K; and K5 in R? such that K7 + K5 is not
closed (start from two sets in R?).

4. For C closed convex, establish Coe = Nexo €l (Up<retC).

5*x_In the vector space S,,(R), consider the set £ of positive semi-definite matrices
A = [A;j]suchthat A;; = 1fori = 1,...,n (these are called correlation matrices).
If V is a subspace of R", use the notation Fy :={M € &, : V C Ker M }.
— Show that Fy is a face of £,.
—Let F' be a face of £,,. Show that F' = Fy, with V = Nyrcr Ker M.
—Let My € &, be given. Show that the smallest face of £, containing M is the set
{M €&, :Ker My C Ker M }.
Show that every face of &, is exposed.
6* Here C and A are two closed sets such that C C A.
— Show that pc o pa = pe if C and A are two subspaces (draw a picture; this is a
well-known theorem in elementary geometry).

— Show the same property when C' is convex, A being an affine manifold (frequently
used with A = aff C).

— Show on an example that the property need not hold under mere convexity of C
and A.

7% Show that the polar of K := {z = (£!,...,£") : €& < €% < -+ < &) (with
n > 2)is

E o no
K°:{y:(nl,...,n”) >0 20,k=1,...,n—1and Zn’:O}.
i=1 i=1
8* For two integers m and n such that m < n, give all the extreme points of
I, = {a:(al,...,a”) :0<a*<1,i=1,...,nand Zai:m}
i=1

(a picture with n = 3 will be helpful).
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9. Let Ag, Ai,..., A be symmetric n X n matrices. For 2 = (£L,..., €M), set
A(z) := Ao+ Y-, €'A; and define C := {z € R™ : A(z) = 0}. Using different
techniques, show that C is closed convex.

10. For two nonempty sets A and B in R”, show that co(A + B) =co A + co B.
11* Given a set S, show that every extreme point of co S lies in S.

12* Let C be convex in R” and A : R® — R™ be an injective affine mapping.
Show that A(z) is an extreme point of A(C'), for each extreme point z in C. Check
on an example that the result need not hold without injectivity of A.

13* Let C' be a nonempty closed convex set. Show that y, € C'is the projection of
z onto C if and only if {x — y,y — y,) < 0 forall y € C (draw a picture).

14* Let (Cy)x be a decreasing sequence of closed convex sets, with C := N Cy, #
0. Show that, for all z € R,

po. () = po(z) and de, (2) T de(z) whenk — +oo.

15% Let K := S} (R) denote the (closed convex) cone of positive semi-definite
matrices in the space S, (R) equipped with the standard scalar product (M, P) :=
tr M P.

— Show that K° = — K, a set which can be denoted by S, (R).

— Characterize the projections px (M) and pxo (M) of a given matrix M.

— Deduce the Moreau decomposition of M onto K and K° (Thm 3.2.5).

16. If S is an open set, show that co S is open as well.

17*% Give an example of two closed convex sets C; and Cs, such that C; + Cs is
closed, and (C)oo + (C2)wo is stricly included in (C + C2)o.

18* Let C C R™ be nonempty closed convex and 4 : R® — R™ be linear. Show
that A(C) is closed whenever CooNKer A = {0}. As an application, find a sufficient
condition for the projection of a closed convex set onto a subspace to be closed.

19. Under which condition is O an extreme point of a closed convex cone?

— Show that any z of norm 1 is an extreme point of B(0, 1) (Euclidean unit ball).

—What are the extreme points of B;(0,1), the unit ball of the ¢;-norm ||z|}; :=
S le

— Same question for By, (0, 1) (J|z]|oo := max {|€}], ..., |€*|}). Compare the growth
of the number of extreme points, respectively of B;(0,1) and B, (0,1), when
n — +00.

20* The diameter of a set S is sup{||y — z|| : z,y € S}. Show that S and co S
have the same diameter if S is bounded.
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21* Show the following relations

co(S; NS) C (coS1)N(coSy),
co(S1 + S2) =co S, +coSs,
co (51 U S3) = co[{coS1) U (coS2)];

Give an example in which equality does not hold for the intersection.
Show that this equality does hold in the following situation: S» = H is a hyper-
plane and 5, is contained in H ~, one of the corresponding closed half-spaces.

22* For C convex, show that C' is closed if and only if C' N L is closed, for any
affine line L.

23*% A closed convex cone K is said to be acute when (z,2') > 0 for all  and 2’
in K.
— Show that K is acute if and only if K C —K°.
—Forp > 1, define K, == {(€1,...,€7) : €7 > (02} |ekpp) /7).
— What is (K,,)°?
— For which values of p is K, acute?
24*x_ For C convex compact, show that C' = co (rtbd C).

25** In the space of n X n matrices, consider the affine subspace
Vn = {M = [m”] : Zj mi; = Zim,’j = 1}
and the convex compact set (of so-called bistochastic matrices of size n)
Zpn={M eV, :my 20fori,j=1,...,n}.

— Show that V,, has dimension (n — 1)? and that aff X, = V/,.

—Set Jp, := [%] (the bistochastic matrix whose all elements are equal; it is a “cen-
tral” matrix in X,). Check that J, lies in the relative interior of X, and that
JoM=MJ, =J, forall M € ¥, (J, “absorbs” the whole of X,).

— Now we equip the space of matrices with the standard scalar product (M, P) :=
tr M7 P. Denoting by e € R” the vector whose all component are 1, show that
Vi={ue"+ev” :ueR*, veR"}.

— Deduce that the orthogonal projection of a matrix M onto V,, is J, + K, M K,,,
where K, :=1,, — J,, (I,, is the identity matrix).

26+* Let P be a closed convex polyhedron: P = {z : Az = b,x > 0}.

~For 0 # z € P, show that z is extremal in P if and only if the columns i of A
corresponding to £* > 0 are linearly independent.

— Use this result to prove the following theorem (G. Birkhoff, 1946): the set of

bistochastic matrices (see above) is convex compact, and its extreme points are
the permutation matrices.
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Introduction. The study of convex functions goes together with that of convex sets; ac-
cordingly, this chapter and the previous one constitute the first serious steps into the world of
convex analysis. This chapter has no pretension to exhaustivity; similarly to Chap. A, it has
been kept minimal, containing what is necessary to comprehend the sequel.

1 Basic Definitions and Examples

1.1 The Definitions of a Convex Function

Definition 1.1.1 Let C be a nonempty convex set in R”. A function f : C — R is

said to be convex on C when, for all pairs (z,z') € C x C and all a €]0, 1], there
holds

flaz+ (1 —a)z') < af(z)+ (1—a)f(z'). (1.1.1)

O

We say that f is strictly convex on C' when (1.1.1) holds as a strict inequality if
x # z'. An even stronger property is that there exists ¢ > 0 such that

flaz+(1—a)’) <af(z)+ (1 - a)f(z') — tca(l —a)l|lz —2'||> (1.1.2)

forall (z,2') € C x C and all a €]0, 1[. In this case, f is said to be strongly convex
on C (with modulus of strong convexity c). Passing from (1.1.1) to (1.1.2) does not
change much the class of functions considered:

Proposition 1.1.2 The function f is strongly convex on C with modulus c if and
only if the function f — 1/2¢|| - ||? is convex on C.

Proof. Use direct calculations in the definition (1.1.1) of convexity applied to the
function f — 1/2¢|| - ||, namely:

flaz+ (1 - a)x') — %c”az +(1-a)z'|? <
< af(x) + (1-a)f(2) — zeallz|® + (1 - a)lle'|?] . O

Although simple, this statement illustrates a useful technique in convex analysis: to prove
that a convex function has a certain property, one establishes a related property on a suitable
strongly convex perturbation of the given function.

J. -B. Hiriart-Urruty et al., Fundamentals of Convex Analysis
© Springer-Verlag Berlin Heidelberg 2001
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The set C needed in Definition 1.1.1 (which can be the whole space) appears
as a sort of domain of definition of f. Of course, it has to be convex so that the
lefthand side of (1.1.1) makes sense. In a more modern definition, a convex function
f 1s considered as defined on the whole of R™, but possibly taking infinite values:

Definition 1.1.3 (The Set Conv R™) A function f : R® — R U {+o0o}, not iden-
tically o0, is said to be convex when, for all (z,z’) € R® x R” and all « €10, 1],
there holds

flaz + (1= a)2’) < af(z) + (1 - a)f(a'),

considered as an inequality in R U {+o00}.
The class of such functions is denoted by Conv R”. g

See §0.2 for a short introduction to the set RU{+oc0}. We mention here that our definition
coincides with that of proper convexity used by other authors. The distinction is necessary
when the value f(z) = —oo is allowed; but this value is excluded from the very beginning
in the present book.

To realize the equivalence between our two definitions, extend an f from Defi-
nition 1.1.1 by
flx): =400 for z&C, (1.1.3)

thus obtaining a new f, which is now in Conv R". Conversely, consider the follow-
ing definition (meaningful even for nonconvex f, incidentally):

Definition 1.1.4 (Domain of a Function) The domain (or also effective domain) of
f € Conv R” is the nonempty set

domf:={z e R" : f(z) < +o0}. O

Clearly enough, an f satisfying (1.1.1), (1.1.3) has a convex domain; given
f € ConvR”, we can therefore take C' := dom f to obtain a convex function
in the sense of Definition 1.1.1. Strong convexity is also defined in the spirit of
Definition 1.1.3, via (1.1.2) with z and =’ varying in dom f or in R™: it makes no
difference. Same remark for strict convexity (checking all these claims is a good
exercise to familiarize oneself with computations in R U {+00}).

Now, we recall that the graph of an arbitrary function is the set of couples
(z, f(x)) in R* x R. When moving to the unilateral world of convex analysis,
the following is relevant:

Definition 1.1.5 (Epigraph of a Function) Given f : R® - RU{+o0}, not iden-
tically equal to +o0, the epigraph of f is the nonempty set

epif :={(z,7r) ER" xR : r > f(x)}.

Its strict epigraph epi, f is defined likewise, with “>” replaced by “>" (beware that
the word “strict” here has nothing to do with strict convexity). O
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Defining a sublevel-sets (see §0.1.2) by
S/(f):={z cR": f(z) <r},
we have the equivalent definition
(z,r) €epif <= ze€S.(f). (1.1.4)

The following property is easy to derive, and can be interpreted as giving one
more definition of convex functions, which is now of geometric nature.

Proposition 1.1.6 Ler f : R* — R U {+o00} be not identically equal to +occ. The
three properties below are equivalent:

(i) f is convex in the sense of Definition 1.1.3;
(ii) its epigraph is a convex set in R* x R;
(ii1) its strict epigraph is a convex set in R® x R.

Proof. Left as an exercise. O

We say that f is concave when — f is convex, or equivalently when the hypograph of
f (revert the inequality in Definition 1.1.5) is a convex set. We will see on examples that
either the analytical Definition 1.1.3 or the geometric one coming from 1.1.6 may be more
convenient, depending on the situation.

Remark 1.1.7 The sublevel-sets of f € ConvR" are convex (possibly empty) subsets of
R™. To construct S- (), remember Example A.1.2.5: we cut the epigraph of f by a horizontal
blade, forming the intersection epi f N (R™ x {r}) of two convex sets; then we project
the result down to R™ x {0} and we change the environment space from R* x R to R™.
Even though this latter operation changes the topology, it changes neither the closure nor the
relative interior.

Fig. 1.1.1. Forming a sublevel-set

Conversely, a function whose sublevel-sets are all convex need not be convex (see
Fig. 1.1.1); such a function is called quasi-convex.

Observe that dom f is the union over € R of the sublevel-sets S, (f), which form a
nested family; it is also the projection of epi f C R™ x R onto R™ (so Proposition A.1.2.4
and Example A.1.2.5 confirm its convexity). O
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The basic inequality (1.1.1) can be generalized to convex combinations of more
than two points:

Theorem 1.1.8 (Inequality of Jensen) Ler f € Conv R™. Then, for all collections
{z1,...,zx} of points in dom f and all @ = (aa,...,qy) in the unit simplex of
Rk, there holds (inequality of Jensen in summation form)

f(Zf:l a;z;) < Zf;l a; f(z;) .

Proof. The k points (z;, f(x;)) € R® x R are clearly in epi f, a convex set. Their
convex combination

Z,— ai(wi,f(xi)) = (Z,- aixi,zi Oéz‘f(ivi))
is also in epi f (Proposition A.1.3.3). This is just the claimed inequality. ]

Starting from f € Conv R™, we have constructed via Definition 1.1.5 the convex
set epi f. Conversely, if E C R™ x R is the epigraph of a function in Conv R", this
function is directly obtained from f(z) = inf(, ,yepr (recall that inf § = +oo0;
we will see in §1.3(g) what sets are epigraphs of a convex function). In view of this
correspondence, the properties of a convex function f are intimately related to those
developed in Chap. A, applied to epi f.

We will see later that important functions are those having a closed epigraph. Also, it is
clear that aff epi f contains the vertical lines {z} x R, with z € dom f. This shows that
epi f cannot be an open set, nor relatively open: take points of the form (z, f(z) — €). As a
result, riepi f cannot be an epigraph, but it is nevertheless of interest to see how this set is
constructed:

Proposition 1.1.9 Ler f € ConvR”™. The relative interior of epi f is the union over © €
ridom f of the open half-lines with bottom endpoints at f(x):

riepi f = {(z,7) e R" xR : z €ridom f, 7 > f(z)}.

Proof. Since dom f is the image of epi f under the linear mapping “projection onto R™”,
Proposition A.2.1.12 tells us that

ridom f is the projection onto R™ of riepi f. (1.1.5)

Now take z arbitrary in ri dom f. The subset of riepi f that is projected onto z is just ({z} x
R) Nriepi f, which in turn is ri [({z} % R) N epi f] (use Proposition A.2.1.10). This latter
set is clearly | f(z), +oo.

In summary, we have proved that, for £ € ridom f, (z,r) € riepi f if and only if
r > f(z). Together with (1.1.5), this proves our claim. O

Beware that riepi f is not the strict epigraph of f (watch the side-effect on the relative
boundary of dom f).

1.2 Special Convex Functions: Affinity and Closedness

In view of their Definition 1.1.6(ii), convex functions can be classified on the basis
of a classification of convex sets in R” x R.
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(a) Linear and Affine Functions The epigraph of a linear function is characterized
by s € R™, and is made of those (z,r) € R" x R such thatr > (s, ).

Next, we find the epigraphs of affine functions f, which are conveniently written
in terms of some zg € R™:

{(z,7) : 7> f(z0) + (5,2 — @o)} = {(2,7) : (s5,2) — 7 < (s,70) — f(z0)}.

In the language of convex sets, the epigraph of an affine function is a closed half-
space, characterized by (a constant term and) a vector (s,—1) € R" x R; the
essential property of this vector is to be non-horizontal. Affine functions thus play
a special role, just as half-spaces did in Chap. A. This explains the interest of the
next result; it says a little more than Lemma A.4.2.1, and is actually of paramount
importance.

Proposition 1.2.1 Any f € Conv R” is minorized by some affine function. More
precisely: for any o € ridom f, there is s in the subspace parallel to aff dom f
such that

f(x) = f(xo) + (s,z —xo) forallz e R™.

In other words, the affine function can be forced to coincide with f at xy.

Proof. We know that dom f is the image of epi f under the linear mapping “projec-
tion onto R™”. Look again at the definition of an affine hull (§A.1.3) to realize that
affepi f = (aff dom f) x R.

Denote by V the linear subspace parallel to aff dom f, so that aff dom f =
{zo} + V with z¢ arbitrary in dom f; then we have

affepi f = {zo + V} x R. (1.2.1)

We equip V' x R and R? x R with the scalar product of product-spaces.

With 2o € ridom f, Proposition 1.1.9 tells us that (zg, f(xo)) € rbdepif
and we can take a nontrivial hyperplane supporting epi f at (z¢, f(zo)): using Re-
mark A.4.2.2 and (1.2.1), there are s = sy € V and a € R, not both zero, such
that

(s,z) + ar < (s,zo) + af(zo) (1.2.2)

for all (z,r) with f(z) < r. Note: this implies a < 0 (let 7 — +oo!)
Because of our choice of s (in V) and x¢ (in ridom f), we can take § > 0 so
small that g + ds € dom f, for which (1.2.2) gives

3llsli* < alf (o) — f(=o + 85)] < +00;

this shows a: # 0 (otherwise, both s and a would be zero). Without loss of general-
ity, we can assume o = —1; then (1.2.2) gives our affine function. O

Once again, the importance of this result cannot be over-emphasized. With res-
pect to Lemma A.4.2.1, it says that a convex epigraph is supported by a non-vertical
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hyperplane. Among its consequences, we see that a convex function, having an
affine minorant, is bounded from below on every bounded set of R”™.

As already said on several occasions, important special convex sets are the
cones, and conical epigraphs will deserve the full Chap.C. So we turn to another
class: closed convex sets.

(b) Closed Convex Functions Continuity of functions implies closedness of their
graphs. In the unilateral world of convex analysis, one is mainly interested with
epigraphs, whose closedness corresponds to lower semi-continuity of functions.
First, we give some material, independently of any convexity. A function f is lower
semi-continuous if, for each z € R",

liminf f(y) > f(z). (1.2.3)
y—T
This relation has to hold in R U {400}, which complicates things a little; so the
following geometric characterizations are useful:

Proposition 1.2.2 For f : R* — R U {400}, the following three properties are
equivalent:

(i) f is lower semi-continuous on R*;
(ii) epi f is a closed set in R™ x R ;
(iii) the sublevel-sets S.(f) are closed (possibly empty) for all v € R.

Proof. [(i) = (ii)] Let (yr,7x)r be a sequence of epi f converging to (z,r) for
k — 400. Since f(yx) < 7y for all £, the Ls.c. relation (1.2.3) readily gives

r =limrg > liminf f(yz) > lim_jnff(y) > f(z),
y—z

ie(z,r) €epif.

[(ii) = (iii)] Construct the sublevel-sets S,-(f) as in Remark 1.1.7: the closed sets
epi f and R” x {r} have a closed intersection.

[(iii) = (i)] Suppose f is not lower semi-continuous at some z: there is a (sub)se-
quence (yx) converging to x such that f(yg) converges to p < f(z) < +o0. Pick
r €]p, f(z)[: for k large enough, f(yx) < r < f(x); hence S,.(f) contains the tail
of (yx ) but not its limit z. Consequently, this S,.(f) is not closed. O

Beware that, with Definition 1.1.1 in mind, the above statement (i) means more
than lower semi-continuity of the restriction of f to C": in (1.2.3),  need not be in
dom f. Note also that these concepts and results are independent from convexity.
Thus, we are entitled to consider the following definition:

Definition 1.2.3 (Closed Functions) The function f : R — R U {400} is said to
be closed if it is lower semi-continuous everywhere, or if its epigraph is closed, or
if its sublevel-sets are closed. O
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The next step is to take the lower semi-continuous hull of a function f, whose
value at z € R” is liminf,_,; f(y). In view of the proof of Proposition 1.2.2, this
operation amounts to closing epi f. When doing so, however, we may slide down to
—00.

Definition 1.2.4 (Closure of a Function) The closure (or lower semi-continuous
hull) of a function f is the function cl f: R® — R U {+o00} defined by:

cl f(z) ;= liminf f(y) forallz € R™, (1.2.4)
y—T
or equivalently by
epi(clf) :=cl(epif). (1.2.5)
0

An Ls.c. hull may be fairly complicated to compute, though; furthermore, the gap be-
tween f(y) and cl f(y) may be impossible to control when y varies in a neighborhood of a
given point . Now convexity enters into play and makes things substantially easier, without
additional assumption on f in the above definition:

- First of all, a convex function is minorized by an affine function (Proposition 1.2.1); closing
it cannot introduce the value —oo.

— Second, the issue reduces to the one-dimensional setting, thanks to the following radial
construction of cl f.

Proposition 1.2.5 Let f € ConvR" and =’ € ridom f. There holds (in R U {+00})
cf(x) = 1&1 flx+t(z' —=x)) forallz eR". (1.2.6)

Proof. Since z; := z + t(x' — ) — x when t | 0, we certainly have

(el f)(z) < lirﬁ%nf flz +t(z' —x)).

We will prove the converse inequality by showing that

limsup f(z +t(z' —z)) <r forallr > (cl f)(z)
t10

(non-existence of such an r means that cl f(z) = +00, the proof is finished).
Thus let (z,r) € epi(cl f) = cl(epi f). Pick v’ > f(z'), hence (z',7’) € riepif
(Proposition 1.1.9). Applying Lemma A.2.1.6 to the convex set epi f, we see that
t(z',r')+ (1 —t)(z,r) Eriepif Cepif forallt €]o,1].
This just means
fz+t(x —z)) <tr' + (1 —t)r forallt€]o,1]
and our required inequality follows by letting ¢ | 0. O

Another way of expressing the same thing is that, to compute cl f at some point z, it
suffices to consider the restriction of f to a half-line, say z + R*d, meeting ri dom f; here,
d stands for ' — . The resulting one-dimensional function ¢(t) := cl f(z + td) becomes
“continuous” from the right at ¢ = 0, in the sense that ¢(0) = lim, ;o ¢(¢) — an equality in
R U {+o0}.

Some simple but important properties come in conjunction with the results of
the previous chapters:
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Proposition 1.2.6 For f € Conv R", there holds
clf € ConvR"; 1.2.7)
cl f and f coincide on the relative interior of dom f. (1.2.8)

Proof. We already know from Proposition A.1.2.6 that epicl f = clepi f is a con-
vex set; also ¢l f < f #Z +o0; finally, Proposition 1.2.1 guarantees in the relation of
definition (1.2.4) that cl f(z) > —oo for all z: (1.2.7) does hold.

On the other hand, suppose z € ridom f. Then the one-dimensional function
@(t) = f(z + td) is continuous at ¢ = 0 (Theorem 0.6.2); it follows from Proposi-
tion 1.2.5 that cl f coincides with f on ri dom f; besides, cl f(x) is obviously equal
to f(x) = +oo forall z € cldom f. Altogether, (1.2.8) is true. O

In particular, a finite-valued convex function (dom f = R") is lower semi-continuous;
actually, Theorem 3.1.2 below will confirm that it is more than that: it is continuous, and even
locally Lipschitzian.

Due to their importance, closed convex functions deserve a special notation:

Notation 1.2.7 (The Set Conv R™) The set of closed convex functions on R™ is
denoted by Conv R”™. o

(¢) Outer Construction of Closed Convex Functions The property proved in
Proposition 1.2.5 corresponds to a direct (or inner) construction of cl f from (1.2.4).
Equivalently, cl f can be constructed as the largest 1.s.c. (convex) function minoriz-
ing f. Correspondingly, the closed (convex) set epi cl f can also be described exter-
nally, as an intersection of closed (convex) sets. In view of §A.4.2(b), these closed
convex sets can be restricted to be closed half-spaces: convexity provides another
simplification of the closure operation. Besides, in view of Proposition 1.2.1, these
half-spaces can be assumed non-vertical. This is the content of the next result.

Proposition 1.2.8 The closure of f € Conv R" is the supremum of all affine func-
tions minorizing f:

df(zy= sup {(s,z)—b: (s,y) —b< f(y)forally e R*}. (1.2.9)
(5,b)ER™ xR

Proof. A closed half-space containing epi f is characterized by a nonzero vector
(s,a) € R® x R and a real number b such that

(s,z) + ar < b forall (z,7) € epif (1.2.10)

(we equip the graph-space R x R with the scalar product of a product-space). Let
us denote by ¥ C R" x R x R the index-set of such triples ¢ = (s, a, b), with
corresponding half-space

H. :={(z,r) : (s,z) +ar < b}. (1.2.1D
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In other words, epi (cl f) = cl(epi f) = N,ex H; .

Because of the particular nature of an epigraph, (1.2.10) implies @ < 0 (let
r — +00) and, by positive homogeneity, the values « = 0 and o = —1 suffice: X
can be partitioned in

5y = {(s,~1,b) : (1.2.10) holds with & = —1}
and
Yo :={(s,0,b) : (1.2.10) holds with @ = 0} .

Indeed, Y; corresponds to affine functions minorizing f (Proposition 1.2.1 tells
us that X, # () and Xy to closed half-spaces of R™ containing dom f (note that
Yo =0 if dom f = R").

We have to prove that, even when X # (), intersecting the half-spaces H; over
X' or over Xy produces the same set, namely clepi f. For this we take arbitrary
oo = (80,0,bp) € Yo and 07 = (s1,—1,b1) € Xy, we set

o(t) == (s1 +tso,—1,by +thg) € X1 forallt >0,

and we prove (see Fig. 1.2.1)

Hy NHg =NisoHy = H™ .

\

(S(),)O)Z (0,0)

(s4+tsg-1)  (81:°1)

1€ 21
Cge g O'(t)E}:q

Fig. 1.2.1. Closing a convex epigraph

It results directly from the definition (1.2.11) that an (z, r) in H;, NH_ satisfies
(s1 +tsg,x) — (b1 +tby) < r forallt >0, (1.2.12)
i.e. (z,r) € H~. Conversely, take (z,r) € H~. Sett = 0 in (1.2.12) to see that

(z,7) € H;,. Also, divide by t > 0 and let t — +o0 to see that (z,r) € H; . The
proof is complete. O
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1.3 First Examples

(a) Indicator and Support Functions Given a nonempty subset S C R", the func-
tionig : R* — RU {400} defined by

is(z) = {O ?f$€S,

+00 if not
is called the indicator function of S. We mention here that other notations com-
monly encountered in the literature are dg, ©g, or even xg. Clearly enough, ig is
[closed and] convex if and only if .S is [closed and] convex. Indeed, epiig = S x R
by definition.

More generally, if f € ConvR™ and if C is a nonempty convex set, the function

_jf@)ifzeC,
o) = { {00

is again convex under one condition: that dom f and C have a nonempty intersection (other-
wise ¢ would be identically 4+o00). Furthermore, ¢ is closed when so are f and C. Observe
in passing that o = f +ic.

Attached to a nonempty subset S, another function of interest is the support
function of S, already encountered in Remark A.4.1.2:

os(z) :=sup{(s,z) : s € S}.

It turns out to be closed and convex; this is already suggested by Proposition 1.2.8
and will be confirmed below in §2.1(b). Actually, the importance of this function
will motivate an extensive development in Chap. C. Here, we just observe that, for
a >0,

sup (s, azx) = asup (s, z),

sES seS
hence os{az) = aos(x): the epigraph of a support function is not only closed and
convex, but it is a cone in R™ x R. Its domain is also a convex cone in R™:

domos = {a € R® : 3r such that (s,a) < rforalls € S}.

(b) Piecewise Affine and Polyhedral Functions Let (s1,51),...,(Sm,bm) be m
elements given in R® x R and consider the function

R" 5>z~ f(z) := max {{sj,z) —b; : j=1,...,m}. (1.3.1)
Such a function is suggestively called piecewise affine: R™ is divided into (at most
m) regions in which f is affine: the j§" region, possibly empty, is the closed convex

polyhedron

{z €R® : (sj,,x) —bj, = (sj,z) —bjforj=1,...,m}.
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This terminology is slightly ambiguous, though: a function whose graph is made
up of pieces of affine hyperplanes need not be convex, while (1.3.1) can be seen
to produce convex functions only (just as with a support function, convexity and
closedness of f will be confirmed below). It can even be seen that epi f is a closed
convex polyhedron; but again, (1.3.1) cannot describe all polyhedral epigraphs.

A polyhedral function will be a function whose epigraph is a closed convex
polyhedron. Its most general form is given by Definition A.4.2.5:

epi f = {(z,7) € R* xR : (sj,z) + ajr < bj forj € J},

where J is a finite set, the (s, a, b); being givenin R” x R x R, (s;, ;) # 0 (and
R™ x R is equipped with the scalar product of a product-space). For this set to be
an epigraph, each a; must be nonpositive and, if a; < 0, we may assume without
loss of generality ; = —1. Furthermore, we may denote by {1,...,m} the subset
of J such that a; = —1,and by {m + 1, ..., m + p} the rest (where o; = 0). With
these notations, we see that f(x) is given by (1.3.1) whenever zx satisfies the set of
constraints
(sj,x) <bj forj=m+1,... m+p;

otherwise, f(x) = +oo. Of course, these constraints (usually termed linear, but
affine is more correct) define a closed convex polyhedron.

In a word, a polyhedral function is a function which is piecewise affine on its
domain, the latter being a closed convex polyhedron. Said otherwise, it is a closed
convex function of the form f+ip, where £ is piecewise affine and ip is the indicator
of a closed convex polyhedron.

(c) Norms and Distances It is a direct consequence of the axioms that a norm is
a convex function, finite on the whole space (use Definition 1.1.1). More generally,
let C be a nonempty convex set in R" and, with an arbitrary norm || - ||, define the
distance function

de(e) :==inf{lly —z| : y € C}.

To establish its convexity, Definition 1.1.1 is again convenient. Take two sequences
(yr) and (y;,) such that, for k — +o0, ||lyx — z|| and |Jy;, — 2’| tend to d¢(z) and
d¢(z') respectively. Then form the sequence z; = ayx + (1 — @)y;, € C with
a €10, 1[; pass to the limit for k — 400 in

de(ez +(1—a)a’) < lzr — oz — 1 - a)a'| < allyr — 2l + (1 - a)fly), — 2l

Here again dom d¢ = R"; the (lower semi-)continuity of d¢ follows.

Clearly enough, d¢ = d.i ¢ s0, with the help of Proposition A.2.1.8, we see that
C, clC and riC have the same distance function (associated with the same norm
Il - ID- In particular, d¢ is O on the whole of cl C; the following variant is slightly
more accurate, in that it distinguishes between int C and bd C":

L de(z) ifzeCc,
Defe) := {—dcc(a:) ifzeC,
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where C°¢ is the complement of C in R”™. Assuming that C' and C° are both
nonempty, it is not particularly difficult to prove that D¢ is convex, finite every-
where, and that
intC ={x R : D¢(zx) < 0},
bdC = {z € R* : D¢(z) =0},
(c1C) = {x € R : De(z) > 0}.

(d) Quadratic Forms Let A : R® — R™ be a symmetric linear operator. Then the
quadratic form

f(z) = %(Aw, x)

is a convex function — with dom f = R™ —if and only if A is positive semi-definite,
i.e. its eigenvalues are all nonnegative. Call Ay > --- > A, > 0 these eigenvalues; it
is well-known that a basis can be formed with the corresponding eigenvectors, and
that as a result,

Mllzll? < (Az,x) < Ap]lz}|* forallz € R™.

From the first inequality, direct but somewhat tedious calculations yield, with the
notation of (1.1.2):

flaz + (1= a)r') < af(2) + (1 - a)f(2') = $Ana(l - a)llz - ||

Thus, if A is positive definite, f is strongly convex with modulus A, > 0 (while
f is not even strictly convex when A is degenerate). A straightforward proof comes
also from a general characterization of differentiable strongly convex functions, to
be seen below in Theorem 4.1.4 or 4.3.1.

For r > 0, the sublevel-sets of f:

S-(f) :={zeR": %(Aw,w) < r}

are concentric elliptic sets: Sc(f) = +/kS,-(f). Their common “shape” is given
by the eigenvalues of A. They may be degenerate, in that they contain the subspace
Ker A (one should rather speak of elliptic cylinders if Ker A # {0}). However,
S, (f) is aneighborhood of the origin for » > 0: we have S,.(f) D B(0, ¢) whenever
Aie? € 2r.

(e) Sum of Largest Eigenvalues of a Matrix Instead of our working space R™,
consider the vector space S, (R) of symmetric n X n matrices. Denote the eigenval-
ues of A € S,(R) by A\ (4) > --- > X, (A), and consider the sum f,, of the m
largest such eigenvalues (m < n given):

So(R) 3 A fin(A) == ixj(A).
j=1

This is a function of A, finite everywhere. Equip S, (R) with the standard dot-
product of R**":
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«A,B» =trAB = Z AijBij .
2,7=1

The function f,,, turns out to have the following representation:

fm(A) =sup {{(QQ7, 4)) : Q € 2},

where 2 := {Q : Q7Q = I,,} is the set of matrices made up of m orthonormal
n-columns. Indeed, {2 is compact and the above supremum is attained at () formed
with the (normalized) eigenvectors associated with Aq, ..., A,,. Keeping Proposi-
tion 1.2.8 in mind, this explains that f,,, is convex, as being a supremum of linear
functions on S, (R).

Naturally, f; (A) is the largest eigenvalue of A, while f,,(A4) is the trace of A, a
linear function of A. It follows by taking differences that f,, — f,, (for example the
smallest eigenvalue A\, = f, — fn—1) is a concave function on S, (R).

(f) Volume of Ellipsoids Still in the space of symmetric matrices S,,(R), define the

function
log (det A™1) if A is positive definite,
+00 if not.

An g)={

It will be seen in §3.1 that the concave finite-valued function A, (+) is continuous.
The domain of f, which is the set of A € S,,(R) such that A,,(A) > 0, is therefore
open, and even an open convex cone. It turns out that f is convex. To see it, start
from the inequality

det [ad + (1 — a)A'] > (det A)*(det )1~

valid for all symmetric positive definite matrices A and A’ (and « € ]0, 1[); take the
inverse of each side; remember that the inverse of the determinant is the determinant
of the inverse; finally, pass to the logarithms.

Geometrically, consider again an elliptic set

Efs:={zeR" : 2" Az < 1}

where A is a symmetric positive definite matrix. Up to a positive multiplicative
constant (which is the volume of the unit ball Ej, ), the volume of E 4 is precisely
Vdet A-1,

Because dom f is open, ridom f = int dom f = dom f, which establishes the
lower semi-continuity of f on its domain. Furthermore, suppose Ay — A with A
not positive definite; by continuity of the concave function A, (-), A is positive semi-
definite and the smallest eigenvalue of Ay tends to 0: f(Ag) — +00. The function
f is closed.

(g) Epigraphical Hull and Lower-Bound Function of a Convex Set Given a
nonempty convex set C' C R™ x R, an interesting question is: when is C' the epi-
graph of some function f € Conv R™? Let us forget for the moment the convexity



86 B. Convex Functions

issue, which is not really relevant. First, the condition f(z) > —oo for all  means
that C contains no vertical downward half-line:

{r € R : (z,r) € C} is minorized for all z € R" . (1.3.2)

A second condition is also obvious: C must be unbounded from above, more pre-
cisely
(x¢,r) e C = (z,r')eCforalr >r. (1.3.3)

The story does not end here, though: C must have a “closed bottom”, i.e.
[(z,yYeCandr' | 7] = (z,r)eC. (1.3.4)

This time, we are done: anonempty set C satisfying (1.3.2) - (1.3.4) is indeed an
epigraph (of a convex function if C is convex). Alternatively, if C satisfying (1.3.2),
(1.3.3) has its bottom open, i.e.

(z,r)eC = (x,r—e)eC forsomee=c¢(z,r)>0,

then C is a strict epigraph. To cut a long story short: a [strict] epigraph is a union of

closed [open] upward half-lines — knowing that we always rule out the value —oc.
The next interesting point is to make an epigraph with a given set: the epigraph-

ical hull of C C R™ x R is the smallest epigraph containing C. Its construction

involves only rather trivial operations in the ordered set R :

(i) force (1.3.3) by stuffing in everything above C': for each (z,7) € C, add to C

all (z,7') withr' > 7}

(ii) force (1.3.4) by closing the bottom of C: put (z,r) in C whenever (z,r') € C
with ' — r.

These operations (i), (ii) amount to constructing a function:
g lo(z) :=inf{reR : (z,r) € C}, (1.3.5)

the lower-bound function of C'; clearly enough, epi £ is the epigraphical hull of C'.
We have that £c(z) > —oo for all z if (and only if) C satisfies (1.3.2).

The construction of an epigraphical hull is illustrated on Fig. 1.3.1, in which the
point A and the curve I are not in C; nevertheless, there holds (epi, is the strict

epigraph)
epig bc C C + {0} x R* Cepifle Ccl(C + {0} x RY). (1.3.6)

Theorem 1.3.1 Let C be a nonempty subset of R* x R satisfying (1.3.2), and let its
lower-bound function Lo be defined by (1.3.5).

(i) If C is convex, then Lo € Conv R";
(i) If C is closed convex, then £ € Conv R™.
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Fig. 1.3.1. The lower-bound function

Proof. We use the analytical definition (1.1.1). Take arbitrary € > 0,  €]0, 1] and
(z5,7;) € C suchthatr; < fo(z;) +efori=1,2.
When C is convex, (az; + (1 — a)za,ar; + (1 — a)rs) € C, hence

lolazy + (1 —a)z) < arp + (1 —a)rs < ale(zr) + (1 — a)lo(zs) + €.

The convexity of £ follows, since £ > 0 was arbitrary; (i) is proved.

Now take a sequence (zx, pr)r C epifc converging to (z, p); we have to prove
Lo(z) < p (cf. Proposition 1.2.2). By definition of (), we can select, for each
positive integer k, a real number ry, such that (z,7%) € C and

bo(zr) <k <lo(zr) + 5 <pr+ - (1.3.7)

We deduce first that (%) is bounded from above. Also, when £ is convex, Proposi-
tion 1.2.1 implies the existence of an affine function minorizing ¢¢: (ry) is bounded
from below.

Extracting a subsequence if necessary, we may assume ry — r. When C is
closed, (z,7) € C, hence o (x) < r; but pass to the limit in (1.3.7) to see that
r < p; the proof is complete. a

2 Functional Operations Preserving Convexity

It is natural to build up new convex functions from simpler ones, via operations
preserving convexity, or even yielding it. This approach goes together with that of
§A.1.2: convex epigraphs can be made up from simpler epigraphs. Here again, prov-
ing convexity of the new function will rely either on the analytical definition or on
the geometric one, whichever is simpler.

2.1 Operations Preserving Closedness

(a) Positive Combinations of Functions
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Proposition 2.1.1 Let fy, ..., f,, bein ConvR” [resp. in ConvR" ], letty, ... tpy,
be positive numbers, and assume that there is a point where all the f;’s are finite.
Then the function f := Z;nzl t; fj isin Conv R™ [resp. in Conv R ].

Proof. The convexity of f is readily proved from the relation of definition (1.1.1).
As for its closedness, start from

lim inf¢; £;(y) = t; liminf f;(y) > ¢;f;(x)

(valid for £; > 0 and f; closed); then note that the lim inf of a sum is not smaller
than the sum of liminf’s. 0

As an example, let f € Conv R™ and C C R™ be closed convex, with dom f N C # .
Then the function f + i¢ of Example 1.3(a) is in Conv R".

(b) Supremum of Convex Functions

Proposition 2.1.2 Let {f;}c.; be an arbitrary family of convex [resp. closed con-
vex] functions. If there exists xo such that sup; f;(xo) < 400, then their pointwise
supremum f :=sup{f; : j € J} isin ConvR"™ [resp. in Conv R" ].

Proof. The key property is that a supremum of functions corresponds to an intersec-
tion of epigraphs: epi f = N;c s epi f;, which conserves convexity and closedness.
The only needed restriction is nonemptiness of this intersection. O

In a way, this result was already announced by Proposition 1.2.8. It has also been
used again and again in the examples of §1.3.

Example 2.1.3 (Conjugate Function) Let f : R — R U {+o0} be a function not
identically +oo, minorized by an affine function (i.e., for some (sg, b) € R* x R,
f = {s0,-) — bon R™). Then the function f* defined by

R*® 3 s+ f*(s) :=sup{(s,z) — f(z) : z € dom f}

is called the conjugate function of f, to be studied thoroughly in Chap. E. Observe
that f*(sp) < b and f*(s) > —oo for all s because dom f # (. Thus, f* €
Conv R”; this is true without any further assumption on f, in particular its convexity
or closedness are totally irrelevant here. ]

(c) Pre-Composition with an Affine Mapping

Proposition 2.1.4 Let f € ConvR" [resp. Conv R" ] and let A be an affine map-
ping from R™ 1o R™ such that Im A Ndom f # (. Then the function

foA: R™ 3z w (foA)(z) = f(A(z))

is in ConvR™ [resp. Coniv R™ J.
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Proof. Clearly (f o A)(z) > —oo for all z; besides, there exists by assumption
y = A(z) € R" such that f(y) < +o0. To check convexity, it suffices to plug the
relation

Alaz + (1 — a)z') = ad(z) + (1 — a) A(z")

into the analytical definition (1.1.1) of convexity. As for closedness, it comes readily
from the continuity of A when f is itself closed. O

Example 2.1.5 With f (closed) convex on R”, take o € dom f, d € R™ and define
A: Ratw A(t) == xo + td;

this A is affine, its linear partis ¢ — Aot := ¢d. The resulting fo A appears as (a parametriza-
tion of) the restriction of f along the line o + Rd, which meets dom f (at xo).

This operation is often used in applications. Even from a theoretical point of view, the
one-dimensional traces of f are important, in that f itself inherits many of their properties;
Proposition 1.2.5 gives an instance of this phenomenon. O

Remark 2.1.6 With relation to this operation on f € ConvR" [resp. Conv R"], call V
the subspace parallel to aff dom f. Then, fix zo € dom f and define the convex function
fo € Conv V [resp. Conv V] by fo(y) := f(xo +y) forally € V.

This new function is obtained from f by a simple translation, composed with a restriction
(from R™ to V). As a result, dom fo is now full-dimensional (in V'), the relative topology
relevant for fo is the standard topology of V. This trick is often useful and explains why
“flat” domains, instead of full-dimensional, create little difficulties. O

(d) Post-Composition with an Increasing Convex Function

Proposition 2.1.7 Let f € Conv R” [resp. Conv R™ ] and let g € Conv R [resp.
Conv R] be increasing. Assume that there is xo € R"™ such that f(xg) € dompg,
and set g(+00) := +00. Then the composite function go f : © — g(f(z)) is in
Conv R" [resp. in Conv R™ ].

Proof. Ttsuffices to check the inequalities of definition: (1.1.1) for convexity, (1.2.3)
for closedness. O

The exponential g(¢) := expt is convex increasing, its domain is the whole line, so
exp f(z) is a [closed] convex function of z € R™ whenever f is [closed] convex. A function
f : R™ — 10, +00] is called logarithmically convex when log f € ConvR™ (we set again
log(+00) = +00). Because f = exp log f, a logarithmically convex function is convex.

As another application, the square of an arbitrary nonnegative convex function (for ex-
ample a norm) is convex: post-compose it by the function g(¢) = (max {0,t})%.

2.2 Dilations and Perspectives of a Function
For a convex function f and u > 0, the function

fu :R" Dz fu(z) = uf(z/u)

is again convex. This comes from Propositions 2.1.1 and 2.1.4 but can also be seen geomet-
rically: since fu(z)/u = f(z/u), the epigraphs and sublevel-sets are related by

epifu =uepif, epiyfu=wepi,f, Si(fu)=uS,/.(f),
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which express that f,, is a “dilated version” of f.

More interesting, however, is to study f,, as a function of both variables x and wu, i.e. to
consider the set of all dilations of f. We therefore define the perspective of f as the function
fromR x R™ to RU {400} given by

flu,z) = {uf(x/u) ifu> 0,

+o0 if not .
Proposition 2.2.1 If f € ConvR", its perspective f is in Conv R**1,
Proof. Here also, it is better to look at f with “geometric glasses™:

epif = {(u,z,7) ERY xR* xR : f(z/u) < r/u}
={u(1,z’,7") : u>0,(z',r") € epi f}
= Uy>o{u({1} x epi f)} = RY ({1} x epi f)

and epi f is therefore a convex cone. |

Fig. 2.2.1. The perspective of a convex function

Figure 2.2.1 illustrates the construction of epi f, as given in the above proof. Embed epi f
into R x R® x R, where the first R represents the extra variable u; translate it horizontally
by one unit; finally, take the positive multiples of the result. Observe that, following the same
technique, we obtain

dom f = R} ({1} x dom f). 2.2.1)

Another observation is that, by construction, epi f [resp. dom f] does not contain the origin
of R x R" x R [resp. R x R"].

Convexity of a perspective-function is an important property, which we will use later in
the following way. For fixed zo € dom f, the function d — f(zo + d) — f(zo) is obviously
convex, so its perspective

r(u,d) := u[f(zo + dfu) — f(zo)] (foru > 0) (2.2.2)
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is also convex with respect to the couple (u,d) € R} x R™. Up to the simple change of
variable u — ¢ = 1/u, we recognize a difference quotient.

The next natural question is the closedness of a perspective-function: admitting that f
itself is closed, troubles can still be expected at u = 0, where we have brutally set f(0,-) =
400 (possibly not the best idea .. .) A relatively simple calculation of cl f is in fact given by
Proposition 1.2.5:

Proposition 2.2.2 Ler f € ConvR™ and let z' € ridom f. Then the closure cl f of its
perspective is given as follows:

_ uf(x/u) if u>0,
(el f)(u,z) = ¢ limgoaf(s’ —z+x/a)if u=0,
+00 if u<0.

Proof. Suppose first u < 0. For any , it is clear that (u, z) is outside ¢l dom f and, in view
of (1.2.8), cl f(u, z) = +oo.

Now let u > 0. Using (2.2.1), the assumption on z’ and the results of §A.2.1, we see that
(1,z") € ridom f,s0 Proposition 1.2.5 allows us to write

(d f)(u,2) = Ei%f ((u,2) + a[(1,2") — (u,2)])

" 3 +a I_
= lim [u+ a(l - )] /(325=3).

If w = 1, this reads cl f(1,z) = cl f(z) = f(x) (because f is closed); if u = 0, we just
obtain our claimed relation. ]

Remark 2.2.3 Observe that the behaviour of f (u, ) for w | 0 just depends on the behaviour
of f atinfinity. If z = 0, we have

cl £(0,0) = lim af(z’) =0 [f(z") < +ool].

For z # 0, suppose for example that dom f is bounded; then f(z' —z + z/a) = 400 fora
small enough and cl (0, ) = +o0. On the other hand, when dom f is unbounded, cl f(0, -)
may assume finite values if, at infinity, f does not increase too fast.

For another illustration, we apply here Proposition 2.2.2 to the perspective-function r of
(2.2.2). Assuming zo € ridom f, we can take d’ = 0 — which is in the relative interior of
the function d + f(zo + d) — f(z0) — to obtain

(c1r)(0,d) = lim f(zo —d + 7d) — f(xo) ’

T—+400 T

Because (7 — 1)/ — 1 for 7 — +o0, the last limit can also be written (in R U {+o00})

o 1@+ td) — f(zo)
+o0 t

(@r)(0,d) = 1

We will return to all this in §3.2 below. O
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2.3 Infimal Convolution
Starting from two functions f; and fo, form the set epi f; +epi fo C R® x R:
C:={(z1 +x2,71+12) : r; > fi(zj) forj=1,2}.

Under a suitable minorization property, this C has a lower-bound function £¢ as in
(1.3.5):

bo(z)y =inf{ri+ry : 1r; > fi{w;) forj =1,2, 1 + 22 = z}.

In the above minimization problem, the variables are r1, r2, 1, 2, but the r;’s can
be eliminated; in fact, £~ can be defined as follows.

Definition 2.3.1 Let f; and f5 be two functions from R? to RU{+oc}. Their infimal
convolution is the function from R to R U {£o0} defined by

(fi ¢ fo)(@) := inf {f1(z1) + fa(z2) : 21 + 32 = 7} 23.1)
= infyern[fi(y) + fa(z — )] -

We will also call “infimal convolution” the operation expressed by (2.3.1). It is
called exact at x = Z; + T when the infimum is attained at (Z; , Z2), not necessarily
unique. O

This operation is admittedly complex but important and will be encountered on many
occasions. Let us observe right here that it corresponds to the (admittedly simple) addition
of epigraphs — barring some technicalities, see Remark 2.3.4 below. It is a good exercise to
visualize the infimal convolution of an arbitrary convex f; and
~ f2(z) = ifo3 (x) + 7 (shift epi f1 vertically by r);

— f2(x) = i{203 () (horizontal shift);

~ f2(z) = ip(o,r) () (horizontal smear);

—in one dimension: fa(z) = sz — r (itis gr f2 that wins);

— fo(z) =1 — /1 — |iz||? for £ € B(0, 1) (the “ball-pen function” of Fig.2.3.1); translate
the bottom of the ball-pen (the origin of R” x R) to each point in gr f1;

— fo{z) = 1/2]|z]|? (similar operation, called the Moreau-Yosida regularization of f).

Fig. 2.3.1. The ball-pen function
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Remark 2.3.2 The classical (integral) convolution between two functions Fi and F3 is
(Fy * Fy)(z) == / Fi(y)Fa(z —y)dy forallz € R™.

For nonnegative functions, we can consider the “convolution of order p” (p > 0):

(Fi % Fo) () = { [iF)Fa - y)]ﬂdy}]/p.

When p — o0, this integral converges to sup,, Fi (y) F2(z —y) (a fact easy to accept). Now
take F} := exp (—fi), % = 1, 2; we have
(Fi %00 F2)(z) = sup e 1) —fa(z~y) _ ~infylfi(w)+fa(z—y)]
Yy

Thus, the infimal convolution appears as a “convolution of infinite order”, combined with an
exponentiation. O

To exclude the undesired value —oo from the range of an inf-convolution, an ad-
ditional assumption is obviously needed: in one dimension, the infimal convolution
of the functions z and —xz is identically —oo. Our next result proposes a convenient
such assumption.

Proposition 2.3.3 Ler the functions f1 and fs be in Conv R™. Suppose that they
have a common affine minorant: for some (s,b) € R* x R,

fi@) = (s,z) —=b forj=1,2andallxz € R".
Then their infimal convolution is also in Conv R™.
Proof. For arbitrary x € R” and z1, x5 such that 3 + z2 = z, we have by assump-
tion
fi(z1) + fa(z2) > (s,7) — 2b > —00,
and this inequality extends to the infimal value (f; & f2)(z).
On the other hand, it suffices to choose particular values z; € dom f;, j = 1,2,

to obtain the point 1 + z2 € dom (f1 ¢ f2). Finally, the convexity of fi ¢ f2 results
from the convexity of a lower-bound function, as seen in §1.3(g). ]

Remark 2.3.4 To prove that an inf-convolution of convex functions is convex, one
can also show the following relation between strict epigraphs:

epis (f1 ¢ f2) = epis f1 + epi, f2. (2.3.2)
In fact, (z,7) € epig (f1 ¢ f2) if and only if there is € > 0 such that
fi(z1) + fa(z2) =7 +¢ for some z; and x5 adding up to x .

This is equivalent to f;(z;) < r; for some (z1,71) and (x2,72) adding up to (z,r)
(setr; := fij(x;) +¢e/2for j = 1,2, to show the “=" direction). This last property
holds if and only if (z,7) € epig fi + epi fo.

This proof explains why the infimal convolution is sometimes called the (strict)
epigraphic addition. O



94 B. Convex Functions

Similarly to (2.3.2), we have by construction
dom (fi ¢ f2) = dom f; + dom f .

Let us mention some immediate properties of the infimal convolution:

Hvfo=fov fi  (commutativity) (2.3.3)
(fivfo)vfa=ho(fo¥ f3) (associativity) (2.3.4)
f¥ifoy = f (existence of a neutral element in Conv R™) 2.3.5)

i< = fivg<fovg (¢ preserves the order).

With relation to (2.3.3), (2.3.4), more than two functions can of course be inf-
convolved:

. m m
(frg- fmd(@) =i { 3 filw;) : 35 =2}
Jj=1 =1
Remark 2.3.5 If C; and C; are nonempty convex sets in R, then

ic, ¥, =1c+0, -

This is due to the additional nature of the inf-convolution, and can also be checked
directly; but it leads us to an important observation: since the sum of two closed
sets may not be closed, an infimal convolution need not be closed, even if it is

constructed from two closed functions and if it is exact everywhere. O
Example 2.3.6 Let C' be a nonempty convex subset of R* and || - || an arbitrary
norm. Then

icyll-I=de,

which confirms the convexity of the distance function d¢. It also shows that inf-
convolving two non-closed functions (C' need not be closed) may result in a closed
function. [}

Example 2.3.7 Let f be an arbitrary convex function minorized by some affine function with
slope s. Taking an affine function g = (s, -)—b, we obtain fg = g—c, where cis a constant:
¢ = sup, [(s,y) — f(y)] (already encountered in Example 2.1.3 ¢ = f*(s), the value at s of
the conjugate of f). _

Assuming f bounded below, let in particular g be constant: —g = f := inf, f(y). Then
f ¥ (—f) = 0. Do not believe, however, that the infimal convolution provides Conv R™ with
the structure of a commutative group: in view of (2.3.5), the O-function is not the neutral
element! O

Example 2.3.8 We have seen (Proposition 1.2.1) that a convex function is indeed minorized
by some affine function. The dilated versions f, = uf(-/u) of a given convex function f
are minorized by some affine function with a slope independent of v > 0, and can be inf-
convolved by each other. We obtain f. ¢ f,» = fi,+.; the quickest way to prove this formula
is probably to use (2.3.2), knowing that epi, f, = u epi, f.

In particular, inf-convolving m times a function with itself gives a sort of mean-value

formula:
w(f v N =f(72) -
Observe how a perspective-function gives a meaning to a non-integer number of self-inf-
convolutions. ]
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Example 2.3.9 Consider two quadratic forms
f](.’IJ) :%(A]x,m) fOI']:l,Z,
with A; and A, symmetric positive definite. Expressing their infimal convolution as

Finf (A1, 9) + (a2 — ),z — )],

the minimum can be explicitly worked out, to give (f1 ¢ f2)(z) = 1/2(A122, z),
where A2 := (A7 + A;l)gl.

This formula has an interesting physical interpretation: consider an electrical circuit made
up of two generalized resistors A; and As connected in parallel. A given current-vector
i € R” is distributed among the two branches (i = i1 + i2), in such a way that the dissi-
pated power (A1i1,41) + (A2i2,12) is minimal (this is Maxwell’s variational principle); see
Fig.2.3.2. In other words, if 7 = 71 + 72 is the real current distribution, we must have

(A, ) + (Ao, 12) = inf_ ((Auir,in) + (Aziz, 02))
11+i=1
The unique distribution (z1,72) is thus characterized by the formulae
A7y = Aoty = Aot 5 (236)

from which it follows that <A1i1,51> =+ (AziQ, fz) = (Ami, l)

Fig. 2.3.2. Equivalent resistors

Thus, A12 plays the role of a generalized resistor equivalent to A; and A, connected in
parallel; when n = 1, we get the more familiar relation 1/r = 1/71 +1/r2 between ordinary
resistances r; and 7. Note an interpretation of the optimality (or equilibrium) condition
(2.3.6). The voltage between P and Q [resp. P’ and Q'] on Fig.2.3.2, namely A171 = A27»
[resp. Ai2i], is independent of the path chosen: either through Ai, or through A,, or by
construction through Ais.

The above example of two convex quadratic functions can be extended to gen-
eral functions, and it gives an economic interpretation of the infimal convolution:
let f1(x) [resp. f2(x)] be the cost of producing = by some production unit U; [resp.
U,]. If we want to distribute optimally the production of a given = between U; and
Us, we have to solve the minimization problem (2.3.1). O
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2.4 Image of a Function Under a Linear Mapping
Consider a constrained optimization problem, formally written as

inf {p(u) : c(u) < z}, (24.1)
uelU
where the optimization variable is u, the righthand side x being considered as a
parameter taken in some ordered set X. The optimal value in such a problem is
then a function of x, characterized by the triple (U, ¢, ¢), and taking its values in
R U +{oo}. This is an important function, usually called the value function, or
marginal function, or perturbation function, or primal function, etc.
Several variants of (2.4.1) are possible: we may encounter equality constraints,
some constraints may be included in the objective via an indicator function, etc. A
convenient unified formulation is the following:

Definition 2.4.1 (Image Function) Let A : R™ — R™ be a linear operator and let
g : R™ = RU {+o0}. The image of g under A is the function Ag : R* = RU+o00
defined by

(Ag)(z) :=inf {g(y) : Ay =z} (2.4.2)
(here as always, inf § = +00). O

The terminology comes from the case of an indicator function: when g = ic, with C
nonempty in R™, (2.4.2) writes

_J0 ifz=Ayforsomeye€ C,
(Ag)(z) = {+oo otherwise .

In other words, Ag = i) is the indicator function of the image of C' under A (and we
know from Proposition A.1.2.4 that this image is convex when C' is convex).

Even if U and X in (2.4.1) are Euclidean spaces, we seem to limit the generality when
passing to (2.4.2), since only linear constraints are considered. Actually, (2.4.1) can be put
in the form (2.4.2): with X = R" and y = (u,v) € U x X = R™, define Ay := v and
9(y) == p(u) +ic(y), where

C:={y=(u,v) €R” : c(u) < v}. (2.4.3)

Note that conversely, (2.4.2) can be put in the form (2.4.1) via an analogous trick turning its
equality constraints into inequalities.

Theorem 2.4.2 Let g of Definition 2.4.1 be in Conv R™. Assume also that, for all

-1
z € R", g is bounded below on the inverse image A(z) = {y € R™ : Ay = z}.
Then Ag € Conv R”.

Proof. By assumption, Ag is nowhere —oo; also, (Ag)(x) < +oo whenever z =
Ay, with y € dom g. Now consider the extended operator

A': R™ xR > (y,7) = A'(y,r) := (Ay,r) € R™ x R.

The set A'(epig) =: C is convex in R” xR, let us compute its lower-bound function
(1.3.5): for given z € R™,
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inf, {r : (z,r) € C} =inf,  {r : Ay =z and g(y) < r}
= infy {g(y) : Ay =z} = (4g)(z),

and this proves the convexity of Ag = {¢. O

-1

Usually, A (z) contains several points — it is an affine manifold of R® —and Ag(z) selects
one giving the least value of g (admitting that (2.4.2) has a solution). If A is invertible, Ag =
g o A™1; more generally, the above proof discloses the following interpretation: epi (Ag) is

-1
the epigraphical hull of the inverse image A’ (epi g) (a convex set in R* x R).

Corollary 2.4.3 Let (2.4.1) have the following form: U = RP; ¢ € ConvRP;
X = R” is equipped with the canonical basis; the mapping c has its components
cj € ConvRP for j = 1,...,n. Suppose also that the optimal value is > —oo for
allz € R*, and that

domypNdome, N---Ndome, £ 0. 2.4.4)

Then the value function

Vp.e(x) :=inf {p(u) : ¢;j(u) < zj, forj=1,...,n}
lies in Conv R™.

Proof. Note first that we have assumed v, .(x) > —oo for all . Take uo in the set
(2.4.4) and set M := max; c;(ug); then take zo := (M,..., M) € R, so that
Vy,e(®0) < p(ug) < +00. Knowing that v, . is an image-function, we just have to
prove the convexity of the set (2.4.3); but this in turn comes immediately from the
convexity of each ¢;. o

Taking the image of a convex function under a linear mapping can be used as a mould
to describe a number of other operations — (2.4.1) is indeed one of them. An example is the
infimal convolution of §2.3: with f; and f2 in Conv R", define g € Conv (R™ x R™) by

g(z1,72) == fi(z1) + f2(x2)
and A : R x R™ — R™ by

A(.’L‘l,l'z) =X+ x2.

Then we have Ag = f1 ¢ f2 and (2.3.1) is put in the form (2.4.2). Incidentally, this shows
that an image of a closed function need not be closed.

The following example of an image function is frequently encountered:

Definition 2.4.4 (Marginal Function) Let g € Conv (R” x R™). Then
R" 3z = y(z) :==inf {g(z,y) : y € R"}

is the marginal function of g. a
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Corollary 2.4.5 With the above notation, suppose that g is bounded below on the
set {z} x R™, for all ¢ € R™. Then the marginal function -y lies in Conv R™.

Proof. The marginal function -y is the image of g under the the linear operator A
projecting each (z,y) € R* x R™ ontoz € R*: A(z,y) = =. O

Geometrically, a marginal function is given by Fig.2.4.1, which explains why
convexity is preserved: the strict epigraph of 7y is the projection onto R” x R of
the strict epigraph of g (C R* x R™ x R). Therefore, epi +y is also the image of a
convex set under a linear mapping; see again Example A.1.2.5.

epi Y

s ]

Fig. 2.4.1. The shadow of a convex epigraph

Remark 2.3.5 mentioned that an infimal convolution need not be closed. The
above interpretation suggests that a marginal function need not be closed either. A
counter-example for (z,y) € R x R is the (closed) indicator function g(z,y) = 0 if
z>0,y>0,zy > 1, g(z,y) = +o0 otherwise. Its marginal function inf,, g(z, y)
is the (non-closed) indicator of ]0, 4+o0o[. Needless to say, an image-function is not
closed in general.

As seen in §2.1(b), supremization preserves convexity. Here, if g(-, y) were concave for
each y, v would therefore be concave: the convexity of - is a little surprising. It is of course
the convexity of g with respect to the couple of variables « and y that is crucial.

2.5 Convex Hull and Closed Convex Hull of a Function

Given a (nonconvex) function g, a natural idea coming from §A.1.3 is to take the
convex hull coepi g of its epigraph. This gives a convex set, which is not an epi-
graph, but which can be made so by “closing its bottom” via its lower-bound func-
tion (1.3.5). As seen in §A.1.3, there are several ways of constructing a convex hull;
the next result exploits them, and uses the unit simplex Ay.

Proposition 2.5.1 Let g : R — R U {400}, not identically +o00, be minorized by
some affine function: for some (s,b) € R" x R,

g(z) > (s,z) —b forallz € R". (2.5.1)
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Then, the following three functions f1, fo and f3 are convex and coincide on R":

fi(z) :=inf{r : (z,r) € coepig},
fo(z) :=sup{h(z) : h € ConvR", h<g}.

fs(x) mf{z 1 059(z5) k=12,

252
a € A, z; € domg, Z] la]x]—:c} (2>:2)

Proof. We denote by I' the family of convex functions minorizing g. By assump-
tion, I" # {; then the convexity of f; results from §1.3(g).

[f2 < f1] Consider the epigraph of any h € I: its lower-bound function £ep; , is h
itself; besides, it contains epi g, and co (epi g) as well (see Proposition A.1.3.4). In
a word, there holds h = fepin < Leoepig = f1 and we conclude fo < fy since h
was arbitrary in I

[fs < f2] We have to prove f3 € I, and the result will follow by definition of fs;
clearly f3 < g (take a € Ay!), so it suffices to establish f3 € Conv R™. First, with
(s,b) of (2.5.1)and all z, {z;} and {c; } as described by (2.5.2),

k k
Za]’g(m] Zay( s,zj) —b) = (s,2) = b;
Jj=1 Jj=1

hence f3 is minorized by the affine function (s, -) — b. Now, take two points (z,r)
and (z',7') in the strict epigraph of f3. By definition of fs, there are k, {a;}, {z;}
as described in (2 5.2), and likewise k', {;}, {z’}, such that Zle ajg(z;) <r

and likewise Z _ azg(zy) <7
For arbltrary te ]0 1[ we obtain by convex combination

k k'
Ztajg(mj) + Z(l — t)ag(xy) <tr+(1—t)r'
j=1 j=1
Observe that
k K
Zta]wj + Z(l —t)ajzi =tz + (1 —t)z’
Jj=1 j=1

i.e. we have in the lefthand side a convex decomposition of tz + (1 — ¢)z’ in k + &'
elements; therefore, by definition of f3:

k K
fatz+ (1 —t)x Zta]ga:] +Zl—tag( )
j=1 j=1

and we have proved that epi, f3 is a convex set: f3 is convex.
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[f1 < fs]Letz € R™ and take an arbitrary convex decomposition z = Z?:l o5,
with a; and z; as described in (2.5.2). Since (z;, g(z;)) € epig forj =1,...,k,

k
(m, > ajg(xj)) € coepiyg
i=1

and this implies f;(z) < Z;“:l a;g(z;) by definition of f;. Because the decompo-
sition of = was arbitrary within (2.5.2), this implies f1(z) < f3(z). O

Note in (2.5.2) the role of the convention inf ) = +oo, in case = has no decomposition
— which means that © ¢ codom g. The restrictions ; € dom g could be equally relaxed
(an z; & dom g certainly does not help making the infimum); notationally, & should then be
taken in ri Ay, so as to avoid the annoying multiplication 0 x (+0c0). Beware that epi (co g)
is not exactly the convex hull co (epi g): we need to close the bottom of this latter set, as
in §1.3(g)(ii) — an operation which affects only the relative boundary of co epi g, though.
Note also that Carathéodory’s Theorem yields an upper bound on k for (2.5.2), namely k& <
(m+1)+1=n+2.

Instead of co epi g, we can take the closed convex hull €6 epig = clcoepi g (see
§A.1.4). We obtain a closed set, with in particular a closed bottom: it is already an
epigraph, the epigraph of a closed convex function. The corresponding operation
that yielded f;, f2, f3 is therefore now simpler. Furthermore, we know from Propo-
sition 1.2.8 that all closed convex functions are redundant to define the function
corresponding to f: affine functions are enough. We leave it as an exercise to prove
the following result:

Proposition 2.5.2 Let g satisfy the hypotheses of Proposition 2.5.1. Then the three
functions below

fi(z) :=inf{r : (z,r) € coepig},
B fa(z) :=sup {h(z) : h € ConvR"*, h < g},
fs(x) :=sup{(s,z) —b: (s,y) —b< g(y) forally € R"}

are closed, convex, and coincide on R™ with the closure of the function constructed
in Proposition 2.5.1. O

In view of the relationship between the operations studied in this Section 2.5
and the convexification of epi g, the following notation is justified, even if it is not
quite accurate.

Definition 2.5.3 (Convex Hulls of a Function) Let g : R* — R" U {400}, not
identically +o0, be minorized by an affine function. The common function f; =
fa = f3 of Proposition 2.5.1 is called the convex hull of g, denoted by co g. The
closed convex hull of g is any of the functions described by Proposition 2.5.2; it is
denoted by € g orclcog. O
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If {g;}je is an arbitrary family of functions, all minorized by the same affine
function, the epigraph of the [closed] convex hull of the function inf ¢z g; is ob-
tained from Uje s epig;. An important case is when the g;’s are convex; then, ex-
ploiting Example A.1.3.5, the formula giving f3 simplifies: several z;’s correspond-
ing to the same g; can be compressed to a single convex combination.

Proposition 2.5.4 Let g1, ..., g be in Conv R”, all minorized by the same affine
function. Then the convex hull of their infimum is the function

R" 5 z = [co (min; g;)](z) =

m m
inf { 1 ajgi(z;) « a € Ap, x; € domy;, _Zlaja:j = a:} . (2.5.3)
)= j=

Proof. Apply Example A.1.3.5 to the convex sets C; = epi g;. O

The above statement was made in the simple situation of finitely many g;’s, but
the representation (2.5.3) can be extended to an arbitrary family of convex functions
g;: it suffices to consider in the infimand all the representations of z as convex
combinations of finitely many elements z; € dom g;.

Along these lines, note that an arbitrary function g : R® — R U {400} can be seen as
an infimum of convex functions: considering dom g as an index-set, we can write

g(z) = inf {g(z;) + i{z;3(2) = z; € domg},

where each g(z;) denotes a (finite) constant function.

; | |
X4 X2 X3 X4

Fig. 2.5.1. A convex hull of needles

Example 2.5.5 Let (z1,b1),...,(Zm,bm) be giveninR” x Rand define forj =1,...,m

. _ bj if{L':.’L‘j,
9i(w) = {+oo if not .

Then f := co (min g;) = ©0 (min g;) is the polyhedral function with the epigraph illustrated
on Fig. 2.5.1, and analytically given by

m m
min{z ajb; 1 a € Ap, Y ajx; =m} ifx € co{z1,...,zm},
je=1 j=1

+00 if not .

flz) =



102 B. Convex Functions

Calling b € R™ the vector whose components are the b;’s and A the matrix whose
columns are the x;’s, the above minimization problem in « can be written — at least when
z € co{Z1,...,Tm}:

fl@)=min{b"a : a € Ap, Aa=1z}. u]

To conclude this Section 2, Table 2.5.1 summarizes the main operations on func-
tions and epigraphs that we have encountered.

Table 2.5.1. Main operations yielding convexity

Operations Operations on sets:

on functions: f = epi f orepi, f = Closedness

;”:1 t; f; nothing interesting preserved

sup;es fj NjeJ epi f; preserved

g o A (A affine) z_cll'(epi 9) preserved
ug(z/u) R} ({1} x epig) must be forced

Hiyfe epig f1 + epi; fo destroyed

Ag (A linear) epigr. hull of A’(epi g) destroyed

infy g(-,y) Projgnyg €pPis g destroyed
cog epigr. hull of coepi g can be forced

3 Local and Global Behaviour of a Convex Function

3.1 Continuity Properties

Convex functions turn out to enjoy remarkable continuity properties: they are locally
Lipschitzian on the relative interior of their domain. On the relative boundary of that
domain, however, all kinds of continuity may disappear.

We start with a technical lemma.

Lemma 3.1.1 Let f € Conv R" and suppose there are g, 6, m and M such that
m < f(zg) <M forall x € B(xg,20).
Then f is Lipschitzian on B(zo, §); more precisely: for all y and y' in B(xy, d),

M —m
3 lly —o'll- (3.1.1)

If(y) = f(W)] <

Proof. Look at Fig.3.1.1: with two different y and y’ in B(zo, ¢), take

€ B(z0725) )

I_
y”:=y'+6 y, Y

lly" — yll
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by construction, y' lies on the segment [y, y''], namely

' — 0
iy ’yll ) A—
S+ly' —yll™ o+l —yll

Y

Applying the convexity of f and using the postulated bounds, we obtain

! ly" — yl| " 1.
fy) - fly) < m_—y”[f(y ) = fWl < 5lly" = yll(M —m).

Then, it suffices to exchange y and y’ to prove (3.1.1). O

<)

Fig. 3.1.1. Moving in a neighborhood of x¢

This implies the local Lipschitz continuity of a convex function, as announced.

Theorem 3.1.2 With f € Conv R", let S be a convex compact subset of ridom f.
Then there exists L = L(S) > 0 such that

|f(z) — f(")| < L||lz —2'|| forallzandz'inS. (3.1.2)

Proof. [Preliminaries] First of all, our statement ignores z-values outside the affine
hull of the convex set dom f. Instead of R™, it can be formulated in R4, where d
is the dimension of dom f; alternatively, we may assume ridom f = int dom f,
which will simplify the writing.

Make this assumption and let zo € S. We will prove that there are § = §(xp) >
0 and L = L(zo,d) such that the ball B(zo,d) is included in int dom f and

|f(y) — f(¥")| < Llly — 'l forall y and y' in B(zo,0). (3.1.3)

If this holds for all zo € S, the corresponding balls B(zg, d) will provide a covering
of the compact set S, from which we will extract a finite covering (z1, 01, L1), - - -
(2, Ok, Lk ). With these balls, we will divide an arbitrary segment [z, z'] of the con-
vex set S into finitely many subsegments, of endpoints yo := z,...,yi,...,Ys :=
z'. Ordering properly the y;’s, we will have ||z — 2'|| = Zle lyi — yiz1ll;
futhermore, f will be Lipschitzian on each [y;_1,y;] with the common constant
L :=max{Ly,...,Ly}. The required Lipschitz property (3.1.2) will follow.
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[Main Step] To establish (3.1.3), we use Lemma 3.1.1, which requires boundedness
of f in the neighborhood of zy. For this, we construct as in the proof of Theo-
rem A.2.1.3 (see Fig. A.2.1.1) a simplex A = co {vy, - .., vn }r C dom f having z¢
in its interior: we can take § > 0 such that B(xg,26) C A.

Then any y € B(zo,26) can be written: y = Y. o o;v; with @ € Apyq, s0
that the convexity of f gives

f(y) < Zaif('vi) <max {f(vo),..., f(vp)} =M.
=0

On the other hand, Proposition 1.2.1 tells us that f is bounded from below, say
by m, on this very same B(zq, 26). Our claim is proved: we have singled out § > 0
such that m < f(y) < M forally € B(xo, 26). O

Note that the key-argument in the main step above is to find a (relative) neigh-
borhood of z € ridom f, which is convex and which has a finite number of extreme
points, all lying in dom f. The simplex A is such a neighborhood, with a minimal
number of extreme points

Remark 3.1.3 It follows in particular that f is continuous relatively to the relative
interior of its domain, i.e.: for o € ridom f and z € ridom f converging to x,
we have that f(z) — f(zo).

An equivalent formulation of Theorem 3.1.2 is: f is locally Lipschitzian on the
relative interior of its domain, i.e. for all g € ridom f, there are L(zo) and 6(xo)
such that

|f(z) — f(z")] < L(zo)||z — 2'|| forall z and z' in the set
S(zo) := B(zo,6(zo)) Naffdom f C ridom f .

In fact, the bulk of our proof is just concerned with this last statement. Of course,
when ¢ gets closer to the relative boundary of dom f, the size §(xo) of the allowed
neighborhood shrinks to 0; but also, the local Lipschitz constant L(zo) may grow
unboundedly (gr f may become steeper and steeper). O

Because of the phenomenon mentioned in the above remark, we cannot put
ridom f instead of S in Theorem 3.1.2: a convex function need not be Lipschitzian
on the relative interior of its domain.

Let us sum up the continuity properties of a convex function.

— First of all it is aff dom f, and not R™, that is the relevant embedding (affine)
space: there is no point in studying the behaviour of f when moving out of this
space. Continuity, and even Lipschitz continuity, holds when x remains “well in-
side” ridom f.

— When z approaches rbd dom f, continuity may break down: f may go to infinity,
or jump discontinuously to some finite value, etc. Still, irregular behaviour of f is
limited by Proposition 1.2.5.

— Closing epi f if necessary, we obtain a lower semi-continuous function at a rea-
sonable price (specified by Proposition 1.2.5).
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— It remains to ask whether f can be assumed upper semi-continuous (on rbd dom f,
and relative to dom f). It turns out that this property automatically holds for uni-
variate functions. With several variables, the answer is no in general, though: a
counter-example is

R? 9x=(£,n)Hf(m)=sug{£a+nﬂ : 1a? < B}

We see that f(0) = 0, and we know from Proposition 2.1.2 that f € Conv R”. In
fact, the optimal (a, B) (if any) satisfies 1/2 a® = 3, so that
0 if¢=n=0,
2
f(&m) =sup (310 +€a) = —;—nifn<0, (3.1.4)
(e

+00 otherwise.

Thus, when  tends to 0 following the pathn = —1/2£2, then f(z) =1 > 0 = f(0).

To conclude this subsection, we give a rather powerful convergence result: con-
vex functions converging pointwise to some (convex) function f do converge uni-
formly on each compact set contained in the relative interior of dom f. For the sake
of simplicity, we limit ourselves here to the case of finite-valued functions. For the
general case, just specify that the compact set S in the next statement must be in
ridom f, and adapt the proof accordingly.

Theorem 3.1.4 Let the convex functions f, : R* — R converge pointwise for
k = +ooto f : R* = R. Then f is convex and, for each compact set S, the
convergence of fi to f is uniformon S.

Proof. Convexity of f is trivial: pass to the limit in the definition (1.1.1) itself. For
uniformity, we want to use Lemma 3.1.1, so we need to bound fx on S indepen-
dently of k; thus, let 7 > 0 be such that S C B(0, 7).

[Step 1] First the function g := sup,, fi, is convex, and g(z) < +oo for all z because
the convergent sequence (fi (z)) is certainly bounded. Hence, g is continuous and
therefore bounded, say by M, on the compact set B(0, 2r):

fr(z) < g(z) < M forall kandall z € B(0,2r).
Second, the convergent sequence (fi(0))x is bounded from below:
u < fr(0) forall k.
Then, for z € B(0,2r) and all k, use convexity on [—z,z] C B(0,2r):
2p < 2£(0) < fu(z) + fu(—2) < fi(z) + M,

i.e. the fi’s are bounded from below, independently of k. Thus, we are within the
conditions of Lemma 3.1.1: there is some L (independent of k) such that
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Ifx(v) — fe(W')] < Ll|ly — y'|| forall k and all y, y' in B(0,r) . (3.1.5)

Naturally, the same Lipschitz property is transmitted to the limiting function f.

[Step 2] Now fix € > 0. Cover S by the balls B(z, ¢) for x describing S, and extract
a finite covering S C B(z1,&) U --- U B(z,, ). With z arbitrary in S, take an z;
such that z € B(z;,¢€). There is k; . such that, forall k > k; ,

|fr(x) = f(@)| < fi(@) = fe (@)l + | fe(ze) — F i)+ f (i) — f(2)] < (2L+1)e

where we have also used (3.1.5), knowing that z and z; are in S C B(0,r). The
above inequality is then valid uniformly in z, providing that

k>max{kic, ..., kme} =:ke. O

3.2 Behaviour at Infinity

Having studied the behaviour of f(z) when x approaches rbd dom f, it remains to
consider the case of unbounded . An important issue is the behaviour of f(xzq +td)
when ¢ = +00 (2o and d being fixed). Once again, we make this study by viewing
epi f just as a convex set (unbounded), and we call for §A.2.2.

Thus we assume f € Conv R™, which allows us to consider the asymptotic cone
(epi f)oo Of the closed convex set epi f. It is a closed convex cone of R” x R, which
clearly contains the half-line {0} x R*. According to its Definition A.2.2.2,

(epi floo = {(d,p) € R® X R : (zo,70) + t(d,p) € epi f forallt >0}, (3.2.1)
where (g, ro) is an arbitrary element of epi f. This can be written
(epi f)oo = {(d,p) : epi f +t(d,p) Cepifforallt >0}
and, since we already know that (epi f)o is a convex cone:
(epi f)oo = {(d,p) : epif + (d,p) Cepif}.
This object turns out to define a new function:

Proposition 3.2.1 For f € Conv R, the asymptotic cone of epi f is the epigraph
of the function f. € Conv R" defined by

Do () o sup OO = @) o (o +1d) — S (o)

>0 t t—=+co t

, (322)

where x is arbitrary in dom f.

Proof. Since (zo, f(z9)) € epi f, (3.2.1) tells us that (d, p) € (epi f)o if and only
if f(zo + td) < f(zo) + tp for all t > 0, which means
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sup f(zo + td) — f(zo) <p. (3.2.3)
t>0 t

In other words, (epi f)oo is the epigraph of the function whose value at d is the
lefthand side of (3.2.3); and this is true no matter how z( has been chosen in dom f.
The rest follows from the fact that the difference quotient in (3.2.3) is closed convex
in d, and increasing in ¢ (the function ¢t — f(zo + td) is convex and enjoys the
property of increasing slopes, namely Proposition 0.6.1). O

It goes without saying that the expressions appearing in (3.2.2) are independent
of zo: fL is really a function of d only. By construction, this function is positively
homogeneous: f._ (ad) = af! (d) for all @ > 0. Our notation suggests that it is
something like a “slope at infinity” in the direction d.

Definition 3.2.2 (Asymptotic function) The function f.  of Proposition 3.2.1 is
called the asymptotic function, or recession function, of f. O

Consider for example the indicator ic of a closed convex set C. By definition of the
asymptotic cone, we see that ic(zo + td) = 0 for all ¢ > 0 if and only if d € Co; we obtain
(ic)oo = i(Ca) -

The next example is more interesting and extends Remark 2.2.3:
Example 3.2.3 Let f € ConvR". Take zo € dom f and consider the convex function
d — f(zo +d) — f(xo), whose domain contains 0, and whose perspective-function is r of

(2.2.2). The closure of r can be computed with the help of Proposition 2.2.2: with zo + d
arbitrary in ri dom f,

(c17)(0,d) = 1;113 alf(zo +d —d+d/a) — f(zo)].

Note that the term f(zo) < +oco can be suppressed, or replaced by f(zo + d') (because
a | 0); moreover, as in Remark 2.2.3, the above limit is exactly

U U _ U
lim flzo+d +1td) _ lim f(zo+d +td) — f(zo+d
t—+oo t t—+oo t

)= fiota).

In summary, the function defined by

{ u[f(zo + d/u) — f(zo)] ifu >0,
R x R" 3 (u,d) = { fi(d) ifu=0,
+00 elsewhere

is in Conv(R x R™); and only its “u > 0-part” depends on the reference point zo € dom f.
O

Our next result assesses the importance of the asymptotic function.

Proposition 3.2.4 Let f € Conv R". All the nonempty sublevel-sets of f have the
same asymptotic cone, which is the sublevel-set of f._ at the level 0:

Vr € Rwith S, (f) #0, [S+(f)lc ={de R : fi (d) <0}.

In particular, the following statements are equivalent:
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(i) There is  for which S,.(f) is nonempty and compact;
(ii) all the sublevel-sets of f are compact;
(iii) fi.(d) > 0 for all nonzero d € R™.

Proof. By definition (A.2.2.1), a direction d is in the asymptotic cone of the
nonempty sublevel-set S,.( f) if and only if

€S (f) = [z+tdeS,(f)forallt>0],
which can also be written — see (1.1.4):
(z,r) €epif = (z+itd,r+tx0)€epifforallt>0;

and this in turn just means that (d,0) € (epi f)oo = epi f.,. We have proved the
first part of the theorem.

A particular case is when the sublevel-set So(fZ,) is reduced to the singleton
{0}, which exactly means (iii). This is therefore equivalent to [S,(f)] = {0} for
allr € R with S,.(f) # @, which means that S,.( f) is compact (Proposition A.2.2.3).
The equivalence between (i), (ii) and (iii) is proved. ]

Needless to say, the convexity of f is essential to ensure that all its nonempty sublevel-
sets have the same asymptotic cone. In Remark 1.1.7, we have seen (closed) quasi-convex
functions: their sublevel-sets are all convex, and as such they have asymptotic cones, which
normally depend on the level.

Definition 3.2.5 (Coercivity) The functions f € Conv R” satisfying (i), (ii) or (iii)
are called 0-coercive. Equivalently, the 0-coercive functions are those that “increase
at infinity”:

f(z) = +oo0 whenever |z]| = 400,

and closed convex O-coercive functions achieve their minimum over R".
An important particular case is when f!_ (d) = +oo for all d # 0, i.e. when
fl = i{oy. It can be seen that this means precisely

f(=z)

- — 400 whenever |[|z]| =& +o0

Izl

(to establish this equivalence, extract a cluster point of (zj/||z||)x and use the
lower semi-continuity of f. ). In words: at infinity, f increases to infinity faster
than any affine function; such functions are called /-coercive, or sometimes just
coercive. O

Suppose for example that f is quadratic:
f(z) = 5(Qz,z) + (b,z) +c,

with @ a positive semi-definite symmetric operator, b € R™ and ¢ € R. Then it is easy to
compute



3 Local and Global Behaviour of a Convex Function 109

y _ f(b,d)ifd € Ker Q,
food) = {+oo if not .

In this particular case, the different sorts of coercivity coincide:
fisO-coercive <= fisl-coercive <= () is positive definite.

The word “coercive” alone comes from the study of bilinear forms: for our more general
framework of non-quadratic functions, it becomes ambiguous, hence our distinction.

Proposition 3.2.6 A function f € Conv R” is Lipschitzian on the whole of R™ if and only
if fLo is finite on the whole of R™. The best Lipschitz constant for f is then

sup {foo(d) : [ldll = 1}. (3.24)

Proof. When the (convex) function f. is finite-valued, it is continuous (§3.1) and therefore
bounded on the compact unit sphere:

sup {f%(d) : |ldll = 1} =: L < +o0,
which implies by positive homogeneity
fio(d) < L||d|} foralld € R™.
Now use the definition (3.2.2) of f..:
f(z+d) — f(z) < L||d|| forallz € dom f andd € R";

thus, dom f is the whole space (f(z + d) < +oo for all d) and we do obtain that L is a
global Lipschitz constant for f.
Conversely, let f have a global Lipschitz constant L. Pick zo € dom f and plug the
inequality
f(zo +td) — f(zo) < Lt||d}] forallt >0andd € R"

into the definition (3.2.2) of f., to obtain f.,(d) < L||d|| for all d € R".
It follows that f is finite everywhere, and the value (3.2.4) does not exceed L. O

Concerning (3.2.4), it is worth mentioning that d can run in the unit ball B (instead of

the unit sphere B), and/or the supremand can be replaced by its absolute value; these two
replacements are made possible thanks to convexity.

Remark 3.2.7 We mention the following classification, of interest for minimization theory:

let f € ConvR™.

—If f.,(d) < 0 for some d, then f is unbounded from below; more precisely: for all zo €
dom f, f(zo + td) | —oo whent — +o00.

— The condition f..(d) > 0 for all d # 0 is necessary and sufficient for f to have a nonempty
bounded (hence compact) set of minimum points.

~1If .o > 0, with f.,(d) = 0 for some d # 0, existence of a minimum cannot be guaranteed
(but if o is minimal, so is the half-line o + R* d).
Observe that, if the continuous function d — f. (d) is positive for all d # 0, then it is

minorized by some m > 0 on the unit sphere B and this 1 also minorizes the speed at which
f increases at infinity. O

To close this section, we mention some calculus rules on the asymptotic function. They
come directly either from the analytic definition (3.2.2), or from the geometric definition
epi fo, = (epi f)oo combined with Proposition A.2.2.5.
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Proposition 3.2.8

—Let f1,..., fm be m functions of ConvR", and ti, ..., 1t be positive numbers. Assume
that there is xo at which each f; is finite. Then,

for =3 tif5, wehave foo =" t;(fi)eo -
=1

—Let {fj}jcs be a family of functions in ConvR". Assume that there is xo at which
sup;ey f (zo) < +00. Then,

for fi=supjc, fi, wehave fi = sgg(fj)éo~
J

—Let A : R* — R™ be affine with linear part Ao, and let f € ConvR™. Assume that
A(R™) Ndom f # 0. Then (f o A), = fi o Ao. o

We mention the corresponding formula for an image-function (2.4.2): it would be
(Ag)'(d) = inf {gl(2) : Az = d}, which can be written symbolically (4g)s, = A(gho)-
However, this formula cannot hold without an additional assumption, albeit to guarantee
Ag € ConvR™. One such assumption is: gi,(z) > 0 for all z € Ker A\{0} (appropri-
ate coercivity is added where necessary, so that the infimum in the definition of (Ag)(z) is
always attained). Proving this result is not simple.

4 First- and Second-Order Differentiation

Let C C R" be nonempty and convex. For a function f defined on C (f(z) < +00
for all z € C), we study here the following questions:

— When f is convex and differentiable on C, what can be said of the gradient V f?
— When f is differentiable on C, can we characterize its convexity in terms of V f?
— When f is convex on C, what can be said of its first and second differentiability?

‘We start with the first two questions.

4.1 Differentiable Convex Functions

First we assume that f is differentiable on C. Given ¢ € C, the sentence “f is
differentiable at z¢” is meaningful only if f is at least defined in a neighborhood of
xo. Then, it is normal to assume that C is contained in an open set {2 on which f is
differentiable.

Theorem 4.1.1 Let f be a function differentiable on an open set §2 C R”, and let
C be a convex subset of §2. Then

(1) f is convex on C if and only if

f(z) = f(zo) + (Vf(zo),z — zo) forall (zo,z) €CxC; (4.1.1)
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(i1) f is strictly convex on C' if and only if strict inequality holds in (4.1.1) when-

ever T # xy;
(iii) fis strongly convex with modulus c on C'if and only if, for all (xo,x) € C x C,
f(@) = f(zo) + (Vf(zo0),xz — zo) + %c”m — moll2 . 4.1.2)

Proof. [(i)] Let f be convex on C': for arbitrary (zo,z) € C' x C and a €]0, 1], we
have from the definition (1.1.1) of convexity

flaz + (1 = a)zo) — f(z0) < aff(z) — f(x0)]-

Divide by a and let @ | 0: observing that az + (1 — a)zg = zo + a(z — xo), the
lefthand side tends to (V f(zo), x — zo) and (4.1.1) is established.

Conversely, take z; and 23 in C, a €]0, 1[ and set 2y := az; + (1 —a)zs € C.
By assumption,

and we obtain by convex combination

af(z1) + (1 - a)f(z2) = f(xo) + (VF(20),azs + (1 - a)zz — o)
which, after simplification, is just the relation of definition (1.1.1).

[(i))] If f is strictly convex, we have for zg # z in C and a €]0, 1],

f(zo +a(z — 20)) — f(20) < [f(z) — f(20)];

but f is in particular convex and we can use (i):

(Vf(0), a(z = 20)) < f(@o + ez = 20)) = f(20),

so the required strict inequality follows.

For the converse, proceed as for (i), starting from strict inequalities in (4.1.3).
[(iii)] Using Proposition 1.1.2, just apply (i) to the function f —1/2¢|| - ||?, which is
of course differentiable. O

Thus, a differentiable function is convex when its graph lies above its tangent hyper-
planes: for each o, f is minorized by its first-order approximation f(zo)+{(V f(xo), - — o)
(which coincides with f at xo). It is strictly convex when the coincidence set is reduced to

the singleton (zo, f(zo)). Finally, f is strongly convex when it is minorized by the quadratic
convex function

@ = f(z0) + (Vf(20),x — z0) + jclle — zoll?,
whose gradient at zo is also V f(zo). These tangency properties are illustrated on Fig. 4.1.1.

Remark 4.1.2 Inequality (4.1.1) is fundamental. In case of convexity, the remainder term r
in the development

f(@) = f(xo) +(V (o), — xo) + r(z0, )

must be well-behaved; for example, it is nonnegative for all z and zo; also, (o, -) is convex.
]
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X0 slope Vi(xq) X0 X0 curvature ¢

Fig. 4.1.1. Affine and quadratic minorizations

Both f- and V f-values appear in the relations dealt with in Theorem 4.1.1; we
now proceed to give additional relations, involving V f only. We know that a dif-
ferentiable univariate function is convex if and only if its derivative is monotone
increasing (on the interval where the function is studied; see §0.6). Here, we need a
generalization of the wording “monotone increasing” to our multidimensional situ-
ation. There are several possibilities, one is particularly well-suited to convexity:

Definition 4.1.3 Let C' C R™ be convex. The mapping F' : C — R” is said to be
monotone [resp. strictly monotone, resp. strongly monotone with modulus ¢ > 0]
on C when, forall z and =’ in C,

(F(z) - F(z'),z —2') 2 0
[resp. (F(z) — F(z'),z —z') >0 whenever z # z',
resp. (F(z) — F(z'),z — 2') > ||z — 2'||? ]. O

In the univariate case, the present monotonicity thus corresponds to F' being
increasing. When particularized to a gradient mapping F' = V f, our definition
characterizes the convexity of the underlying potential function f:

Theorem 4.1.4 Let f be a function differentiable on an open set {2 C R™, and let
C be a convex subset of §2. Then, f is convex [resp. strictly convex, resp. strongly
convex with modulus c] on C if and only if its gradient V f is monotone [resp.
strictly monotone, resp. strongly monotone with modulus c] on C.

Proof. We combine the “convex < monotone” and “strongly convex < strongly
monotone” cases by accepting the value ¢ = 0 in the relevant relations such as
(4.1.2).

Thus, let f be [strongly] convex on C: in view of Theorem 4.1.1, we can write
for arbitrary z and z in C":

f(@) 2 (o) + (Vf(z0),z — o) + Fllz — zo||”
f(zo) > f(z) + (Vf(z), 20 — z) + 3cllz0 — 2|,
and mere addition shows that V f is [strongly] monotone.

Conversely, let (zo, z1) be a pair of elements in C. Consider the univariate func-
tion t — (t) := f(z¢), where z; := xo + t(x1 — zo); for ¢ in an open interval
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containing [0,1], z; € {2 and ¢ is well-defined and differentiable; its derivative at ¢
is ' (t) = (Vf(xt), 1 — x0). Thus, we have forall 0 < ¢/ <t <1

@'(t) = ' (t") = (Vf(z¢) = Vi(zv), 1 — z0)
ﬁ(vf(fﬂt) = Vf(zy),zt — )

Il

(4.1.4)

and the monotonicity relation for V f shows that ¢’ is increasing, ¢ is therefore
convex (Corollary 0.6.5).

For strong convexity, set t' = 0 in (4.1.4) and use the strong monotonicity rela-
tion for V f:

o'(t) — ' (0) > %cllzt — xo||? = te||zr — zo||®. 4.1.5)

Because the differentiable convex function ¢ is the integral of its derivative, we can
write

o(1) — p(0) - ¢'(0) = / [0(t) — o (O)dt > Lellar — 2ol

which, by definition of ¢ , is just (4.1.2) (the coefficient 1/2 is fol tdt!).
The same technique proves the “strictly monotone < strictly convex” case; then,
(4.1.5) becomes a strict inequality — with ¢ = 0 — and remains so after integration.
O

The attention of the reader is drawn on the coefficient ¢ — and not 1/2 ¢ — in the defini-
tion 4.1.3 of strong monotonicity. Actually, a sensible rule is: “Use 1/2 when dealing with
a square”; here, the scalar product (AF, Az) is homogeneous to a square. Alternatively, re-
member in Proposition 1.1.2 that the gradient of 1/2¢|| - ||? at z is cz.

We mention the following example: let f(x) := 1(Az,z) + (b, ) be a quadratic convex
function: A is symmetric, call A, > 0 its smallest eigenvalue. Observe that V f(z) = Az +b
and that

(Az — Az, z — ') = (A(z — 2),z — ') > Mo||lz — 2|7

Thus V f is monotone [strongly with modulus A ]. The [strong] convexity of f, in the sense
of (1.1.2), has been already alluded to in §1.3(d); but (4.1.2) is easier to establish here: simply
write

f(z) = f(z0) = (Vf(20),2 — z0) = 3({Az,2) — 5(Azo,z0) — (Az0, 2 — T0)

= L(A(z — z0),z — z0) = L nlle — ol

Note that for this particular class of convex functions, strong and strict convexity are equiva-
lent to each other, and to the positive definiteness of A.

Remark 4.1.5 Do not infer from Theorem 4.1.4 the statement “a monotone mapping is the
gradient of a convex function”, which is wrong. To be so, the mapping in question must first
be a gradient, an issue which we do not study here. We just mention the following property: if
£2is convex and F : £2 — R" is differentiable, then F’ is a gradient if and only if its Jacobian
operator is symmetric (in 2 or 3 dimensions, curl F' = 0). ]
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4.2 Nondifferentiable Convex Functions

A convex function need not be differentiable over the whole interior of its domain;
nevertheless, it is so at “many points” in this set. Before making this sentence math-
ematically precise, we note the following nice property of convex functions.

Proposition 4.2.1 For f € ConvR"” and = € int dom f, the three statements be-
low are equivalent:
(i) The function
flz+td) — f(z)
t

R" 5dw lim
£L0
is linear in d;
7]
(ii) for some basis of R® inwhichx = (€1, ...,£m), the partial derivatives %(m)
existatzw, fori =1,...,n;
(iii) f is differentiable at x.

Proof. First of all, remember from Theorem 0.6.3 that the one-dimensional function
t — f(z + td) has half-derivatives at 0: the limits considered in (i) exist for all d.
We will denote by {b1, ..., b, } the basis postulated in (ii), so that z = Y- | £'b;.

Denote by d — £(d) the function defined in (i); taking d = =+b;, realize that,
when (i) holds,

L L&+ 70) — fla) _ E(=by) = —0(b;) = —lim flz+th) = )

710 —T t}0 t

This means that the two half-derivatives at ¢ = 0 of the function t — f(z + tb;)
coincide: the partial derivative of f at = along b; exists, (ii) holds. That (iii) implies
(i) is clear: when f is differentiable at x,

. flz+1td) - f(z)
m

Ii
t10 t

= (Vf(z),d).

We do not really complete the proof here, because everything follows in a
straightforward way from subsequent chapters. More precisely, [(i1) = (i)] is Propo-
sition C.1.1.6, which states that the function £ is linear on the space generated
by the b;’s, whenever it its linear along each b;. Finally [(i) = (iii)] results from
Lemma D.2.1.1 and the proof goes as follows. One of the possible definitions of

(ii1) is:
flz +td') — f(z)

t0,d' —d 3

is linear in d .

Because f is locally Lipschitzian, the above limit exists whenever it exists for fixed
d’ = d - i.e. the expression in (i). 0

Remark 4.2.2 The above result reveals three interesting properties enjoyed by convex func-
tions:
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— First, consider the restriction @4(t) := f(z + td) of f along a line x + Rd. As soon as
there are n independent directions, say di, ..., dn, such that each g, has a derivative at
t = 0, then the same property holds for all the other possible directions d € R™.

— Second, this “radial” differentiability property of ¢4 for all d (or for many enough d) suf-
fices to guarantee the “global” (i.e. Fréchet) differentiability of f at z; a property which
does not hold in general. It depends crucially on the Lipschitz property of f.

— One can also show that, if f is convex and differentiable in a neighborhood of z, then V f
is continuous at . Hence, if §2 is an open convex set, the following equivalence holds true
for the convex f:

f differentiableon 2 <= f € C'(£2).

This rather surprising property will be confirmed by Theorem D.6.2.4. a]

The largest set on which a function can be differentiable is the interior of its
domain. Actually, a result due to H. Rademacher (1919) says that a function which
is locally Lipschitzian on an open set {2 is differentiable almost everywhere in 2.
This applies to convex functions, which are locally Lipschitzian (Theorem 3.1.2);
we state without proof the corresponding result:

Theorem 4.2.3 Let f € ConvR". The subset of intdom f where f fails to be
differentiable is of zero (Lebesgue) measure. O

4.3 Second-Order Differentiation

The most useful criterion to recognize a convex function uses second derivatives.
For this matter, the best idea is to reduce the question to the one-dimensional case:
a function is convex if and only if its restrictions to the segments [z, z'] are also
convex. These segments can in turn be parametrized via an origin z and a direction
d: convexity of f amounts to the convexity of ¢ — f(z + ¢d). Then, it suffices to
apply calculus rules to compute the second derivative of this last function. Our first
result mimics Theorem 4.1.4.

Theorem 4.3.1 Let f be twice differentiable on an open convex set {2 C R™. Then

() f is convex on 2 if and only if V2 f(xo) is positive semi-definite for all z¢ €
Q;

(i) if V2 f(xo) is positive definite for all o € (2, then f is strictly convex on (2;
(iii) f is strongly convex with modulus c on (2 if and only if the smallest eigenvalue
of V2f(-) is minorized by c on £2: for all zo € 2 and all d € R?,
(V2f(z0)d,d) > c||d|)* .
Proof. For givenxzg € §2,d € R™ and t € R such that zg + td € {2, we will set
Tt =19 +td and (t) := f(z) = f(z +td),
so that " (t) = (V2 f(z)d, d).

[(i)] Assume f is convex on {2; let (xq, d) be arbitrary in 2 x R™, with d # 0: ¢ is
then convex on the open interval I := {¢t € R : zo + td € 2}. It follows
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0 < @"(t) = (V2f(x¢)d,d) forallte 130

and V2 f(xo) is positive semi-definite.

Conversely, take an arbitrary [zg,z1] C {2, set d := z; — zp and assume
V2 f(z;) positive semi-definite, i.e. ¢"(t) > 0, fort € [0, 1]. Then Theorem 0.6.6
tells us that ¢ is convex on [0,1], i.e. f is convex on [zg, z1]. The result follows
since ¢ and x; were arbitrary in {2.

[(ii)] To establish the strict convexity of f on {2, we prove that V f is strictly mono-
tone on {2: Theorem 4.1.4 will apply. As above, take an arbitrary [zo,z;] C 12,
1 # xo, d := x1 — To, and apply the mean-value theorem to the function ',
differentiable on [0,1]: for some 7 €]0, 1],

¢'(1) = ¢'(0) = ¢"(1) = (V*f(z;)d,d) >0
and the result follows since
¢'(1) = ¢'(0) = (Vf(z1) — Vf(z0), 71 — 20) -
[(iii)] Using Proposition 1.1.2, apply (i) to the function f — 1/2¢|| - ||?, whose Hes-

sian operator is V2f — cI,, and has the eigenvalues A — ¢, with A describing the
eigenvalues of V2 f. 0

Some differences have appeared with respect to §4.1:

— The sufficiency condition in (ii) is not necessary, even for univariate functions:
think of f(z) = 1/az%.

— Theorem 4.1.1 stated that the affine (first-order) approximation of f around zg
was actually a global minorization — more or less “comfortable”. Here, we cannot
say that the quadratic second-order approximation (of f around z)

z = f(20) + (Vf(20),z — z0) + §(V2f(20)(z ~ 20), & ~ o)

minorizes f: think of f(z) = 1/22% — 1/4z*, which is convex for |z|? < 1/3.

— The present statements do not characterize convexity on a convex subset C C {2:
C must be open. The reason is that §4.1 was dealing with the image (through f
or V f) of pairs of points in C (xo and z, or = and z'). Here, V2 f looks at f in
the neighborhood of a single point, say . Thus, a statement like “ f is convex on
C C 02 if and only if V2 f(-) is positive semi-definite on C” may be wrong when
C is not open: f(&,n) := €2 — % is convex on C = R x {0} but its Hessian is
nowhere positive semi-definite.

Remark 4.3.2 Despite the last comment above, the convexity criterion using sec-
ond derivatives is still the most powerful, even if positive (semi-)definiteness is
not always easy to check. To recognize a convex function on a non-open set C,
the best chance is therefore to use the Hessian operator on {2 = int C, hope-
fully nonempty, and then to try and conclude by passing to the limit: the property
C C cl(int C) = cl C is useful for that. ]
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Example 4.3.3 To illustrate Theorem 4.3.1, consider the function
R:={z=(,...,6") : & >0fori=1,...,n},
f:R3ze f(z):=—(£'€---€M)".

Direct computations give its second derivatives, i.e. its Hessian operator associated with the
dot-product of R™:

>’f f(z)
de0E ) = nagegg (1~ )
where §;; is Kronecker’s symbol. We obtain, with d = (d*,...,d") € R":

1

v s@ara=12[(5 5 a3 (5)].

=1 gl
The ¢1- and £2-norms are related on R™ by the inequality [|- [l1 < /2| -||2 (take a vector
of the type (£1,...,%1) and use the Cauchy-Schwarz inequality); because f is negative on

2, the above expression is therefore nonnegative: f is convex. Observe in passing that we
obtain an equality if d and z are collinear: our f is positively homogeneous.

Observe here that f can be extended to cl £2 by posing f(z) = 0 if some &° is zero.
Convexity is preserved, and this illustrates Remark 4.3.2. O

Remark 4.3.4 (Flat Domains) In all this Section4, dom f was implicitly assumed
full-dimensional, in order to have a nonempty int dom f. When such is not the case,
some kind of differentiation can still be performed. In fact, exploit Remark 2.1.6
and make a change of variable, introducing the function y — fo(y) := f(zo + y);
here z¢ is fixed in dom f, y varies in the subspace V parallel to aff dom f. Now,
fo € Conv V and dom fy is full-dimensional in V. Equipping V' with the induced
scalar product (-, -) and the induced Lebesgue measure, the main results above can
be reproduced. More precisely: almost everywhere in int dom fo, i.e. for almost all
o +y € ridom f, there is a vector s € V' (the gradient of fq at y) which gives the
first-order approximation of f around xg

VheV, f(zo+y+h)= f(xo+y)+ (s,h)+o(|hl])

(the remainder term o(||h]|) being nonnegative); this s could be called the “relative
gradient” of f at x := x¢ + y; it exists at zg + y if and only if the function ¢ —
f(xzo + y + td) has a derivative at t = 0 foralld € V. O

Exercises

1. Consider the function R 3 z — f(z) := H—lﬁ Determine the largest intervals
on which f is convex.

2. With g € Conv R, define the function f : R* — RU{+o00} by f(z) := g(||z])).
Show that f € Conv R”.
Show that the function R? 5> z — f(z) := I_JrTlle is “nowhere convex”, i.e. on

no set C C R? (study the eigenvalues of its Hessian).
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3. Let f : [0, +0o[— R be continuous, twice differentiable on ]0, +oo[ and satisfy

f(0) =0, f" > 00n]0,+o0[.

— Show that f'(z) > f—(f—) for all z €]0, +o0] .

— Deduce that the function ]0, +o0[3 z — F(z) := [/
10, 400l

4. Let I be an open interval of R, let f : I — R be three times continuously
differentiable on I, with "/ > 0 on I. Consider the function ¢ defined by

IxI53 (z,y)— @(,y) = flx) - fly) - FW)(z—y).

We use the notation 6 := f".
— Prove the equivalence of the following statements:

@dt is stricly convex on

(i) p is convex (jointly in = and y);

2
@) 6(6) + )y - ) >

forall (z,y) € I x I,

1
(1ii) 7 is concave on I.
— Check that ¢ is convex in the following cases:
-I=Rand f(z) = az? + bz + c (a > 0);
- I =]0,+o0[and f(z) = zlogz — x;
-I=]0,1[and f(z) = zlogz + (1 — z) log(1 — z).

5. Prove the strict convexity of the function z — f(z) := IOg(T—ﬁTllf) on the set
{z e R : ||z|]| < 1}.

6. Denote by O = {z = (&1,...,&) + & > 0 fori =1,...,n} the positive
orthant of R™. A function f : O — R is said to be of G-type when it has the form

p
FEeeesn) = 3 €)™ - (€)™
k=1

here the ci’s are nonnegative coefficients and the a;;’s are real numbers (possibly
negative). Show that, if f is of G-type, then

R* D (M1,-..,mn) =y > g(y) := f(e™,...,e™)
is convex.

7. Let £2 be a convex open set in R™. The function f : 2 —]0, +o00[ is said to be
logarithmically convex when log f is convex on 2.
Assuming that f is twice differentiable on {2, show that the following statements
are equivalent:
(1) f is logarithmically convex;
(i) f(z)V2f(z) — Vf(x)[VSf(z)]" = 0forall z € £2;
(iii) the function = +» (%%} f(z) is convex for all a € R".
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8* Suppose that the convex functions f and g are such that f + g is affine. Show
that f and g are actually affine.

9. For a nonempty closed convex set C C R™ x R, show that
[C =epifwithfeConvR?] <= [(0,1) € Cx and (0,—1) ¢ Co]-
10. Show that the function log is concave on 0, +o00[ and prove the inequality be-

tween arithmetic and geometric means:

m

H DYmg — Zmz forzy,...,zm > 0.

i=1
11. For f € Conv R”, prove the equality inf;ecr» f(z) = infzeridom 5 F(2).

12. Here f and c are two finite-valued convex functions and C' := {z : ¢(z) < 0} is

assumed nonempty. Show that C' is convex. What are its boundary and its closure?
Show that the function z — f(z) — log (—c(z)) is convex on C; what is its

domain? Same questions with the function z — f(z) + [max {0, c(z)}]2.

13. LetR? 3 (£,1) = f(&,n) := €2(1 + e"). Compute V2 £. Is f convex, strictly
convex, strongly convex on the set {(£,1) € R? : > 0}?

14*. Let C be a nonempty closed convex set, with nonempty complement C'°. Show
that f := —d¢- + i¢ is closed convex.

Show that f remains convex if f(z) is replaced by d¢(z) for z ¢ C;ie. f
becomes —d¢e + d¢.

15* For ¢ :]0, +oo[— R convex, define the function S,, :]0, +o0[™ x]0, +oo[™ by

n i

§ : i (P
(pl,“‘,pn;ql,.”’qn) = (p, q) = S(p(p,q) = qz(p(5;> .

i=1

Check that S,, is convex. Setting P := Y .-, p* and Q := >, ¢*, deduce the

inequality
P
Se(pa) > Qcp(a) :

Defining 1 :]0, +oo[— R by ¥(z) := a:cp(%),
—How do S, and Sy, compare?

— Compute ¢ and S, when ¢(t) has the following expressions: tlogt, (1 — \/2)2,
t*witha > 1, (t — 1)2, |t — 1].

16* Let f :]—1,+1[ — ] — 00, 0 be convex. Prove the convexity of the function

2

1
=LA xR 3 (§n) = g(&n) = —7 -
] [ )P 9&m) =55
Let f : ]Ja, b[ = ] — 00, 0] be convex. Prove the convexity of the function

10, +oo[ x]a,b[> (&§,n) = h(¢,n) := {Iog(—%) .



120 B. Convex Functions

17. Show that the following function lies in Conv S(R™):

-1 .
S(R*) 5 M — f(M) := mlfM»O,

+00 otherwise .
18*x Let A € S,(R) be positive definite. Prove the convexity of the function
R* 5z f(z) := (Az,z)(A7 'z, 2) .
19*% Let f := min{fi,..., fm}, where fi,..., fn, are convex finite-valued. Find

two convex functions g and h such that f = g — h.

20* Let f : [0, 4+o00[ = [0, +00[ be convex with f(0) = 0. Its mean-value on [0, z]
is defined by

F(0):=0, F(z):= l/wf(t)dt forz > 0.
T Jo

Show that F' is convex.

21% Let C # () be closed convex in R”. Show that (d¢),, = d(c..)-

22. Let f € Conv R”. Show that f/ (d) = liminf {¢tf(%) : d' — d,t | 0} forall
deR".

23. Show that f € Conv R" is O-oercive if and only if there is € > 0 such that
flo(d) > e for all d of norm 1.

24. Consider the polyhedral function z — f(z) := nllaxk((s,-, z) +7;). Show that
i=1,...,
fio(d) = max (s;,d).
i=1,...,k
25% Let f : R — R be continuous. For h > 0 define

1 z+h

Roz - fr(z) = oy
z—h

F(t)dt.

Show that f is convex if and only if fr(z) > f(z) forall z € R and all h > 0.
Give a geometric interpretation of this result.

26** Let f : R® — R be convex and differentiable over R™. Prove that the follow-
ing three properties are equivalent (L being a positive constant):

W) ||IVf(z) = VI < Lj|lz — &'|| forall z,z' in R™;

(i) £(2') > f(2) +(VF(x),' - ) + |V F(z) = VF(a)|[? forall o, ' in K™
(ii)) (Vf(z) = Vf(z'),x — z') > ||V f(z) — Vf(z')||?* forall z,z’ in R".



C. Sublinearity and Support Functions

Introduction In classical real analysis, the simplest functions are linear. In convex
analysis, the next simplest convex functions (apart from the affine functions, widely
used in §B.1.2), are so-called sublinear. We give three motivations for their study.

(i) A suitable generalization of linearity. A linear function ¢ from R™ to R, or a
linear form on R", is primarily defined as a function satisfying for all (z1,z2) €
R” x R" and (t1,t2) € R x R:

Z(tl.’lfl + t2.’l,‘2) = t1€(.’1?1) + t2€($2) . 0.1)

A corresponding definition for a sublinear function ¢ from R™ into R is: for all
(IL‘1,.’L‘2) € R* x R™ and (tl’tQ) € Rt x R+,

O'(tl.’ll‘l + tz.’l)‘z) < t10’(.’L‘1) + tzo’(.’ll‘g) . 0.2)

A first observation is that requiring an inequality in (0.2), rather than an equal-
ity, allows infinite values for ¢ without destroying the essence of the concept of
sublinearity. Of course, (0.2) is less stringent than (0.1), but more stringent than the
definition of a convex function: the inequality must hold in (0.2) even if t; + 2 # 1.
This confirms that sublinear functions, which generalize linear functions, are partic-
ular instances of convex functions.

Remark 0.1 Note that (0.1) and (0.2) can be made more similar by restricting ¢; and ¢3 in
(0.1) to be positive — this leaves unchanged the definition of a linear function.

The prefix “sub” comes from the inequality-sign “<” in (0.2). It also suggests that sublin-
earity is less demanding than linearity, but this is a big piece of luck. In fact, draw the graph
of a convex and of a concave function and ask a non-mathematician: “which is convex?”. He
will probably give the wrong answer. Yet, if convex functions were defined the other way
round, (0.2) should have the “>" sign. The associated concept would be superlinearity, an
unfortunate wording which suggests more or better than linear. ]

In a word, sublinear functions are reasonable candidates for “simplest non-trivial
convex functions”. Whether they are interesting candidates will be seen in (ii) and
(ii1). Here, let us just mention that their epigraphs are convex cones, the next simplest
convex epigraphs after half-spaces.

(ii) Tangential approximation of convex functions. To say that a function f : R® —
R is differentiable at z is to say that there is a linear function £, which approximates
f(z + h) — f(z) to first order, i.e.

J. -B. Hiriart-Urruty et al., Fundamentals of Convex Analysis
© Springer-Verlag Berlin Heidelberg 2001
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f(@+h) = f(z) = £ (h) + o(||Al]) -
This fixes the rate of change of f when z is moved along a line d: with £(¢) — 0 if

t—0,
f(z +td) - f(z)
t

Geometrically, the graph of f has a tangent hyperplane at (z, f(z)) € R* x R;
and this hyperplane is the graph of the affine function b — f(x) + £,(h).

When f is merely convex, its graph may have no tangent hyperplane at a given
(z, f(x)). Nevertheless, under reasonable assumptions, f(x + h) — f(x) can still be
approximated to first order by a function which is sublinear: there exists a sublinear
function h — o, (h) such that

fl@+h) = f(z) = oa(h) + o(||A]]).

This will be seen in Chap. D.

Geometrically, gr o, is no longer a hyperplane but rather a cone, which is there-
fore tangent to gr f (the word “tangent” should be understood here in its intuitive
meaning of a tangent surface, as opposed to tangent cones of Chap. A; neither gr o,
nor gr f are convex). Thus, one can say that differentiable functions are “tangentially
linear”, while convex functions are “tangentially sublinear”. See Fig. 0.1, which dis-
plays the graphs of a differentiable and of a convex function. The graph of ¢, is the
thick line L, while the graph of ¢, is made up of the two thick half-lines S; and Ss.

={,(d)+e(t) forallt#£0.

R rf R rf
g 9 S,
§ i RN St | RP
I x+h X I x+h X
tangential linearity tangential sublinearity

Fig. 0.1. Two concepts of tangency

(iii) Nice correspondence with nonempty closed convex sets. In the Euclidean space
(R", (-,-)), a linear form £ can be represented by a vector: there is a unique s € R"
such that

l(z) = (s,z) forallz € R". 0.3)

The definition (0.3) of a linear function is more geometric than (0.1), and just as
accurate. A large part of the present chapter will be devoted to generalizing the
above representation theorem to sublinear functions.

First observe that, given a nonempty set S C R”, the function og : R* —
R U {400} defined by

og(z) :=sup{(s,z) : s € S} 0.4)
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is sublinear. It is called the support function of S, already encountered in Sects A.4.1
and B.1.3(a). When S is bounded, its support function is finite everywhere; other-
wise, og can take on the value 400 but it remains lower semi-continuous. Further-
more, it is easy to check that og is also the support function of the closure of S,
and even of the closed convex hull of S. It is therefore logical to consider support
functions of nonempty closed convex sets only.

Now, a key result is that the mapping S — o is then bijective: a lower semi-
continuous (i.e. closed) sublinear function is the support function of a uniquely de-
termined nonempty closed convex set. Thus, (0.4) establishes the announced repre-
sentation, just as (0.3) does in the linear case. Note that the linear case is covered: it
corresponds to S being a singleton {s} in (0.4).

This correspondence between nonempty closed convex sets of R™ and closed
sublinear functions allows fruitful and enlightening geometric interpretations when
studying these functions. Vice versa, it provides powerful analytical tools for the
study of these sets. In particular, when closed convex sets are combined (intersected,
added, etc.) to form new convex sets, we will show how their support functions are
correspondingly combined: the mapping (0.4) is an isomorphism, with respect to a
number of structures.

1 Sublinear Functions

1.1 Definitions and First Properties

Definition 1.1.1 A function o : R® — R U {+o00} is said to be sublinear if it is
convex and positively homogeneous (of degree 1): 0 € Conv R" and

o(tr) =to(z) forallz € R® andt > 0. (1.1.1)
O

Remark 1.1.2 Inequality in (1.1.1) would be enough to define positive homogene-
ity: a function o is positively homogeneous if and only if it satisfies

o(tz) < to(x) forallz € R® andt > 0. (1.1.2)
In fact, (1.1.2) implies (tz € R* and t~! > 0!)
o(x) = ot 'tz) <t lo(tx)
which, together with (1.1.2), shows that o is positively homogeneous. g

We deduce from (1.1.1) that 0(0) = to(0) for all ¢ > 0. This leaves only two
possible values for o(0): 0 and +o00. However, most of the sublinear functions to be
encountered in the sequel do satisfy ¢(0) = 0. According to our Definition B.1.1.3
of convex functions, o should be finite somewhere; otherwise dom o would be
empty. Now, if o(z) < +o0o, (1.1.1) shows that g(tz) < +oo forall ¢ > 0. In
other words, dom o is a cone, convex because o is itself convex. Note that, being
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convex, o is continuous relatively to ri dom o, but discontinuities may occur on the
boundary-rays of dom ¢, including at 0.
The following result is a geometric characterization of sublinear functions.

Proposition 1.1.3 A function o : R* — R U {+o00} is sublinear if and only if its
epigraph epi o is a nonempty convex cone in R® x R

Proof. We know that o is a convex function if and only if epio is a nonempty
convex set in R” x R (Proposition B.1.1.6). Therefore, we just have to prove the
equivalence between positive homogeneity and epi o being a cone.
Let o be positively homogeneous. For (z,7) € epio, the relation o(z) < 7
gives
o(tr) =to(z) <tr forallt >0,

s0 epio is a cone. Conversely, if epi o is a cone in R” x R, the property (z, o(z)) €
epio implies (tz,to(x)) € epia, i.e.

o(tr) < to(x) forallt>0.
From Remark 1.1.2, this is just positive homogeneity. O

Another important concept in analysis is subadditivity: a function o is subaddi-
tive when it satisfies

o(z1 +z2) < o(z1) + o(z2) forall (z1,z2) € R* x R” (1.1.3)

— watch the difference with (0.2). Here again, the inequality is understood in
R U {+00}. Together with positive homogeneity, the above axiom gives another
characterization (analytical, rather than geometrical) of sublinear functions.

Proposition 1.1.4 A function o : R* — R U {+00}, not identically equal to +0o,
is sublinear if and only if one of the following two properties holds:

o(tiz1 +tazs) < t1o(zy) +te0(x2) forall z1,z0 € R"and t1,t > 0, (1.1.4)

or
o is positively homogeneous and subadditive . (1.1.5)

Proof. [sublinearity = (1.1.4)]Forz1,x5 € R™" and ty,ts > 0,sett := t;+t2 > 0;
we have

=to (G + B2y [positive homogeneity]
st [itla(xl) + £1&2"0(1'2)] ) [convexity]

and (1.1.4) is proved.

[(1.1.4) = (1.1.5)] A function satisfying (1.1.4) is obviously subadditive (take ¢; =
to = 1) and satisfies (take z1 = 29 =z, t; =t = 1/21)
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o(tr) < to(z) forallz € R" andt >0,

which is just positive homogeneity because of Remark 1.1.2.

[(1.1.5) = sublinearity] Take t1,t2 > 0 with ¢; + t2 = 1 and apply successively
subadditivity and positive homogeneity:

o(tizy + texs) < o(tymy) + o(taws) = tio(z1) + tao(z2),
hence o is convex. O
Corollary 1.1.5 If o is sublinear, then
o(x)+o(-z) >0 forallz e R". (1.1.6)
Proof. Take x5 = —z; in (1.1.3) and remember that (0) > 0. ]

It is worth mentioning that, to become sublinear, a positively homogeneous func-
tion just needs to be subadditive as well (rather than convex, as suggested by Def-
inition 1.1.1); then, of course, it becomes convex at the same time. Figure 1.1.1
summarizes the connections between the classes of functions given so far. Note for
completeness that a convex and subadditive function need not be sublinear: think of

flz)=1.

: positively homogeneous |
I

(g .

( ! sublinear !
1 subadditive Y convex
i !
. )

\_

Fig. 1.1.1. Various classes of functions

Similarly, one can ask when a sublinear function becomes linear. For a linear
function, (1.1.6) holds as an equality, and the next result implies that this is exactly
what makes the difference.

Proposition 1.1.6 Let o be sublinear and suppose that there exist x1,...,Ty, in
dom ¢ such that

o(z;) +o(—z;) =0 forj=1,...,m. (1.1.7)
Then o is linear on the subspace spanned by x, ..., Tp,.
Proof. With z1,...,z,, as stated, each —z; is in domo. Let x := Z;":1 tjx;
be an arbitrary linear combination of z1,...,Z,,; we must prove that o(z) =

Z;’j—:l th'(Z'j). Set
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Jliz{jitj>0}, JQiZ{thj<0}

and obtain (as usual, ), = 0):

o(z) = (X, tizj + 35, (—t;)(=z;)

ZJ tio(z;) + Zb( ) ( ;) [from (1.1.4)]
= X o) + S o (25) = S tyo(a;) om (1LL7)
= =2 tio(=x;) — 205, (—tj)o(x;) [from (1.1.7)]
< _‘7(_ Z;nzl thJ) [from (1.1.4)]
= —o(-z) <o(x). [from (1.1.6)]
In summary, we have proved o(z) < Z;’;l tjo(z;) < —o(—z) < o(z). O

Thanks to this result, we are entitled to define
U:={zeR" : o(z) +o(—z) =0} (1.1.8)

which is a subspace of R™: the subspace in which o is linear, sometimes called the
lineality space of o. Note that U nonempty corresponds to ¢(0) = 0 (even if U
reduces to {0}).

What is interesting in this concept is its geometric interpretation. If V' is another subspace
such that UN'V = {0}, there holds by definition o(z) + o (—z) > 0 forall 0 # = € V. This
means that, if 0 # d € V, o is “V-shaped” along d: for t > 0, o(td) = at and o(—td) = St,
for some @ and 8 in R U {+00} such that & + 8 > 0; whereas a + 3 would be 0 if d were
in U. See Fig. 1.1.2 for an illustration. For d of norm 1, the number a + 3 above could be
called the “lack of linearity” of o along d: when restricted to the line d, the graph of o makes
an angle; when finite, the number a + 3 measures how acute this angle is.

epic

A)ﬂ

Fig. 1.1.2. Subspace of linearity of a sublinear function

Figure 1.1.2 suggests that gr o is a hyperplane not only in U, but also in the translations
of U: the restriction of o to {y} + U is affine, for any fixed y. This comes from the next
result.

Proposition 1.1.7 Let o be sublinear. If x € U, i.e. if
o(z)+o(—z)=0, (1.1.9)

then there holds
olz+y)=o(z)+o(y) forallyeR". (1.1.10)
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Proof. In view of subadditivity, we just have to prove “>” in (1.1.10). Start from the identity
y = x + y — x; apply successively subadditivity and (1.1.9) to obtain

oy)Lo(z+y)+o(—z)=0c(z+y)—o(x). ]

1.2 Some Examples

We start with some simple situations. If K is a nonempty convex cone, its indicator

function
0 ifzekK,
+o00 if not

ik(z) = {

is clearly sublinear. In R® x R, the epigraph epiix is made up of all the copies of
K, shifted upwards. Likewise, its distance function

di(z) :=inf {lly —z|| : y € K}

is also sublinear: nothing in the picture is essentially changed when both z and y are
multiplied by ¢ > 0. Another example is the function from R? to RU {+o00}

o(z) = o(€n) == { —2VEnif &n>0

400 if not.

Its positive homogeneity is clear, its convexity is not particularly difficult to check
(see Example B.4.3.3), it is therefore sublinear. A good exercise is to try to visualize
its epigraph.

Example 1.2.1 Let f € Conv R"; its perspective f of §B.2.2, which is convex,
is clearly positively homogeneous (from R**! to R U {+00}); it is an important
instance of sublinear function. For example, in R2

Flu,€) = {%52/“ ifu>0, (1.2.1)

400 ifnot

is the perspective of & = f(§) = 1/2 £, ~
Note that f(0,0) = +o0. The closure of f can be computed with the help
of Example B.3.2.3: clearly enough, the asymptotic function of f is ifo}. Hence

(c1 £)(0,0) = 0, while f coincides with its closure everywhere else. O

Example 1.2.2 (Norms) We recall that a norm || - || on R is a function from R™ to
[0, +o00] satisfying the following properties:
@) |zl = 0if and only if z = 0;
@) ||tz|| = |t |lz|| forall z € R” and ¢t € R;
(i) flz1 + z2|| < lz1]l + |lz2]|| for all (z1,z2) € R™ x R™.
Clearly, || - || is a positive (except at 0) and finite sublinear function which,

moreover, is symmetric i.e. || — z|| = ||| for all z. It is linear on no line: the
subspace U of (1.1.8) is reduced to {0}.
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Conversely, if o is a sublinear function from R™ into [0, +oo[ which is linear on
no line, i.e. such that

o(z)+o(—z) >0 forallz #0,
then ||z|| := max {o(z),o(—z)} is a norm on R". O

Example 1.2.3 (Quadratic Semi-Norms) Take a symmetric positive semi-definite
operator () from R” to R™ and define

f(z) == /(Qz,z) forallz € R*.

Convexity of f (i.e. its subadditivity, i.e. the Cauchy-Schwarz inequality) is rather
tedious to prove directly. Consider, however, the convex set

Eg:={z € R" : (Qz,z) < 1}.
Then f can be obtained as follows:

f(z) =inf {A >0 : (Qz,z) < A\?}
=inf{A>0: (Q% %) <1}
=inf{A>0: %€ Eg}

and we will see below that this establishes convexity — hence sublinearity — of f.
Observe in passing that Eq is the sublevel-set at level 1 of both f and f? =
(Q-, ). Decompose the space as R” = Ker ) @ Im Q: the intersection of Eg with
Im @ is an elliptic set centered at the origin, say EQ. The entire E is the cylinder
EQ + Ker @, whose asymptotic cone is just the subspace Ker @. If and only if
Ker @ = {0}, i.e. Q is positive definite, is Eg compact; it is an elliptic body. On
the other hand, f is finite, nonnegative, symmetric because Eg has center 0; and
f is zero on the asymptotic cone Ker ) of Eg. Theorem 1.2.5 below establishes
the convexity of f, which is therefore a semi-norm, actually a norm if @ is positive
definite. O

The mapping Eg — f, introduced in Example 1.2.3, is important in the context
of sublinear functions; let us put it in perspective.

Definition 1.2.4 (Gauge) Let C be a closed convex set containing the origin. The
function y¢ defined by

Yo(z) :=inf {A >0 : z € AC} (1.2.2)

is called the gauge of C. As usual, we set y¢(z) := +oo if £ € AC forno A > 0.
O

Geometrically, y¢ can be obtained as follows: shift C' (C R™) in the hyperplane
R™ x {1} of the graph-space R® x R (by contrast to a perspective-function, the
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a =
LV S

Fig. 1.2.1. The epigraph of a gauge

present shift is vertical, along the axis of function-values). Then the epigraph of y¢
is the cone generated by this shifted copy of C; see Fig. 1.2.1.

The next result summarizes the main properties of a gauge. Each statement
should be read with Fig. 1.2.1 in mind, even though the picture is slightly mislead-
ing, due to closure problems.

Theorem 1.2.5 Let C be a closed convex set containing the origin. Then

(1) its gauge yc is a nonnegative closed sublinear function;
(i) ¢ is finite everywhere if and only if 0 lies in the interior of C;
(iii)) C being the asymptotic cone of C,

{z eR” : yo(z) <r}=rC forallr >0,
{z€R" : 1c(z) =0} =C .

Proof. [(i) and (iii)] Nonnegativity and positive homogeneity are obvious from the
definition of v¢; also, y¢(0) = 0 because 0 € C. We prove convexity via a geomet-
ric interpretation of (1.2.2). Let

Kc:=cone(C x{1}) ={(Ac,)) e R* xR : c€ C, A >0}

be the convex conical hull of C' x {1} C R™ x R. It is convex (beware that K ¢ need
not be closed) and ¢ is clearly given by

vo(z) =inf {\ : (z,\) € K¢}

Thus, ¢ is the lower-bound function of §B.1.3(g), constructed on the convex set
K ; this establishes the convexity of ¢, hence its sublinearity.
Now we prove
{zeR* : vc(z) <1} =C. (1.2.3)

This will imply the first part in (iii), thanks to positive homogeneity. Then the second
part will follow because of (A.2.2.2): Co, = N{rC : r > 0} and closedness of &
will also result from (iii) via Proposition B.1.2.2.
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So, to prove (1.2.3), observe first that z € C implies from (1.2.2) that certainly
~vo{z) < 1. Conversely, let z be such that yo(z) < 1; we must prove that z € C.
For this we prove that 2, := (1—1/k)x € C fork = 1,2, ... (and then, the desired
property will come from the closedness of C). By positive homogeneity, yo(zy) =
(1 —1/k)ye(z) < 1, so there is A, €10, 1] such that z;, € A, C, or equivalently
zk /A € C.Because C is convex and contains the origin, Ak (zx /Ag) + (1 =X )0 =
x is in C', which is what we want.

[(ii)] Assume O € int C. There is € > 0 such that for all z # 0, z. := ez/||z|| € C;
hence o (z:) < 1 because of (1.2.3). We deduce by positive homogeneity

[Ed

=]l =l
€ g’

Yo(z) = —yc(z:) <

this inequality actually holds for all z € R™ (o (0} = 0) and v is a finite function.
Conversely, suppose ¢ is finite everywhere. By continuity (Theorem B.3.1.2),
v¢ has an upper bound L > 0 on the unit ball:

lzl <1 = @<L = =z€lLC,
where the last implication comes from (iii). In other words, B(0,1/L) C C. a

Since ¢ is the lower-bound function of the cone K¢ (= K¢ + {0} xR*) of
Fig. 1.2.1, we know from (B.1.3.6) that K~ C epi~y¢c C cl K¢; but y¢ has a closed
epigraph, therefore

epivc = cl K¢ = cone(C x {1}). (1.2.4)

Since C, = {0} if and only if C is compact (Proposition A.2.2.3), we obtain
another consequence of (iii):

Corollary 1.2.6 C is compact if and only if vo(z) > 0 forall x # 0. O

Example 1.2.7 The quadratic semi-norms of Example 1.2.3 can be generalized: let
f € Conv R™ have nonnegative values and be positively homogeneous of degree 2,
ie.

0< f(tz) =t°f(z) forallz € R® andallt > 0.

Then, /7 is convex; in fact

V(@) =inf{A>0: /f(z) <A}
=inf {A>0: f(z) < A\?}
=inf{A>0: §€Si(f)},
which reveals the sublevel-set

Si1(f)={zeR*: fz) <1} =C.

In other words, 1/ is the gauge of a closed convex set C containing the origin. O
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Gauges are examples of sublinear functions which are closed. This is not the
case of all sublinear functions: see the function f of (1.2.1); another example in R?
is

0 ifn>0,
h(¢,n):=4¢ ¢ ifn=0,
+o00ifn < 0.

By taking the closure, or lower semi-continuous hull, of a sublinear function o,
we get a new function defined by
clo(z) := liminf o(z') (1.2.5)
' =
which is (i) closed by construction, (ii) convex (Proposition B.1.2.6) and (iii) posi-
tively homogeneous, as is immediately seen from (1.2.5). For example, to close the
above h, one must set h(£,0) = 0 for all £&. We retain from this observation that,
when we close a sublinear function, we obtain a new function which is closed, of
course, but which inherits sublinearity. The subclass of sublinear functions that are
also closed is extremely important; in fact most of our study will be restricted to
these.
Note that, for a closed sublinear function o,

a(0) < lti&)l o(tz) =0 forallz € domo,

so certainly ¢(0) = 0; otherwise, dom o would be empty, a situation that we re-
ject from our definitions. Another observation is that a closed sublinear function o
coincides with its asymptotic function:

!

o = 0 if o is closed and sublinear

g

(take o = 0 in the definition of Proposition B.3.2.1). In particular, if o is finite
everywhere, then Proposition B.3.2.6 tells us that it is Lipschitzian, and its best
Lipschitz constant is

sup {o(d) : ||d|| = 1}. (1.2.6)

1.3 The Convex Cone of All Closed Sublinear Functions

Similarly to convex functions, sublinear functions, closed or not, can be combined
to give new sublinear functions.

Proposition 1.3.1 (i) If o1 and o2 are [closed] sublinear and ty, to are positive
numbers, then o := t101 + to02 is [closed] sublinear, if not identically +oc.

(i) If {0} }jes is a family of [closed] sublinear functions, then o := supjc ; 0; is
[closed] sublinear, if not identically +oco.

Proof. Concerning convexity and closedness, everything is known from §B.2. Note
in passing that a closed sublinear function is zero (hence finite) at zero. As for
positive homogeneity, it is straightforward. O
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Proposition 1.3.2 Let {0;};cs be a family of sublinear functions all minorized by
some linear function. Then

(i) 0 := co(inf;c s 0;) is sublinear.
(i) If J = {1, ..., m} is a finite set, we obtain the infimal convolution

comin{oy,...,om} =019 % O -

Proof. [(i)] Once again, the only thing to prove for (i) is positive homogeneity.
Actually, it suffices to multiply = and each z; by ¢ > 0 in a formula giving
co (inf; ;) (), say (B.2.5.3).

[(ii)] By definition, computing co (min; ¢;)(z) amounts to solving the minimization

problem in the m couples of variables (z;, ;) € domoj; x R

inf 3370 ajoj(z;) a; 20
Z] 105 =1, Z] 1Q5%5 =T
In view of positive homogeneity, the variables a; play no role by themselves: the

relevant variables are actually the products ajz; and (1.3.1) can be written — denot-
ing ajz; again by z;:

(1.3.1)

m m
co (min o;)(z) =inf{z oi(zj) : Y xj :m}.
J j=1 j=1
We recognize the infimal convolution of the o;’s. O

From Proposition 1.3.1(i), the collection of all closed sublinear functions has an
algebraic structure: it is a convex cone contained in Conv R™. It contains another
convex cone, namely the collection of finite sublinear functions.

A topological structure can be defined on the latter cone. In linear analysis, one
defines the Euclidean distance between two linear forms ¢; = (s1,-) and £ =
(s2,-):

16r = Lo == ls1 — szl = jmax €1 (z) — £2(2)] -
A distance can also be defined on the convex cone of everywhere finite sublinear
functions (the extended-valued case is somewhat more delicate, just as with un-
bounded sets; see some explanations in §0.5.2), which of course contains the vector
space of linear forms.

Theorem 1.3.3 For o1 and o2 in the set ¢ of sublinear functions that are finite
everywhere, define

A(oy,02) := ”m”a<x |o1(z) — o2(z)] (1.3.2)

Then A is a distance on ®.
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Proof. Clearly A(o1,02) < 400 and A(o1,02) = A(o2,01). Now positive ho-
mogeneity of g; and o5 gives forall z # 0

j01(2) = 02(@)] = llalljos (121) = o2 (5Zp)]
< |lzllmax)jy =1 |o1(u) — o2(u)]
< llzll Ao, 02) -

In addition, o1 (0) = 02(0) = 0, so
lo1(z) — o2(z)] < ||z|| A(o1,02) forall z € R®
and A (01,02) = 0if and only if o7 = 0.
As for the triangle inequality, we have for arbitrary o1, 03, 03 in
|o1(2) — 03(2)| < lo1(2) — o2 (2)| + |o2(x) — o3(2)]  forallz € R”,
so there holds

A(o1,03) < max| <1 [|o1(z) — o2(2)| + |o2(2) — o3(2)|]
< max|q| <1 o1 (%) — 02(2)| + max)q <1 lo2(z) — o3(2)|

which is the required inequality. O

The index-set in (1.3.2) can be replaced by the unit sphere ||z|| = 1, just as in
(1.2.6); and the distance between an arbitrary ¢ € & and the zero-function (which
is in @) is just the value (1.2.6). The function A(-, 0) acts like a norm on the convex
cone .

Example 1.3.4 Consider || - ||: and || - Jloo, the £1- and £oo-norms on R™. They are finite
sublinear (Example 1.2.2) and there holds
n—1

AN lleo) = NG

To accept this formula, consider that, for symmetry reasons, the maximum in the definition
(1.3.2) of Aisachieved atz = (1/vm,...,1/vn). u|

The convergence associated with this new distance function turns out to be the
natural one:

Theorem 1.3.5 Let (o)) be a sequence of finite sublinear functions and let o be a
finite function. Then the following are equivalent when k — +00:

(i) (ok) converges pointwise to o;
(i) (o) converges to o uniformly on each compact set of R*;
(iii) A(og,0) — 0.

Proof. First, the (finite) function o is of course sublinear whenever it is the point-
wise limit of sublinear functions. The equivalence between (i) and (ii) comes from
the general Theorem B.3.1.4 on the convergence of convex functions.

Now, (ii) clearly implies (iii). Conversely A(o, o) — 0 is the uniform conver-
gence on the unit ball, hence on any ball of radius L > 0 (the maximand in (1.3.2)
is positively homogeneous), hence on any compact set. a
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2 The Support Function of a Nonempty Set

2.1 Definitions, Interpretations

Definition 2.1.1 (Support Function) Let S be a nonempty set in R™. The function
os : R* - RU {+oo} defined by

R 5z os(x) :=sup{(s,z) : s €S} (2.1.1)
is called the support function of S. O

For a given S, the support function therefore depends on the scalar product:
changing (-, -) changes os. In (2.1.1), the space where s runs and the space where
os acts are dual to each other.

The supremum in (2.1.1) may be finite or infinite, achieved on S or not. In this
context, S can be interpreted as an index set: og(+) is the supremum of the collection
of linear forms (s, -) over S. We obtain immediately:

Proposition 2.1.2 A support function is closed and sublinear.

Proof. This results from Proposition 1.3.1(ii) (a linear form is closed and convex!).
Observe in particular that a support function is null (hence < +00) at the origin.
(]

The domain of o5 is a convex cone, closed or not. Actually, z € dom o means
that, for some r := og(z):

SC{seR" : (s,z) <1} (2.1.2)
i.e. S is contained in a closed half-space “opposite” to x.

Proposition 2.1.3 The support function of S is finite everywhere if and only if S is
bounded.

Proof. Let S be bounded, say S C B(0, L) for some L > 0. Then
(s,2) < llsll ll2ll < Lllzll forall s € S,

which implies o5 (x) < L||z|| for all z € R™.
Conversely, finiteness of the convex o g implies its continuity on the whole space
(Theorem B.3.1.2), hence its local boundedness: for some L,

(s,z) <os(z) < L forall (s,z) € S x B(0,1).
If s # 0, we can take z = s/||s|| in the above relation, which implies ||s|| < L. O

Observing that

—os(-z) = — sup [=(s,2)] = inf (s,2),

the number o5 (z) + os(—x) of (1.1.6) is particularly interesting here:
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Definition 2.1.4 (Breadth of a Set) The breadth of a nonempty set S along z # 0
is
0s(x) + os(—) = sup (s, ) — inf (s, z),
SES seS
a number in [0, +o00]. It is 0 if and only if S lies entirely in some affine hyperplane
orthogonal to z; such a hyperplane is expressed as

{yeR" : (y,z) = os(2)},

which in particular contains S. The intersection of all these hyperplanes is just the
affine hull of S. O

If  has norm 1 and is interpreted as a direction, the breadth of S measures how
“thick” S is along z: it is the distance between the two hyperplanes orthogonal to =
and “squeezing” S. This observation calls for a more general comment: a sublinear
function £ — o(z) being positively homogeneous, the norm of its argument
has little importance. This argument should always be thought of as an oriented
direction, i.e. a normalized vector of R™. Accordingly, we will generally use from
now on the notation o(d), more suggestive for a support function than o (z).

Here, we give two geometric constructions which help interpreting a support
function.

Interpretation 2.1.5 (Construction in R™) Given S C R"™ and d # 0, consider
for each r € R the closed half-space alluded to in (2.1.2):

Hy ={2€R": (2,d) <r}. (2.1.3)

If (2.1.2) holds, we can find r large enough so that S C H, . The value 05(d) is
the smallest of those r: decreasing r as much as possible while keeping .S in H .
means “leaning” onto S the affine hyperplane Hy , := {2z € R" : (2,d) = r}. See
Fig.2.1.1 for an illustration.

Fig. 2.1.1. Supporting hyperplanes and support functions

If (2.1.2) does not hold, however, this operation is impossible: S is “unbounded
in the oriented direction” d and o5(d) = +00. Take for example S := R* x {0} in
R2. For d = (1, 1) say (and assuming that (-, -) is the usual dot-product), no closed
half-space of the form (2.1.3) can contain .S, even if r is increased to +o0.
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If S is compact, the supremum of the (continuous) function (-, d) is achieved
on S, no matter how d is chosen. This means that, somewhere on the hyperplane
Hyg ,4(q) there is some s4 which is also in S, actually a boundary point of S; more
accurately, s4 lies in the face of S exposed by d (assuming S convex). ]

Figure 2.1.1 suggests (and Proposition 2.2.1 below confirms) that the support
functions of .S and of €6 S coincide. Note also that the distance from the origin 0 to
the “optimal” hyperplane Hy , ¢ (4) is |os(d/||d]|)|. This is easily confirmed: project
the origin onto Hy , ¢ (4) to obtain the vector t*d such that (d,t*d) = os(d). Then
the distance from 0 to Hy , (g is ||t*d]|.

Interpretation 2.1.6 (Construction in R*11) In the graph-space R x R, we shift
S down to R™ x {—1} and consider the convex conical hull K s of this shifted copy
of S. Then the polar cone (Ks)° of Kg is nothing else than the epigraph of og.
Indeed
Ks =R co(S x {-1}) = co[R* (S x {-1})],
so that
(Ks)° ={(d,r) : t(s,d) —tr <Oforall s € S and ¢t > 0}
={(d,r) : (s,d) <rforalls €S}
= {(d,r) : sup,es(s,d) <} =epios.
This is illustrated on Fig.2.1.2. On this picture, 0 € S; this implies og(d) > 0

for all d, which is obvious just from the definition (2.1.1) of os. ]

y 4

Fig. 2.1.2. The epigraph of a support function

2.2 Basic Properties

First, we list some properties of support functions that are directly derived from their
definition.
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Proposition 2.2.1 For S C R™ nonempty, there holds s = 0015 = 0co 5, Whence
0s =0 S - 2.2.1)

Proof. The continuity [resp. linearity, hence convexity] of the function (s, -), which
is maximized over S, implies that s = o¢ s [resp. 0s = 0co 5]. Knowing that
€6.S = clco S (Proposition A.1.4.2), (2.2.1) follows immediately. O

This result is of utmost importance: it says that the concept of support function
does not distinguish a set S from its closed convex hull. Thus, when dealing with
support functions, it makes no difference if we restrict ourselves to the case of closed
convex sets.

As aresult of (2.1.1) and (2.2.1), we can write

setwsS = [(s,d) <os(d) foralld e R"].

Now, what about the converse? Can it be that the above (infinite) set of inequalities
still holds if s is not in ¢6 S? The answer is no:

Theorem 2.2.2 For the nonempty S C R™ and its support function og, there holds
s€ewS << [(s,d) <os(d) forallde X], (2.2.2)

where the set X can be indz'ﬁereryly taken as: the whole of R™, the unit ball B(0,1)
or its boundary the unit sphere B, or domog.

Proof. First, the equivalence between all the choices for X is clear enough; in par-
ticular due to positive homogeneity. Because “=" is Proposition 2.2.1, we have to
prove “<” only, with X = R" say.

So suppose that s ¢ € .S. Then {s} and € .S can be strictly separated (Theo-
rem A.4.1.1): there exists dg € R™ such that

(s,do) > sup{(s',do) : s' €6S} =05(dp),
where the last equality is (2.2.1). Our result is proved by contradiction. O

As a result, a closed convex set is completely determined by its support func-
tion: between the classes of closed convex sets and of support functions, there is a
correspondence which is bijective, as illustrated on Fig.2.2.1.

closed take the sup of <s,.> over C support

convex function
set C - - o
filter x with "<s,> < ¢ ?"

Fig. 2.2.1. Correspondence between closed convex sets and support functions

Thus, whether a given point s belongs to a given closed convex set S can be
checked with the help of (2.2.2), which holds as an equivalence. Actually, more can
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be said: the support function filters the interior, the relative interior and the affine
hull of a closed convex set.

This property is best understood with Fig. 1.1.2 in mind. Let V be the subspace
parallel to aff S, and U := V*. Indeed, U is just given in (1.1.8) with ¢ = g5: U
can be viewed either as the subspace where the sublinear function og is linear, or
where the supported set S is flat; by contrast, og is V-shaped in V, while S is thick
along V. When drawn in the geometric space of convex sets, Fig. 1.1.2 becomes
Fig.2.2.2, which is very helpful to follow the next proof.

Theorem 2.2.3 Let S be a nonempty closed convex set in R™. Then

(i) s € aff S ifand only if
(s,d) = os(d) forall dwith os(d) + o5(—d) =0; (2.2.3)
(ii) s € ri S ifand only if
(s,d) < os(d) forall dwithos(d) + os(—d) > 0; (2.2.4)
(iii) in particular, s € int S if and only if

(s,d) < os(d) foralld#0. (2.2.5)

ans

14

Fig. 2.2.2. Affine hulls and orthogonal spaces

Proof. [(i)] Let first s € S. We have already seen in Definition 2.1.4 that
—os(—d) < (s,d) < os(d) forallde R".

If the breadth of S along d is zero, we obtain a pair of equalities: for such d, there
holds

(37d) = US(d) >
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an equality which extends by affine combination to any element s € aff S.
Conversely, let s satisfy (2.2.3). A first case is when the only d described in
(2.2.3) is d = 0; as a consequence of our observations in Definition 2.1.4, there is
no affine hyperplane containing S, i.e. aff S = R” and there is nothing to prove.
Otherwise, there does exist a hyperplane H containing S; it is defined by

H = {p cR” : (p, dH) = Us(dH)}, (2.2.6)

for some dg # 0. We proceed to prove (s,-) < on.

In fact, the breadth of S along dy is certainly 0, hence (s,dy) = os(dn)
because of (2.2.3), while (2.2.6) shows that c5(dg) = og(dg). On the other hand,
it is obvious that oy (d) = 400 if d is not collinear to dg. In summary, we have
proved (s,d) < op(d) foralld, i.e. s € H. We conclude that our s is in any affine
manifold containing S: s € aff S.

[(iii)} In view of positive homogeneity, we can normalize d in (2.2.5). For s € int S,
there exists € > 0 such that s + ed € S for all d in the unit sphere B. Then, from
the very definition (2.1.1),

os(d) > (s+ed,d) = (s,d) +¢ forallde B.
Conversely, let s € R™ be such that
os(d) — (s,d) >0 foralld € B
which implies, because g is closed and the unit sphere is compact:
0 < e :=inf {os(d) — (s,d) : d € B} < +00.

Thus _
(s,d) +e< os(d) forallde B.

Now take u with ||u]| < &. From the Cauchy-Schwarz inequality, we have for all
deB
(s+u,d) = (s,d) + (u,d) < (s,d) + e < o5(d)

and this implies s + u € .S because of Theorem 2.2.2: s € int S and (iii) is proved.

[(ii)] Look at Fig.2.2.2 again: decompose R* = V & U, where V is the subspace
parallel to aff S and U = V. In the decomposition d = dy +dy, (-, dy) is constant
over S, so S has 0-breadth along dy and

os(d) = sup(s,dy +dy) = (s,du) + sup (s, dv)
seS seS

for any s € S. With these notations, a direction described as in (2.2.4) is a d such
that

os(d) + 0‘5(—d) =og(dy) + os(=dy)>0.
Then, (ii) is just (iii) written in the subspace V. ]
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We already know that the domain of og is a convex cone, which consists of
all oriented directions “along which .S is bounded” (remember Interpretation 2.1.5).
This can be made more explicit.

Proposition 2.2.4 Let S be a nonempty closed convex set in R*. Then cldomog
and the asymptotic cone So, of S are mutually polar cones.

Proof. Recall from §A.3.2 that, if K; and K, are two closed convex cones, then
K, C Ky ifand only if (K;)° D (K2)°.

Let p € Sw. Fix s¢ arbitrary in S and use the fact that Soo = N¢>0t(S — so)
(§A.2.2): for all t > 0, we can find s; € S such that p = (s — sp). Now, for
q € dom og, there holds

(p,q) = t(st — s0,q) < t[os(q) — (s0,9)] < +o0

and letting ¢ | O shows that (p,q) < 0. In other words, domos C (S)°; then
cldomog C (S )° since the latter is closed.

Conversely, let ¢ € (dom os)°, which is a cone, hence tq € (domog)° for any
t > 0. Thus, given so € S, we have for arbitrary p € domog

(s0 +tg,p) = (s0,p) +t(q,p) < (s0,p) < 0s(P),

0 sg + tq € S by virtue of Theorem 2.2.2. In other words: g € (S — s¢)/t for all
t>0andq € S. m]

2.3 Examples

Let us start with elementary situations. The simplest example of a support function
is that of a singleton {s}. Then oy, is merely (s, ), we have a first illustration
of the introduction (iii) to this chapter: the concept of a linear form (s, -) can be
generalized to s not being a singleton, which amounts to generalizing linearity to
closed sublinearity (more details will be given in §3). The case when S is the unit
ball B(0, 1) is also rather simple:

raon(@ > (g d) = IdlGtd£0

and, for s € B(0, 1), the Cauchy-Schwarz inequality implies (s,d) < ||d||. Alto-
gether,
oB(0,1)(d) = ||d||- 2.3.1)

Our next example is the simplest possible illustration of Proposition 2.2.4,
namely when S, is S itself:

Example 2.3.1 (Cones, Half-Spaces, Subspaces) Let K be a closed convex cone
of R™. Then
0 if(s,dy<OforalseK,

+o00 otherwise .

ok (d) :{
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In other words, ok is the indicator function of the polar cone K°. Note the symme-
try: since K°° = K, the support function of K° is the indicator of K. In summary:

ix =0ge and og =igo.
Two particular cases are of interest. One is when K is a half-space:
K:={seR" : (s,v) <0};
then it is clear enough that

0 ifd=tvwitht>0,

+00 otherwise . (2.3.2)

ow(@ =

Needless to say, the support function of the half-line R* v (the polar of K) is in turn
the indicator of K.

The other interesting case is that of a subspace. Let A : R® — R™ be a linear
operator and H be defined by

H:=KerA={seR": As=0}.
Then the support function of H is the indicator of the orthogonal subspace H*:

0 if(s,dy=0forallse H,
400 otherwise .

(@) =i (@) = {
The subspace H* can be defined with the help of the adjoint of A:
H* = (KerA)* =ImA* = {A*A : A e R™"}.

If A or H are defined in terms of linear constraints

H:={seR": (s,a;) =0forj=1,...,m},

then H* = {3°7%, Njaj : A € R™ }.

All these calculations are useful when dealing with closed convex polyhedra,
expressed as intersections of half-spaces and subspaces.

Figure 2.3.1 illustrates a modification in which our cone K is modified to K’ :=
K N B(0,1). The calculus rules of §3.3 will prove what is suggested by the picture:
the support function of K" is the distance function to K° (check the similarity of
the appropriate triangles, and note that ok (d) = 0 when d € K°). O

Example 2.3.2 The asymptotic cone of the set
S:={s=(p,7)ER? : p>0,7>1/p} (2.3.3)

is Soo = {(p,7) € R? : p > 0, 7 > 0} and, from Proposition 2.2.4, the closure of
domas is {(5777) : 6 < 0) n g O}
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K

Fig. 2.3.1. Support function of a truncated cone

The exact status of the boundary of dom o (i.e. when £n = 0) is not specified
by Proposition 2.2.4: is o5 finite there? The computation of o5 can be done directly
from the definitions (2.1.1) and (2.3.3). However the following geometric argument
yields simpler calculations (see Fig.2.3.2): for given d = (£,7) # (0,0), consider
the hyperplane Hy ;¢ (q) = {(a, 8) : o + 0B = o5(d)}. It has to be tangent to the
boundary of S, defined by the equation a3 = 1. So, the discriminant 0% (d) — 4¢n
of the equation in o

fa + n% =og(d)

must be 0. We obtain directly o5(£,7) = —2+/&n for £ < 0,1 < 0 (the sign is “—”
because 0 ¢ S; remember Theorem 2.2.2). Finally, Proposition 2.1.2 tells us that the
closed function (£,7) — os(&,n) has to be 0 when £n = 0. All this is confirmed
by Fig.2.3.2. O

N

dom og

d
Fig. 2.3.2. A support function

Remark 2.3.3 Two features concerning the boundary of dom os are worth mentioning on
the above example: the supremum in (2.1.1) is not attained when d € bd dom s (the point
sq of Fig. 2.1.1 is sent to infinity when d approaches bd dom o), and dom o5 is closed.
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These are not the only possible cases: Example 2.3.1 shows that the supremum in (2.1.1)
can well be attained for all d € dom os; and in the example

S:={(p,7) : 7> %p%},

dom o is not closed. The difference is that, now, S has no asymptote “at finite distance”.
O

Example 2.3.4 Just as in Example 1.2.3, let () be a symmetric positive definite
operator from R" to R™. Its sublevel-set

Eg:={s€R" : (@s,5) <1}
is elliptic, with support function
d— 0g,(d) := max {(s,d) : (@s,s) <1}. (2.3.4)
Calling Q'/? the square root of @, the change of variable p = Q'/?sin (2.3.4) gives

5o (d) = max {(p,Q7'/2d) : ||pl|* <1}

whose unique solution for d # 0 (again Cauchy-Schwarz!) is p = ”—8;—;2—2" and
finally
0B, (d) = ||Q7/%d|| = V{d,Q1d). (2.3.5)

Observe in this example the “duality” between the gauge z — +/(Qz,z) of Eg
and its support function (2.3.5).

When @) is merely symmetric positive semi-definite, Eg becomes an elliptic
cylinder, whose asymptotic cone is Ker () (remember Example 1.2.3). Then Propo-
sition 2.2.4 tells us that

cldomog, = (KerQ)° = (KerQ)* =ImQ.

When d € Im Q, o, (d) is finite indeed and (2.3.5) does hold, Q~'d denoting now
any element p such that Qp = d. We leave this as an exercise. O

3 The Isomorphism Between Closed Convex Sets
and Closed Sublinear Functions

3.1 The Fundamental Correspondence

We have seen in Proposition 2.1.2 that a support function is closed and sublinear.
What about the converse? Are there closed sublinear functions which support no set
in R™®? The answer is no: any closed sublinear function can be viewed as a support
function. The key lies in the representation of a closed convex function f via affine
functions minorizing it: when the starting f is also positively homogeneous, the
underlying affine functions can be assumed linear.
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Theorem 3.1.1 Let o be a closed sublinear function; then there is a linear function
minorizing o. In fact, o is the supremum of the linear functions minorizing it. In
other words, o is the support function of the nonempty closed convex set

Se:={seR" : (s,d) <o(d) foralld e R"}. (3.1.1)

Proof. Being convex, o is minorized by some affine function (Proposition B.1.2.1):
for some (s,7) € R” x R,

(s,d) —r <o(d) forallde R". 3.1.2)
Because o(0) = 0, the above r is nonnegative. Also, by positive homogeneity,

(s,d) — tr <o(d) foralld € R" andallt> 0.

Letting t — 400, we see that ¢ is actually minorized by a linear function:
(s,d) < o(d) foralld e R". (3.1.3)

Now observe that the minorization (3.1.3) is sharper than (3.1.2): when express-
ing the closed convex ¢ as the supremum of all the affine functions minorizing it
(Proposition B.1.2.8), we can restrict ourselves to linear functions. In other words

o(d) = sup {(s,d) : the linear (s, -) minorizes o} ;
in the above index-set, we just recognize S, . O

One of the important points in this result is the nonemptiness of S, in (3.1.1); we have
here the analytical form of Hahn-Banach theorem: there exists a linear function minoriz-
ing the closed sublinear function o; compare this with the geometric form given in Theo-
rem A4.1.1.

Another way of expressing Theorem 3.1.1 is that the closed convex set epi o is the in-
tersection of the closed half-spaces containing it; but since epio is actually a cone, these
half-spaces can be assumed to have linear hyperplanes as boundaries (remember Corol-
lary A.4.2.7). A connection between S, and the cone polar to epio is thus introduced;
Chap. D will exploit this remark.

The main consequence of this important theorem is an assessment of closed
sublinear functions. Section 2.2 has established a bijection from closed convex sets
onto support functions. Thanks to Theorem 3.1.1, this bijection is actually onto
closed sublinear functions, which is of course much more satisfactory: the latter
class of functions is defined in abstracto, while the former class was ad hoc, as far
as this bijection was concerned.

Thus, the wording “support function” in Fig.2.2.1 can everywhere be replaced
by “closed sublinear”. This replacement can be done in Theorem 2.2.2 as well:

Corollary 3.1.2 For a nonempty closed convex set S and a closed sublinear func-
tion o, the following are equivalent:
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(1) o is the support function of S ,
(1) S ={s: (s,d) < o(d) forall d € X}, where the set X can be indifferently
taken as: the whole of R™, the unit ball B(0, 1) or its boundary, or domo.

Proof. The case X = R" is just Theorem 3.1.1. The other cases are then clear. O

Remember the outer construction of §A.4.2(b): a closed convex set S is geometrically
characterized as an intersection of half-spaces, which in turn can be characterized in terms
of the support function of S. Each (d,r) € R™ x R defines (for d # 0) the half-space H .

via (2.1.3). This half-space contains S if and only if 7 > o(d), and Corollary 3.1.2 expresses
that
S=n{s: (s,d) <rforald € R" and r > o(d)},

in which the couple (d, r) plays the role of an index, running in the index-set epio C R xR
(compare with the discussion after Definition 2.1.1). Of course, this index-set can be reduced
down to R™: the above formula can be simplified to

S=n{s: (s,d) <o(d) forall d € X}

where X can be taken as in Corollary 3.1.2.

Recall from §A.2.4 that an exposed face of a convex set S is defined as the set
of points of S which maximize some (nonzero) linear form. This concept appears
as particularly welcome in the context of support functions:

Definition 3.1.3 (Direction Exposing a Face) Let C be a nonempty closed convex
set, with support function o. For given d # 0, the set

Fo(d):={z € C : (z,d) =o(d)}
is called the exposed face of C associated with d, or the face exposed by d. O

For a unified notation, the entire C' can be considered as the face exposed by 0.
On the other hand, a given d may expose no face at all (when C' is unbounded).

Symmetrically to Definition 3.1.3, one can ask what are those d € R” such that
(-, d) is maximized at a given © € C. We obtain nothing other than the normal cone
N¢(z) to C at z, as is obvious from its Definition A.5.2.3. The following result is
simply a restatement of Proposition A.5.3.3.

Proposition 3.1.4 For x in a nonempty closed convex set C, it holds
z €Fc(d) <= de Ng(z). 0

When d describes the set of normalized directions, the corresponding exposed
faces exactly describe the boundary of C":

Proposition 3.1.5 For a nonempty closed convex set C, it holds
bdC = U{F¢c(d) : de€ X}

where X can be indifferently taken as: R\ {0}, the unit sphere B, or dom ¢\ {0}.
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Proof. Observe from Definition 3.1.3 that the face exposed by d # 0 does not
depend on ||d||. This establishes the equivalence between the first two choices for
X. As for the third choice, it is due to the fact that Fo(d) = 0 if d € domoc.
Now, if z is interior to C' and d # 0, then  + ed € C and z cannot be a
maximizer of (-,d): z is not in the face exposed by d. Conversely, take x on the
boundary of C. Then N¢(z) contains a nonzero vector d; by Proposition 3.1.4,
z € Fe(d). O

3.2 Example: Norms and Their Duals, Polarity

Let || - || be an arbitrary norm on R™. It is a positive (except at 0) closed sublinear
function and its sublevel-set

B:={zeR":|z| <1} (3.2.1)

is particularly interesting. It is the unit ball associated with the norm, a symmetric,
convex, compact set containing the origin as an interior point; || - || is the gauge of
B (§1.2). On the other hand, why not take the set whose support function is || - [|? In
view of Corollary 3.1.2, it is defined by

{seR" : (s,z) < ||z| forallz € R*} =: B*. (3.2.2)

It is an easy exercise to check that B* is also symmetric, convex, compact; and it
contains the origin as an interior point (Theorem 2.2.3(iii)).

Now, we have two closed convex sets B and B*. We can generate two more
closed sublinear functions: take the support function op of B and the gauge yp+
of B*. It turns out that we then obtain the same function, which actually is a norm,
denoted by || - ||*: the so-called dual norm of || - ||. The game finishes there: the two
sets that || - ||* supports and is the gauge of, respectively, are B and B*.

Proposition 3.2.1 Let B and B* be defined by (3.2.1) and (3.2.2), where || - || is a
norm on R™. The support function of B and the gauge of B* are the same function
I - I defined by

sl := max {(s,) : ol < 1}. (3.2.3)

Furthermore, || - ||* is a norm on R™. The support function of its unit ball B*
and the gauge of its supported set B are the same function || - ||: there holds

lzll = max {(s,z) : Js|” < 1}. (3.2.4)

Proof. Itis a particular case of the results 3.2.4 and 3.2.5 below. O
Note the following symmetric relation (“Cauchy-Schwarz”)

(s,z) < |Isll* |zl forall (s,z) € R* x R*, (3.2.5)

which comes directly from (3.2.3), using positive homogeneity. It expresses the du-
ality correspondence between the two Banach spaces (R", || - ||) and (R", || - ||*).
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Furthermore, equality holds in (3.2.5) when s # 0 and z # 0 form an associated
pair via Proposition 3.1.4:

5 T
Isl* Izl

Thus, a norm automatically defines another norm (its dual); and the operation is
symmetric: the dual of the dual norm is the norm itself.

€ Fp«(z) orequivalently € Fp(s).

Norm take the unit ball B
as a closed sublinear | ———sublevel-set as closed convex set
nonnegative function atlevel 1 containing 0
take the ; / take the
iy
support /EE‘?L/ support
function - function
unit ball B* take the dual norm
as a closed convex set sublevel-set — | as a closed sublinear
containing 0 at level 1 nonnegative function

Fig. 3.2.1. Dual norms and polar sets

Remark 3.2.2 The operation (3.2.3) — (3.2.4) establishes a “duality” correspon-
dence within a subclass of closed sublinear functions: those that are symmetric,
finite everywhere, and positive (except at 0) — in short, norms.

This analytic operation has its counterpart in the geometric world: starting from
a closed convex set which is symmetric, bounded and contains the origin as an
interior point — in short, a “unit ball” — such as B, one constructs via gauges and
support functions another closed convex set B* which has the same properties. This
correspondence is called polarity, demonstrated by Fig. 3.2.1: the polar (set) of B is

B* :={s : (s,z) <1forall z € B}. (3.2.6)

As can be seen with a separation argument, the polar of B* is symmetrically (pro-
ceed as for Theorem A.4.2.6 and remember that 0 € B)

(B*)* :={z : (s,z) < 1forall s € B*} = B. (3.2.7)
O

We leave it as an exercise to draw the unit balls of the ¢; - and £.,-norms on R":
n
Izl == _la'| and Jafle := max{|z'], ..., |z"|}
i=1

(proceed as in Interpretation 2.1.5: a picture in R™ will do). Observe on the picture
thus obtained that they are in polarity correspondence if the scalar product is the
usual dot-product (z,y) = z7y.
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Another situation is illustrated by the “hexagonal norm” of Fig.3.2.2. Observe
how elongation in one direction corresponds to contraction for the polar. Also: a
facet of one of the sets is exposed by a vertex in the polar.

Fig. 3.2.2. Hexagonal unit-balls

Example 3.2.3 Other important norms are the quadratic norms, defined by

lzllq := V(Qz, )

where () is a symmetric positive definite linear operator. They are important because
they derive from a scalar product on R”, namely:

(z,y)Q = (Qz,y) .

We refer to Example 2.3.4, more precisely formula (2.3.5), to compute the corre-
sponding dual norm

(IsllQ)™ = v/ (s, @~ *s) = [Isllg-1 -

When Q = I,,, we get back the Euclidean norm (-, -)'/2. A comparison of (2.3.1)
and (3.2.3) shows that it is self-dual: || - ||* = || - ||. Among all the possible norms on
RR™, it is the only one having this property (once the scalar product is chosen!). O

Actually, polarity neither relies upon symmetry, nor boundedness, nor on having
0 as an interior point. To take gauges and support functions resulting in (3.2.6),
(3.2.7), the only important property is after all that O be in the closed convex set
under consideration (B or B*). In other words, the polarity relations (3.2.6), (3.2.7)
establish an involution between sets that are merely closed convex, and contain the
origin. More precisely, we have the following result:

Proposition 3.2.4 Let C be a closed convex set containing the origin. Its gauge yo
is the support function of a closed convex set containing the origin, namely

C°:={seR": (s,d) < 1foralld € C}, (3.2.8)

which defines the polar (set) of C.
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Proof. We know that y¢ (which, by Theorem 1.2.5(1), is closed, sublinear and non-
negative) is the support function of some closed convex set containing the origin,
say D; from (3.1.1),

D={seR": (s,d) <rforall (d,7) € epiyc}.

As seen in (1.2.4), epiy¢ is the closed convex conical hull of C' x {1}; we can use
positive homogeneity to write

D ={s€R" : (s,d) <1 forall d such that yo(d) < 1}.

In view of Theorem 1.2.5(iii), the above index-set is just C'; in other words, D = C°.
]

epi Y = epi Oge

200 1de = <O ido

Fig. 3.2.3. Gauges and supports

Geometrically, the above proof is illustrated by Fig.3.2.3, in which dual ele-
ments are drawn in dashed lines: D = C° is obtained by cutting the polar cone
(epic)® at the level —1. Turn the picture upside down: cutting the polar cone
(epi~yco)® at the level which has now become —1, we obtain (C°)°. But the polar-
ity between closed convex cones is involutive: the picture shows that (epi~yc.)® is
our original cone epivc. In other words, C°° = C, Proposition 3.2.4 has its dual
version:

Corollary 3.2.5 Let C be a closed convex set containing the origin. Its support
Sfunction o¢ is the gauge of C°. O
Remark 3.2.6 The elementary operation making up polarity is a one-to-one mapping be-

tween nonzero vectors and affine hyperplanes not containing the origin, via the equation
inspired from (3.2.8):
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s— H(s):=Hs1={yeR":(s,y) =1}. (3.2.9)

Direct calculations show for example that the polar of the half-space

H :={y=(,{n) R’ €< 2}

is the segment
(H)° ={(p,0) : 0<p<1/2}.

This simple example suggests the following comment: if ¢ is a given nonnegative closed
sublinear function, it is the gauge of a set G which can be immediately constructed: along
0 # s € R", plot the point g(s) = s/a(s) € [0, +00]s. Then G is the union of the segments
[0, g(s)], with s describing the unit sphere. If, along the same s, we plot the point o(s)s, we
likewise get a description of the set S supported by o, but in a much less direct way: G is
now enveloped by the affine hyperplane orthogonal to s and containing the point o (s)s; now,
differentiation is involved.

P

Fig. 3.2.4. Description of mutually polar sets

An expert in geometry will for example see on Fig. 3.2.4 that the polar of the circle

C={lp,7) : p"+(r=1/2)" <1/4}

has a parabolic boundary. We leave it as an exercise to compute the gauge of C, and to realize
that it is the support function of

P={@&mn) : &€<1-n}.

Constructing a set from its gauge thus appears to be substantially easier than it is from its
support function. Furthermore, to make a support function, we need a scalar product, while
a gauge just needs an origin in R™. These advantages, however, are balanced by the rich
calculus which can be developed with support functions, and which will be the subject of
§3.3. O

It is clear from (3.2.8) that (s,d) < 1 for all (d,s) € C x C°; this implies in
particular that no nonzero s € C° can be in the asymptotic cone of C'. Furthermore,
the property (s, d) = 1 means that d exposes in C° a face F o (d) containing s; and
s exposes likewise in C°° = C a face F¢(s) containing d. Because the boundary
of a closed convex set is described by its exposed faces (Proposition 3.1.5), the
following result is then natural; compare it with Fig. 3.2.2.
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Proposition 3.2.7 Let C be a nonempty compact convex set having 0 in its interior,
so that C° enjoys the same properties. Then, for all d and s in R”, the following
statements are equivalent (the notation (3.2.9) is used)

(1) H(s) is a supporting hyperplane to C at d;
(ii) H(d) is a supporting hyperplane to C° at s;
(iii)d € bdC, s € bdC° and (s,d) = 1;
ivide C,se C°and(s,d)y =1.

Proof. Left as an exercise; the assumptions are present to make sure that every
nonzero vector in R" does expose a face in each set. O

Finally, suppose that C' in (3.2.8) is a (closed convex) cone. By positive homo-
geneity, the number “1” can be replaced by any positive number, and even by “0”
(remember the proof of Theorem 3.1.1). We recognize the definition of polarity be-
tween closed convex cones. Remembering Example 2.3.1, we see that, for a closed
convex cone K, oo = 7k, hence vk = ik, which could be checked directly from
Definition 1.2.4.

3.3 Calculus with Support Functions

From §1.3, the set of sublinear functions has a structure allowing calculus. Likewise,
a calculus exists with subsets of R™. Then a natural question is: to what extent are
these structures in correspondence via the supporting operation? In other words, to
what extent is the supporting operation an isomorphism? The answer turns out to be
very rich indeed.

We start with the order relation

Theorem 3.3.1 Let Sy and Sa be nonempty closed convex sets; call o1 and o4 their
support functions. Then

S1CS — Ul(d) <U2(d)f0ralld€R".
Proof. Apply the equivalence stated in Corollary 3.1.2:

S1 C Sy <= s€ Sy forall s € .5,
<= 03(d) > (s,d) forall s € S; and all d € R”
<= 032(d) > sup,eg, (s,d) foralld € R". m]

In a way, the above result generalizes Theorem 2.2.2. The next statement goes
with Propositions 1.3.1 and 1.3.2.

Theorem 3.3.2

(1) Let o1 and oy be the support functions of the nonempty closed convex sets Sy
and S. If t1 and ty are positive, then

t101 + t202 is the support function of cl (151 + t2.52) .
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(ii) Let {0} jc be the support functions of the family of nonempty closed convex
sets {Sj}jeJ. Then

sup;¢ y 0; is the support function of & {US; : j € J}.

(iil) Let {0;};jcg be the support functions of the family of closed convex sets

{Sj}ies-If

S:=(1S;#0,
JjeJ
then
os =co{info; : j€ J}.

Proof. [(i)] Call S the closed convex set cl(¢;S1 + t2S3). By definition, its support
function is

os(d) = sup {(t151 + t252,d) : s1 € S1, s2 € S2}.

In the above expression, s; and s, run independently in their index sets .S; and S,
t; and ¢, are positive, so

os(d) =t sup(s,d) + t2 sup(s,d).
SES SESy

[(ii)] The support function of S := U;e ;S is
sup (s,d) = sup [sup, g, (s;,d)] = supo;(d).
sEUS; jed jeJ
This implies (ii) since 0s = 0g S

[(iii)] The set S := NS; being nonempty, it has a support function og. Now, from
Corollary 3.1.2,

seS=ses; foralljeJ
< (s,”) <oj foralljeJ
< (s,") <infjeyjo0; <<= (s,-) < O(inf;cs ;)

where the last equivalence comes directly from the Definition B.2.5.3 of a closed
convex hull. Again Corollary 3.1.2 tells us that the closed sublinear function
co(inf o;) is just the support function of S. O

Observe in (i) that, if Ss is bounded, then ¢; S; + £2S2 is automatically closed.

As for (iii), we have seen in Proposition 1.3.2(ii) that, if J = {1, ..., m} is a finite set,
then the “co” operation can be replaced by the infimal convolution: there holds

051n..08m =Cl(01F ... $om). 3.3.1)

This last formula is a simplification of (iii), but the closure operation should not be forgotten,
and it is something really complicated; these issues will be addressed more thoroughly in
§E.2.3.
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Returning to the end of Example 2.3.1, let K be a closed convex cone and take K’ :=
K n B(0,1). In view of the above observation, the support function of K’ is given by an
inf-convolution:
ok (d) = cl{infy[ox (y) + on(d —y)]}.
Since ok = iko, the infimum forces y to be in K°, in which case ok vanishes; knowing
that 0 5(0,1) = || - ||, the infimum is

. [}

inf {|ld —yll : y € K°}.
Here, we are in a favourable case: this infimum is actually a minimum — achieved at the
projection pxo (d) — and the result is a finite convex function, hence continuous; the closure

operation is useless and can be omitted. In a word,

OKknB(0,1) = dko . (3.3.2)

Positive homogeneity can also be exploited in Theorem 3.3.2(i) to write
o1s(d) = os(td) foralld € R® andt > 0,

a formula which also holds for negative ¢ (just write the definition). More generally:

Proposition 3.3.3 Let A : R® — R™ be a linear operator, with adjoint A* (for
some scalar product ((-,-)) in R™). For S C R™ nonempty, we have

caaes)(y) =os(A%y) forally € R™.

Proof. Just write the definitions
oa(s)(y) = sup (As, y)) = sup (s, A™y)
SES sES

and use Proposition 2.2.1 to obtain the result. O

Taking an image-function (see §B.2.4) is another operation involving a linear
operator. Its status is slightly more delicate.

Proposition 3.3.4 Let A : R™ — R be a linear operator, with adjoint A* (for
some scalar product (-,-)) in R™). Let o be the support function of a nonempty
closed convex set S C R™. If o is minorized on the inverse image

Ad) ={peR" : Ap=d) (3.33)

of each d € R™, then the support function of the set (A*)(S) is the closure of the
image-function Ao.

Proof. Our assumption is tailored to guarantee Ac € Conv R" (Theorem B.2.4.2).
The positive homogeneity of A is clear: ford € R™ and t > 0,

(Ao)(td) = nf o(p) = A(;;ltf):dta(p/t) =t inf o(q) = t(Ao)(d).
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Thus, the closed sublinear function cl (Ac) supports some set S’; by definition,
s € S'if and only if

(s,d) <inf{o(p) : Ap=d} foralld e R";

but this just means
(s, Ap) < o(p) forallp e R™,

i.e. A*s € S, because (s, Ap) = {(A*s, p)). O

-1

The inverse image (A*)(S) of the closed set S under the continuous mapping A* is
closed. By contrast, Ao need not be a closed function. As a particular case, suppose that S
is bounded (o's is finite everywhere) and that A is surjective; then Ao is finite everywhere as

-1
well, which means that (A*)(S) is compact.

Remark 3.3.5 The assumption made in Proposition 3.3.4 means exactly that the function
Ao is nowhere —oo; in other words, its closure cl (Ao) is the support function of a nonempty

—1
set: (A*)(S) # 0. This last property can be rewritten as

SNImA*#0 or 0€S—ImA* =S+ (Kerd)*. (3.3.4)

]

It has already been mentioned that taking an image-function is an important

operation, from which several other operations can be constructed. We give two
examples inspired from those at the end of §B.2.4:

—Let S; and S2 be two nonempty closed convex sets of R™, with support func-
tions o; and o2 respectively. With R™ = R" x R, take A(z,y) == z +y
and o(dy,d2) := 01(d1) + 02(d2); observe that ¢ is the support function of
S := 51 x Ss, associated with the scalar product

((s1,82), (d1,d2))) := (s1,d1) + (s2,d2) -

Then we obtain Ao = o1 ¢ 02. On the other hand, the adjoint of A is clearly
given by
A'z = (z,z) e R* xR* forallz € R,

so that the inverse image of S under A* is nothing but S; N.Ss: we recover (3.3.1).
— Let o be the support function of some nonempty closed convex set S C R* x RP
and let A(z,y) := x, so that the image of ¢ under A is defined by

R® 5z (Ao)(z) = inf {o(z,y) : y € RP}.
Now A* is
R*>z— A'z = (2,0) e R* xRP

and cl (Ao) is the support function of the slice {z € R® : (x,0) € S}. This last
set must not be confused with the projection of S onto R™, whose support function
is ¢ — os(x,0) (Proposition 3.3.3).
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Having studied the isomorphism with respect to order and algebraic structures,
we pass to topologies. Theorem 1.3.3 has defined a distance A on the set of fi-
nite sublinear functions. Likewise, the Hausdorff distance A can be defined for
nonempty closed sets (see §0.5). When restricted to nonempty compact convex sets,
Apr plays the role of the distance introduced in Theorem 1.3.3:

Theorem 3.3.6 Let S and S’ be two nonempty compact convex sets of R™. Then

Aos,095) 1= “I‘I]llllagcl los(d) — o5 (d)| = Au(S,S"). (3.3.5)

Proof. As mentioned in §0.5.1, for all » > 0, the property
max {ds(d) : d€ S'} <r (3.3.6)

simply means S’ C S + B(0,r).
Now, the support function of B(0,1) is || - || — see (2.3.1). Calculus rules on
support functions therefore tell us that (3.3.6) is also equivalent to

os(d) < og(d) +r||d|| foralld e R,
which in turn can be written

max los:(d) —os(d)] <.

In summary, we have proved

maxds(d) = X [os/(d) — o5(d)]

and symmetrically

max ds' (d) = mmax [os(d) — 05/ (d)] ;

the result follows. ]

Fig. 3.3.1. Hausdorff distances

Naturally, the max in (3.3.5) is attained at some do: for S and S’ convex compact, there exists
do of norm 1 such that
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Ag(8,S') = A(os,051) = |os(do) — a5/ (do)] -
Figure 3.3.1 illustrates a typical situation. When S’ = {0}, we obtain the number

An ({0}, 5) = max sl = max os(d),

already seen in (1.2.6); it is simply the distance from 0 to the most remote hyperplane
Hy , (a) touching S (see again the end of Interpretation 2.1.5).

Using (3.3.5), it becomes rather easy to compute the distance in Example 1.3.4, which
becomes the Hausdorff distance (in fact an excess) between the corresponding unit balls.

When speaking of limits of nonempty convex compact sets to a nonempty con-
vex compact set, the following result is a further illustration of our isomorphism.

Proposition 3.3.7 A convex-compact-valued and locally bounded multifunction F' :
R™ — R" is outer [resp. inner] semi-continuous at xo € int dom F' if and only if

its support function T + 0 (5 (d) is upper [resp. lower] semi-continuous at o for
all d of norm 1.

Proof. Calculus with support functions tells us that our definition (0.5.2) of outer
semi-continuity is equivalent to

Ve > 0,30 >0:y € B(x0,0) = 0p(y)(d) < 0p(a0)(d) + €l|d]| forall d € R”

and division by ||d|| shows that this is exactly upper semi-continuity of the support
function for ||d|| = 1. Same proof for inner/lower semi-continuity. O

Thus, a convex-compact-valued, locally bounded mapping F' is both outer and
inner semi-continuous at o if and only if its support function o (.) (d) is continuous
at zo for all d. In view of Theorem 1.3.5, o () (d) is then continuous at o uniformly
for d € B(0,1); and Theorem 3.3.6 tells us that this property in turn means:

Ag (F(z),F(z9)) =0 when z — .
The following interpretation in terms of sequences is useful.

Corollary 3.3.8 Let (Si) be a sequence of nonempty convex compact sets and S a
nonempty convex compact set. When k — +o00, the following are equivalent

(1) Sk, — S in the Hausdor{f sense, i.e. Ag(Sk,S) — 0;
(ii) s, — o5 pointwise;
(iii) o, — o5 uniformly on each compact set of R™. a

Let us sum up this Section 3.3: when combining/comparing closed convex sets,
one knows what happens to their support functions (apply the results 3.3.1 — 3.3.3).
Conversely, when closed sublinear functions are combined/compared, one knows
what happens to the sets they support. The various rules involved are summarized
in Table 3.3.1. Each S; is a nonempty closed convex set, with support function o;.

This table deserves some comments.
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— Generally speaking, it helps to remember that when a set increases, its support
function increases (first line); hence the “crossing” of closed convex hulls in the
last two lines.

— The rule of the last line comes directly from the definition (2.1.1) of a support
function, if each S; is thought of as a singleton.

— Most of these rules are still applicable without closed convexity of each S; (re-
membering that 0s = 0¢s 5). For example, the equivalence in the first line requires
closed convexity of Sy only. We mention one trap, however: when intersecting
sets, each set must be closed and convex. A counter-example in one dimension
is 51 = {0,1}, Se := {0,2}; the support functions do not see the difference
between S; N .Sz = {0} and co.S; NcoSe = [0,1].

Table 3.3.1. Calculus rules for support functions

Closed convex sets Closed sublinear functions
S1C S o1 <02
Ag (Si, 52) (.S; bounded) A(al, 0'2) (o finite)
Hausdorff convergence uniform/compact or

pointwise convergence

(on bounded sets) (on finite functions)

tS (>0 to
cl (S1+52) o1+ o2
clA(S) (A linear) oo A*
(Ai) (S) (Alinear) cl(Ao)
NjesS;  (nonempty) o (infjes 05)  (minorized)
@(UjesS;) Sup;cy 9

Example 3.3.9 (Maximal Eigenvalues) Recall from §B.1.3(e) that, if the eigenval-
ues of a symmetric matrix A are denoted by A;(A) > - -- > A, (A), the function

Sn(R) 3 A fm(A) := > A;i(4)

=1

is convex — and finite everywhere. Its positive homogeneity is obvious, therefore it is
the support function of a certain convex compact set C,,, of symmetric matrices. Let
us compute the set C; when the scalar product in S,, (R) is the standard dot-product
of R**"™:

n
«A, B» =trAB = Z Ai]'Bi]' .
i,j=1
Indeed, we know that

A(A) = sup z"Az = sup {zz",A).

zTz=1 zTz=1
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Hence C is the closed convex hull of the set of matrices {zz™ : 2"z = 1}, which
is clearly compact. Actually, its Hausdorff distance to {0} is

Ag({0},C) = max V{zzT,zzT) = 1.

Incidentally, A, (-) is therefore nonexpansive in S, (R).
We leave it as an exercise to prove the following nicer representation of Cf:

Ci=cofzz” : 2'2=1}={M € S,(R) : \p(M) >0, trM =1},

generalizing to S, (R) the expression of the unit-simplex in R™: C; could be called
the unit spectraplex. O

3.4 Example: Support Functions of Closed Convex Polyhedra

Polyhedral sets are encountered all the time, and thus deserve special study. They
are often defined by finitely many affine constraints, i.e. obtained as intersections of
closed half-spaces; in view of Table 3.3.1, this explains that the infimal convolution
encountered in Proposition 1.3.2 is fairly important.

Example 3.4.1 (Compact Convex Polyhedra) First of all, the support function of
a polyhedron defined as

P:=co{p1,---,Pm} (3.4.1)
is trivially
d— op(d) = max {(p;,d) : i=1,...,m}.
There is no need to invoke Theorem 3.3.2 for this: a linear function (-, d) attains

its maximum on an extreme point of P (Proposition A.2.4.6), even if this extreme
point is not the entire face exposed by d. O

Example 3.4.2 (Closed Convex Polyhedral Cones) Taking again Example 2.3.1,
suppose that the cone K is given as a finite intersection of half-spaces:

K=n{K; :j=1,...,m}, (3.4.2)

where
K;j:=H, o:={s€R" : (a;,s) <0} (3.4.3)
(the a;’s are assumed nonzero). We use Proposition 1.3.2:
m m
ox(d) = clinf{ Y ok, (d) : Y dj = d} .
j=1 j=1
Only those d; in K7 — namely nonnegative multiples of a;, see (2.3.2) — count to
yield the infimum,; their corresponding support vanishes and we obtain

0 ideZ;-nzltjaj, thOfOI’jZI,...,m,
+00 otherwise .

ow(@ = {
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Here, we are lucky: the closure operation is useless because the righthand side is
already a closed convex function. Note that we recognize Farkas’ Lemma A.4.3.3:
K° = dom ok is the conical hull of the a;’s, which is closed thanks to the fact that
there are finitely many generators. a

Example 3.4.3 (Extreme Points and Directions) Suppose our polyhedron is de-
fined in the spirit of 3.4.1, but unbounded:

S :=co{pi1,..-,Pm} +conedas,...,az}.

Then it suffices to observe that S = P + K°, with P of (3.4.1) and K of (3.4.2),
(3.4.3). Using Table 3.3.1 and knowing that K°° = K —hence og. = ik:

~max (p;,d) if (aj,d) <O0forj=1,...,¢,
O's(d) — i=1,...,m
+00 otherwise . o

The representations of Examples 3.4.1 and 3.4.3 are not encountered so fre-
quently. Our next examples, dealing with half-spaces, represent the vast majority of
situations.

Example 3.4.4 (Inequality Constraints) Perturb Example 3.4.2 to express the sup-
port function of S := NH by with

H :={s€R" : (s,a) <b} (a#0).

Here, we deal with translations of the K;’s: H,_ .
help of Table 3.3.1:

”a “2 m=2=a; + Kj so, with the

T r7—
aj,bj

(d): tbj ifd:taj,tZO,
b; 400 otherwise .

Provided that S # {, our support function o5 is therefore the closure of the function

lllf § t b . E t a; = d t lf d e coneya Lo,
j 7' 7%5 y by > 0 1, ym s,
d > {]'_1 j=1 } { }

+o00 otherwise . O

Now we have a sudden complication: the domain of ¢ is still the closed convex
cone K°, but the status of the closure operation is no longer quite clear. Also, it is
not even clear whether the above infimum is attained. Actually, all this results from
Farkas’ Lemma of §A.4.3; before giving the details, let us adopt different notation.

Example 3.4.5 (Closed Convex Polyhedra in Standard Form) Even though Ex-
ample 3.4.4 uses the Definition A.4.2.5 of a closed convex polyhedron, the follow-
ing “standard” description is often used. Let A be a linear operator from R™ to R™,
beImA C R, K C R” aclosed convex polyhedral cone (K is usually charac-
terized as in Example 3.4.2). Then S is given by
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S:={seR": As=b,se€ K} =({so}+H)NK, (3.4.4)

where sq is some point in R” satisfying Asg = b, and H := Ker A.
With the expression of g given in Example 2.3.1, we see that the support func-
tion of {so} + H is finite only on Im A*, where it is equal to

01s03(d) + 0r(d) = (s0,d) = (b,2)) ford= A"z, z€ R™

(here, ((-, -)) denotes the scalar product in R™). Thus, o5 is the closure of the infimal
convolution

(0{30} + O'H) oK = (U{so} + O’H) GiKe, (3.4.5)
which can be made explicit as the function
d—inf {(b,2)) : (z,y) e R" x K°, A*2+y=d}.
Of course, this formula clearly reveals
domos =domoyg +domigo =ImA* + K°.

In the pure standard form, R™ and R™ are both equipped with the standard dot-
product — A being a matrix with m rows and n columns — and K is the nonnegative
orthant; K ° is therefore the nonpositive orthant. Our “standard” S of (3.4.4) is now

{seR"*: As=b, s > 0}, (3.4.6)
assumed nonempty. Then (3.4.5) becomes
inf{b'z : ATz >d}, (34.7)

a function of d which is by no means simpler than in 3.4.4 — only the notation is
different. In summary, the support function

os(d) =sup{s'd : As=1b, s >0} (3.4.8)

of the set (3.4.6) is the closure of (3.4.7), considered as a function of d € R™.
Now, invoke Farkas’ Lemma: write the equivalent statements (i)”” and (ii)” from
the end of §A.4, with (z, p, a, ) changed to (—z, —d, s, —0):

{zeR" : ATz>d} C{z€R" : bz >0} (3.4.9)
is equivalent to
35 >0 suchthat As=b,s'd>0o. (3.4.10)

In other words: the largest o for which (3.4.9) holds —i.e. the value (3.4.7) —is also
the largest o for which (3.4.10) holds — i.e. 05(d). The closure operation can be
omitted and we do have

os(d)=inf{b"z: ATz >d} forallde R".

Another interesting consequence can be noted. Take d such that o5(d) < +o0:
if we put ¢ = o5(d) in (3.4.9), we obtain a true statement, i.e. (3.4.10) is also true.
This means that the supremum in (3.4.8) is attained when it is finite. O
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It is worth noting that Example 3.4.5 describes general polyhedral functions, up
to notational changes. As such, it discloses results of general interest, namely:

— A linear function which is bounded from below on a closed convex polyhedron
attains its minimum on this polyhedron.

— The infimum of a linear function under affine constraints is a closed sublinear
function of the righthand side; said otherwise, an image of a polyhedral function
is closed: in Example 3.4.5, the polyhedral function in question is

R™ x R® 3 (y,2) = b2 +ik(y),

and (3.4.7) gives its image under the linear mapping [ AT | 0].

Exercises

1* Let C; and C> be two nonempty closed convex sets in R” and let .S be bounded.
Show that C; + S = C3 + S implies Cy = Cs.

2*% Let P be a compact convex polyhedron on R™ with nonempty interior. Show
that P has at least n + 1 facets.

3% Let f : R* - RU {400} be positively homogeneous, not identically +oco and
minorized by a linear function. Show that €6 f(z) is the supremum of o(z) over all
closed sublinear functions ¢ minorizing f.

4% Let f and g be two gauges. Show that f ¢ g is still a gauge and that

{z: (fyg)(@) <1} =co({z: f(z) <1}U{z : g(z) <1}).

S5+ Let C be a compact convex set with 0 € int C, so that its polar set C° enjoys
the same properties. Show that the following relations are equivalent:

(i) the hyperplane H; ; supports C at z € C;
(i1) the hyperplane H; ; supports C° at s € C°;
(i) z e bd C, s € bd C°, (s,z) = 1.

6. Draw a picture to compute the support function gp of the parabolic set P :=
{(&mn) € R : p > 1n®}. What is domop? Show that op is not upper semi-
continuous on its domain.

7. Let]]-|] be anorm on R™ and denote by S := {z € R" : ||z|| = 1} the associated
unit sphere. What is the convex hull of S?

8. Let H be a hyperplane in R™ and suppose the set S is contained in one of the
corresponding half-spaces: S C H_. Show that c6 (S N H) = (¢6.S)NH. Compare
with Exercise A.21.

9. Letz € C, where C is a closed convex set in R™. Show that z € ri C if and only
if the normal cone N¢ (z) is a subspace.
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10. Let f : R* — RU {400} and A C R be given (none of which is assumed
convex). Assume f is minorized by some affine function and set f4 := f +i4.

— Show that coepi fg C{(z,7r) e R* xR:2 €T A, r >0 f(z)}.
— Construct an example for which equality need not hold, even if A is closed convex.
— Show that equality does hold if f is affine.

11+ Recall that M 3= 0 means: M € S, (R) is positive semidefinite. Show that the
unit spectraplex {M € S,(R) : M > 0,tr M = 1} is a convex compact set, whose
support function is M — Apax(M).

12* In the Euclidean space of n x n real matrices (equipped with the scalar product

(M,P) = tr (MTP) = },; M;;P;; and associated norme || - ||), denote by S the

set of orthogonal matrices (M™M = MMT =1,,).

— Show that S is contained in the sphere B(0,/n) = {M : ||M|| = \/n}; deduce
that S is compact.

— Show that the support function of S is M + gs(M) = tr (M ™ M)'/? [hint: use
the polar decomposition of M.

— Express the values of the support functions o5(M) and o g . /m) (M) in terms of
the eigenvalues of M 7 M.

13. Let K := {M € S,(R) : M = 0} be the cone of symmetric positive semidefi-
nite matrices. What are its interior int X and boundary bd K?

Show that the distance of a symmetric positive semidefinite matrix to the bound-
ary of K is its smallest eigenvalue: dpq xk (M) = Apin(M) for M € K.

14* Let (Sk)r, be a nested family of compact sets in R (S C Sy for all k).
Show that co (N Sk) = Ng co Sk. Exhibit an example showing that the result be-
comes wrong if the Si’s are unbounded.

15% Let F' : R — R™ be a multifunction such that F'(¢) is closed convex for each
t. Show that the graph of F' is a convex set in R x R™ if and only if the function
t = op()(d) is concave forall d € R™.

Let C be closed convex in R” and ¢’ : R* — R be nonnegative and positively
homogeneous: +00 > o'(Ad) = Ao’(d) > 0 forall (A,d) € R, x R". Show that,
foranyt > 0, the set F'(t) := {z € R" : (-,z) < o¢(-) + to’(-)} is closed convex
and contains C'. What is its support function? Show that this defines a multifunction
F : R, — R™ whose graph is convex.



D. Subdifferentials of Finite Convex Functions

Introduction We have mentioned in our preamble to Chap. C that sublinearity per-
mits the approximation of convex functions to first order around a given point. In
fact, we will show here that, if f : R* — R is convex and z € R” is fixed, then the

function

exists and is finite sublinear. Furthermore, f' approximates f around z in the sense
that

fl@+h) = f(x) + f'(x, h) + o(||Al]) - (0.1

In view of the correspondence between finite sublinear functions and compact
convex sets (which formed a large part of Chap. C), f'(z, -) can be expressed for all
d e R as

f'(z,d) = 05(d) = max {(s,d) : s €S}

for some nonempty compact convex set S. This S is called the subdifferential of
f at z and is traditionally denoted by Of(x). When f is differentiable at x, with
gradient V f(z), (0.1) shows that f'(z, ) becomes linear and S contains only the
element V f(x). Thus, the concept of subdifferential generalizes that of gradient,
just as sublinearity generalizes linearity.

The “subdifferentiation” thus introduced is supposed to generalize the ordinary
differentiation; one should therefore not be surprised to find counterparts of most of
the results encountered in differential calculus: first-order Taylor expansions, mean-
value theorems, calculus rules, etc. The importance of calculus rules increases in the
framework of convex analysis: some operations on convex functions destroy differ-
entiability (and thereby find no place in differential calculus) but preserve convexity.
An important example is the max-operation; indeed, we will give a detailed account
of the calculus rules for the subdifferential of max-functions.

This chapter deals with finite-valued convex functions exclusively: it is essen-
tial for practitioners to have a good command of subdifferential calculus, and this
framework is good enough. Furthermore, its generalization to the extended-valued
case then becomes easier to assimilate. Unless otherwise specified, therefore:

|f: R™ — R is convex .

J. -B. Hiriart-Urruty et al., Fundamentals of Convex Analysis
© Springer-Verlag Berlin Heidelberg 2001
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This implies the continuity and local Lipschitz continuity of f. We note from (0.1),
however, that the concept of subdifferential is essentially local; for an extended-
valued f, most results in this chapter remain true at a point z € int dom f (as-
sumed nonempty). It can be considered as an exercise to check those results in this
generalized setting.

1 The Subdifferential: Definitions and Interpretations

1.1 First Definition: Directional Derivatives

Let z and d be fixed in R™ and consider the difference quotient of f at x in the

direction d: £ d) - f(z)
T +td) — f(x
q(t) == ;
The function t — q(t) is:
— increasing; this is Theorem 0.6.1, the criterion of increasing slopes;
— bounded near 0; this comes from the local Lipschitz property of f (§B.3.1).

For t decreasing to 0, g(t) has therefore a limit and the following definition makes
sense.

fort > 0. (1.1.1)

Definition 1.1.1 (Directional Derivative) The directional derivative of f at x in
the direction d is

f'(z,d) :=lim{q(¢) : t] 0} =inf{q(t) : t > 0}. (1.1.2)
O

If ¢ denotes the one-dimensional function ¢t — ¢(t) := f(z + td), then

f'(z,d) =D,p(0) (1.1.3)

is nothing other than the right-derivative of ¢ at 0 (Theorem 0.6.3). Changing d to
—d in (1.1.1), one obtains

P, —d) = tim LEZMD = @) fle+7d) - (@)

tl0 t 710 -7

which is not the left-derivative of ¢ at O but rather its negative counterpart:
f'(z,—d) = =D _p(0). (1.1.4)
Proposition 1.1.2 For fixed x, the function f'(zx,-) is finite sublinear.

Proof. Letd,, d; in R", and positive a;, az with @; + as = 1. From the convexity
of f:
f(z+ t(andy + azdy)) — f(z) =
f(al(m + tdl) + ag(.’L' + tdz)) - alf(z) — a2f(.’11) <
<ai[f(z +td) = f(z)] + az[f(z + tdp) — f(z)]
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for all £. Dividing by ¢t > 0 and letting ¢ | 0, we obtain
fl(x,andy + azds) < an f'(z,dy) + o f'(z,d2)

which establishes the convexity of f’ with respect to d. Its positive homogeneity is
clear: for A > 0

fla+Xd) = fla) _
At 710

f'(z,\d) = 1tiﬁ)1,\ f(a:+rci) — f(z)

= Af'(z,d) .

Finally suppose ||d|| = 1. As a finite convex function, f is Lipschitz continuous
around x (Theorem B.3.1.2); in particular there exist € > 0 and L > 0 such that

|f(z+td) — f(z)| < Lt forO0<t<e.
Hence, | f'(x, d)| < L and we conclude with positive homogeneity:
|f'(z,d)| < L||d|| foralld e R". (1.1.5)

a

Remark 1.1.3 From the end of the above proof, a local Lipschitz constant L of f around z
is transferred to f'(z,-) via (1.1.5). In view of (C.1.2.6), this same L is a global Lipschitz
constant for f'(z,-). This is even true of f'(y,-) for y close to z: with § and L such that f
has the Lipschitz constant L on B(z, §),

ly—zll<é = |f'(y,d1) — f'(y,d2)| < Llld1 — d2|| foralldi,d2 € R*. O

A consequence of Proposition 1.1.2 is that f'(z, -) is a support function, so the
following suggests itself:

Definition 1.1.4 (Subdifferential I) The subdifferential 0f(x) of f at z is the
nonempty compact convex set of R” whose support function is f'(z, -), i.e.

Of(x) :={s € R"* : (s,d) < f'(z,d) foralld € R"}. (1.1.6)
A vector s € Of(x) is called a subgradient of f at x. O

A first observation is therefore that the concept of subdifferential is attached to a
scalar product, just because the concept of support is so; changing the scalar product
changes 0f.

All the properties of the correspondence between compact convex sets and finite
sublinear functions can be reformulated for 0f(z) and f'(z,-). For example, the
breadth of 0 f () (cf. Definition C.2.1.4) along a normalized direction d is

f'(z,d) + f'(z,—d) = D,p(0) = D_¢(0) > 0

and represents the “lack of differentiability” of the function ¢ alluded to in (1.1.3),
(1.1.4); remember Proposition B.4.2.1.
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Remark 1.1.5 In particular, for d in the subspace U of linearity of f'(z,-) — the
lineality space of f'(x,-), see (C.1.1.8) —, the corresponding ¢ is differentiable at
0. The restriction of f'(z,-) to U is linear (Proposition C.1.1.6) and equals (s, -},
no matter how s is chosen in 8f(x). In words, U is the set of h for which A —
f(z + h) behaves as a function differentiable at h = 0. See Fig. 1.1.1: 8f(x) is
entirely contained in a hyperplane parallel to U; said otherwise, U is the set of
directions along which 9 f(x) has 0-breadth.
We also recall from Definition C.2.1.4 that

—f'(z,—d) < {s,d) < f'(z,d) forall (s,d) € Of(xz) x R". 0
U
Vv
U BRED

\'

Fig. 1.1.1. Linearity-space of the directional derivative

It results directly from Chap. C that Definition 1.1.4 can also be looked at from the other
side: (1.1.6) is equivalent to f'(x,d) = sup {(s,d) : s € 8f(z)}. Remembering that 3 f(z)
is compact, this supremum is attained at some s — which depends on d! In other words: for
any d € R, there is some sq € 0f(z) such that

flx +td) = f(z) +t(sqa,d) + teq(t) fort>0. (1.L.7)

Here e4(t) — 0 for ¢ | 0, and we will see later that £4 can actually be made independent
of the normalized d; as for sq, it is a subgradient giving the largest (s, d). Thus, from its
very construction, the subdifferential contains all the necessary information for a first-order
description of f.

As a finite convex function, d — f’(z,d) has itself directional derivatives and
subdifferentials. These objects at d = 0 are of particular interest; the case d # 0
will be considered later.

Proposition 1.1.6 The finite sublinear function d — o(d) := f'(zx,d) satisfies
a'(0,6) = f'(z,0) forall § € R™; (1.1.8)
o(0) = 0(0) + ¢'(0,8) = ¢'(0,9) forall § € R* ; (1.1.9)
0o (0) = Of(z). (1.1.10)
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Proof. Because ¢ is positively homogeneous and ¢ (0) = 0,

a(td) — o(0)

- =0(8) = f'(z,0) forallt>0.

This implies immediately (1.1.8) and (1.1.9). Then (1.1.10) follows from uniqueness
of the supported set. g

One should not be astonished by (1.1.8): tangency is a self-reproducing oper-
ation. Since the graph of f'(z,-) is made up of the (half-)lines tangent to gr f at
(z, f(z)), the same set must be obtained when taking the (half-)lines tangent to
gr f'(z,-). As for (1.1.9), it simply expresses that, when developing a sublinear
function to first order at 0, there is no error of linearization: (1.1.7) holds withegz = 0
in that case.

1.2 Second Definition: Minorization by Affine Functions

The previous Definition 1.1.4 of the subdifferential involved two steps: first, calcu-
lating the directional derivative, and then determining the set that it supports. It is
however possible to give a direct definition, with no reference to differentiation.

Definition 1.2.1 (Subdifferential II) The subdifferential of f at x is the set of vec-
tors s € R™ satisfying

fly) = f(z)+(s,y—=x) forally € R". (1.2.1)
O

Of course, we have to prove that our new definition coincides with 1.1.4. This
will be done in Theorem 1.2.2 below. First, we make a few remarks illustrating the
difference between Definitions 1.1.4 and 1.2.1.

— The present definition is unilateral: an inequality is required in (1.2.1), expressing
the fact that the affine function y — f(z) + (s, y — =) minorizes f and coincides
with f fory = z.

—1Itis a global definition, in the sense that (1.2.1) involves all y in R™.

— These two observations do suggest that 1.2.1 deviates from the concept of differ-
entiation, namely:

(1) no remainder term shows up in (1.2.1), and
(i1) every y counts, not only those close to z.

Actually, the proof below will show that nothing changes if:

(i’) an extra o(]|ly — z||) is added in (1.2.1), or
(ii’) (1.2.1) is required to hold for y close to x only.

Of course, these two properties (i) and (ii’) rely on convexity of f; more pre-
cisely on monotonicity of the difference quotient.
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— All subgradients are described by (1.2.1) at the same time. By contrast, f'(z,d) =
(sa,d) plots, for d # 0, only the boundary of f(z), one exposed face at a time.
The whole subdifferential is then obtained by convexification — remember Propo-
sition C.3.1.5.

Theorem 1.2.2 The definitions 1.1.4 and 1.2.1 are equivalent.
Proof. Let s satisfy (1.1.6), i.e.

(s,dy < f'(z,d) forallde R". (1.2.2)
The second equality in (1.1.2) makes it clear that (1.2.2) is equivalent to

f(z +td) — f(x)
t

(s,d) < foralld € R® andt > 0. (1.2.3)
When d describes R” and ¢ describes R}, y := = + td describes R* and we
realize that (1.2.3) is just (1.2.1). a

The above proof is deeper than it looks: because the difference quotient is increasing, the
inequality of (1.2.3) holds whenever it holds for all (d,t) € B(0,1)x]0, €]. Alternatively,
this means that nothing is changed in (1.2.1) if y is restricted to a neighborhood of x.

It is interesting to note that, in terms of first-order approximation of f, (1.2.1) brings
some additional information to (1.1.7): it says that the remainder term e4(¢) is nonnegative
for all ¢ > 0. On the other hand, (1.1.7) says that, for some specific s (depending on y),
(1.2.1) holds almost as an equality for y close to z.

Now, the path “directional derivative — subdifferential” adopted in §1.1 can be
reproduced backwards: the set defined in (1.2.1) is
— nonempty (Proposition B.1.2.1),
— closed and convex (immediate from the definitions),
— bounded, due to a simple Lipschitz argument: for given 0 # s € 9f(z), take in
(1.2.1) y = = + s/||s|] (6 > O arbitrary) to obtain

f@)+Lé > f(y) = f(=z) + s,
where the first inequality comes from the Lipschitz property B.3.1.2, written on
the compact set B(z, ).

As a result, this set of (1.2.1) has a finite-valued support function. Theorem 1.2.2
simply tells us that this support function is precisely the directional derivative
f'(z,-) of (1.1.2).

Remark 1.2.3 A (finite) sublinear function ¢ has a subdifferential, just as any other
convex function. Its subdifferential at O is defined by

0c(0) = {s : (s,d) < o(d)foralld e R"},
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in which we recognize Theorem C.2.2.2. This permits a more compact way than
(C.2.2.2) to construct a set from its support function: a (finite) sublinear function is
the support of its subdifferential at O:

o(d) =sup{(s,d) : s € 85(0)}.

In Fig.C.2.2.1, for example, the wording “filter with (s,-) < ¢?” can be re-
placed by the more elegant “take the subdifferential of o at 0”. O

1.3 Geometric Constructions and Interpretations

Definition 1.2.1 means that the elements of 0 f (z) are the slopes of the hyperplanes
supporting the epigraph of f at (z, f(z)) € R® x R. In terms of tangent and nor-
mal cones, this is expressed by the following result, which could serve as a third
definition of the subdifferential and directional derivative.

Proposition 1.3.1

(1) A vector s € R™ is a subgradient of f at x if and only if (s,—1) € R* x Ris
normal to epi f at (z, f(z)). In other words:

Nepi (@, £(z)) = {(As, =A) : s € Bf(x), A > 0}.

(ii) The tangent cone to the set epi f at (z, f(x)) is the epigraph of the directional-
derivative function d — f'(z,d):

Tepif(ili,f(l')) :{(d,’l‘) : r;f’(z’,d)}
Proof. [(i)] Apply Definition A.5.2.3 to see that (s, —1) € Nepi s(z, f(x)) means
(s,y—z)+ (=1)[r— f(z)] <0 forally € R® andr > f(y)

and the equivalence with (1.2.1) is clear. The formula follows since the set of nor-
mals forms a cone containing the origin.

[(ii)] The tangent cone to epi f is the polar of the above normal cone, i.e. the set of
(d,7) € R™ x R such that

(As,d) + (=A\)r <0 foralls € Of(z) and A > 0.
Barring the trivial case A = 0, we divide by A > 0 to obtain
r > max{(s,d) : s € df(z)} = f'(z,d). |
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