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Preface

This book is an abridged version of our two-volume opus Convex Analysis and
Minimization Algorithms [18], about which we have received very positive feedback
from users, readers, lecturers ever since it was published - by Springer-Verlag in
1993. Its pedagogical qualities were particularly appreciated, in the combination
with a rather advanced technical material.

Now [18] hasa dual but clearly defined nature:
- an introduction to the basic concepts in convex analysis,
- a study of convex minimization problems (with an emphasis on numerical algo-

rithms),
and insists on their mutual interpenetration. It is our feeling that the above basic
introduction is much needed in the scientific community. This is the motivation for
the present edition, our intention being to create a tool useful to teach convex anal­
ysis. We have thus extracted from [18] its "backbone" devoted to convex analysis,
namely Chaps III-VI and X. Apart from some local improvements, the present text
is mostly a copy of the corresponding chapters. The main difference is that we have
deleted material deemed too advanced for an introduction, or too closely attached to
numerical algorithms.

Further, we have included exercises, whose degree of difficulty is suggested by
0, I or 2 stars *. Finally, the index has been considerably enriched .

Just as in [18], each chapter is presented as a "lesson", in the sense of our old
masters, treating of a given subject in its entirety. After an introduction presenting
or recalling elementary material, there are five such lessons:
- A Convex sets (corresponding to Chap. III in [18]),
- B Convex functions (Chap. IV in [18]),
- C Sublinearity and support functions (Chap. V),
- D Subdifferentials in the finite-valued case (VI),
- E Conjugacy (X).
Thus, we do not go beyond conjugacy. Inparticular, subdifferentiability of extended­
valued functions is intentionally left aside. This allows a lighter book, easier to
master and to go through. The same reason led us to skip duality which, besides, is
more related to optimization. Readers interested by these topics can always read the
relevant chapters in [18] (namely Chaps XI and XII).



VI Preface

During the French Revolution , the writer of a bill on public instruction com­
plained : "Le defaut ou la disette de bons ouvrages elementaires a ete, jusqu'a
present, un des plus grands obstacles qui s'opposaient au perfectionnement de
I'instruction. La raison de cette disette, c'est que jusqu'a present les savants d'un
merite eminent ont, presque toujours, prefere fa gloire d 'elever l 'edifice de fa sci­
ence a fa peine d'en eclairer l 'entree:" Our main motivation here is precisely to
"light the entrance" of the monument Convex Analysis . This is therefore not a ref­
erence book, to be kept on the shelf by experts who already know the building and
can find their way through it; it is far more a book for the purpose of learning and
teaching. We call above all on the intuition of the reader, and our approach is very
gradual. Nevertheless, we keep constantly in mind the suggestion of A. Einstein :
"Everything should be made as simple as possible, but not simpler". Indeed, the
content is by no means elementary, and will be hard for a reader not possessing a
firm mastery of basic mathematical skill.

We could not completely avoid cross-references between the various chapters;
but for many of them, the motivation is to suggest an intellectual link between appar­
ently independent concepts, rather than a technical need for previous results. More
than a tree, our approach evokes a spiral, made up of loosely interrelated elements.

Many sections are set in smaller characters. They are by no means reserved to
advanced material; rather, they are there to help the reader with illustrative examples
and side remarks , that help to understand a delicate point, or prepare some material
to come in a subsequent chapter. Roughly speaking, sections in smaller characters
can be compared to footnotes, used to avoid interrupting the flow of the develop­
ment ; it can be helpful to skip them during a deeper reading, with pencil and paper.
They can often be considered as additional informal exercises, useful to keep the
reader alert.

The numbering of sections restarts at I in each chapter, and chapter numbers are
dropped in a reference to an equation or result from within the same chapter.

Toulouse and Grenoble,
March 2001 J.-B. Hiriart-Urruty, C. Lemarechal,

1 "The lack or scarcity of good, elementary books has been, until now, one of the greatest
obstacles in the way of better instruction. The reason for this scarcity is that, until now,
scholars of great merit have almost always preferred the glory of constructing the mon­
ument of science over the effort of lighting its entrance." D. Guedj: La Revolution des
Savants, Decouvertes, Gallimard Sciences (1988) 130 - 131.
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o. Introduction: Notation, Elementary Results

We start this chapter by listing some basic concepts, which are or should be well­
known - but it is good sometimes to return to basics. This gives us the opportunity of
making precise the system of notation used in this book . For example, some readers
may have forgotten that "i.e," means id est, the literal translation of "that is (to say)".
If we get closer to mathem atics, S\{x} denotes the set obtained by depriving a set

-1

S of a point xES. We also mention that, if f is a function, f (y) is the inverse
image of y , i.e. the set of all points x such that f (x) = y. When f is invertible, this
set is the singleton {j-I (yn.

After these basic recalls, we prove some results on convex functions of one real
variable. They are just as basic, but are easily established and will be of some use in
this book.

1 Some Facts About Lower and Upper Bounds

1.1 In the totally ordered set lR , inf E and sup E are respectively the greatest lower
bound - the infimum - and least upper bound - the supremum - of a nonempty
subset E , when they exist (as real numbers). Then, they mayor may not belong
to E; when they do, a more accurate notation is min E and max E. Whenever the
relevant infima exist, the following relations are clear enough:

inf (E U F) = min {inf E , inf F}, }
FeE ===} inf F ~ inf E ,

inf (E n F) ~ max {inf E , inf F} .

If E is characterized by a certain property P , we use the notation

E = {r E lR : r satisfies P} .

(1.1)

Defining (in lR considered as a real vector space) the standard operations on
nonempty sets

E + F := {r = e + f : e E E , f E F},
tE := {tr : r E E} for t E lR

(the sign ":=" means "equals by definition"), it is also clear that

J. -B. Hiriart-Urruty et al., Fundamentals of  Convex Analysis

© Springer-Verlag Berlin Heidelberg 2001



2 O. Introduction: Notation, Elementary Results

inf (E + F) = inf E + inf F , }
inf tE = t inf E if t > 0 ,

inf(-E) = -supE,
(1.2)

whenever the relevant extrema exist.
The word positive means "> 0", and nonpositive therefore means " ::::; 0"; same

conventions with negative and nonnegative . The set of nonnegative numbers is de­
noted by JR+ and, generally speaking, a substar deprives a set of the point O. Thus,
for example,

N* ={1 ,2, . ..} and JR:: ={tEJR : t>O}.

Squared brackets are used to denote the intervals of JR : for example ,

JR :J [c, b] = {t E JR : a < t ::::; b} .

The symbol "L" means convergence from the right, the limit being excluded;
thus, t -!- 0 means t ----+ 0 in IR; . The words "increasing" and" decreasing " are taken
in a broad sense: a sequence (tk) is increasing when k > k' :::} tk ? tk' . We use
the notation (tk), or (tkh, or (tkhE ]\/. for a sequence of elements tl, ia , . ..

1.2 Now, to denote a real-valued function f defined on a nonempty set X , we write

X 3 x f-7 f(x) E JR.

The sublevel-set of f at level r E JR is defined by

Sr(f) :={XEX: f(x) ::::;r} .

If two functions f and 9 from X to JR satisfy

f(x) ::::; g(x) for all x EX ,

we say that f minorizes 9 (on X), or that 9 majorizes t .
Computing the number

inf {f(x) : x E X} = : I (1.3)

represents a minimization problem posed in x :namely that of finding a so-called
minimizingsequence, i.e. (Xk) C X such that f(Xk) ----+ I when k ----+ +00(note that
no structure is assumed on X). In other words, I is the largest lower bound inf f(X)
of the subset f(X) C JR, and will often be called the infimal value, or more simply
the infimum of f on X . Another notation for (1.3) is inf,:Ex f(x) , or also infx f.
The function f is usually called the objective function, or also infimand. We can
also meet supremands, minimands, etc.

From the relations (1.1), (1.2), we deduce (hereafter, Ii denotes the infimum of
f over Xi for i = 1,2):
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inf {f(x) : x E Xl U X 2 } = min {fl , 12} ,
Xl c X 2 =} 11 ~ 12 ,

inf {f(x) : x E Xl n X 2 } ~ max {fIJd ,

inf {f(xr) + f(X2) : Xl E Xl and X2 E X 2} = 11 + 12 , (1.4)

inf {tf(x) : x E X} = tl, fort ~ 0 ,

inf {-f(x) : x E X} = -sup {f(x) : x E X},

whenever the relevant extrema exist. The last relation is used very often.
The attention of the reader is drawn to (1.4), perhaps the only non-totally trivial

among the above relations. Calling E I := f(X I ) and E 2 := f(X2 ) the images
of X I and X 2 under f, (1.4) represents the sum of the infima inf E I and inf E 2 •

There could just as well be two different infimands, i.e. (1.4) could be written more
suggestively

(g being another real-valued function). This last relation must not be confused with

inf {f(x) + g(x) : x E X} ~ 1+ g;

here, in the language of (1.4), X I = X 2 = x , but only the image by f of the
diagonal of X x X is considered.

Another relation requiring some attention is the decoupling, or transitivity, of
infima: if 9 sends the Cartesian product X x Y to lR, then

inf {g(x, y) : x E X and y E Y} =
= infxEx[infYEY g(x, y)] = infyEy(infxEx g(x , y)].

1.3 An optimal solution of (1 .3) is an x E X such that

f(x) = 1:::; f(x) for all x EX ;

(1.5)

such an x is often called a minimizer, a minimum point, or more simply a minimum
of f on X. We will also speak of global minimum. To say that there exists a min­
imum is to say that the inf in (1.3) is a min; the infimum 1 = f(x) can then be
called the minimal value. The notation

min {f (x) : x EX}

is the same as (1.3), and says that there does exist a solution ; we stress the fact that
this notation - as well as (1.3) - represents at the same time a number and a problem
to solve. It is sometimes convenient to denote by

Argmin {f(x) : x E X}

the set of optimal solutions of (1 .3), and to use "argmin" if the solution is unique.
It is worth mentioning that the decoupling property (1.5) has a translation in

terms of Argmin's. More precisely, the following properties are easy to see:
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- If(x, y) minimizesg over X xY, then y minimizesg(x,') overY and x minimizes
over X the function

cp(x) := inf {g(x,y) : y E Y}.

- Conversely, if x minimizes sp over X and if y minimizes g(x , ') over Y, then (x, y)
minimizes 9 over X x Y.

Needless to say, symmetric properties are established, interchanging the roles of x
andy.

1.4 In our context, X is equipped with a topology; actually X is a subset of some
finite-dimensional real vector space, call it lRn ; the topology is then that induced by
a norm . The interior and closure of X are denoted by int X and cl X respectively;
its boundary is bd X .

The concept of limit is assumed familiar. We recall that the limes inferior (in the
ordered set lR) is the smallest cluster point.

Remark 1.1 The standard terminology is lower limit C'abbreviated" as lim inf!) This termi­
nology is unfortunate , however: a limit must be a well-defined unique element; otherwise,
expressions such as "f(x) has a limit" are ambiguous . 0

Thus, to say that £ = liminfx-4 x ' f(x) , with x* E dX, means: for all c > 0,

there is a neighborhood N (x*) such that f (x) ~ £ - c for all x E N (x*) ,
and

in any neighborhoodN(x*) , there isx E N(x*) such thatf(x) :::; £+ c;

in particular, if x* E X, we certainly have £ :::; f(x*) .
Let x* E X. If f(x*) :::; liminfx-4x ' f(x), then f is said to be lower semi­

continuous (l.s.c) at x*; upper semi-continuity, which means f(x*) ~ lim sup f(x),
is not much used in our context. It is well-known that, if X is a compact set on
which f is continuous, then the lower bound 1exists and (1.3) has a solution. Ac­
tually, lower semi-continuity (of f on the whole compact X) suffices: if (Xk) is a
minimizing sequence, with some cluster point x* EX, we have

f(x*) :::; lim inf f(Xk) = lim f(Xk) = 1·
k -4 OO k-4 OO

Another observation is: let E be such that dEC X; if f is continuous on dE,
then

inf {f(x) : x E E} = inf {f(x) : x E dE} .

This relation is wrong if f is only l.s.c, though : then, only (I. I) gives useful rela­
tions.

Related with (1.3), another problem is whether a given minimizing sequence
(Xk) converges to an optimal solution when k -+ +00. This problem is really dis­
tinct from (1.3) : for example, with X := lR, f(O) := 0, f(x) := l/lxl for x -I- 0, the
sequence defined by Xk = k is minimizing but does not converge to the minimum 0
when k -+ +00.
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2 The Set of Extended Real Numbers

In convex analysis, there are serious reasons for wanting to give a meaning to (1.3),
for arbitrary f and X. For this, two additional elements are appended to IR: +00 and
-00.

If E c IR is nonempty but unbounded from above, we set sup E = +00; sim­
ilarly, inf E = -00 if E is unbounded from below. Then consider the case of an
empty set: to maintain a relation such as (1.1)

inf (E U 0)[= inf E] = min {inf E, inf 0} for all 0 i:- E c IR ,

we have no choice and we set inf 0 = +00. Naturally, sup 0 = -00, and this
maintains the relation inf (- E) = - sup E in (1.2) .

It should be noted that the world of convex analysis is not symmetric, it is uni­
lateral. In particular, +00 and -00 do not play the same role, and it suffices for our
purpose to consider the set IR U {+oo}. Extending the notation of the intervals of
IR, this set will also be denoted by] - 00, +00].

To extend the structure of IR to this new set, the natural rules are adopted :

order: x ~ +00 for all x E IR U { +oo} ;
addition: (+00) + x = x + (+00) = +00 for all x E IR U {+00} ;

multiplication: t . (+00) = +00 for all 0 < t E IR U { +00} .

Thus, we see that

- the structured set (IRU {+00}, +) is not a group, just because +00 has no opposite;
- it is a fortiori not a field, a second reason being that we avoid writing t x (+00)

for t ~ O.

On the other hand, we leave it to the reader to check that the other axioms are
preserved (for the order, the addition and the multiplication); so some calculus can
at least be done in IR U {+oo}.

Actually, IR U {+oo} is nothing more than an ordered convex cone , analogous
to the set ffi.t of positive numbers. In particular, observe the following continuity
properties:

(Xk ,Yk) -+ (x ,y) in [IR U {+00}j2 ===:}

(tk ,Xk) -+ (t ,x) inffi.t x (IRU{+oo})
Xk + Yk -+ X + yin IR U {+oo} ;

===:} tkxk -+ tx in IR U {+oo} .

In this book, starting from Chap . B, the minimization problems of §1 - and in
particular (1.3) - will be understood as posed in IRU {+00}. The advantage of this is
to give a systematic meaning to all the relations of §1. On the other hand, the reader
should not feel too encumbered by this new set, which takes the place of the familiar
set of real numbers where algebra is "easy". First of all, IRU{ +oo} is relevant only as
far as images of functions are concerned: any algebraic manipulations involving no
term f(x) is "safe" and requires no special attention. When some f(x) is involved,
the following pragmatic attitude can be adopted:
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- comparison and addition: no problems in IR U {+00 }, just as in IR ;
- subtraction: before subtracting f(x), make sure that f(x) < +00;
- multiplication: think of a term like tf(x) as the multiplication of the vector f( x)

by the scalar t ; if t ~ 0, make sure that f (x) < +00 (note : in convex analysis, the
product of functions f(x)g(x) is rarely used, and multiplication by -1 puts (1.3)
in a different world);

- division : same problems as in IR, namely avoid division by 0;
- convergence: same problems as in IR, namely pay attention to 00 - 00 and 0 .

(+00) ;
- in general, do not overuse expressions like tf(x) with t ~ 0, or r - f(x) , etc .:

they do not fit well with the conical structure of IR U {+oo}.

3 Linear and Bilinear Algebra

3.0 Let us start with the model-situation of IRn , the real n-dimensional vector space
of n-uples x = (e , ,~n). In this space, the vectors e1, . . . , en , where each e,
has coordinates (0, ,0,1,0, . . . , 0) (the " I" in i t h position) form a basis, called
the canonical basis. The linear mappings from IRm to IRn are identified with the
n x m matrices which represent them in the canonical bases; vectors of IRn are thus
naturally identified with n x 1 matrices.

The space IRn is equipped with the canonical, or standard, Euclidean structure
with the help of the scalar product

n

X = (e ,... ,C ), y = (rl " .' ,77n
) 1-+ xTy:= L~i77i

i = 1

(also denoted by x . y). Then we can speak of the Euclidean space (IRn ,T ).

3.1 More generally, a Euclidean space is a real vector space, say X, ofjinite dimen­
sion, say n, equipped with a scalar product denoted by (., .) . Recall that a scalar (or
inner) product is a bilinear symmetric mapping (., .) from X x X to IR, satisfying
(x,x) > 0 for x i- O.

(a) If a basis {b1 , . .. , bn } has been chosen in X, along which two vectors x and y
have the coordinates (e ,... ,~n) and (771 , . . . , 77n), we have

n

(x ,y) = L ~i77j(bi,bj).
i ,j=l

This can be written (x, y) = X T Qy, where Q is a symmetric positive definite n x n
matrix (Sn(lR) will denote the set of symmetric matrices). In this situation, to equip
X with a scalar product is actually to take a symmetric positive definite matrix.

The simplest matrix Q is the identity matrix I, or In, which corresponds to the
scalar product
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n

(x, y) = X T Y = 2:~;1J ; ,
;=1

called the dot-produ ct. For this particular product, one has (b;, bj ) = O;j (o;j is the
symbol of Kronecker: O;j = a if i # i . 0; ; = 1). The basis {bI , . .. , bn } is said to
be orthonormal for this scalar product; and this scalar product is of course the only
one for which the given basis is orthonormal.

Thus, whenever we have a basis in X , we know all the possible ways of equip­
ping X with a Euclidean structure .

(b). Reasoning in the other direction, let us start from a Euclidean space (X , (' , .))
of dimension n . It is possible to find a basis {bI , . . . , bn } of X , which is orthonormal
for the given scalar product (i.e. which satisfies (b;, bj ) = O;j for i , j = 1, . . . , n). If
two vectors x and yare expressed in terms of this basis, (x , y) can be written x T y.

Use the space IRn of §3.0 and denote by tp : IRn -7 X the unique linear operator
(isomorphi sm of vector spaces) satisfying tp (ei ) = b; for i = 1, . . . , n . Then

X T Y = (tp(x), tp(y)) for all x andy in IRn ,

so the Euclidean structure is also carried over by ip , which is therefore an isomor­
phism of Euclidean spaces as well. Thus, any Euclidean space (X , (' , .)) of dimen­
sion n is isomorphic to (IRn ,T), which explains the importance of this last space.
However, given a Euclide an space, an orthonormal basis need not be easy to con­
struct; said otherwise, one must sometimes content oneself with a scalar product
imposed by the problem considered.

Example 3.1 Vector spaces of matrices form a rich field of applications for the
techniques and results of convex analysis. The set of p x q matrices forms a vector
space of dimension pq, in which a natural scalar product of two matrices M and N
is (tr A := L~= I A ;; is the trace of the n x n matrix A)

p q

(M, N) := tr M T N = 2: 2: M;jN;j .
;= 1 j=I

o

(c). A subspace V of (X, (' , .)) can be equipped with the Euclidean structure de­
fined by

V x V :3 (x ,y) t-+ (x ,y) .

Unless otherwise specified, we will generally use this induced structure, with the
same notation for the scalar product in V and in X .

More importantly, let (Xl , (-, ·h) and (X2 , (' , ·h) be two Euclidean spaces.
Their Cartesian product X = XIX X 2 can be made Euclidean via the scalar product

This is not compulsory: cases may occur in which the product- space X has its own
Euclidean structure, not possessing this "decomposability" property.
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3.2 Let (X, ( ' , .)) and (Y, ((', .))) be two Euclidean spaces, knowing that we could
write just as well X = IRn and Y = IRm .

(a) . If A is a linear operator from X to Y, the adjoint of A is the unique operator
A * from Y to X, defined by

(A*y ,x) = ((y,Ax)) for all (x,y) E X x Y .

There holds (A*)* = A. When both X and Y have orthonormal bases (as is the
case with canonical bases for the dot-product in the respective spaces), the matrix
representing A * in these bases is the transpose of the matrix representing A.

Consider the case (Y, ((' , .))) = (X, (' , .)) . When A is invertible, so is A *, and
then (A*)-l = (A -1)*. When A* = A, we say that A is self-adjoint, or symmetric.
If, in addition,

(Ax ,x) > 0 [resp. ~ 0] for all 0 =j:. x EX ,

then A is positive definite [resp. positive semi-definite] and we write A :r 0 [resp.
A >- 0]. When X = Y is equipped with an orthonormal basis, symmetric operators
can be characterized in terms of matrices : A is symmetric [resp. symmetric positive
(semi)-definiteJ if and only if the matrix representing A (in the orthonormal basis)
is symmetric [resp. symmetric positive (semi)-definite].

(b) . When the image-space Y is IR , an operator is rather called a form. If £ is a
linear form on (X, (',')), there exists a unique 8 E X such that £(x) = (8,x) for
all x E X . If q is a quadratic form on (X, (" .)), there exists a unique symmetric
operator Q such that

q(x) := ~(Qx,x) for all x E X

(the coefficient 1/2 is useful to simplify most algebraic manipulations).

Remark 3.2 The correspondence £ !:::t 8 is a triviality in (IRn , T ) (just transpose
the 1 x n matrices to vectors) but this is deceiving. Indeed, it is the correspondence
X !:::t X* between a space and its dual that is being considered. For two vectors
8 and x of X, it is good practice to think of the scalar product (8,x) as the action
of the first argument 8 (a slope, representing an element in the dual) on the second
argument x; this helps one to understand what one is doing. Likewise, the operator
Q associated with a quadratic form sends X to X*; and an adjoint A* is from Y*
to X*. 0

3.3 Two subspaces U and V of (X, (" .)) are mutually orthogonal if (u,v) = 0 for
all u E U and v E V , a relation denoted by U ..1 V. On the other hand, U and V
are generators of X if U + V = X . For given U, we denote by U .L the orthogonal
supplement of U, i.e. the unique subspace orthogonal to U such that U and U.L form
a generator of X.

Let A : X ~ Y be an arbitrary linear operator, X and Y having arbitrary scalar
products. As can easily be seen,
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Ker A:= {x EX: A x = 0 E Y}

and
ImA* := { x EX: x = A*s for some s E Y}

are orthogonal generators of X . In other words,

Ker A = (ImA*) .L .

This is a very important relation; one must learn to use it quasi-mechanically, re­
membering that A ** = A and U.LJ. = U. For example, if A is symmetric, Im A is
the orthogonal supplement of Ker A.

Important examples of linear operators from (X, (".)) to itself are orthogonal
projections: if H is a subspace of X , the operator PH : X -* X of orthogonal
projection onto H is defined by:

PHX=O for x E H .L,

PHX = x for x E H,
PHis completed by linearity in between .

This PHis symmetric and idempotent (i.e. PH 0 PH = PH). Conversely, a linear op­
erator p which is symmetric and idempotent is an orthogonal projection ; of course,
it is the projection onto the subspace Imp.

3.4 If A is a symmetric linear operator on X, remember that (Im A).L = Ker A .
Then consider the operator Plm A of orthogonal projection onto Im A. For given
y EX, there is a unique x = x(y) in Im A such that Ax = PlmAY; furthermore,
the mapping y r--t x(y) is linear. This mapping is called the pseudo-inverse, or
generalized inverse, of A (more specifically, it the pseudo-inverse of Moore and
Penrose). We denote it by A -; other notations are A +, A # , etc.

We recall some useful properties of the pseudo-inverse: Im A- = Im A;
A - A = AA- = PlmA; and if A is positive semi-definite, so is A - .

4 Differentiation in a Euclidean Space

A Euclidean space (X, (', .)) is a normed vector space (certainly complete) thanks
to the norm

X 3 x r--t Ilxll := J (x , x ) ,

called the Euclidean norm associated with (', .) . We denote by

B(x,r) := {y EX : lIy - xii :( r}

the ball of center x E X and radius r > O. In particular, B(O , 1) is called the unit
ball, whose boundary is the unit sphere

B(O, 1) := {y E X Ilyll = I} .
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The norm and scalar product are related by the fundamental Cauchy-Schwarz in­
equality (no "t", please)

l(s,x)1 ~ IIsllllxll for all (s,x) E X x X .

Remember that all norms are equivalent in our finite-dimensional space X : if III . III
is another norm, there are positive numbers £ and L such that

£lllxlll ~ Ilxll ~ Llllxlil for all x EX .

However, the Euclide an norm II . II plays a special role.

4.1 We will denote by 10(·) a generic function (from some normed space to another)
which tends to 0 when its argument tends to O. For example, the continuity of f at
x can be expressed by

f( x + h) = f(x) + e(h).

When we need to distinguish speeds of convergence, multiplicative factors can be
used. For example,

IIhllae(h) for 0: = 1,2, . ..

denotes the functions tending to 0 faster than IIhll , IIh1l2 , . •. A more handy notation
for IIhllac(h) is o(lIhll a ) (pronounce "little oh of .. . ").

Beware that these are only notations, and algebraic manipulation with them
should be done very carefully. For example 10(·) == re( ·) for all r "I 0, hence in
particular c(.) - 10(·) = e(·)! Always keep the definitions in mind ; for example, to
say that a function h I-t i.p(h) is o(lIhll) means :

\:Ie > 0 38 > 0 such that IIhll ~ 8 ===} 11i.p(h)1I ~ ellhll ·

With this last notation, a function f : [l -7 1R, defined on an open set [l eX,
is said to be differentiable at x E [l if there exists a linear form £ on X such that

f(x + h) = f(x) + £(h) + o(lIhll) ·

This linear form £, denoted by f'(x), Df(x) or df(x) , is called the differential of
f at x. According to §3.2(b), it can be represented by a unique clement of X; this
element is called the gradient of f at z, denoted by \7f(x), and is therefore defined
by

j'(x)(h) = (\7f(x) ,h) for all hEX.

Example 4.1 Let HeX be a subspace, equipped with the Euclidean structure
induced by (X, (', .)) as in §3.1(c) . If f is differentiable at x E H, its gradient
\7f(x) is obtained from

f(x + h) = f(x) + (\7 f(x), h) + o(llhll) · (4 .1)

Then define the function fII : H -7 IR to be the restriction of f to H . This fH
is differentiable at x and its gradient \7 fH(X) is the vector (of H!) satisfying
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j(x + h) = j(x) + (V jll(X) , h) + o(llhll) for all h E H .

Its computation is simple: in view of the properties of an orthogonal projection,

(V j(x) , h) = (PHV j(x) , h) for all h E H .

Plugging this into (4.1), we see that V jH( X) = pHV j(x) . 0

It is important to realize that the representation of 1'(x) by V j(x) changes if
(" .) is changed. The gradient depends on the scalar product; but the differential
does not.

If the space is equipped with an orthonormal basis, along which x has the coor­
dinates ~1

, . • . , ~n, then I' (x) is represented by the row-matrix

[:~ (x), .. . , :~ (x)]

and V j (x) is the vectorof ~n whose coordinates are (8 j / 8~i) (x) for i = 1, . .. ,n.
4.2 More generally, a function F from D c X to some other Euclidean space, say
y = ~m , is differentiable at x E D if there exists a linear operator L from X to Y
yielding the first-order approximation

F( x + h) = F( x) + L(h) + o(llhll) .

The differential L of F at x is also called the Jacobian operator of F at z, again
denoted by F'(x) , DF( x), or also JF(x). Nothing is really new with respect to the
scalar case of §4.1; denoting by II ,..., j m the component-functions of F along
some basis of Y, F is differentiable at x if and only if each Ii is such and

JF(x)(h) = (j{ (x)(h) , . .. , j:n(x)(h)) for all hEX .

The matrix representation of JF(x) along the bases of X and Y is an m x n matrix,
whose (i ,j)th element is (8j;/8~j)(x) .

Given a scalar-valued function j , differentiable on D, consider the function y M

t' (y), sending D to the space of linear forms on X . If this new function is in tum
differentiable at x, we obtain the second-orderdifferential (of j at x). This defines
a bilinearform via

X x X 3 (h, k) M [(j')'(x)(h)](k) =: j"(x)(h, k),

which is also symmetric; as such, it induces a quadratic form on X (for which we
will use the same notation).

If X is equipped with a scalar product (', '), §3.2(b) tells us that the quadratic
form j"(x) defines a symmetric operator: the Hessian of j at z, denoted by V 2 j(x) ,
or Hj(x). Just as the gradient, the Hessian depends on the scalar product; and there
holds the second-order approximation of j at x:

j(x + h) = j(x) + (V j(x) , h) + !(V2 j(x)h, h) + o(lIhI1 2
) .

With an orthonormal basis and x = (e ,. .. ,~n), V2 j(x) is represented by a
symmetric matrix whose (i ,j)th element is (82j /8~i8e)(x) , called the Hessian
matrix of j at x .
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5 Set-Valued Analysis

5.1 If 8 is a nonempty closed subset of IRn
, we denote by

ds(x) := min Ily - xii
yES

the distance from x to 8. Given two nonempty closed sets 8 1 and 8 2 , consider

called the excess of 8 1 over 8 2 : geometrically,

ell(8l/8 2 ) ~ E means 8 1 C 8 2 + B(O, E) .

The Hausdorff-distance L1H between 8 1 and 8 2 is then the symmetrization of
the above concept:

One checks immediately that L1H(81 , 8 2 ) E IR+ U{+oo}, but L1H is a finite-valued
function when restricted to bounded closed sets. Also

L1H (8 1 , 8 2 ) = 0 {::::::} 8 1 = 8 2 ,

L1H(81 ,82 ) = L1H(82 ,81 ) ,

L1H(81 ,83 ) ~ L1H(81 ,82 ) + L1H(82 ,83 ) .

In other words , L1H does define a distance on the family of nonempty compact
subsets of IRn .

5.2 A mapping F which, to x EX, associates a subset of IRn, is called a multi­
valued, or set-valued mapping, or more simply a multifunction ; we use the notation

X '3 x f----7 F(x) C IRn

(watch the arrow, longer than in §1.2). The domain dam F of F is the set of x E X
such that F(x) # 0. Its image (or range) F(X) and graph gr F are the unions of the
sets F (x) C IRn and {x} x F(x) c X x IRn respectively, when x describes X (or,
more precisely, dam F). A selection of F is a particular function f : dam F -+ IRn
with f(x) E F(x) for all x .

The concept of convergence is here much more tricky than in the single -valued
case. First of all, since a limit is going to be a set anyway, the following concept is
relevant: the limes exterior of F(x) for x -+ x * is the set of all cluster points of all
selections (here, x* E cl dam F). In other words , y E lim extx -+x ' F(x) means :
there exists a sequence (Xk, Ykh such that

Yk E F(Xk) , Xk -+ x * and Yk -+ Y when k -+ + 00.

Note that this does not depend on multi-valuedness: each F(x) might well be a
singleton for all x . For example,
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lim ext{sin(l/t)} = [-1 ,+1].
t -J,.O

The limes interior of F( x) for x -+ x* is the set of limi ts of all convergent
selections: y E lim intx-tx' F( x ) means that there exists a function x I-t f (x) such
that

f( x) E F( x) for all x and f( x) -+ y when x -+ x* .

Clearly enough, one always has lim int F( x) C lim ext F(x) ; when these two sets
are equal, the common set is the limit of F( x ) when x -+ x*.

Remark 5.1 The aboveconceptsare classical but one usually speaks of lim sup and lim inf .
The reason is that the lim ext [resp. lim int] is the largest [resp. smallest] cluster set for the
order "c". Such a terminology is howevermisleading, since this order does not generalize

For example, with X = {I , 1/2 , .. . , 11k , . .. } (and x ' = 0), what are the lim sup and
lim inf of the sequence«_I)k) for k -+ -l-oo? With the classical terminology, the answer is
confusing:
- If (_I)k is considered as a number in the ordered set (JR, ~) , then

lim sup (_I)k = 1 and liminf(-I)k =-l.

- If (_I)k is considered as a singleton in the ordered set (2R
, C) , then

Iimsup(-I)k={-I ,+I} and Iiminf(-I)k=0 . o

Beware that the above limes may cover somewhat pathological behaviours. Take
for example the multifunction

]0, +oo[3 t f---+ F(t) := {a, lit} c IR.

Then lim ext.j ., F(t) = {a}, a set which does not reflect the intuitive idea that a
lim ext should connote. Note: in this example, LlH[F(t), {a}] = e[F (t )/ {O}] -+
+00 when t t 0. The same pathological behaviour of the Hausdorff distance occurs
in the following example:

F(t) := [0, lit] for t > °and F(O) = [0, + 00[.

Then F(O) = limt.j.oF(t) but LlH[F(t), F(O)] == + 00 .

5.3 The multifunction F is said to be bounded-valued, closed-valued, convex­
valued etc. when the sets F( x) are bounded, closed , convex etc. If its graph is a
closed set, we say that the multifunction is closed. In order to avoid the nasty situa­
tions mentioned above, a convenient property is local boundedness: we say that the
multifunction F is locally bounded near x* when:

For some neighborhood N of x* and bounded set B C IRn ,

N C dom F and F(N) C B .
(5 .1)

If F is locally bounded near every x* in a set S , we say that F is locally bounded
on S. Then a multifunction F satisfying (5.1) is
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- outer semi-continuous at x* when

limextF(x) C F(x*) ,
x~x *

- inner semi-continuous at x* when

F(x*) C lim int F(x) .
x-+x *

- continuous when it is both outer and inner semi-continuous.
When F is closed-valued, these definitions can be made more handy thanks to

(5.1), namely : for all 10 > 0, there is a neighborhood N(x*) such that x E N(x*)
implies

F(x) c F(x*) + B(O,E)
F(x*) c F(x) + B(O,E) .

[outer semi-continuity]
[inner semi-continuity]

(5.2)

It is straightforward to check that (5.2) has an equivalent in terms of excesses:

e[F (x )/ F (x * )] :'( 10

e[F (x * ) / F (x )] :'( E.
[outer semi-continuity]
[inner semi-continuity]

In words, outer semi-continuity at x* means : all the points in F(x) are close
to F(x* ) if the varying x is close to the fixed x* . When moving away from x*,
F does not expand suddenly. Inner semi-continuity is the other way round : F(x)
does not explode when the varying x reaches x* . If the mapping is actually single­
valued, both definitions coincide with that of a continuous function at x* . Inpractice ,
outer semi-continuity is frequently encountered, while inner semi-continuity is less
natural.

5.4 Finally, we mention a situation in which limits and continuity of sets have a
natural definition : when X is an ordered set, and x t----+ F(x ) is nested. For example,
take X = 1R+ and let t t----+ F(t) satisfy F(t) c F(t') whenever t ? t' > O. Then
the set

limF(t) :=clU{F(t) : t >O}
uo

coincides with the limit of F defined in §5.2.

6 Recalls on Convex Functions of the Real Variable

We recall that a function f, defined on a nonempty interval I , is said to be convex
on I when

f(ax + (1 - a) x') :'( af(x) + (1 - a)f(x')

for all pairs of points (x, x') in I and all a E ]0,1[.
A fundamental convexity criterion is as follows:

(6 .3)
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Proposition 6.1 (Criterion of Increasing Slopes) A function f is convex on an in­
terval I if and only if, for all Xo E I, the slope-function

x t--+ f(x) - f(xo) = : s(x)
x - Xo

is increasing on 1\{xo}.

Proof. Draw a picture and work out the necessary algebra .

Convex functions enjoy some remarkable regularity properties:

Theorem 6.2 A function f, convex on an interval I, is continuous on int I .

(6.4)

D

Proof. Let Xo E int I and take a, b such that Xo E la, b[ C int I . For x -.I- Xo (so
x E ]xo,b[), write

x = ob + (1 - o:)xo and Xo = (3a + (1 - (3)x ,

with 0: -.I- 0 and (3 -.I- O. Then apply the relation of definition (6.3) to see that

f(x) ~ f(xo) + o:[j(b) - f(xo)] and

hence, passing to the limit:

f(xo) ~ -(3-f(a) + f(x)
1-(3 1-(3

limsupf(x) ~ f(xo) and f(xo) ~ liminf f(x) .

Same technique for x t Xo . D

Theorem 6.3 A function f convex on an interval I admits a finite left-derivative
and afinite right-derivative at each Xo E int I:

They satisfy

D_f(xo) := lim f(x) - f(xo) = sup f(x) - f(xo)
x tXQ X - Xo X <XQ X - Xo

D f( ) .- l' f(x) - f(xo) _ . f f(x) - f(xo)
+ Xo .- 1m - III .

x-iXQ x - Xo X> XQ X - Xo

(6.5)

(6.6)

(6.7)

Proof. Apply the Criterion 6.1 of increasing slopes: the difference quotient involved
in (6.5), (6.6) is just the slope-function s of (6.4). For any two points x, x' in
int dom f satisfying x < Xo < x', s(x) and s(x') are finite numbers satisfying
s(x) ~ s(x'). Furthermore, when x t Xo [resp. x -.I- xo], s(x) increases [resp. s(x')
decreases], hence they both converge, say as described by the notation (6.5), (6.6);
this also proves (6.7). D

These results have converse statements:
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Theorem 6.4 Let a function f be continuous on an open interval I and possess an
increasing right-derivative, or an increasing left-derivative, on I . Then f is convex
on I .

Proof. Assume that f has an increasing right-derivative D+f. For z, x' in I with
x < x' and u E ]x, z' [, there holds

f(u) - f(x) :=;; sup D+f(t):=;; inf D+f(t):=;; f(x'~ - f(u)
u - X tE ]x ,u[ tE ]u ,x'[ x - u

(the first and last inequalities come from mean-value theorems - in inequality form
- for continuous functions admitting right-derivatives). Then (6.3) is obtained via a
multiplication by x' - x > 0, knowing that u = ax + (1 - a) x' for some a E ]0,1[.
The proof for D_ f is just the same. 0

The case where the two half-derivatives coincide is worth mentioning:

Corollary 6.5 Let a function f be differentiable with an increasing derivative on
an open interval I. Then f is convex on I. 0

Theorem 6.6 Let a function f be twice differentiable with a nonnegative second
derivative on an open interval I. Then f is convex on I.

Proof. Immediate from Corollary 6.5.

Exercises

o

1. Given a function X :3 x 1-+ f (z), considerthefollowing minimization problems:

(P ) {inff(x) ,
I x E X and

{

infx,r r ,
(P2 ) (x ,r) E X x JR,

f(x):=;;r .

- Show that they have the same infimal value.
- Show that, if (PI) has an optimal solution, then the infimum in (P2 ) is attained .
- Show that x solves (PI) if and only if there is f E JR such that (x,f) solves (P2 ) .

2*. Prove the decoupling property (1.5).
Setting h (x) := inf g(x,·) and taking (x, y) E Argmin g, show that

x E Argmin j', and y E Argming(x, ·).

Imagine counter-examples to see that converse implications need not hold.
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3 *. Given a function 9 : X X Y -+ IR,establish the relation

sup ( inf g(x ,y)) ~ inf (SUpg(x ,y))
yEY xE X x EX yEY

(start from the inner inequality inf g(., y) (; sup g(x , .), whichcan be used as a mnemonics:
when one minimizes, one obtains something smaller than whenone maximizes!)

Setting it (x) := sup g(x, ·) and h(y) := inf g(., y) and taking y E Argmin [z
(assumed nonempty), compare Argming(· , y) and Ar gm in it [hint: use the function
g(x , y) = xy to guess what can be proved and what cannot.]

4. Let a, b,c be three real numbers, with a > O. For the function IR E x 1-7 q(x) :=

ax 2 + 2bx + c, show the equ ivalence of the two statements

(i) q(x) > 0 for all x:) 0,
(ii) c > 0 and b+ vac > O.

5. Let A : IRn -+ IRn be a self-adjoint operator, b E IRn, and consider the quadratic
function

IRn :;I x 1-7 q(x) := (Ax, x) - 2(b, x) .

Show that the three statements

(i) inf {q(x): x E IRn } > - 00,

(ii) A ~ 0 and b E Im A,
(iii) the problem inf {q(x) : x E IRn} has a solution,

are equivalent. When they hold, characterize the set of minimum points of q, in
terms of the pseudo-inverse of A.

6. Let f :]0, + oo[-+ IR be continuous. Show the equivalence of the statements

(i) f(..;xy) ~ ~ [f(x) + f(y)] for all x> 0 and y > 0,

(ii) the function t 1-7 g(t) := f (et ) is convex on IR .

7. In Sn(IR), we denote by S~+(IR) [resp. S~(IR)] the set of positive [resp . semi]­
definite matrices. Characterize the properties A E S~+ (IR) and A E S~ (IR) in terms
of the eigenvalues of A. What is the boundary of S~ (IR)?

Now n = 2 and we use the notation A = [ ~ ;] for matrices in S2(IR).

Give necessary and sufficient conditions on x , y, z for which A E S~ (IR).
Draw a picture in 1R3 to visualize the set SHIR), and its intersection with the

matrices of trace 1 in S2(IR) .
Show that the boundary of S; (IR) is the set of matrices of the form vv T , with v

describing 1R2 . Give expressions of x , y, z for these matrices, as well as for those of
them that have trace 1.



A. Convex Sets

Introduction. Our working space is IRn
• We recall that this space has the structure of a real

vector space (its elements being called vectors), and also of an affine space (a set of points);
the latter can be identified with the vector-space IRn whenever an origin is specified. It is not
always possible, nor even desirable, to distinguish vectors and points .

We equip IRn with a scalar product (. , .) , so that it becomes a Euclidean space, and also
a complete normed vector space for the norm IIxll := (x ,X)1/2 . If an orthonormal basis is
chosen, there is no loss of generality in assuming that (x, y) is the usual dot-product x T y;
see §O.3.

The concepts presented in this chapter are of course fundamental, as practically all the
subsequent material is based on them (including the study of convex functions). These con­
cepts must therefore be fully mastered, and we will insist particularly on ideas, rather than
technicalities.

1 Generalities

1.1 Definition and First Examples

Definition 1.1.1 The set C C ffi.n is said to be convex if ax + (1 - a)x' is in C
whenever x and x' are in C, and a E 10, 1[ (or equivalently a E [0,1]). 0

Geometrically, this means that the line-segment

[x,x'l := {ax + (1- a)x' : °~ a ~ I}

is entirely contained in C whenever its endpoints x and x' are in C. Said otherwise :
the set C - {c} is a star-shaped set whenever c E C (a star-shaped set is a set
containing the segment [0, xl for all its points x). A consequence of the definition
is that C is also path-connected, i.e. two arbitrary points in C can be linked by a
continuous path.

Examples 1.1.2 (Sets Based on Affinity) Clearly, the convex sets in one dimen­
sion are exactly the intervals; let us give some more fundamental examples in several
dimensions.

(a) An affine hyperplane, or hyperplane, for short, is a set associated with (8,r) E
ffi.n x ffi. (8 i:- 0) and defined by

J. -B. Hiriart-Urruty et al., Fundamentals of  Convex Analysis

© Springer-Verlag Berlin Heidelberg 2001
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Hs,r := {x E IRn
: (8, x) = 1'}.

An affine hyperplane is clearly a convex set. Fix 8 and let r describe IR; then the
affine hyperplanes Hs,r are translations of the same linear, or vector, hyperplane
Hs,o. This Hs,o is the subspace of vectors that are orthogonal to 8 and can be de­
noted by Hs,o = {8}.L. Conversely, we say that 8 is the normal to Hs,o (up to
a multiplicative constant). Affine hyperplanes play a fundamental role in convex
analysis ; the correspondence between 0 -::j:. 8 E IRn and Hs,l is the basis for duality
in a Euclidean space.

(b) More generally, an affine subspace, or affine manifold, is a set V such that the
(affine) line {ax + (1 - a)x ' : a E IR} is entirely contained in V whenever x and
z' are in V (note that a single point is an affine manifold) . Again, an affine manifold
is clearly convex.

Take v E V ; it is easy - but instructive - to show that V - {v} is a subspace
of IRn, which is independent of the particular v; denote it by Vo. Thus, an affine
manifold V is nothing but the translation of some vector space Vo, sometimes called
the direction (-subspace) of V; we will also say that Vo and V are parallel. One can
therefore speak of the dimension of an affine manifold V: it is just the dimension of
Vo. We summarize in Table 1.1.1 the particular cases of affine manifolds.

Table 1.1.1. Various affine manifolds

Name Possible definition Direction Dimension
point {x} (x ERn) {OJ 0

affine aXI + (1 - a) x2 vector line
line a E R, Xl i= X2 R( XI - X2)

affine {XERn : (s ,x)=r} vector hyperpl. n-l
hyperplane (s i= 0, r E R) {s}.L

(c) The half-spaces of IRn are those sets attached to (8, r) E IRn x IR, 8 -::j:. 0, and
defined by

{x E IRn : (8,x) ~ r}
{x E IRn : (8,X) < r}

(closed half-space)
(open half-space) ;

"affine half-space" would be a more accurate terminology. We will often use the
notation H- for closed half-spaces. Naturally, an open [resp. closed] half-space is
really an open [resp. closed] set; it is the interior [resp. closure] of the corresponding
half-space; and the affine hyperplanes are the boundaries of the half-spaces ; all this
essentially comes from the continuity of the scalar product (8, .). 0

Example 1.1.3 (Simplices) Call a = (al, "" ak) the generic point of the space
IRk . The unit simplex in IRk is

k
Llk := {a E IRk : L ai = 1, ai ~ Ofori = 1, .. . ,k}.

i= l
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Equipping IRk with the standard dot-product, {el ' . . . ,ek} being the canonical basis
and e := (1, . . . , 1) the vector whose coordinates are all 1, we can also write

(1 .1.1)

Observe the hyperplane and half-spaces appearing in this definition . Unit simplices
are convex, compact, and have empty interior - being included in an affine hyper­
plane . We will often refer to a point Q E ,1 k as a set of (k) convex multipliers.

It is sometimes useful to embed ,1 k in IRm, m > k, by appending m - k zeros
to the coordinates of Q E IRk , thus obtaining a vector of ,1 m. We mention that a
so-called simplex of IRn is the figure formed by n + 1 vectors in "nondegenerate
positions"; in this sense, the unit simplex of IRk is a simplex in the affine hyperplane
of equation eT Q = 1; see Fig. 1.1.1.

Fig. 1.1.1. Representing a simplex

If we replace eT Q = 1 in (1.1.1) by eT Q :S 1, we obtain another important set,
convex, compact, with nonempty interior:

,1~ := {Q E IRk : eT Q :S 1, Qi ;:: 0 for i = 1, . . . ,k} .

In fact, Q E ,1~ means that there is Qk+l ;:: 0 such that (Q , Qk+t} E ,1 kH . In this
sense, the simplex ,1~ c IRk can be identified with ,1 kH via a projection operator.

A (unit) simplex is traditionally visualized by a triangle, which can represent ,13
or ,1~; see Fig. 1.1.1 again . 0

Example 1.1.4 (Convex Cones) A cone K is a set such that the "open" half-line
{QX : Q > O} is entirely contained in K whenever x E K. In the usual representa­
tion of geometric objects , a cone has an apex; this apex is here at 0 (when it exists : a
subspace is a cone but has no apex in this intuitive sense). Also, K is not supposed
to contain 0 - this is mainly for notational reasons , to avoid writing 0 x (+00) in
some situations. A convex cone is of course a cone which is convex; an example is
the set defined in IRn by

(Sj, x) = 0 for j = 1, ... , m, (sm+j, x) :S 0 for j = 1, . .. , p, (1.1.2)
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where the 83'S are given in IRn (once again, observe the hyperplanes and the half­
spaces appearing in the above example, observe also that the defining relations must
have zero righthand sides).

Convexity of a given set is easier to check if this set is already known to be a cone: in
view of Definition 1.1.1, a cone K is convex if and only if x + y E K whenever x and y lie
in K , i.e. K + K C K . Subspaces are particular convex cones. We leave it as an exercise
to show that, to become a subspace, what is missing from a convex cone is just symmetry
(K = -K).

A very simple cone is the nonnegative orthant of IRn

Sl+ :={x=(e, . .. ,C): ~i;?Ofori=l, . . . ,n} .

It can also be represented in terms of the canonical basis:

or, in the spirit of (1.1.2) :

Sl+ = {x E IRn : (ei, x) ;? 0 for i = 1, . . . , n} .

Convex cones will be of fundamental use in the sequel, as they are among the
simplest convex sets. Actually, they are important in convex analysis (the "unilat­
eral" realm of inequalities), just as subspaces are important in linear analysis (the
"bilateral" realm of equalities). 0

1.2 Convexity-Preserving Operations on Sets

Proposition 1.2.1 Let {Cj } jEJ be an arbitrary family of convex sets. Then their
intersection C := n{Cj : j E J} is convex.

Proof. Immediate from the very Definition 1.1.1. o

Intersecting convex sets is an operation of utmost importance; by contrast, a
union of convex sets is usually not convex.

Example 1.2.2 Let (Sl, ri). ... , (Sm, r m) be m given elements of'R" x R and consider the
set

{XERn:
(sj ,x)~rjforj=l,. . . ,m}. (1.2.1)

It is clearly convex, which is confirmed if we view it as an intersection of m half-spaces; see
Fig. 1.2.1.

We find it convenient to introduce two notations; A : Rn -+ Rm is the linear operator
which, to x E R", associates the vector with coordinates (Sj, x) ; and in R'" , the notation
a ~ b means that each coordinate of a is lower than or equal to the corresponding coordinate
of b. Then, the set (1.2.1) can be characterized by Ax ~ b, where bERm is the vector with
coordinates r1 , . .. , r m . D
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Fig. 1.2.1. An intersection of half-spaces

It is interesting to observe that the above construction applies to the examples of §1.1:

- an affine hyperplane is the intersection of two (closed) half-spaces;
- an affine manifold is the intersection of finitely many affine hyperplanes;
- a unit simplex is the intersection of an affine hyperplane with a closed convex cone;
- a convex cone such as in (1.1.2) is an intersection of a subspace with (homogeneous) half-

spaces.

Piecing together these instances of convex sets, we see that they can all be considered
as intersections of sufficiently many closed half-spaces. Another observation is that, up to
a translation, a hyperplane is the simplest instance of a convex cone - apart from (linear)
subspaces. Conclusion: translations (the key operations in the affine world), intersections
and closed half-spaces are basic objects in convex analysis.

Convexity is stable under Cartesian product, just as it is under intersection .

Proposition 1.2.3 Fori = 1, . .. , k, let C; C IRn i be convexsets. Then C1 x- . .xCk

is a convex set of IRn 1 x . .. x IRn k •

Proof. Straightforward. o

The converse is also true; C1 x . . . X Ck is convex if and only if each C, is
convex, and this results from the next property: stability under affine mappings. We
recall that A : IRn --t IRm is said to be affine when

A(ax + (1 - a)x') = aA(x) + (1 - a)A(x')

for all x and x' in IRn and all a E lit This means that x I--t A (x) - A (0) is linear, so
an affine mapping can be characterized by a linear mapping Ao and a point Yo .­
A(O) E IRm :

A(x) = Aox + Yo for all x E IRm
.

It goes without saying that images of affine manifolds under affine mappings are
affine manifolds (hence the name!) So is the case as well for convex sets:
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Proposition 1.2.4 Let A : jRn -+ jRm be an affine mapping and C a convex set of
jRn. The image A (C) ofC under A is convex in jRm .

-1

If D is a convex set of jRm , the inverse image A (D) := {x E jRn : A(x) E D}
is convex in jRn .

Proof. For x and x ' in jRn, the image under A of the segment [x , x'] is clearly
the segment [A(x) , A(x ')] C jRm . This proves the first claim, but also the second :
indeed, if x and x' are such that A(x) and A(x ') are both in the convex set D, then
every point of the segment [x, x' ] has its image in [A(x) , A(x ')] C D . 0

Immediate consequences of this last result are:

- the opposite -C of a convex set is convex;
- the sum (called direct sum, or Minkowski sum, denoted with the symbol EB by

some authors)

of two convex sets Cl and C2 is convex; when C2 = {C2} is a singleton, we will
sometimes use the lighter notation Cl + C2 for Cl + {C2};

- more generally, if al and a 2 are two real numbers, the set

(1.2.2)

is convex: it is the image of the convex set Cl x C2 (Proposition 1.2.3) under the
linear mapping sending (Xl, X2) E jRn x jRn to alxl + a2 x2 E jRn.

We recall here that the sum of two closed sets need not be closed, unless one of the sets
is compact; and convexity does not help: with n = 2, take for example

0 1 := He, TJ) : e~ 0, TJ ~ 0, eTJ ~ I} and O2 := R x {O}.

Example 1.2.5 Let 0 be convex in Rn
1 x Rn

2 and take for A the projection from Rn
1 x Rn

2

onto Rn " parallel to Rn 2: A(x, y) = z, see Fig. 1.2.2.
Then realize that the "slice" of 0 along y

0(y) :={XERn 1 : (x ,y) EO}

and the "shadow" of 0 over Rn
1

0 1 := {x E Rn
1 : (x,y) EO for some yEO}

are convex. If, in particular, 0 = 0 1 X O2 is a product, we obtain the converse to Proposi­
tion 1.2.3. 0

We finish with a topological operation.

Proposition 1.2.6 IfC is convex, so are its interior int C and its closure cl C.
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V--_..--::..-----
Fig. 1.2.2. Shadow and slice of a convex set

Proof. For given different x and X', and a E )0, 1[, we set x" = ax + (1 - a)x' E
)x,x'[.

Take first x and x' in int C. Choosing 8 > °such that B(x', 8) c C, we show
that B(x", (1- a)8) c C. As often in convex analysis, it is probably best to draw a
picture. The ratio Ilx" - xll/llx' - xii being precisely 1- a, Fig . 1.2.3 clearly shows
that B(x", (1 - a)8) is just the set ax + (1 - a)B(x' ,8), obtained from segments
with endpoints in int C: z" E int C.

Now, take x and x' in cl C: we select in C two sequences (Xk) and (xk) con­
verging to x and x' respectively. Then, aXk + (1 - a)xA, is in C and converges to
x", which is therefore in cl C. D

x

1-a a

Fig. 1.2.3. Convex sets have convex interiors

The interior of a set is (too) often empty; convexity allows the similar but much more
convenient concept of relative interior, to be seen below in §2.1. Observe the nonsymmetric
character of x and x' in Fig. 1.2.3. It can be exploited to show that the intermediate result
]x, x'[ C int C remains true even if x E cI C; a property which will be seen in more detail in
§2.1.
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1.3 Convex Combinations and Convex Hulls

The operations described in §1.2 took convex sets and made new convex sets with
them. The present section is devoted to another operation, which takes a nonconvex
set and makes a convex set with it. First, let us recall the following basic facts from
linear algebra.

(i) A linear combination of elements Xl , .. . , Xk of IRn is an element 2::=1 O:iX i,

where the coefficients O:i are arbitrary real numbers.
(ii) A (linear) subspace of IRn is a set containing all its linear combinations; an

intersection of subspaces is still a subspace.
(iii) To any nonempty set S c IRn , we can therefore associate the intersection of

all subspaces containing S . This gives a subspace : the subspace generated by
S (or linear hull of S), denoted by lin S - other notations are vect S or span S .

(iv) For the C -relation, lin S is the smallest subspace containing S ; it can be con­
structed directly from S , by collecting all the linear combinations of elements
of S .

(v) Finally, Xl, , Xk are said to be linearly independent if 2::=1 O:iXi = 0 im-
plies 0:1 = = O:k = O. In IRn , this implies k ::::; n.

Now, let us be slightly more demanding for the coefficients O:i , as follows:

(i') An affine combination of elements Xl, ... ,Xk oflRn is an element 2::=1 O:iXi,

where the coefficients O:i satisfy 2::=1 O:i = 1.

As explained after Example 1.2.2, "affinity = linearity + translation"; it is there­
fore not surprising to realize that the development (i) - (v) can be reproduced starting
from (i'):

(ii') An affine manifold in IRn is a set containing all its affine combinations (the
equivalence with Example 1.1.2(b) will appear more clearly below in Propo­
sition 1.3.3); it is easy to see that an intersection of affine manifolds is still an
affine manifold .

(iii') To any nonempty set S c IRn , we can therefore associate the intersection of
all affine manifolds containing S. This gives the affine manifold generated by
S, denoted aff S : the affine hull of S .

(iv') For the C -relation, aff S is the smallest affine manifold containing S; it can
be constructed directly from S, by collecting all the affine combinations of
elements of S. To see it, start from Xo E S , take lin (S - xo) and come back
by adding Xo: the result Xo + lin (S - xo) is just aff S.

(v') Finally, the k + 1 points xo, Xl, . .. ,Xk are said affinely independent if the set

xo+lin {xo - XO, Xl - Xo, .· ., Xk - xo} = xo+lin {Xl - Xo,· ··, Xk - xo}

has full dimension, namely k. The above set is just aff {xo, Xl, . .. ,Xk};
hence, it does not depend on the index chosen for the translation (here 0).
In linear language, the required property is that the k vectors Xi - XO, i :j:. 0
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be linearly independent. Getting rid of the arbitrary index 0, this means that
the system of equations

k

'2: 0 i X i = 0,
i= O

(1.3.1)

has the unique solution 00 = 0 1 = .. . = Ok = O. Considered as elements of
IRn H = IRn x IR , the vectors (xo, 1), ( X l , 1), . . . , ( Xk , 1), are linearly inde­
pendent. In IRn , at most n + 1 elements can thus be affinely independent.

IfXo, XI, . .. , Xk, are affinely independent, X E aff { x o, XI, . . . , Xk} can be written
in a unique way as

k

X = L O i X i with
i=O

k

LOi=1 .

i= O

The corresponding coefficients O i are sometime s called the barycentric coordinates
of X - even though such a terminology should be reserved to nonnegative O i 'S . To say
that a set of vectors are affinely dependent is to say that one of them (anyone) is an
affine combination of the others.

Example 1.3.1 Consider the unit simplex ,1 3 on the left part of Fig. 1.1.1; call ei = (1,0 ,0) ,
e2 = (0,1 ,0), e3 = (0,0 ,1) the three basis-vectors forming its vertices. The affine hull of
S = {er . es} is the affine line passing through ei and e2 . For S = {e r . es . ea}, it is the
affine plane of equation 01 + 0 2 + 0 3 = 1. The four elements 0, e i , e2, e3 are affinely
independent but the four elements (1 / 3 , 1/ 3, 1/ 3) , e i , e2 , e3 are not. D

Passing from (i) to (i') gives a set aff 5 which is closer to 5 than lin 5 , thanks to
the extra requirement in (i'). We apply once more the same idea and we pass from
affinity to convexity by requiring some more of the O i 'S. This gives a new definition,
playing the role of (i) and (i'):

Definition 1.3.2 A convex combination of elements Xl , . .. , Xk in IRn is an element
of the form

k

'2: 0 i X i ,

i=l

k

where '2: 0i = 1 and O i ?: 0 for i = 1, .. . , k .
i= l

o

A convex combination is therefore a particular affine combination, which in tum
is a particular linear combination. Note in passing that all convex combinations of
given X l, ... , X k form a convex set: the image of L\k under the linear mapping

IRk '" (01 , . . . ,Ok) t-t 0lXl + ...+ 0kXk E IRn
.

The sets playing the role of linear or affine subspaces of (ii) and (ii') will now
be logically called convex, but we have to make sure that this new definition is
consistent with Definition 1.1.1.

Proposition 1.3.3 A set C C IRn is convex if and only if it contains every convex
combination of its elements.
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Proof. The condition is sufficient: convex combinations of two elements just make
up the segment joining them. To prove necessity, take Xl, . . . ,Xk in C and Q

(Q1 , . .. ,Qk ) E L\k. One at least of the Q ;'S is positive, say Q1 > 0. Then form

which is in C by Definition 1.1.1 itself . Therefore ,

Q1 + Q 2 Q 3
Y3 := Y2 + X3

Q1 + Q 2 + Q 3 Ql + Q 2 + Q 3

is in C for the same reason ; and so on until

Ql + . . . + Qk - l Q k
Yk := 1 Yk-l + T Xk o

The working argument of the above proof is longer to write than to understand. Its ba­
sic idea is just associativity: a convex combination x = 2: n iXi of convex combinations
Xi = 2: (3i j Yij is still a convex combination x = 2: 2:(n i(3ij)Yij. The same associativity
property will be used in the next result.

Because an intersection of convex sets is convex, we can logically define as in
(iii), (iii') the convex hull co S of a nonempty set S : this is the intersection of all the
convex sets containing S.

Proposition 1.3.4 The convex hull can also be described as the set of all convex
combinations:

co S := n{C : C is convex and contain s S}
= { x E IRn : for some k E N*, there exist Xl, . . . , Xk E Sand (1.3 .2)

Q = (Ql , . . . , Qk) E L\k such that L~=l QiXi = x} .

Proof. Call T the set described in the rightmost side of (1.3.2). Clearly, T ~ S .
Also, if C is convex and contains S, then it contains all convex combinations of
elements in S (Proposition 1.3.3), i.e. C ~ T . The proof will therefore be finished
if we show that T is convex.

For this, take two points X and Y in T, characterized respectively by (Xl, Q l ), . . . ,

(Xk,Qk) and by (Yl,(3 l ), . . . , (Yl , (3e); take also X E]O, 1[. Then 'xX + (1- ,X)y is a
certain combination of k + i! elements of S; this combination is convex because its
coefficients 'x Q i and (1 - ,X)(3j are nonnegative , and their sum is

k e
,X L Qi + (1 - ,X) L bj = ,X + 1 - ,X = 1 .

i=l j =l

o

Example 1.3.5 Take a finite set {Xl , .. . , xm}. To obtain its convex hull, it is not
necessary to list all the convex combinations obtained via Q E L\k for all k =
1, . .. , m . In fact, as already seen in Example 1.1.3, L\k C L\m if k ~ m , so we can
restrict ourselves to k = m . Thus, we see that



1 Generalities 29

Make this example a little more complicated, replacing the collection of points
by a collection of convex sets: S = C1 U .. . U Cm, where each C, is convex .
A simplification of (1.3 .2) can again be exploited here. Indeed, consider a convex
combination L~=1 aiXi · It may happen that several of the Xi'S belong to the same
Cj . To simplify notation, suppose that Xk-1 and Xk are in C1; assume also ak > a.
Then set ((3i , Vi) := (ai, Xi), i = 1, . . . , k - 2 and

so that L~=1 aixi = L~~11 (3iYi. Our convex combination (a, x) is useless , in the
sense that it can also be found among those with k - 1 elements. To cut a long story
short, associativity of convex combinations yields

coS={faiXi: aE.dm , XiECifori=l, . .. ,m}.
,=1

From a geometric point of view, the convex hull of C1 U C2 (m = 2) is simply
constructed by drawing segments, with endpoints in C1 and C2 ; for C1 U C2 U C3 ,

we smear triangles, etc. 0

When S is infinite, or has infinitely many convex components, k is a priori un­
bounded in (1.3.2) and cannot be readily restricted as in the examples above. Yet, a
bound on k exists for all S when we consider linear combinations and linear hulls ­
and consequently in the affine case as well; this is the whole business of dimension.
In the present case of convex combinations, the same phenomenon is conserved to
some extent. For each positive integer k, call Sk the set of all convex combinations
of k elements in S: we have S = S1 C S2 C . .. C Sk C . . . The Sk'S are not
convex but, "at the limit", their union is convex and coincides with co S (Proposi­
tion 1.3.4). The theorem below tells us that k does not have to go to +00: the above
sequence actually stops at Sn+l = co S.

Theorem 1.3.6 (c. Caratheodory) Any X E co S C IRn can be represented as a
convex combination ofn + 1 elements ofS.

Proof. Take an arbitrary convex combination X = L~=1 aiXi, with k > n + 1. We
claim that one of the x;'s can be assigned a a-coefficient without changing x. For
this, assume that all coefficients ai are positive (otherwise we are done).

The k > n + 1 elements Xi are certainly affinely dependent: (1.3.1) tells us that
we can find (31, . . . , (3k, not all zero, such that L~1 (3ixi = aand L~=1 (3i = a.
There is at least one positive (3i and we can set a~ := ai - t* (3i for i = 1, .. . , k,
where

t" := max{t ~ a }
aj

ai - t(3i ~ afor i = 1, .. . ,k = min (3). :
/3j >o
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These computations are illu strated by Fig. 1.3.1. Clearly enough,

a~ ~ 0 for i = 1, . .. , k

k k k

L a~ = L a i - t" L J3i = 1 ;
i= 1 i=1 i = 1

k k

L a~xi = x - r L J3i xi = X ;

i = 1 i= 1
a~o = 0 for some io . [by construction of t *]

In other words, we have expressed x as a convex combination of k - 1 among
the Xi' S; our cl aim is proved.

Now, if k - 1 = n + 1, the proof is finished. If not, we can apply the above

construction to the convex combination x = 2::;':-11 a~xi and so on. The process
can be continued until there remain only n + 1 elements (which may be affinely
independent). 0

Fig. 1.3.1. Caratheodory's Theorem

The theorem of Caratheodory does not establish the existence of a "basis" with n + 1
elements, as is the case for linear combinations. Here, the generators Xi may depend on
the particular X to be computed . In ][~? , think of the comers of a square: anyone of these
4 > 2+1 points may be necessary to generate a point in the square; also, the unit disk cannot
be generated by finitely many points on the unit circle. By contrast , a subspace of dimension
m can be generated by m (carefully selected but).fixed generators.

It is not the particular value n + 1 which is interesting in the above theorem, but rather
the fact that the cardinality of relevant convex combinations is bounded: this is particularly
useful when passing to the limit in a sequence of convex combinations. This value n + 1
is not of fundamental importance, anywa~, and can often be reduced - as in Example 1.3.5:
the convex hull of two convex sets in IR 00 can be generated by 2-combinations; also, the
technique of proof shows that it is the dimension of the affine hull of S that counts, not n .
Along these lines, we mention without proof a result geometrically very suggestive:

Theorem 1.3.7 (W. Fenchel and L. Bunt) If S C R" has no more than n connected com­
ponents (in particular, if S is connected), then any x E co S can be expressed as a convex
combination ofn elements of S . 0
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This result says in particular that convex and connected one-dimensional sets are the
same, namely the intervals. In 1R2

, the convex hull of a continuous curve can be obtained by
joining all pairs of points in it. In 1R3

, the convex hull of three potatoes is obtained by pasting
triangles, etc.

1.4 Closed Convex Sets and Hulls

Closedness is a very important property : most of the convex sets of interest to us
in the subsequent chapters will be closed. It is therefore relevant to reproduce the
previous section, with the word "closed" added. As far as linearity and affinity are
concerned, there is no difference; in words, equalities are not affected when limits
are involved. But convexity is another story: when passing from (i), (i') to Defini­
tion 1.3.2, inequalities are introduced , together with their accompanying difficulty
"< vs. ~" .

To construct a convex hull co S, we followed in §1.3 the path (iii), (iii'): we took
the intersection of all convex sets containing S . An intersection of closed sets is still
closed, so the following definition is also natural :

Definition 1.4.1 The closed convex hull of a nonempty set S C jRn is the intersec­
tion of all closed convex sets containing S . It will be denoted by co S. 0

Another path was also possible to construct co S, namely to take all possible
convex combinations: then, we obtained co S again (Proposition 1.3.4); what about
closing it? It turns out we can do that as well:

Proposition 1.4.2 The closed convex hull co S of Definition 1.4.1 is the closure
cl (co S) ofthe convex hull ofS .

Proof. Because cl (co S) is a closed convex set containing S, it contains co S as
well. On the other hand, take a closed convex set C containing S; being convex,
C contains co S; being closed, it contains also the closure of co S. Since C was
arbitrary, we conclude nC J cl co S. 0

From the very definitions, the operation "taking a hull" is monotone : if 81 C 82, then
aff 81 C aff 82, cI 81 C cI 82, co 81 C co 82, and of course co 81 C co 82. A closed
convex hull does not distinguish a set from its closure, just as it does not distinguish it from
its convex hull: co 8 = co(cI 8) = coCco8).

When computing co via Proposition 1.4.2, the closure operation is necessary (co 8 need
not be closed) and must be performed after taking the convex hull: the operations do not
commute . Consider the example of Fig. 1.4.I: 8 = {(0, On u {(.;, 1) : .; ~ O}. It is a closed
set but co 8 fails to be closed: it misses the half-line (IR+, 0). Nevertheless , this phenomenon
can occur only when 8 is unbounded, a result which comes directly from Caratheodory's
Theorem :

Theorem 1.4.3 If 8 is bounded [resp. compact], then co 8 is bounded [resp. compact].

Proof. Let x = I: ~:11 QiXi E co 8 . If 8 is bounded, say by M , we can write

n+1 n + 1

IIxll ~ LQdlxili ~ MLQi = M.
i = 1 i = l
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o

Fig. 1.4.1. A convex hull need not be closed

Now take a sequence (x k
) C co 5. For each k we can choose x~ , . . . ,X~+l in 5 and

cl E Lln+1 such that x k = I:7:11afxf. Note that Lln+1 is compact. If S is compact, we
can extract a subsequence as many times as necessary (n + 2 times is enough) so that (akh
and each (xfh converge: we end up with an index set KeN such that, when k ---+ +00,

(xfhEK ---+ Xi E 5 and (akhEK ---+ a E Lln +1 .

Passing to the limit for k E K, we see that (xkhEK converges to a point X, which can be
expressed as a convex combination of points of S: X E co 5 , whose compactness is thus
established. 0

Thus, this theorem does allow us to write:

5 bounded in R" ===? co 5 = cIco 5 = co cl 5 .

Remark 1.4.4 Let us emphasize one point made clear by this and the previous sec­
tions: a hull (linear, affine, convex or closed) can be constructed in two ways. In
the inner way, combinations (linear, affine, convex, or limits) are made with points
taken from inside the starting set S. The outer way takes sets (linear, affine, convex,
or closed) containing S and intersects them.

Even though the first way may seem more direct and natural, it is the second
which must often be preferred, at least when closedness is involved. This is espe­
cially true when taking the closed convex hull: forming all convex combinations is
already a nasty task, which is not even sufficient, as one must close the result af­
terwards. On the other hand, the external construction of co S is more handy in a
set-theoretic framework. We will even see in §4.2(b) that it is not necessary to take
in Definition 1.4.1 all closed convex sets containing S: only rather special such sets
have to be intersected, namely the closed half-spaces of Example 1.1.2(c). 0

To finish this section, we mention one more hull, often useful. When starting
from linear combinations to obtain convex combinations in Definition 1.3.2, we
introduced two kinds of constraints on the coefficients: eTo:: = 1 and O::i ~ O. The
first constraint alone yielded affinity; we can take the second alone:

Definition 1.4.5 A conical combination of elements Xl, . .. , X k is an element of the
form I:~=l O::iXi, where the coefficients O::i are nonnegative.

The set of all conical combinations from a given nonempty S C jRn is the
conical hull of S. It is denoted by cone S. 0
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Note that it would be more accurate to speak of convex conical combinations and convex
conical hulls. If a := 2:7=1Qi is positive, we can set f3i := Qi/a; then we see that a conical

combination of the type 2:7=1 Q iXi = a 2:7=1 f3i Xi, with a > 0 and f3 E .dk, is then
nothing but a convex combination, multiplied by an arbitrary positive coefficient. We leave it
to the reader to realize that

cone S = R+ (co S) = co (R+S) .

Thus, 0 E cone S; actually, to form cone S, we intersect all convex cones containing S, and
we append 0 to the result. If we close it, we obtain the following definition :

Definition 1.4.6 The closed conical hull (or rather closed convex conical hull) of a
nonempty set S C jRn is

k
coneS:=c1 coneS=c1{I:cti X i : cti ~O,xiESfori=l , . .. , k } . 0

i= l

Theorem 1.4.3 states that the convex hull and closed convex hull of a compact set co­
incide, but the property is no lon~er true for conical hulls : for a counter-example, take the
set {(~,7/) E R2 : (~- 1)2 + 7/ ~ I}. Nevertheless , the result can be recovered with an
additional assumption:

Proposition 1.4.7 Let S be a nonempty compact set such that 0 if. co S . Then

cone S = R+ (co S) [= cone S] .

Proof The set C := co S is compact and does not containing the origin ; we prove that R+C
is closed . Let (tkXk) c R+C converge to y; extracting a subsequence if necessary, we may
suppose Xk -+ x E C; note: x # O. We write

Xk y
tk II x k II -+ n;;TI ,

which implies ik -+ lIyll/llxll =: t ~ O. Then , ikXk -+ tx = y, which is thus in R+C. 0

2 Convex Sets Attached to a Convex Set

2.1 The Relative Interior

Let C be a nonempty convex set in jRn. If int C =I- 0, one easily checks that aff C
is the whole of jRn (because so is the affine hull of a ball contained in C): we are
dealing with a "full dimensional" set. On the other hand, let C be the sheet of paper
on which this text is written. Its interior is empty in the surrounding space jR3, but
not in the space jR2 of the table on which it is lying; by contrast, note that c1 C is the
same in both spaces .

This kind of ambiguity is one of the reasons for introducing the concept of rel­
ative topology: we recall that a subset A of jRn can be equipped with the topology
relative to A, by defining its "closed balls" B(x, 8) n A, for x E A; then A becomes
a topological space in its own. In convex analysis, the topology of jRn is of moderate
interest : the topologies relative to affine manifolds tum out to be much richer.
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Definition 2.1.1 The relative interior ri G (or relint G) of a convex set G c lRn is
the interior of G for the topology relative to the affine hull of G. In other words:
x E ri G if and only if

x E aff G and 38> 0 such that (aff G) n B(x, 8) c G .

The dimension of a convex set G is the dimension of its affine hull, that is to say
the dimension of the subspace parallel to aff G. 0

Thus, the wording "relative" implicitly means by convention "relative to the affine hull".
Of course, note that ri C C C. All along this section, and also later in Theorem C.2.2.3,
we will see that aff C is the relevant working topological space. Already now, observe that
our sheet of paper above can be moved ad libitum in R3 (but not folded: it would become
nonconvex); its affine hull and relative interior move with it, but are otherwise unaltered.
Indeed, the relative topological properties of C are the properties of convex sets in Rk

, where
k is the dimension of C or aff C. Table 2.1.1 gives some examples.

Table 2.1.1. Various relative interiors

C affC dimC riC
{x} {x} 0 {x}

[x,x'] affine line ]x,x'[x =1= x' generated by x and x
,

L1 n
affine manifold

n-l {o E L1 n : CXi > O}of equation e T o = 1

B(XD,O) Rn n int B(XD,O)

Remark 2.1.2 The cluster points of a set C are in aff C (which is closed and contains C), so
the relative closure of C is just cI C: a notation relcl C would be superfluous. On the contrary,
the boundary is affected, and we will speak of relative boundary: rbd C := cIC\ ri C. 0

A first demonstration of the relevance of our new definition is the following :

Theorem 2.1.3 IIG :j:. 0, then ri G :j:. 0. In fact, dim (ri G) = dim G.

Proof. Let k := dim G. Then G contains k + 1 elements affinely independent
xo, . . . , Xk. They generate a simplex co {xo, ... , xd = : .1; see Fig. 2.1.1; aff .1 =
aff G because .1 c G and dim .1 = k. The proof will be finished if we show that
.1 has nonempty relative interior.

Take x := k~l 2:::~=0 Xi (the "center" of .1 ) and describe aff .1 by points of the
form

k k

x+y=x+ LCXi(Y)Xi = L[k~l +CXi(Y)]Xi ,
i=O i=O

where a(y) = (ao(Y), .. . , ak(Y)) E lRk+1 solves
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Fig. 2.1.1. A relative interior is nonempty

k

LaiXi = y,
i=O

k

Lai = O.
i= O

Because this system has a unique solution, the mapping y J-+ a(y) is (linear and)
continuous: we can find 8 > 0 such that Ilyll ~ 8 implies lai(y)1 ~ k~l for
i = 0, . .. , k, hence x + y E ,1. In other words , x E ri ,1 C ri C.

It follows in particular dim ri C = dim ,1 = dim C. 0

Remark 2.1.4 We could have gone a little further in our proof, to realize that the relative
interior of L1 was

k k

{ L (Xi Xi : L (Xi = 1, (X i > 0 for i = 0, . . . ,k}.
i =O i=O

Indeed, any point in the above set could have played the role of x in the proof. Note, inciden­
tally, that the above set is still the relative interior of co {xo , . . . ,xk} , even if the Xi 'S are not
affinely independent. 0

Remark 2.1.5 The attention of the reader is drawn to a detail in the proof of Theo­
rem 2.1.3: ,1 C C implied ri ,1 eriC because ,1 and C had the same affine hull,
hence the same relative topology. Taking the relative interior is not a monotone op­
eration, though : in lR, {O} c [0,1] but {O} = ri {O} is not contained in the relative
interior ]0, 1[of [0,1]. 0

We now turn to a very useful technical result; it refines the intermediate result
in the proof of Proposition 1.2.6, illustrated by Fig. 1.2.3: when moving "radially"
from a point in ri C straight to a point of cl C, we stay inside ri C.

Lemma 2.1.6 Let x E cl C and x ' E ri C. Then the half-open segm ent

]x,x']= {a x + (1- a) x' : 0 ~ a < I}

is contained in ri C .
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Proof. Take x" = ax + (1 - a)x' , with 1 > a ;:: 0. To avoid writing "n aff C"
every time, we assume without loss of generality that aff C = jRn.

Since x E cl C, for all 10 > 0, x E C + B(O , E) and we can write

B(x" , E) = a x + (1 - a)x ' + B(O ,E)
C aC + (1 - a)x' + (1 + a)B(O,E)
= aC + (1- a){ x' + B(O , ~~~E)} .

Since x' E int C, we can choose 10 so small that x ' + B(O, ~ ~~ E) C C . Then we
have

B(x" ,E) C «c + (1- a )C = C

(where the last equality is just the definition of a convex set). o

Taking x E cl C in the above statement , we see that the relative interior of a
convex set is convex; a result refining Proposition 1.2.6.

Remark 2.1.7 We mention an interesting consequence of this result: a half-line issued from
x' E ri C cannot cut the boundary of C in more than one point; hence, a line meeting ri C
cannot cut cIC in more than two points: the relative boundary of a convex set is thus a fairly
regular object, looking like an "onion skin" (see Fig. 2.1.2). D

Fig. 2.1.2. The relative boundary of a convex set

Note in particular that [x , x ' ] C ri C whenever x and x ' are in ri C, which
confirms that ri C is convex (cf. Proposition 1.2.6). Actually, ri C , C and cl Care
three convex sets very close together : they are not distinguished by the operations
"aff', "ri" and "cl".

Proposition 2.1.8 The three convex sets ri C, C and cl C have the same affine hull
(and hence the same dimension), the same relative interior and the same closure
(and hence the same relative boundary).

Proof. The case of the affine hull was already seen in Theorem 2.1.3. For the oth­
ers, the key result is Lemma 2.1.6 (as well as for most other properties involving
closures and relative interiors). We illustrate it by restricting our proof to one of the
properties, say: ri C and C have the same closure.

Thus, we have to prove that cl C C cl (ri C) . Let x E cl C and take x ' E ri C (it
is possible by virtue of Theorem 2.1.3). Because lx,x'] C ri C (Lemma 2.1.6), we
do have that x is a limit of points in ri C (and even a "radial" limit); hence x is in
the closure of ri C . 0
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Remark 2.1.9 This result gives one more argument in favour of our relative topology: if we
take a closed convex set C, open it (for the topology of aff C), and close the result, we obtain
C again - a very relevant topological property.

Among the consequences of Proposition 2.1.8, we mention the following:

- C and cl C have the same interior - hence the same boundary: in fact, either both interiors
are empty (when dim C = dim cl C < n), or they coincide because the interior equals the
relative interior.

- If C1 and C2 are two convex sets having the same closure, then they generate the same
affine manifold and have the same relative interior. This happens exactly when we have the
"sandwich" relation ri C1 C C2 C cl C1 • 0

Our relative topology fits rather well with the convexity-preserving operations
presented in §1.2. Our first result in these lines concerns intersections and is of
paramount importance.

Proposition 2.1.10 Let the two convex sets C1 and C2 satisfy ri C1 n ri C2 :j:. 0.
Then

ri (C1 n C2 ) = ri C1 n ri C2

cl (C1 n C2 ) = cl C1 n cl C2 •

(2.1.1 )

(2.1 .2)

Proof. First we show that cl C1 n cl C2 C cl (C1 n C2 ) (the converse inclusion is
always true). Given x E cl C1 n cl C2 , we pick Xl in the nonempty ri C1 n ri C2 .

From Lemma 2.1.6 applied to C1 and to C2 ,

]x,xl
] C riC1 n riC2 .

Taking the closure of both sides, we conclude

which proves (2.1.2) because x was arbitrary ; the above inclusion is actually an
equality.

Now, we have just seen that the two convex sets ri C1 n ri C2 and C1 n C2 have
the same closure. According to Remark 2.1.9, they have the same relative interior:

It remains to prove the converse inclusion, so let y E ri C1 n ri C2 • If we take
x' E C1 [resp. C2 ] , the segment [z", y] is in aff C1 [resp. aff C2 ] and, by definition
of the relative interior, this segment can be stretched beyond y and yet stay in C1

[resp. C2 ] (see Fig. 2.1.3). Take in particular Xl E ri (C1 n C2 ) , x' :j:. Y (if such an x'
does not exist, we are done). The above stretching singles out an X E C1 n C2 such
that y E ]x, Xl [ . Then Lemma 2.1.6 applied to C1 nC2 tells us that y E ri (C1 n C2 ) .

o

Observe that, if we intersect infinitely many convex sets - instead of two, or a finite
number -, the proof of (2.1.2) still works, but certainly not the proof of (2.1.1): the stretching
possibility is killed. In (2.1.1), the lefthand side is nonempty (unless C1 n C2 = 0), hence
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Fig. 2.1.3. The stretching mechanism

nonemptiness of ri C1 nri C2 appears as necessary ; as for (2.1.2), look again at Remark 2.1.5.
Such an assumption is thus very useful; it is usually referred to as a qualification assumption,
and will be encountered many times in the sequel. Incidentally, it gives another sufficient
condition for the monotonicity of the ri-operation (use (2.1.1) with C1 C C2 ) .

We restrict our next statements to the case of the relative interior. Lemma 2.1.6
and Proposition 2.1.8 help in carrying them over to the closure operation.

Proposition 2.1.11 For i = 1, . . . , k, let C, C ffi,n i be convexsets. Then

ri(Cl x . . . x Ck) = (riCl ) x .. . x (riCk) '

Proof. It suffices to apply Definition 2.1.1 alone, observing that

o

Proposition 2.1.12 Let A : ffi,n -+ ffi,m be an affinemapping and C a convexset of
ffi,n . Then

ri(A(C)] = A(ri C) .
- 1

If D is a convexset offfi,m satisfying A (ri D) "# 0, then

(2.1.3)

ri[A(D)] = A(riD). (2.1.4)

Proof. First, note that the continuity of A implies A(clS) c cl[A(S)] for any
S C ffi,n. Apply this result to ri C, whose closure is cl C (Proposition 2.1.8) , and use
the monotonicity of the closure operation:

A(C) c A(clC) = A[cl(riC)] c cl[A(riC)] c cl[A(C)] ;

the closed set cl [A(ri C)] is therefore cl [A(C)]. Because A(ri C) and A(C) have
the same closure , they have the same relative interior (Remark 2.1.9): ri A(C) =
ri [A(ri C)] c A(ri C).

To prove the converse inclusion, let w = A(y) E A(riC), with y E riC. We
choose z' = A(x') E ri A(C), with z' E C (we assume z' "# w, hence x' "# y).
Using in C the same stretching mechanism as in Fig. 2.1.3, we single out x E C
such that y E lx, x'[, to which corresponds z = A(x) E A(C) . By affinity, A(y) E
]A(x) ,A(x')[ = ]z, z' [. Thus, z and z' fulfil the conditions of Lemma 2.1.6 applied
to the convex set A(C) : w E ri A(C), and (2.1.3) is proved .

The proof of (2.104) uses the same technique. 0
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As an illustration of the last two results, we see that the relative interior of 0 1C I + 02 C 2
is 0 1 ri C I + 0 2 ri C2 • If we take in particular 0 1 = - 0 2 = 1, we obtain the following
theorem:

(2.1.5)

which gives one more equivalent form for the qualification condition in Proposition 2.1.1O.
We will come again to this property on several occasions.

2.2 The Asymptotic Cone

Let x be a point in a closed convex cone K . Draw a picture to see that, for all d E K , the
half-line x + jR+ d is contained in K : x + td E K for all t > O. Conversely, if x + jR+ d c K,
i.e. if

K- x
dE -t- = K - {t x } for all t > 0 ,

then (K is closed), d E K . In words, a closed convex cone is also the set of directions along
which one can go straight to infinity. We now generalize this concept to non-conical sets.

In this section, C will always be a nonempty closed convex set. For x E C, let

Coo(x) :={dEjRn : x + td EC forall t> O} . (2.2.1)

(2.2.2)

Despite the appearances, Coo(x) depends only on the behaviour of C "at infinity": in fact,
x + td E C implies that x + rd E C for all r E [0, t] (C is convex). Thus, Coo(x) is just
the set of directions from which one can go straight from x to infinity, while staying in C .
Another formulation is:

nC- x
Coo(x) = -t-'

1> 0

which clearly shows that Coo(x) is a closed convex cone, which of course contains O. The
following property is fundamental.

Proposition 2.2.1 The closed convex cone Coo(x) does not depend on x E C.

Proof. Take two different points XI and X 2 in C ; it suffices to prove one inclusion, say
Coo(XI) C Coo( X 2) . Let d E Coo(xI) and t > 0, we have to prove X2 + td E C . With
E E ]0, 1[ , consider the point

xe := XI + td + (1 - E ) (X2 - x I) = E (XI + ~d) + (1 - E )X2 .

Thus xe E C (use the definitions of Coo(xI) and of a convex set); pass to the limit:

X2 + td = lim xe E cIC = C .
d O

It follows that the notation Coo is more appropriate:

o

Definition 2.2.2 (Asymptotic Cone) The asymptotic cone, or recession cone of the closed
convex set C is the closed convex cone Coo defined by (2.2.1) or (2.2.2), in which Proposi­
tion 2.2.1 is exploited. 0

Figure 2.2.1 gives three examples in jR2. As for the asymptotic cone of Example 1.2.2, it
is the set {d E jRn : Ad ~ O}.

Proposition 2.2.3 A closed convex set C is compact if and only if C oo = {O}.
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+
c= •

c~=

Fig. 2.2.1. Some asymptotic cones

Proof If C is bounded, it is clear that C(XJ cannot contain any nonzero direction. Conversely,
let (Xk) C C be such that Ilxkll -+ +00 (we assume Xk i= 0). The sequence (dk :=
xkj llxkll) is bounded, extract a convergent subsequence: d = limkEK dk with KeN
(lIdll = 1). Now, given x E C and t > 0, take k so large that IIxkll ) t. Then , we see that

x + td = I~~[(1- II xtkll)x + II xtkll Xk]

lies in the closed convex set C, hence dE C(XJ . D

Remark 2.2.4 Consider the closed convex sets (C - x )j t , indexed by t > O. They form a
nested decreasing family: for tl < t2 and y arbitrary in C,

,
y -x

tI
, t2 - tI tl

where y := ---x + -y E C .
t2 t2

Thus , we can write (see §0.5 for the set-limit appearing below)

C - nC - x _ I· C - x(XJ - - 1m ,t t~ +(XJ t
t>o

(2.2.3)

which interprets C(XJ as a limit of set-valued difference quotients, but with the denominator
tending to 00, instead of the usual O. This will be seen again later in §5.2. D

In contrast to the relative interior, the concept of asymptotic cone does not always fit well
with usual convexity-preserving operations. We just mention some properties which result
directly from the definition of C(XJ '

Proposition 2.2.5 - If {Cj h EJ is a family ofclosed convex sets having a point in common,
then

(n jEJCj) (XJ = njEJ(Cj)(XJ '
- If, for j = 1, . . . ,m, Cj are closed convex sets in R" j , then

- Let A : R" -+ R'" be a linear operator. If C is closed convex in Rn and A(C) is closed,
then

A(C(XJ) C [A(C)](XJ ,
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- If D is closed convex in Rm with nonempty inverse image, then

-1 -1

[A(D)] oo = A (D oo ) . o

Needless to say, convexity does not help to ensure that the image of a closed set under a
continuous mapping is closed: take A(e,1) = e(linear) and C = ((e,1) : 1) ? lie> O}.

2.3 Extreme Points

In this section, C is a nonempty convex set of Rn and there would be no loss of
generality in assuming that it is closed. The reader may make this assumption if he
finds it helpful in mastering faster the definitions and properties below; the same
remark holds for §2.4.

Definition 2.3.1 (Extreme Point) We say that x E C is an extreme point of C if
there are no two different points Xl and X2 in C such that X = 1/2 (Xl + X2). 0

Some other ways of expressing the same thing arc:

- The representation x = aXl + (1 - a)x2 is impossible with two distinct points Xl and X2

in C and a E ]0, 1[ : indeed, convexityof C implies that Xl and X2 in the definitioncan be
replaced by two other points in the segment [Xl, X2]; this amounts to replacing the number
1/2 by some other a E ]0,1[. In short:

X is an extreme point of C if and only if
[x = aXl + (1- a)X2, Xi E C, 0 < a < 1] ~ X = Xl = X2.

- There is no convexcombination X = L~=l a iXi other than Xl = ... = Xk [= z] .
- Even when deprived of the point z, the set C remains convex.

Examples 2.3.2
- Let C be the unit ball B(O,1). Multiply by 1/2 the relation

(2.3.1 )

to realize that every X of norm I is an extreme point of B(O,1). Likewise, if Q :
Rn -7 Rn is a positive definite symmetric linear operator, any X with (Qx, x) = 1
is an extreme point of the convex set {x E Rn

: (Qx, x) :s; I}.
On the other hand, if (Q', -)l /2 is replaced by the £l-norm, the corresponding

unit ball has finitely many extreme points.

- If C is a convex cone, a nonzero x E C has no chance of being an extreme point.
- An affine manifold, a half-space have no extreme points. 0

The set ofextreme points of C will be denoted by ext C. We mention here that
it is a closed set when n :s; 2; but in general, ext C has no particular topological or
linear properties. Along the lines of the above examples, there is at least one case
where there exist extreme points:

Proposition 2.3.3 IfC is compact, then ext C =I- 0.
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Proof. Because C is compact , there is j; E C maximizing the continuous function
x 1-+ Ilx11 2 . We claim that j; is extremal. In fact, suppose that there are Xl and X2

in C with j; = 1/ 2 (X l + X 2 ) . Then, with X l :I X 2 and using (2.3.1) , we obtain the
contradiction

The definitions clearly imply that any extreme point of C is on its boundary, and
even on its relative boundary. The essent ial result on extreme points is the following,
which we will prove later in §4.2(c) .

Theorem 2.3.4 (H. Minkowski) Let C be compact, convex in IRn. Then C is the
convex hull of its extreme points: C = co (ext C). 0

Combined with Caratheodory 's Theorem 1.3.6, this result establishes that, if
dim C = k, then any element of C is a convex combination of at most k + 1
extreme points of C.

Example 2.3.5 Take C = co {Xl, . .. , x m } . All the extreme points of C are present
in the list X l, . . . ,Xm ; but of course , the x;'s are not all necessarily extremal. Let
J.l ~ rn be the number of extreme points of C, suppose to simplify that these are
Xl, ... , x lL' Then C = co { Xl , ' . . ,xJL} and this representation is minimal, in the
sense that removing one of the generators X l , . . . , xJL effectively changes C. The
case J.l = n + 1 corresponds to a simplex in IRn. If /t > n + 1, then for any X E C,
there is a representation X = L~=l O:iXi in which at least J.l- n - 1 among the o:~ s

are zero. 0

A higher-dimensional generalization of extreme points can be defined. Consider
again Definition 2.3.1, and replace "the point X E C" by "the convex subset F C
C". Our definition is then generalized as follows: the convex subset FCC is
extremal if there are no two points X l and X2 in C\F such that 1/2 (Xl + X 2) E F .

Once again, the number 1/2 has nothing special and can be replaced by any other
0: E ]0, 1[. The above statement can be rephrased in reversed logic as: if X l and X 2

in C are such that O:XI + (1 - 0:)X2 E F for some 0: E]0, 1[, then Xl and X 2 are in
F as well. Convexity of F then implies that the whole segment [Xl , X 2 ] is in F, and
we end up with the traditional definition :

Definition 2.3.6 (Faces) A nonempty convex subset FCC is a fa ce of C if it
satisfies the following property: every segment of C, having in its relative interior
an element of F , is entirely contained in F . In other words,

( X I ,X2) E C x C and }
30: E ]0, 1[: O:XI + (1 - 0:)X2 E F =} [Xl , X2] c F. (2.3.2)

o

Being convex, a face has its own affine hull, closure, relative interior and di­
mension . By construction, extreme points appear as faces that are singletons, i.e.
O-dimensional faces:
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x E ext C ¢:=} { x} is a face of C .

One-dimensional faces, i.e. segments that are faces of C, are called edges of C; and
so on until (k - I)-dimensional faces (where k = dim C), calledfaeets . .. and the
only k-dimensional face of C, which is C itself.

A useful property is the "transmission of extremality": if x E C' C C is an
extreme point of C, then it is a fortiori an extreme point of the smaller set C' . When
C' is a face of C, the converse is also true:

Proposition 2.3.7 Let F be afaee ofC. Then any extreme point ofF is an extreme
point ofC.

Proof Take x E FcC and assume that x is not an extreme point of C : there are
different X l , x2 in C and 0: E ]0, I[ such that x = O:Xl + (1 - 0:) X2 E F . From the
very definition (2.3.2) of a face, this implies that Xl and X 2 are in F: x cannot be an
extreme point of F. 0

This property can be generalized to: if F' is a face of F, which is itself a face of C, then
F' is a face of C. We mention also : the relative interiors of the faces of C form a partition
of C. Examine Example 2.3.5 to visualize its faces, their relative interiors and the above
partition. The C of Fig. 2.3.1, with its extreme point x , gives a less trivial situation; make
a three-dimensional convex set by rotat ing C around the axis .1 : we obtain a set with no
one-dimensional face.

x

Fig. 2.3.1. A special extreme point

2.4 Exposed Faces

The rationale for extreme points is an inner construction of convex sets, as is partic­
ularly illustrated by Theorem 2.3.4 and Example 2.3.5. We mentioned in the impor­
tant Remark 1.4.4 that a convex set could also be constructed externally, by taking
intersections of convex sets containing it (see Proposition 1.3.4: if S is convex, then
S = co S). To prepare a deeper analysis, coming in §4.2(b) and §5.2, we need the
following fundamental definition, based on Example 1.1.2.

Definition 2.4.1 (Supporting Hyperplane) An affine hyperplane Hi; is said to
support the set C when C is entirely contained in one of the two closed half-spaces
delimited by Hs,r: say
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(s,y) ~ r for all y E C . (2.4.1 )

It is said to support C at x E C when , in addition, x E Hs,r: (2.4.1) holds, as well
as (s,x) = r . D

See Fig.2.4.1 for an illustration. Up to now, it is only a formal definition; existence of
some supporting hyperplane will be established later in §4.2(a). Naturally, the inequality­
sign could be reversed in (2.4.1): Hs,r supports C when H- s,-r supports C. Note also that
if x E C has a hyperplane supporting C, then x E bd C.

Fig. 2.4.1. Supporting hyperplanes at various points

Definition 2.4.2 (Exposed Faces, Vertices) The set FCC is an exposed face of
C if there is a supporting hyperplane Hs,r of C such that F = C n Hs,r.

An exposed point, or vertex, is a O-dimensional exposed face , i.e. a point x E C
at which there is a supporting hyperplane Hs,r of C such that Hs,r n C reduces to
{x}. D

See Fig.2.4.1 again. A supporting hyperplane Hs,r mayor may not touch C.
If it does, the contact-set is an exposed face . If it does at a singleton, this singleton
is called an exposed point. As an intersection of convex sets, an exposed face is
convex. The next result justifies the wording.

Proposition 2.4.3 An exposedface is a face.

Proof Let F be an exposed face, with its associated support Hs,r. Take Xl and X2
in C:

(s , Xi) ~ r for i = 1,2 ;

take also a E ]0, 1[ such that aXI + (1 - a)x2 E F c Hs,r:

(s, aXI + (1 - a)x2) = r .

(2.4 .2)

Suppose that one of the relations (2.4.2) holds as strict inequality. By convex com­
bination (0 < a < I!), we obtain the contradiction (s, a XI + (1 - a)x2) < r . D

The simple technique used in the above proof appears often in convex analysis: if a con­
vex combination of inequalities holds as an equality, then so does each individual inequality
whose coefficient is positive.



2 Convex Sets Attached to a Convex Set 45

Remark 2.4.4 Comparing with Proposition 2.3.7, we see that the property of transmission
of extremality applies to exposed faces as well: if x is an extreme point of the exposed face
FCC, then x E ext C. 0

One could believe (for example from Fig. 2.4.1) that the converse to Proposition 2.4.3
is true. Figure 2.3.1 immediately shows that this intuition is false: the extreme point x is
not exposed. Exposed faces form therefore a proper subset of faces. The difference is slight,
however: a result of S. Straszewicz (1935) establishes that any extreme point of a closed
convex set C is a limit of exposed points in C. In other words,

exp C C ext C C cI (exp C)

if exp C denotes the set of exposed points in C. Comparing with Minkowski's result 2.3.4,
we see that C = ro(exp C) for C convex and compact. We also mention that a facet is
automatically exposed (the reason is that n -1, the dimension of a facet, is also the dimension
of the hyperplane involved when exposing faces).

Enrich Fig.2.3.1 as follows: take C', obtained from C by a rotation of 30° around L1 ;
then consider the convex hull of C U C' , displayed in Fig. 2.4.2. The point PI is an extreme
point but not a vertex; P2 is a vertex. The edge E I is not exposed; E 2 is an exposed edge. As
for the faces Hand F2 , they are exposed because they are facets.

F2

Fig. 2.4.2. Faces and exposed faces

Remark 2.4.5 (Direction Exposing a Face) Let F be an exposed face, and Hs,r
its associated supporting hyperplane. It results immediately from the definitions that
(8,y) ::::; (8, x) for all y E C and all x E F. Another definition of an exposed face
can therefore be proposed, as the set of maximizers over C of some linear form : F
is an exposed face of C when there is a nonzero 8 E IRn such that

F = {x E C : (8, x) = SUPYEC<8, y) } . (2.4.3)

A relevant notation is thus Fe (8) to designate the exposed face of C associated
with 8 E IRn ; it can also be called the face of C exposed by 8. For a unified notation,
we will consider C itself as exposed by 0: C = Fc(O). 0

Beware that a given 8 may define no supporting hyperplane at all. Even if it does,
it may expose no face (the supremum in (2.4.3) may be not attained). The following
result is almost trivial, but very useful: it is "equivalent" to extremize a linear form
on a compact set or on its convex hull.
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Proposition 2.4.6 Let C be convex and compact. For 8 E jRn , there holds

max (8, x) = max (8, x) .
x EC xEextC

Furtherm ore, the solution-set of the first problem is the convex hull of the solution­
set of the second:

Argmax (8, x) = co {ArgmaxxEextc(8, x) } .
xEC

Proof. Because C is compact, (8, ') attains its maximum on FC(8). The latter
set is convex and compact, and as such is the convex hull of its extreme points
(Minkowsk i's Theorem 2.3.4) ; these extreme points are also extreme in C (Propo­
sition 2.3.7 and Remark 2.4.4) . D

3 Projection onto Closed Convex Sets

3.1 The Projection Operator

Denote by pv the (orthogonal) projection onto a subspace V C jRn . The main
properties of the operator x 1-7 pv (x) are to be linear, symmetric, positive semi­
definite, idempotent (pv 0 Pv = pv), nonexpansive (1Ipv(x)1I ~ Ilxll for all x );
also, it defines a canonical decomposition of jRn via x = pv(x) + P V .L (x) . We will
generalize this operator to the case where V is merely convex.

In what follows, C is a nonempty closed convex set in jRn . For fixed x E jRn, we
consider the following problem :

(3.1.1)

i.e. we are interested in those points (if any) of C that are closest to x for the Eu­
clidean distance . Let I x : jRn -+ jR be the function defined by

(3.1.2)

For c E C, take the sublevel-set S := {y E jRn : I x(Y) ~ Ix(c)} . Then (3.1.1) is
clearly equivalent to infyEcns Ix(Y), which has a solution since I x is continuous
and S - hence C n S - is compact. We deduce the existence of a closest point in C
to x; the inf in (3.1.1) is a min.

Note that convexity of C plays no role in the above existence result. Uniquen ess,
however, depends crucially on convexity: let Y1 and Y2 be two solutions to (3.1.1).
Use (2.3.1) with Xi = Yi - X to obtain

where Yo := 1 / 2 (Y1+ Y2) E C; this implies uniqueness.
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We have thus defined a projection operator, namely the mapping x I-t pc(x)
which, to each x E ~n, associates the unique solution pc(x) of the minimiza­
tion problem (3.I.I). It is possible to characterize pc(x) differentl y, as solving a
so-called variational inequality; and this characteri zation is the key to all results
concerning Pc.

Theorem 3.1.1 A point Yx E C is the projection PC(x) if and only if

(3.1.3)

Proof. Call Yx the solution of (3.1.1); take y arbitrary in C , so that Yx +o:(y - Yx) E
C for any 0: E ]0, 1[. Then we can write with the notation (3.1 .2)

f x(Yx) :( f x(Yx + o:(y - Yx» = ~llyx - x + o:(y - Yx)112.
Developing the square, we obtain after simplification

0 :( O: (Yx - X, Y - Yx) + ~0:211 y - Yx112 •

Divide by 0: (> 0) and let 0: -!- 0 to obtain (3.1.3).
Conversely, suppose that Yx E C satisfies (3.1.3). If Yx = x, then Yx certainly

solves (3.I.I). If not, write for arbitrary Y E C :

o~ (x - Yx, Y - Yx) = (x - Yx,Y - x + x - Yx) =
= Ilx - Yxl1 2 + (x - Yx,Y - x) ~ Ilx - Yxl12-llx - yll lix - Yx ll ,

where the Cauchy-Schwarz inequal ity is used. Divide by II x - Yx II > 0 to see that
Yx solves (3.1.1). 0

c

y

Fig. 3.1.1 . The angle -characterization of a project ion

Incidentally, this result proves at the same time that the variational inequality (3.1.3) has
a unique solution in C. Figure 3.1.1 illustrates the following geometric interpretation: the
Cauchy-Schwarz inequality defines the angle 0 E [0,11") of two nonzero vectors u and v by

(u , v)
cos O: = lIullllvll E [-1 ,+1) .

Then (3.1.3) expresses the fact that the angle between y - Yx and x - Yx is obtuse, for any
y E C. Writing (3.1.3) as

(x - pc(x) ,y) :( (x - pc (x) ,pc(x)) for all y E C , (3.1.4)

we see that pc(x ) lies in the face of C exposed by x - pc(x ).
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Remark 3.1.2 Suppose that C is actually an affine manifold (for example a subspace); then
Yx - y E C whenever y - Yx E C. In this case, (3.1.3) implies that

(x - Yx, Y - Yx) = 0 for all y E C . (3.1.5)

We are back with the classical characterization of the projection onto a subspace, namely
that x - Yx E C': (the subspace orthogonal to C) . Passing from (3.1.3) to (3.1.5) shows
once more that convex analysis is the unilateral realm of inequalities , in contrast with linear
analysis. 0

Some obvious properties of our projection operator are:

- the set {x E IRn : Pc (x) = x} of fixed points of Pc is C itself;
- from which it results that PC 0 Pc = Pc , and also that
- Pc is a linear operator if and only if C is a subspace.

More interesting is the following result:

Proposition 3.1.3 For all (Xl, X2) E IRn x IRn, there holds

Proof. Write (3.1.3) with x = Xl, Y = Pc(X2) E C :

likewise,
(Pc(XI) - Pc(X2) , X2 - Pc(X2» (; 0 ,

and conclude by addition

o

Two immediate consequences are worth noting. One is that

a property expressing that the mapping Pc is, in a way, "monotone increasing".
Second , we obtain from the Cauchy-Schwarz inequality:

(3.1.6)

i.e. Pc is nonexpansive; in particular, Ilpc(x)11 (; IIxll whenever 0 E C . However,
it is not a contraction: the best Lipschitz constant

is equal to 1(suppose C is a subspace!), unless more is known about the "curvature"
ofC.
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3.2 Projection onto a Closed Convex Cone

As already mentioned in Example I. 1.4, convex cones are important instances of
convex sets, somehow intermediate between subspaces and general convex sets. As
a result , the projection operator onto a closed convex cone enjoys properties which
are finer than those of §3.1, and which come closer to those of the projection onto a
subspace.

Definition 3.2.1 (Polar cone) Let K be a convex cone. Its polar (called negative
polar cone by some authors) is:

K O:= {s E \Rn : (s, x ) ~ 0 for all x E K} . o

Let us note some straightforward properties :

- First of all, the polar cone depends on the scalar product: changing (., .) changes
K O.

- One easily sees that K Ois a closed convex cone (use in particular continuity of
the scalar product).

- If K is simply a subspace, then K Ois its orthogonal K -L : polarity generalizes
orthogonality in a unilateral way; remember Remark 3.1.2. Incidentally, it will be
seen later in §4.2(d) that the polar of K Ois nothing but the closure of K.

- Polarity establishes a correspondence in the set of closed convex cones, which is
order-reversing: K' c K implies (K') O J K O(and the converse is true if the
relation K OO= K is admitted for K closed) .

- Finally, the only possible element in K n K Ois O.

Examples 3.2.2 (see Fig. 3.2.1).

(a) . Consider the conical hull of m points X l, . . • ,Xm in \Rn :

K = { ~ CXjXj : CXj :? 0 for j = 1, . . . , m} .
) = 1

We leave it as an exercise to check the important result:

K O= {s E \Rn : (s,X j) ~ 0 for j = 1, . .. ,m }.

(b). As a particular case, take the usual dot-product for (., .), \Rn being equipped
with the canonical basis. Then the polar of the nonnegative orthant

[l+ :={X=(~\ ... ,C ) : ~i :?Ofori=1 , . . . , n }

is the nonpositive orthant

Naturally, such a symmetry is purely due to the fact that the basis vectors are mutu­
ally orthogonal.
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Fig. 3.2.1. Examples of polar cones

(C). Let K be a revolution cone : with s E IRn of norm 1 and 0 E [O,1r/2J,

Ks(O) := {x E IRn
: (s,x) ~ Ilxll cos e}.

Then [Ks(OW = K _s(1r/2 - 0). o

The characterization 3.1 .1 takes a special form in the present conical situation.

Proposition 3.2.3 Let K be a closed convex cone. Then Yx = PK (x) if and only if

Yx E K , x - Yx E K O, (x - Yx, Yx) = o.

Proof We know from Theorem 3.1.1 that Yx = PK (x) satisfies

(x - Yx, Y - Yx) ~ a for all Y E K.

(3.2 .1)

(3.2.2)

Taking Y = ayx, with arbitrary a ~ 0, this inequality implies (a - 1)(x - Yx,Yx) ~
afor all a ~ O. Since a-I can have either sign, this implies (x - Yx, Yx) = aand
(3.2.2) becomes

(y, x - Yx) ~ a for all y E K , r.e. x - Yx E K O.

Conversely, let Yx satisfy (3.2.1). For arbitrary y E K, use the notation (3.1.2):

f x(y) = !lIx - Yx + Yx - yl12 ~ fx(Yx) + (x - Yx,Yx - y);

but (3.2 .1) shows that

(x - Yx, Yx - y) = -(x - Yx, y) ~ 0,

hence fx(Y) ~ fx(Yx): Yx solves (3.1.1). o

Remark 3.2.4 We already know from (3.1.4) that PK (x) lies in the face of K exposed by
x - PK(X); but (3.2.1) tells us more: by definition of a polar cone, x - PK(X) is also in the
face of K Oexposed by PK (x) (a symmetry confirming that K OO = K).

Take for an illustration K = J?+ of Example 3.2.2(b): denote by (?T1
, • •• , ?Tn) the co­

ordinates of PK(X) . They are nonnegative because PK (x) E J?+ ; each term (ei
- ?Ti)?T

i is
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nonpositive because x - PK (x) E Q _ . Because their sum is zero, each of these terms is
actually zero, i.e.

For i = 1, ... , n , ~ i - Jri = 0 or Jri = 0 (or both) .

This property can be called a transversality condition. Thus, Jri is either ~i or 0, for each i;
taking the nonnegativity of Jr into account, we obtain the explicit formula

Jri=max{O, ~i} for i=l , . .. , n .

This implies in particular that Jri - ~i ~ 0, i.e. x - Jr E Q _ . o

We list some properties which are imm ediate consequences of the characteriza­
tion (3.2 .1) : for all x E IRn ,

PK(X) = 0 if and only if x E K O;
PK(a x) = a pK(x ) for all a ~ 0 ;

PK(- x) = -p-K( X) .

They somehow general ize the linearity of the proj ection onto a subspace V . An
additional property can be proved, using the obv ious relat ion (-K)O= <K":

(3.2.3)

It play s the role of Pv (x) +Pv J. (x) = x and connotes the following decomposition
theorem, generalizing the property IRn = V EB V J. •

Theorem 3.2.5 (J.-J. Moreau) Let K be a closed convex cone. For the three ele­
ments x , Xl and X2 in IRn , the properties below are equivalent:

(i) x = X l + X2 with X l E K, X2 E K Oand (Xl , X2) = 0;
(ii) X l = PK(X) and x- = PKo(X).

Proof Strai ghtforward from (3.2.3) and the characteri zation (3.2.1) of X l = PK(X).
o

4 Separation and Applications

4.1 Separation Between Convex Sets

Take two disjoint sets 51 and 52: 51 n 52 = 0. If, in addition, 51 and 52 are
convex, some more can be said: it turn s out that a simple convex set (namely an
affine hyperplane) can be squeezed between 51 and 52. This extremely important
property follow s directly from those of the projection operator onto a convex set.

Theorem 4.1.1 Let C c IRn be non empty closed convex, and let X rt. C. Then there
exists 8 E IRn such that

(8,X) > sup {(8,Y) Y E C} . (4.1.1)
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Proof Set 8 := x - pc(x) i:- O. We write (3.1.3) as

o~ (8,Y - x + 8) = (8, y) - (8, x) + 11 811 2
•

Thus, (8, x) - 11 811 2 ~ (8, y) for all y E C, and our 8 is a convenient answer for
(4.1.1). D

Naturally, 8 could be replaced by -8 in (4.1.1) and Theorem 4.I.I could just
be stated as: there exists 8' E IRn such that (8', x) < infy Ec (8' ,V). Note that 8 is
certainly nonzero ; by positive homogeneity , we may require 11 811 = l.

Geometricall y, we know that an 8 i:- 0 defines hyperplanes Hs ,r as in Exam­
ple 1.1.2(a), which are translations of each other when r describes IR . With 8 of
(4.1.1), pick

r = rs := !(8, X) + SUPYEC<Y' 8)) .

Then
(8, x )-rs > 0 and (8,y)-rs < 0 foraIlyEC ,

which can be summarized in one sentence: the affine hyperplane H s,rs separates the
two convex sets C and {x}. These two sets are in the opposite (open) half-spaces
limited by that hyperplane.

Remark 4.1.2 With relation to this interpretation, Theo rem 4.1.1 is often called the Hahn­
Banach Theorem in geometric form. On the other hand, consider the right hand side of (4.1.1);
it suggests a function ao : jRn -+ R U {+oo}, called the support function of C:

ac( s) := sup {(s, y) : y E C},

which will be studied thoroughly in Chap. C. If x E C , we have by definit ion

(s,x) :::; ac(s) for all s E jRn ;

but this actually characterizes the elements of C : Theorem 4.1.1 tells us that the converse is
true. Therefore the test "z E CT' is equivalent to the test "ex ) :::; ac 'I", which compares
the linear function (·, x) to the function ac . With this interpretation , Theorem 4.1.1 can be
form ulated in an equivalent analytical way, involving funct ions instead of hyperplanes; this
is called the Hahn-Banach Theorem in analytical form , 0

A convenient generalization of Theorem 4.1.1 is the following:

Corollary 4.1.3 (Strict Separation of Convex Sets) Let C1, C2 be two nonempty
closed convex sets with C1 n C2 = 0. If C2 is bounded, there exists 8 E IRn such
that

sup (8,y) < min (8,y) .
yE Cl y EC2

(4.1.2)

Proof The set C1 - C2 is convex (Proposition 1.2.4) and closed (because C2 is
compact) . To say that C1 and C2 are disjoint is to say that 0 (j. C1 - C2 , so we have
by Theorem 4.I.I an 8 E IRn separating {O} from C1 - C2 :

SUp {(8, y) : y E C1 - C2 } < (8,0) = O.
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This means:
0 > SUPY,EC, (S,Yl) + SUPY2EC 2(S , -YZ)

= SUPY,E C , (S, Yl) - infY2Ec 2 (s , yz).

Because Cz is bounded , the last infimum (is a min and) is finite and can be
moved to the lefthand side. 0

Fig. 4.1.1. Strict separation of two convex sets

Once again, (4.1.2) can be switched over to infyEc , (s , y) > maxyEC 2 (s, y). Using the
support function of Remark 4.1.2, we can also write (4.1.2) as I7C, (s) + 17C2 ( -s) < O.
Figure 4.1.1 gives the same geometric interpretation as before. Choosing r = r s strictly
between I7C, (s) and -17C2 ( -s), we obtain a hyperplane separating C1 and C2 strictly : each
set is in one of the corresponding open half-spaces.

C1 ::!::::';:j::::::::::::::.!:t ,;!::l:::I ::,,;:::" "'" ::1::::::::: ::::: ::::::;:;::,:,:, "",....:' ::{....".,. :::::::

.. ' C2

Fig. 4.1.2. Strict separation needs compactness

When C1 and C2 are both unbounded, Corollary 4.1.3 may fail- even though the role of
boundedness was apparently minor, but see Fig. 4.1.2. As suggested by this picture, C1 and
C2 can nevertheless be weakly separated, i.e. (4.1.2) can be replaced by a weak inequality.
Such a weakening is a bit exaggerated, however: Fig.4.1.3 shows that (4.1.2) may hold as
(s , Y1) = (s, Y2) for all (Y1, Y2) E C1 x C2 if s is orthogonal to aff (C1 U C2).

For a convenient definition, we need to be more demanding: we say that the two
nonempty convex sets C1 and C2 are properly separated by s E lRn when

inf (s,Y1) < sup (s,Y2).
y , EC, Y2E C 2

This (weak) proper separation property is sometimes just what is needed for technical
purposes. It happens to hold under fairly general assumptions on the intersection C1 n C2.
We end this section with a possible result, stated without proof.

Theorem 4.1.4 (Proper Separation of Convex Sets) If the two nonempty convex sets C 1

and C2 satisfy (ri C1) n (ri C2) = 0, they can be properly separated. 0

Observe the qualification assumption coming into play. We have already seen it in Propo­
sition 2.1.10, and we know from (2.1.5) that it is equivalent to 0 rt ri (C1 - C2) .
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Fig. 4.1.3. An improper separation

4.2 First Consequences of the Separation Properties

The separation properties introduced in §4.1 have many applications. To prove that
some set S is contained in a closed convex set C, a possibility is often to argue
by contradiction, separating from C a point in S\C, and then exploiting the simple
structure of the separating hyperplane. Here we review some of these applications,
including the proofs announced in the previous sections . Note: our proofs are of­
ten fairly short (as is that of Corollary 4.1.3) or geometric. It is a good exercise to
develop more elementary proofs, or to support the geometry with detailed calcula­
tions.

(a) Existence of Supporting Hyperplanes First of all, we note that a convex set
C, not equal to the whole of Rn, does have a supporting hyperplane in the sense
of Definition 2.4.1. To see it, use first Proposition 2.1.8: cl C i= Rn (otherwise, we
would have the contradiction C ::) ri C = ri cl C = ri Rn = Rn). Then take a
hyperplane separating cl C from some x (j. cl C: it is our asserted support of C.
Actually, we can prove slightly more:

Lemma 4.2.1 Let x E bd C, where C i= 0 is convex in Rn (naturally C i= Rn).
There exists a hyperplane supporting C at x.

Proof. Because C, cl C and their complements have the same boundary (remember
Remark 2.1.9), a sequence (Xk) can be found such that

Xk (j. cl C for k = 1,2, .. . and lim x k = X •
k--++oo

-+ s (note: s i= 0) and pass
C. This is the required result

o

For each k we have by Theorem 4.1.1 some sk of norm 1 such that (sk, X k - y) > 0
for all y E C C clC.

Extract a subsequence if necessary so that Sk

to the limit to obtain (s, x - y) ~ 0 for all y E
(s, x) = r ~ (s, y) for all y E C.

Remark 4.2.2 The above procedure may well end up with a supporting hyperplane contain­
ing C: (8, x - y) = 0 for all y E C, a result of little interest; see also Fig. 4.1.3. This
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can happen only when C is a "flat" convex set (dim C ::; n - 1), in which case our con­
struction should be done in aff C, as illustrated on Fig.4.2.I. Let us detail such a "relative"
construction, to demonstrate a calculation involving affine hulls.

aft C

Fig. 4.2.1. Nontrivial supports

Let V be the subspace parallel to aff C, with U = V.L its orthogonal subspace: by
definition, (s , y - x) = 0 for all s E U and y E C. Suppose x E rbd C (the case x E ri C
is hopeless) and translate C to Co := C - {x} . Then Co is a convex set in the Euclidean
space V and 0 E rbd Co. We take as in 4.2.1 a sequence (Xk) C V\ cI Co tending to 0 and
a corresponding unitary Sk E V separating the point Xk from Co. The limit S i= 0 is in V,
separates (not strictly) {O}and Co, i.e. {x} and C: we are done.

We will say that Hs,r is a nontrivial support (at x) if S rf. U, i.e. if Sv i= 0, with the
decomposition s = sv + sij , Then C is not contained in Hs,r: if it were, we would have
r = (s, y) = (sv , y) + (su, x) for all y E C . In other words, (sv ,') would be constant on
C; by definition of the affine hull and of V, this would mean sv E U, i.e. the contradiction
sv = O. To finish, note that st) may be assumed to be 0: if Sv + Su is a nontrivial support,
so is Sv = Sv + 0 as well; it corresponds to a hyperplane orthogonal to C. 0

(b) Outer Description of Closed Convex Sets Taking the closed convex hull of
a set consists in intersecting the closed convex sets containing it. We mentioned in
Remark 1.4.4 that convexity allowed the intersection to be restricted to a simple
class of closed convex sets: the closed half-spaces. Indeed, let a given set S be
contained in some closed half-space; say S c ut: := {y E IRn

: (s, y) ~ r} for
some (s, r) E IRn x IR with s "# O. Then the index-set

Es := {(s ,r) E IRn x IR : S c H;r}
={(s,r) : (s,y) ~ r for all y 'E S}

(4.2.1)

is nonempty. As illustrated by Fig.4.2.2, we can therefore intersect all the half­
spaces indexed in E s . This defines a certain set C*:

S c C* := n(s ,r)EEsH;:r =
{z E IRn (s, z) ~ r whenever (s, y) ~ rfor all yES} .



56 A. Convex Sets

Fig. 4.2.2. Outer construction of a closed convex hull

Theorem 4.2.3 The closed convex hull ofa set S :j:. 0 is either the whole of!Rn or
the set C* defined above.

Proof. Suppose co S :j:. !Rn : some nontrivial closed convex set contains S . Then
take a hyperplane as described in Lemma4.2.1 to obtain a closed half-space con­
taining S: the index-set Es is nonempty and C* is well-defined .

By construction, C* J co S. Conversely, let x f/. co S; we can separate {x}
and coS: there exists So :j:. 0 such that (so,x) > sUPYES(sO ,y) = : roo Then
(so, ro) E Es; but x f/. H~,ro' hence x f/. C*. 0

The definition of C' , rather involved, can be slightly simplified: actually, E s is redun­
dant, as it contains much too many r's . Roughly speaking , for given S E R" , just take the
number

r=rs :=inf{rER : (s,r)EEs}
that is sharp in (4.2.1). Letting s vary, (s , rs ) describes a set E~ , smaller than E s but just as
useful. With this new notation, the expression of C' = co S reduces to

ess = {z E Rn
: (s , z) ~ SUPYE S(S,y)} .

We find again the support function of Remark 4.1.2 coming into play. Chapter C will follow
this development more thoroughly.

Assuming S closed convex in Theorem 4.2.3, we see that a closed convex set
can thus be defined as the intersection of the closed half-spaces containing it:

Corollary4.2.4 The data (sj ,rj) E !Rn x !Rfor j in an arbitrary index set J is
equivalent to the data ofa closed convex set C via the relation

C = {x E!Rn
: (Sj ,x) ~ rj for j E J}.

Proof. If C is given, define {(Sj , rj)} J := Ee as in (4.2.1). If {(Sj, rj)} J is given,
the intersection of the corresponding half-spaces is a closed convex set. 0

Note in the above characterization that C = !Rn with J = 0 can be included as
an extreme case. Also, the case of a finite J is important:

Definition 4.2.5 (Polyhedral Sets) A closed convex polyhedron is an intersection
of finitely many half-spaces. Take (S1'r r). .. . , (sm, rm) in !Rn x !R , with S i :j:. 0
for i = 1, . .. , m ; then define
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P := { x E IRn : (8j ,X) (; rj forj = 1, .. . ,m},

or in matrix notation as in Example 1.2.2, P = {x E IRn : Ax (; b}.
A closed convex polyhedral cone is the special case where b = O. o

(c) Proof of Minkowski's Theorem We tum now to the inner description of a con­
vex set and prove Theorem 2.3.4, asserting that C = co ext C when C is compact
convex.

The result is trivially true if dim C = 0, i.e. C is a singleton, with a unique
extreme point. Assume for induction that the result is true for compact convex sets
of dimension less than k; let C be a compact convex set of dimension k and take
x E C . There are two possibilities :

- If x E rbd C , §4.2(a) tells us that there exists a nontrivial hyperplane H supporting
Cat x . The nonempty compact convex set C n H has dimension at most k - 1,
so x E C n H is a convex combination of extreme points in that set, which is an
exposed face of C. Using Remark 2.4.4, these extreme points are also extreme in
C.

- Ifx EriC (= C\ rbd C), take in C a point x' :f. x ; this is possible for dim C > O.
The affine line generated by x and x' cuts rbd C in at most two points y and z
(see Remark 2.1.7, there are really two points because C is compact). From the
first part of the proof, y and z are convex combinations of extreme points in C;
and so is their convex combination x (associativity of convex combinations).

(d) Bipolar of a Convex Cone The definition of a polar cone was given in §3.2,
where some interesting properties were pointed out. Here we can show one more
similarity with the concept of orthogonality in linear analysis .

Proposition 4.2.6 Let K be a convex cone with polar K °,.then, the polar K OOof
K O is the closure ofK .

Proof. From the definition itself of a polar cone,

x E K ~ (8,x) (; 0 for all 8 E K O
~ x E K OO;

thus K c KOo , therefore el K c K OO(a polar cone is always closed).
Conversely, let Xo E K Oo

• If Xo ~ el K, there is a separating hyperplane (d , a)
such that

(d,xo) > a ~ (d,x) for all x EKe elK.

This implies a ~ 0 (take x = 0) and we may assume a = 0 (if x E K has
(d, x) > 0, take tx E K with t -+ +00). Thus dE K O and the property (d, xo) > 0
gives the contradiction. 0

Of course, if K is already closed, K OO= K . This has several interesting conse­
quences :
- With relation to (a) above, we observe that every supporting hyperplane of K at

x E bd K also supports K at 0: when dealing with supports to a cone , it is enough
to consider linear hyperplanes only.
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- Besides, consider the index-set EK of (4.2.1): its r -part can be restricted to {O};
as for its s-part, we see from Definition 3.2.1 that it becomes K O\{O}. In other
words: barring the zero-vector, a closed convex cone is the set of (linear) hyper­
planes supporting its polar at O. This is the outer description of a closed convex
cone .

- This has also an impact on the separation Theorem 4.1.1: depending on s, the
righthand side in (4.1.1) is either 0 (s E K ) or +00 (s rt K). Once again, linear
separat ing hyperplanes are sufficient and they must all be in the polar cone .

Let us summarize these observations:

Corollary 4.2.7 Let K be a closed convex cone . Then

x E K {:::::::} (s, x ) ~ 0 for all s E K O.

4.3 The Lemma of Minkowski-Farkas

o

Because of its historical importance, we devote an entire subsection to another con­
sequence of the separation property, known as Farkas' Lemma. Let us first recall
a classical result from linear algebra: if A is a matrix with n rows and m columns
and b E JRn, the system Aa = b has a solution in JRm (we say that the system is
consistent) exactly when

bE ImA = [Ker AT]J.. ;

this can be rewritten {b}.L :::l Ker AT, or

{xEJRn
: ATx=O}C{XEJRn: V x=O} .

Denoting by S1, .. . , Sm the columns of A and using our Euclidean notation, we
write the equivalence of these properties as

bE lin {S1, ' . . ,sm } if and only if
(b, x)=O whenever (Sj , x)=Oforj=I , . . . , m .

Moving to the unilateral world of convex analysis, we replace linear hulls by
conical hulls, and equalities by inequalities. This gives a result dating back to the
end of the XIXt h Century, due to J. Farkas and also to H. Minkow ski; we state it
without proof, as it will be a consequence of Theorem 4.3.4 below.

Lemma 4.3.1 (Farkas I) Let b,S1, ... , Sm be given in JRn. The set

{x E JRn : (s j, x ) ~ 0 f or j = 1, . . . , m }

is contained in the set
{xEJRn

: (b, x) ~O}

if and only if (see Definition 1.4.5 of a conical hull)

b E cone {S1, . . . , sm} .

(4.3 .1)

(4.3 .2)

(4.3.3)
o
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To express the inclusion relation between the sets (4.3.1) and (4.3.2), one also
says that the inequality with b is a consequence of the joint inequalities with 8i- An­
other way of expressing (4.3.3) is to say that the system of equations and inequations
in a

m

b = 'L >:lcj 8j , a j ~ 0 for j = 1, . . . , m
j =1

(4.3.4)

has a solution .
Farkas' Lemma is sometimes formulated as an alternative, i.e. a set of two state­

ments such that each one is false when the other is true. More precisely, let P and
Q be two logical propositions. They are said to form an alternative if one and only
one of them is true:

P =} notQ and notP =} Q

or, just as simply :

P {:=:} notQ [or Q {:=:} notP] .

This applies to Farkas' Lemma:

Lemma 4.3.2 (Farkas II) Let b, 8 1 , . . . ,8m be given in IRn . Then exactly one ofthe
following statements is true.

P := (4.3.4) has a solution a E IRn
•

{

The system of inequations
Q:= (b,x»O, (8j,x) ~Oforj=1,. .. ,m

has a solution x E IRn
. o

Still another formulation is geometric. Call K the convex cone generated by
8 1 , . .. , 8 m ; as seen in Example 3.2.2, K O is the set (4.3.1). What Farkas' Lemma
says is that

bE K [i.e. (4.3.3) holds] if and only if
(b, x) ~ 0 whenever x E K O [i.e. b E K O O

] •

More simply, Farkas' Lemma is: K O O = K; but we know from §4.2(d) that this
property holds under the sole condition that K is closed. The proof of Farkas'
Lemma therefore reduces to proving the following result:

Lemma 4.3.3 (Farkas III) Let 8 1 , . .. , 8m be given in IRn . Then the convex cone

K := COne {81, . . . , 8m } = {~aj8j : aj ~ ofor j = 1, . . . ,m}
j=1

is closed.
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Proof It is quite similar to that of Caratheodory's Theorem 1.3.6 . First, the proof is
easy if the Sj 'S are linearly independent: then, the convergence of

m

x k = L ajsj for k -+ 00

j=1
(4.3 .5)

is equ ivalent to the convergence of each (aJh to some a j, which must be nonneg­

ative if each aJ in (4.3.5) is nonnegative.
Suppose, on the contrary, that the system 2::;1 (3jSj = 0 has a non zero solution

(3 E ~m and assume (3j < 0 for some j (change (3 to - (3 if necessary). As in the
proof of Theorem 1.3.6, write each x E K as

m m

X = L aj sj = L[aj + t*(x) (3j] Sj = L aj sj ,
j=1 j=1 # i(x )

where
-a '

i (x) E Argmin - (3 J ,
{3j< 0 j

t* ( ) ._ -ai( x)x .- ,
(3i(x )

so that each a} = a j + t*(x) (3j is nonnegative. Letting x vary in K , we thus
construct a decomposition K = U~1K i , where K, is the conical hull of the rn - 1
generators Sj , j :j:. i .

Now, if there is some i such that the generators of K, are linearly dependent,
we repeat the argument for a further decomposition of this Ki. After finitely man y
such operations, we end up with a decomposition of K as a finite union of polyhe­
dral convex cones, each having linearly independent generators. All these cones are
therefore closed (first part of the proot), so K is closed as well. 0

We are now in a position to state a general version of Farkas ' Lemma, with non­
homogeneous terms and infinitely many inequalities. Its proof uses in a direct way
the separation Theorem 4.1.1.

Theorem 4.3.4 (Generalized Farkas) Let be given (b, r) and (s}>Pj) in ~n x ~,

where j varies in an (arbitrary) index set J. Suppose that the system of inequalities

(Sj , x) ~Pj foralljEJ (4.3 .6)

has a solution x E ~n (the system is consistent). Then the following two properties
are equivalent:

(i) (b,x) ~ r for all x satisfy ing (4.3.6) ;
(ii) (b, r) lies in the closed convex conical hull of S := {(O, I)} U {(Sj , Pj )}jEJ.

Proof [(ii) => (i)] Let first (b, r) be in K := cone S. In other words, there exists a
finite set {I , .. . , rn} C J and nonnegative ao,a l, .. . , a m such that (we adopt the
convention 2::0 = 0)
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b = :L ajsj
j = l
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m

and r = ao + :LajPj.
j =l

For each x satisfying (4.3.6) we can write

(b,x) :::; r - ao :::; r. (4.3 .7)

If, now, (b, r) lies in the closure of K, pass to the limit in (4.3.7) to establish the
required conclusion (i) for all (b, r) described by (ii).

[(i) ~ (ii)] If (b,r) rf. elK, separate (b,r) from elK: equipping jRn x jR with the
scalar product

«(b, r) , (d, t))) := (b,d) + rt ,

there exists (d, - t) E jRn x jR such that

sup [(s,d) - pt] < (b,d) - rt .
(s ,p)EK

(4.3.8)

It follows first that the lefthand supremum is a finite number n: Then the conical
character of K implies Ii :::; 0, because ali :::; Ii for all a > 0; actually Ii = 0
because (0,0) E K. In summary, we have singled out (d, t) E jRn x jR such that

t ~O

(Sj , d) - Pjt :::; 0 for all j E J
(b, d) - rt > O.

[take (0,1) E K]

[take (Sj,Pj) E K]
[don't forget (4.3.8)]

Now consider two cases:

- If t > 0, divide (*) and (**) by t to exhibit the point x = dj t violating (i).
- If t = 0, take Xo satisfying (4.3.6). Observe from (*) that, for all a > 0, the point

x (a ) = Xo + ad satisfies (4.3.6) as well. Yet, let a -+ +00 in the expression
(b,x(a)) = (b,xo) + a(b , d) to realize from (**) that x(a) violates (i) if a is
large enough.

Thus we have proved in both cases that "not (ii) ~ not (i)" . 0

We finish with two comments relating Theorem 4.3.4 with the previous forms
of Farkas ' Lemma. Take first the homogeneous case, where r and the Pj'S are all
zero. Then the consistency assumption is automatically satisfied (by x = 0) and the
theorem says:

(i') [(Sj , x) :::; 0 for j E J]~ [(b , x) :::; 0]
is equivalent to

(ii') b E cone{sj : j E J} .

Second, suppose that J = {I , . .. , m} is a finite set, so the set described by
(4.3.6) becomes a closed convex polyhedron, assumed nonempty. A handy matrix
notation (assuming the dot-product for (','), is ATX :::; p, if A is the matrix whose
columns are the s/s, and P E jRm has the coordinates PI , . .. , Pm. Then Theo­
rem 4.3.4 writes :
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(i") {x E IRn : AT x :::;; p} C {x E IRn : bT X :::;; r}
is equivalent to

(ii") ::Ja E IRm such that a :? 0, Aa = b, pTa :::;; r .

Indeed, it suffices to recall Lemma 4.3.3: the conical hull involved in (ii) of
Theorem 4.3.4 is already closed. Beware that the last relation in (ii") is really an
inequality.

5 Conical Approximations of Convex Sets

Given a set S and xES, a fruitful idea is to approximate S near x by a "simpler"
set. In classical differential geometry, a "smooth " surface S is approximated by an
affine manifold "tangent" to S. This concept is most exploited in the differentiation
of a "smooth " function f : IRn -+ IR, whose graph has a "tangent" affine hyperplane
in IRn x IR near (x, f(x» :

gr f:::: {(y ,r) : r - f(x) = (\If(x) ,y - x)} .

Because convex sets have no reason to be "smooth", some substitute to affine
manifolds must be proposed. We know that affine manifolds are translations of sub­
spaces; say, we approximate S near x by

Hs(x) = {x} + Vs(x) :::: S,

where Vs(x) is a subspace: the subspace tangent to S at x. It is therefore time to
remember §3.2: in the unilateral world of convex analysis, the natural substitutes for
subspaces are the closed convex cones. Besides, another important object is the set
of normals to S at x, i.e. the subspace orthogonal to Vs(x); here, orthogonality will
be replaced by polarity, as in Moreau's decomposition Theorem 3.2.5.

5.1 Convenient Definitions of Tangent Cones

In order to introduce the convenient objects, we need first to cast a fresh glance at the
general concept of tangency. We therefore consider in this subsection an arbitrary
closed set S c IRn .

A direction d is classically called tangent to S at xES when it is the derivative
at x of some curve drawn on S; it follows that -d is a tangent as well. In our
unilateral world, half-derivatives are more relevant. Furthermore, sets of discrete
type cannot have any tangent direction in the above sense, we will therefore replace
curves by sequences. In a word, our new definition of tangency is as follows:

Definition 5.1.1 (Tangent Directions) Let S C IRn be nonempty. We say that d E
IRn is a direction tangent to S at xES when there exists a sequence (Xk) C Sand
a sequence (tk) such that, when k -+ +00,
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(5.1.1)

The set of all such directions is called the tangent cone (also called the contingent
cone, or Bouligand's cone) to 5 at x E 5 , denoted by Ts(x) . 0

Observe immediately that 0 is always a tangent direction (take Xk == x!); also, if
d is tangent, so is ad for any a> 0 (change tk to tkja!). The terminology "tangent
cone" is therefore legal. If x E int 5, T s (x) is clearly the whole space, so that the
only interesting points are those on bd 5.

Ifwe set in Definition 5.1.1 dk := (Xk - X)jtk [-+ d), i.e. Xk = x + tkdk [E 5J,
we obtain the equivalent formulation:

Proposition 5.1.2 A direction d is tangent to 5 at x E 5 if and only if

A tangent direction thus appears as a set of limits ; a limit of tangent directions
is therefore a "limit of limits", and is a limit itself:

Proposition 5.1.3 The tangent cone is closed.

Proof Let (de) C Ts(x) be converging to d; for each £ take sequences (xe,kh and
(te,kh associated with de in the sense of Definition 5.1.1. Fix £ > 0: we can find ke
such that

II
xe,kl - x - de II ~ ~ .

te,kl £

Letting £ -+ 00, we then obtain the sequences (xe,kl)e and (te,kl)e which define d
as an elementofTs(x) . 0

The examples below confirm that our definition reproduces the classical one when S is
"well-behaved", while Fig. 5.1.1 illustrates a case where classical tangency cannot be used.

x + TS(x)

Fig. 5.1.1. Tangency to a "bad" set

Examples 5.1.4 Given m functions ci , .. . , Cm continuously differentiable on IRn
, consider

S:={xEIRn
: ci(x)=Ofori=l, . . . , m }.

Let xES be such that the gradients \7ci (z), ... , \7Cm (x) are linearly independent. Then
T s (x) is the subspace
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{dERn
: (\7 ci(x) ,d)=Ofori=l, . . . , m } .

Another example is
S :={XERn

: C l (X)~ O} .

At xES such that ci (x) = 0 and \7ci (x) =1= 0, T s (x) is the half-space

{d E Rn
: (\7cl(x) ,d) ~ O}.

(5.1.2)

(5.1.3)

Both formulae (5.1.2) and (5.1.3) can be proved with the help of the implicit function
theorem.This explains the assumptions on the \7ci( X)'S; things become more delicate when
several inequalities are involved to defineS. D

Naturally, the concept of tangency is local, as it depends only on the behaviour
of S near x. From its Definition 5.1.1, T s (x) appears as the set of all possible cluster
points of the difference quotients ((y - x) jt), with yES and t ..j. 0; using set-valued
notation (see §0.5):

S-x
Ts(x) = lim ext --.

qo t
Another interpretation uses the distance function ds (x)

Ts(x) can also be viewed as the set of d's such that

lim inf ds(x + td) = 0 .
t-l-O t

(5.1.4)

minYEs Ily - xii :

(5.1.5)

(5.1.6)

Knowing that ds(x) = °when XES, the infimand of (5.1.5) can be interpreted as
a difference quotient: [ds(x + td) - ds(x)]jt . Finally, (5.1.5) can be interpreted in
a set-formulation: for any e > °and for any 8 > 0, there exists°< t ~ 8 such that

S-x
x + td E S + B(O,te), i.e. dE -t- + B(O,e).

Remark 5.1.5 In (5.1.4) , we have taken the tangent cone as a lim ext, which corre­
sponds to a lim inf in (5.1.5). We could have defined another "tangent cone", namely

I
. . S - x
Immt--.

qo t

In this case, (5.1.5) would have been changed to

I· ds(x + td) °im sup = [=Iimt-l-ods(x+td)jt]
uo t

(where the second form relies on the fact that ds is nonnegative). In a set-formulation
as before, we see that (5.1.6) means: for any e > 0, there exists 8 >°such that

S-x
dE -t- + B(O, e) for all °< t ~ 8.

We will see in §5.2 below that the pair of alternatives (5.1.5) - (5.1.6) is irrele­
vant for our purpose, because both definitions coincide when S is convex. 0

Remark 5.1.6 Still another "tangent cone" would also be possible: one says that d is afeasi­
hie direction for S at xES when thereexists 8 > 0 such that x + td E S [i.e, d E (S - x) / t]
for all 0 < t ~ 8.

Once again, we will see that the difference is of little interest: when S is convex, T s (x)
is the closure of the cone of feasible directions thus defined. D
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5.2 The Tangent and Normal Cones to a Convex Set

Instead of a general set S, we now consider a closed convex set C c IRn. In this
restricted situation, the tangent cone can be given a more handy expression. The
key is to observe that the role of the property tk -l- °is special in (5.1.5): when
both x and x + tkdk are in C, then x + rdk E C for all r E )0, tk)' In particular,
C C {x} + T c (x). Indeed, the tangent cone has a global character:

Proposition 5.2.1 The tangent cone to a closed convex set C at x E C is the closure
ofthe cone generated by C - {x} :

T c(x) = cone (C - x ) = cl [IR+ (C - x ))
=cl{dEIRn : d=o:(y- x) , yEC, o: ~o}.

It is therefore convex.

(5.2.1)

Proof. We have just said that C - {x} eTc (x). Because Tc (x) is a closed cone
(Proposition 5.1.3), it immediately follows that cl [IR+ (C - x )) c Tc(x). Con­
versely, for d E Tc(x), take (Xk) and (tk) as in the definition (5.1.1): the point
(x k - x) / tk is in IR+(C - z ), hence its limit d is in the closure of this latter set. 0

Remark 5.2.2 This new definition is easier to work with - and to master. Furthermore, it
strongly recalls Remark 2.2.4: the term in curly brackets in (5.2.1) is just a union,

U
C- x

cone (C - x ) := -t-
1> 0

and, thanks to the monotonicity property of the "difference quotient" t 1-7 (C - x) It , it is
also a limit of nested sets:

C- x
cone (C - x ) = lim--

1-1-0 t
to be compared with the definition (2.2.3) of the asymptotic cone. Having taken a union, or
a limit, the closure operation is now necessary, but it was not when we took an intersection.
Also, the limit above is unambiguous (it is a union!), and can be understood as the lim ext or
the lim int; see Remark 5.1.5. As for Remark 5.1.6, we see that the cone of feasible directions
for the convex C at x is just the very last set in brackets in (5.2.1). 0

As a closed convex set, Tc (x) can also be described as an intersection of closed
half-spaces - remember §4.2(b). In the present conical situation, the half-spaces can
be taken as homogeneous - remember §4.2(d).

Definition 5.2.3 (Normal Cone) The direction 8 E IRn is said to be normal to C at
x E C when

(8,Y - x) :::; °for all y E C . (5.2.2)

The set of all such directions is called normal cone to C at x , denoted by Nc(x) .
o
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That Nc (x) is a closed convexcone is clear enough. A normal is a vector s such that the
angle between s and y - x is obtuse for all y E C. A consequence of §4.2(a) is that there
is a nonzero normal at each x of bd C . Indeed, Theorem 3.1.1 tells us that v - pc (v) E
Nc(pc(v )) for all v E R" .

By contrast, Nc(x) = {OJ for x E int C . As an example, for a closed half-space C =
H;'r = {y E jRn : (s, y) ~ r}, the normals at any point of Hi; are the nonnegative
multiples of s.

Proposition 5.2.4 The normal cone is the polar of the tangent cone.

Proof If (8, d) ~ 0 for all dEC - x , the same holds for all d E ~+ (C - x ), as
well as for all d in the clo sure T e(x ) of the latter. Thus, Ne(x ) C [Te(x W.

Conversely , take 8 arbitrary in [Te(x W. The relation (8, d) ~ 0, which holds
for all d E T e(x ), a fortiori holds for all dEC - x C T e(x ); this is just (5.2.2).

o

Knowing that the tang ent cone is closed, this result can be combined with Propo­
sition 4 .2.6 to obtain a third definition, in addition to Definition 5.1.1 and Proposi­
tion 5.2 .1:

Corollary 5.2.5 The tangent cone is the polar of the normal cone:

T e(x) = {d E ~n : (8,d) ~ 0 for all 8 E Ne(x)}. o

This describes Tc(x) as an intersection of homogeneou s half-spaces and the
relationship with §4.2(b) is clear. With the notation thereof, r s = 0 for each 8, and
the index-set E~c(x ) is nothing more than Ne( x) ; see again §4.2(d).

It is interesting to note here that normality is again a local concept, even though (5.2.2)
does not suggest it. Indeed the normal cone at x to C n B(x , 8) coincides with Nc(x) . Also,
if C' is "sandwiched", i.e. if C - {x} C C' - {x} C T c(x), then Nc ' (x) = Nc(x) - and
Tc ' (x) = Tc (x). Let us add that tangent and normal cones to a nonclosed convex set C
could be defined if needed: just replace C by cl C in the definitions.

Another remark is that the tangent and normal cones are "homogeneous" objects, in that
they contain 0 as a distinguished element. It is most often the translated version x + T c(x)
that is used and visualized; see Fig.5.I.I again.

Let us summarize the con cepts introduced so far.

- First, there is the tangent cone, defined via a difference quotient, either set-valued
(C - x )l t, or using the distance: de( x + t ·)I t. Thi s cone has several equivalent
definitions: (i) as the outer limit of (C - x )It (i.e . using lim inf de( x + t .)It) ,
(ii) as the inner limit of (C - x )It (i.e. using lim su p de(x + t .)It) , or (iii) as the
closed conical hull of C - x.

- Then there is the normal cone, which is the polar of the tangent cone.

- Alternatively, one could define first the normal cone, as the cone polar to C - x
(or to ~+ (C - x), knowing that polarity doe s not distinguish a set from its closed
conical hull). Then the tangent cone would be defined as the polar to this normal
cone.
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Needless to say, it is convexity of C that makes all these definitions equivalent.
If C were not convex, we would obtain just as many different objects.

Examples 5.2.6 (a). If C = K is a closed convex cone, TK(O) = K : the polar K O
of a closed convex cone is its normal cone at O. On the other hand, if 0 i=- x E K ,
then T K (x) contains at least one subspace, namely ffi-{ x}. Actually, we even have

NK(X) = {s E K O : (s , x) = O} for x i=- o.

To see it, observe that T K(x) ::> {x} means NK(x) C {x} 1- ; in other words, the
relation "(s,y - x ) ::::; 0 for all y E K" defining NK( X) reduces to "(s , y) ::::; 0
[= (s, x)] forally E K " .

A cone is a set of vectors defined up to a multiplicative constant, and the value of this
constant has often little relevance. As far as the concepts of polarity, tangency, normality are
concerned, for example, a closed convex cone T (or N) could equally be replaced by the
compact T n B(D, 1); or also by {x E T : Ilxll = I} , in which the redundancy is totally
eliminated.

(b). Take a closed convex polyhedron defined by m constraints:

C := {x E ffi-n : (sj, x) ::::; r j for j = 1, . . . ,m }

and define
J( x) := {j = 1, . .. , m : (Sj , x) = rj}

the index-set of active constraints at x E C. Then

(5.2.3)

T c(x) = {d E ffi-n : (sj ,d) ::::; 0 for j E J( x)} ,

Nc(x)= cone{sj : jEJ(X)}={ L a js j : aj ~O} .
j E J( x)

(c). Let C be the unit simplex L\n of Example 1.1.3 and a = (al , ... , a n ) E
L\n. If each a i is positive, i.e. if a E ri L\n, then the tangent cone to L\n at a is
aff L\n - {a}, i.e. the linear hyperplane of equationL~=l a i = O. Otherwise, with
e := (1, . .. , 1) E ffi-n :

Using Example (b) above, calling {el, ' . . , en} the canonical basis of ffi-n and de­
noting by J(a) := {j : a j = O} the active set at a, we obtain the normal cone:

Na, (a) = cone [{ e} U {-e} UjEJ(a:) {- ej}]
= {LjE{O}UJ(a:) (3jej : (3j ::::; 0 for j E J(a)} . 0
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5.3 Some Properties of Tangent and Normal Cones

Let us give some properties of the tangent cone, which result directly from Proposi­
tion 5.2.I.

- For fixed x , Tc(x) increases if and only if Nc(x) decreases, and these properties
happen in particular when C increases.

- The set cone(C - x) and its closure Tc(x) have the same affine hull (actually
linear hull!) and the same relative interior. It is not difficult to check that these last
sets are (aff C - x) and IR;t (ri C - x) respectively.

- Tc(x) = aff C - x whenever x E ri C (in particular, Tc(x) = IRn if x E int C).
As a result, approximating C by x + Tc (x) presents some interest only when x E
rbd C. Along this line, we warn the reader against a too sloppy comparison of the
tangent cone with the concept of tangency to a surface: with this intuition in mind,
one should rather think of the (relative) boundary of C as being approximated by
the (relative) boundary of Tc(x).

- The concept of tangent cone fits rather well with the convexity-preserving oper­
ations of §1.2. Validating the following calculus rules involves elementary argu­
ments only, and is left as an exercise.

Proposition 5.3.1 Here, the C 's are nonempty closed convex sets.

(i) For x E C l n C2, there holds

T c,nc 2(x) c r -, (x) n T C2(x) and NC,nc 2(X):::> Nc, (x) + NC2(X),

(ii) With c. C jRn i , i = 1,2 and (Xl , X2) E Cl X C2,

T c, XC2 (Xl , X2) = T c, (xI) X T C2 (X2) ,

Nc, XC2(Xl , X2) = Nc, (xI) X NC2 (X2) .
(iii) With an affine mapping A(x) = yo + Aox (Ao linear) and X E C,

- ,
TA( c)[A(x)] = cI [AoTc(x)] and NA(c)[A(x)] = A~[Nc(x)] .

(iv) In particular (start from (ii), (iii) and proceed as when proving (1.2.2» :

Tc, +C2(Xl + X2 ) = cI[Tc, (xI) + T C2 (X2)] ,

NC,+C2(XI + X2) = Nc, (Xl) n NC2(X2) . o

Remark 5.3.2 To obtain equalityin (i), an additional qualification assumption is necessary.
One was used in Proposition 2.1.10, see also (2.1.5) :

(the proof of the corresponding statement becomes a bit longer).

(5.3.1)

o

Some more properties of tangent and normal cones are worth mentioning, which
patch together various notions seen earlier in this chapter.

Proposition 5.3.3 For x E C and s E IRn , the following properties are equivalent:
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(i) S E Nc(x) ;
(ii) x is in the exposed fa ce Fc(s): (s , x) = max YEc(s, y) ;

(iii) x = pc(x + s) .

Proof. Nothing really new: everything comes from the definitions of normal cones,
supporting hyperplane s, exposed faces, and the characteristic property (3.1.3) of the
projection operator. D

This result is illustrated on Fig. 5.3.1 and implies in particular :

p~ (x) = { x} + Nc(x) for all x E C .

Also,
x -I- x' =} [{x} + Nc(x)] n [{x'} + Nc(x' )] = 0

(otherwise the projection would not be single-valued).

5

c
X.)...····· ~1
~:. {x} + Nc(x} = Pc(x}

.....
{x} + Tc(x}

Fig. 5.3.1. Normal cones, project ions and exposed faces

Remark 5.3.4 Let us come back again to Fig. 4.2.2. In a first step, fix x E C and consider
only those supporting hyperplanes that pass through x, i.e. those indexed in Nc (x ). The
corresponding intersection of half-spaces just construct s T c (x) and ends up with { x} +
T c(x) ~ C . Note in passing that the closure operation of Proposition 5.2.1 is necessary
when rbd C presents some curvature near x.

Then, in a second step, do this operation for all x E C:

C c n[x + T c(x)].
x EC

(5.3.2)

A first observation is that x can actually be restricted to the relative boundary of C : for
x EriC, T c (x) expands to the whole aff C - x and contains all other tangent cones. A
second observation is that (5.3.2) actually holds as an equality. In fact, write a point y If. C as
y = pc(y) + s with s = Y - pc(y) ; Proposition 5.3.3 tells us that s E Nc[p c(y)], hence
the nonzero s cannot be in Tc[pc(y)]: we have established y If. pc(y) + Tc[pc(y)], y is
not in the righthand side of (5.3.2). In a word:

C = n [x + Tc(x)],
x ErbdC

which sheds some more light on the outer description of C discussed in §4.2(b). 0
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Exercises

1. In each of the three cases below, the question is whether D c ffi.n is convex :
- when C1 CDC C2 , with C1 and C2 convex ;
- when the projection of D onto any affine manifold of ffi.n is convex ;

- when D is closed and satisfies the "mid-point property ": x ; Y E D whenever x
and y lie in D;

- when D = {x : Ilx - xII + IIx - yll ~ 1 for all yES} (x E ffi.n ,S C ffi.n
arbitrary );

- when D = {x : x + SeC} (S arbitrary, C convex).

2*. Express the closed convex set {(~ , 17) E ffi.2 : ~ > 0, 17 > 0, ~17 ~ I} as an
intersection of half-spaces. What is the set of directions exposing some point in it?
Compute the points exposed by such directions (draw a picture).

3**. Give two closed convex cones K 1 and K 2 in ffi.3 such that K 1 + K 2 is not
closed (startfrom two sets in JR2).

4. For C closed convex, establish Coo = n E>o cl (UO<t~EtC) .

5**. In the vector space Sn (R), consider the set E of positive semi-definite matrices
A = [Ai j ) such that A i i = 1 for i = 1, . .. , n (these are called correlation matrices) .

If V is a subspace of ffi.n, use the notation Fv := {M E En : V C Ker M} .
- Show that Fv is a face of En .
-Let F be a face of En . Show that F = Fv , with V = nMEF Ker M.
- Let Mi, E En be given. Show that the smallest face of En containing Mo is the set

{M E En: KerMo C KerM}.
Show that every face of En is exposed.

6 *. Here C and A are two closed sets such that C C A.
- Show that Pc 0 PA = Pc if C and A are two subspaces (draw a picture; this is a

well-known theorem in elementary geometry).
- Show the same property when C is convex , A being an affine manifold (frequently

usedwith A = aff C) .

- Show on an example that the property need not hold under mere convexity of C
andA.

7*. Show that the polar of K := {x = (~1, . . . , ~n) : e ~ e ~ ...~ ~n} (with
n ~ 2) is

K O= {y = (171
, . .. , 17n

) : it 17i ~ 0, k = 1, . .. ,n - 1 and i~ 17i = O} .

8*. For two integers m and n such that m ~ n, give all the extreme points of

IIm := { a = (a1
, . .. ,a n

) : O ~ai ~l , i=I , . . . , n and f-ai=m}
,=1

(a picture with n = 3 willbe helpful).
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9. Let Ao, AI,... , Am be symmetric n x n matrices . For x = (~1, . .. , ~n ) , set
A(x) := Ao + I':~l ~iAi and define C := { x E IRrn : A(x) >r= a} . Using different
techniques, show that C is closed convex.

10. For two nonempty sets A and B in IRn, show that co (A + B) = co A + co B .

11 *. Given a set S , show that every extreme point of co S lies in S .

12 *. Let C be convex in IRn and A : IRn -+ IRm be an injective affine mapping.
Show that A(x) is an extreme point of A(C) , for each extreme point x in C . Check
on an example that the result need not hold without injectivity of A .

13*. Let C be a nonempty closed convex set. Show that Yx E C is the projection of
x onto C if and only if (x - y , y - Yx) ~ °for all y E C (draw a picture).

14*. Let (Ckh be a decreasing sequence of closed convex sets, with C := nkCk =j:.
0. Show that, for all x E IRn,

PCk (x ) -+ pc(x) and dCk (x) t dc(x) when k -+ +00.

15 *. Let K := S~(IR) denote the (closed convex) cone of positive semi-definite
matrices in the space Sn(IR) equipped with the standard scalar product (M,P) :=

t r M P .
- Show that K O= -K, a set which can be denoted by S;; (IR) .
- Characterize the projections PK(M) and PKo(M) of a given matrix M .
- Deduce the Moreau decomposition of M onto K and K O(Thm 3.2.5) .

16. If S is an open set, show that co S is open as well.

17*. Give an example of two closed convex sets C l and C2 , such that C l + C2 is
closed, and (Cl )oo + (C2 )00 is stricly included in (Cl + C2 )00 '

18 *. Let C C IRn be nonempty closed convex and A : IRn -+ IRm be linear. Show
that A(C) is closed whencver Cx.rrKer A = {a}. As an application, find a sufficient
condition for the projection of a closed convex set onto a subspace to be closed .

19. Under which condition is°an extreme point of a closed convex cone?
- Show that any x of norm I is an extreme point of B(O, 1) (Euclidean unit ball) .

- What are the extreme points of B , (0,1), the unit ball of the {iI- norm Ijl xllh :=

I':~=l l~iJ?
- Same question for Boo (0, 1) (1ll xlll oo := max {IeI,..., I~nl}). Compare the growth

of the number of extreme points, respectively of B l(O, 1) and Boo (0, 1), when
n -+ +00.

20*. The diameter of a set S is sup {Ily - xii : x, YES}. Show that S and co S
have the same diameter if S is bounded.
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21 *. Show the following relations

CO(Sl n S2) c (coSt} n (COS2) ,
co (Sl + S2) = co Sl + co S2 ,

CO(Sl US2) = co [(coSt} U (COS2)];

Give an example in which equality does not hold for the intersection.
Show that this equality does hold in the following situation: S2 = H is a hyper­

plane and Sl is contained in H- , one of the corresponding closed half-spaces.

22*. For C convex, show that C is closed if and only if C n L is closed, for any
affine line L .

23*. A closed convex cone K is said to be acute when (x , x') ~ afor all x and x'
in K .
- Show that K is acute if and only if K c - KO.

- For p ~ 1, define tc, := {(e, ... ,~n) : ~n ~ (L~~i I~k IP) l ip}.
- What is (Kp)O?
- For which values of pis K p acute?

24**. For C convex compact, show that C = co (rbd C).

25**. In the space of n x n matrices, consider the affine subspace

and the convex compact set (of so-called bistochastic matrices of size n)

En :={MEVn : mij~Ofori,j=l, . . . ,n} .

- Show that Vn has dimension (n - 1)2 and that aff En = Vn.
- Set I n := [~] (the bistochastic matrix whose all elements are equal; it is a "cen-

tral" matrix in En). Check that I n lies in the relative interior of En, and that
JnM = M I n = I n for all M E En (In "absorbs" the whole of En).

- Now we equip the space of matrices with the standard scalar product (M, P) :=
tr M T P. Denoting bye E IRn the vector whose all component are 1, show that
V;- = {ue T + ev T : u E IRn , v E IRn}.

- Deduce that the orthogonal projection of a matrix M onto Vn is I n + KnM K n,
where K n := In - I n (In is the identity matrix).

26**. Let P be a closed convex polyhedron: P = {x : Ax = b, x ~ a}.
- For a i:- x E P, show that x is extremal in P if and only if the columns i of A

corresponding to ~i > aare linearly independent.
- Use this result to prove the following theorem (G. Birkhoff, 1946): the set of

bistochastic matrices (see above) is convex compact, and its extreme points are
the permutation matrices.



f(o:x + (1 - o:)xl
) ~ o:f(x) + (1- o:)f(xl

) .

B. Convex Functions

Introduction. The study of convex functions goes together with that of convex sets; ac­
cordingly, this chapter and the previous one constitute the first serious steps into the world of
convex analysi s. This chapter has no pretension to exhaustivity; similarly to Chap . A, it has
been kept minimal, containing what is necessary to comprehend the sequel.

1 Basic Definitions and Examples

1.1 The Definitions of a Convex Function

Definition 1.1.1 Let C be a nonempty convex set in jRn . A function f : C -+ jR is
said to be convex on C when, for all pairs (x, x') E C x C and all 0: E )0,1[, there
holds

(1.1.1)
o

We say that f is strictly convex on C when (1.1.1) holds as a strict inequality if
x -; x', An even stronger property is that there exists c > asuch that

f(o:x + (1 - o:)xl
) ~ o:f(x) + (1 - o:)f(x l

) - ~eo:(1 - o:)lIx - x'11 2 (1.1.2)

for all (x, Xl) E C x C and all 0: E )0,1[. In this case, f is said to be strongly convex
on C (with modulus of strong convexity c). Passing from (1.1.1) to (1.1.2) does not
change much the class of functions considered:

Proposition 1.1.2 The function f is strongly convex on C with modulus c if and
only if the function f - 1/2 ell , 11 2 is convex on C.

Proof. Use direct calculations in the definition (1.1.1) of convexity applied to the
function f - 1/2 ell . 11 2, namely:

f(o:x + (1 - o:)xl
) - ~ cllo:x + (1 - 0:)x1112 ~

~ o:f(x) + (1 - o:)f(xl
) - ~c[0:IIxI12 + (1 - 0:)lIxI1l2] . 0

Although simple, this statement illustrates a useful technique in convex analysis : to prove
that a convex function has a certain property, one establishes a related property on a suitable
strongly convex perturbation of the given function .

J. -B. Hiriart-Urruty et al., Fundamentals of  Convex Analysis

© Springer-Verlag Berlin Heidelberg 2001
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The set C needed in Definition 1.1.1 (which can be the whole space) appears
as a sort of domain of definition of f. Of course, it has to be convex so that the
lefthand side of (1.1.1) makes sense. In a more modern definition, a convex function
f is considered as defined on the whole of ocn , but possibly taking infinite values:

Definition 1.1.3 (The Set Cony OCn ) A function f : OCn -+ OC U {+oo}, not iden­
tically +00, is said to be convex when, for all (x, x') E ocn x OCn and all a E ]0,1[,
there holds

f(ax + (1 - a)x') ~ af(x) + (1 - a)f(x'),

considered as an inequality in OC U {+00}.
The class of such functions is denoted by Conv OCn . o

See §O.2 for a short introduction to the set RU {+oo}. We mention here that our definition
coincides with that of proper convexity used by other authors. The distinction is necessary
when the value I(x) = -00 is allowed ; but this value is excluded from the very beginning
in the present book.

To realize the equivalence between our two definitions, extend an f from Defi­
nition 1.1.1 by

f(x) := +00 for x ~ C, (1.1.3)

thus obtaining a new f, which is now in Conv OCn . Conversely, consider the follow­
ing definition (meaningful even for nonconvex f, incidentally):

Definition 1.1.4 (Domain of a Function) The domain (or also effective domain) of
f E Conv R" is the nonempty set

domf := {x E OCn : f(x) < +oo} . o

Clearly enough, an f satisfying (1.1.1), (1.1.3) has a convex domain ; given
f E Conv OCn , we can therefore take C := dom f to obtain a convex function
in the sense of Definition 1.1.1. Strong convexity is also defined in the spirit of
Definition 1.1.3, via (1.1.2) with x and x' varying in dom f or in OCn : it makes no
difference . Same remark for strict convexity (checking all these claims is a good
exercise to familiarize oneself with computations in OC U { +00}).

Now, we recall that the graph of an arbitrary function is the set of couples
(x, f (x)) in OCn x OC. When moving to the unilateral world of convex analysis,
the following is relevant:

Definition 1.1.5 (Epigraph of a Function) Given f : OCn -+ OCu {+oo}, not iden­
tically equal to +00, the epigraph of f is the nonempty set

epif:= {(x,r) E OCn x OC : r ~ f(x)} .

Its strict epigraph epi, f is defined likewise, with "~" replaced by">" (beware that
the word "strict" here has nothing to do with strict convexity). 0
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Defining a sublevel-sets (see §O.I .2) by

SrU) := {x E JRn : f(x) ::::; r} ,

we have the equivalent definition

(x,r) E epi f {::::::::;> x E SrU) . (1.1.4)

The following property is easy to derive, and can be interpreted as giving one
more definition of convex functions, which is now of geometric nature .

Proposition 1.1.6 Let f : JRn -+ JR U {+oo} be not identically equal to +00. The
three properties below are equivalent:

(i) f is convex in the sense ofDefinition 1.1.3;
(ii) its epigraph is a convex set in JRn x JR;

(iii) its strict epigraph is a convex set in JRn x JR .

Proof. Left as an exercise. o

We say that f is concave when - f is convex, or equivalently when the hypograph of
f (revert the inequality in Definition 1.1.5) is a convex set. We will see on examples that
either the analytical Definition 1.1.3 or the geometric one coming from 1.1.6 may be more
convenient, depending on the situation.

Remark 1.1.7 The sublevel-sets of f E Conv R" are convex (possibly empty) subsets of
R" . To construct S, (f) , remember Example A.I.2.5: we cut the epigraph of f by a horizontal
blade, forming the intersection epi f n (R" x {r}) of two convex sets; then we project
the result down to R" x {O} and we change the environment space from lRn x R to R" .
Even though this latter operation changes the topology, it changes neither the closure nor the
relative interior.

/

C__J
Fig. 1.1.1. Forming a sublevel-set

Conversely, a function whose sublevel-sets are all convex need not be convex (see
Fig. 1.1.1); such a function is called quasi-convex.

Observe that dom f is the union over r E R of the sublevel-sets Sr(f), which form a
nested family; it is also the projection of epi f C lRn x R onto R" (so Proposition A.I .2.4
and Example A.1.2.5 confirm its convexity). 0
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The basic inequality (1.1.1) can be generalized to convex combinations of more
than two points :

Theorem 1.1.8 (Inequality of Jensen) Let f E Cony ~n. Then,for all collections
{Xl , .. . ,xd ofpoints in dom f and all 0: = (0:1, ... , O:k) in the unit simplex of
~k, there holds (inequality ofJensen in summation form)

f(2: 7=10:iXi) ::::; 2:7=1o:;f( Xi) .

Proof. The k points (Xi, f( Xi)) E ~n x ~ are clearly in epi f, a convex set. Their
convex combination

is also in epi f (Proposition A.l .3.3). This is just the claimed inequality. 0

Starting from f E Cony ~n , we have constructed via Definition 1.1.5 the convex
set epi f .Conversely, if E c ~n X ~ is the epigraph of a function in Cony ~n, this
function is directly obtained from f(x) = inf( x ,r)EEr (recall that inf0 = +00;
we will see in §1.3(g) what sets are epigraphs of a convex function) . In view of this
correspondence, the properties of a convex function f are intimately related to those
developed in Chap. A, applied to epi f .

We will see later that important functions are those having a closed epigraph . Also, it is
clear that aff ep i f contains the vertical lines {x} x R, with x E dom f . This shows that
epi f cannot be an open set, nor relatively open: take points of the form (x , f(x) - c) . As a
result, ri epi f cannot be an epigraph, but it is nevertheless of interest to see how this set is
constructed:

Proposition 1.1.9 Let f E Conv R" . The relative interior of epi f is the union over x E
ri dom f ofthe open half-lines with bottom endpoints at f (x) :

riepif={(x,r)ElRn xlR : x Eridomf, r> f (x )} .

Proof. Since dom f is the image of epi f under the linear mapping "projection onto lRn",
Proposition A.2.1.12 tells us that

ri dom f is the projection onto lRn of ri epi f . (1.1.5)

Now take x arbitrary in ri dom f . The subset of ri epi f that is projected onto x is just ({x} x
R) n ri epi f, which in tum is ri[( {x} x R) n epi fl (use Proposition A.2. I. 10). This latter
set is clearly If(x), +00[.

In summary, we have proved that, for x E ridomf, (x ,r) E riepif if and only if
r > f (x) . Together with (1.1.5), this proves our claim. 0

Beware that ri epi f is not the strict epigraph of f (watch the side-effect on the relative
boundary of dom f) .

1.2 Special Convex Functions: Affinity and Closedness

In view of their Definition 1.1.6(ii), convex functions can be classified on the basis
of a classification of convex sets in ~n x ~ .
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(a) Linear and Affine Functions The epigraph of a linear function is characterized
by 8 E lRn , and is made of those (x ,r) E lRn x lR such that r ~ (8,x ).

Next, we find the epigraphs of affine functions f ,which are conveniently written
in terms of some Xo E lRn

:

{(x ,r) : r ~ f( xo) + (8, X - xo)} = {(x ,r) : (8, X) - r :( (8, Xo) - f(xo)} .

In the language of convex sets, the epigraph of an affine function is a closed half­
space, characterized by (a constant term and) a vector (8, -1) E lRn x lR ; the
essential property of this vector is to be non-horizontal. Affine functions thus play
a special role, just as half-spaces did in Chap. A. This explains the interest of the
next result ; it says a little more than LemmaAA.2.1, and is actually of paramount
importance.

Proposition 1.2.1 Any f E Conv lRn is minorized by some affine function. More
precisely: for any Xo E ri dom f , there is 8 in the subspace parallel to aff dom f
such that

f( x) ~ f( xo) + (8, X - xo) for all x E lRn
.

In other words, the affine function can be forc ed to coincide with f at xo.

Proof. We know that dom f is the image of epi f under the linear mapping "projec­
tion onto lRn

" . Look again at the definition of an affine hull (§A.l .3) to realize that
aff epi f = (aff dom f) x lR.

Denote by V the linear subspace parallel to aff dom f, so that aff dom f
{xo} + V with Xo arbitrary in dom f ; then we have

affepif = {xo + V } x lR . (1.2.1)

We equip V x lR and lRn x lR with the scalar product of product-spaces.
With Xo E ridomf, Proposition 1.1.9 tells us that (xo,f(xo)) E rbdepif

and we can take a nontrivial hyperplane supporting epi fat (xo, f( xo)) : using Re­
mark AA.2.2 and (1.2.1), there are 8 = 8V E V and 0: E lR, not both zero, such
that

(8, x) + or :( (8, xo) + o:f(xo) (1.2.2)

for all (x ,r) with f( x) :( r. Note: this implies 0: :( 0 (let r --+ +oo!)
Because of our choice of 8 (in V) and Xo (in ri dom f), we can take 8 > 0 so

small that Xo + 88 E dom I. for which (1.2.2) gives

811 811 2
:( o:[f(xo) - f( xo + 88)] < +00;

this shows 0: f:. 0 (otherwise, both 8 and 0: would be zero). Without loss of general ­
ity, we can assume 0: = -1; then (1.2.2) gives our affine function . D

Once again, the importance of this result cannot be over-emphasized. With res­
pect to LemmaAA.2.1, it says that a convex epigraph is supported by a non-vertical
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hyperplane. Among its consequences, we see that a convex function, having an
affine minorant, is bounded from below on every bounded set of ~n .

As already said on several occasions, important special convex sets are the
cones, and conical epigraphs will deserve the full Chap . C. So we tum to another
class : closed convex sets.

(b) Closed Convex Functions Continuity of functions implies closedness of their
graphs. In the unilateral world of convex analysis , one is mainly interested with
epigraphs, whose closedness corresponds to lower semi-continuity of functions.
First, we give some material, independently of any convexity. A function f is lower
semi-continuous if, for each x E ~n,

Iiminf f(y) ~ f(x).
y-tx

(1.2.3)

This relation has to hold in ~ U {+oo}, which complicates things a little ; so the
following geometric characterizations are useful :

Proposition 1.2.2 For f : ~n -+ ~ U {+oo}, the following three properties are
equivalent:

(i) f is lower semi-continuous on ~n;

(ii) epi f is a closed set in ~n x ~;

(iii) the sublevel-sets Sr(f) are closed (possibly empty) for all r E ~ .

Proof. [(i) ~ (ii)] Let (Yk ,rkh be a sequence of epif converging to (x ,r) for
k -+ +00. Since f (Yk) ::::; rk for all k, the I.s.c. relation (1.2.3) readily gives

r = lim rj, ~ Iiminf f(Yk) ~ Iiminf f(y) ~ f(x) ,
y-t x

i.e.(x ,r) E epif.

[(ii) ~ (iii)] Construct the sublevel -sets Sr(f) as in Remark 1.1.7: the closed sets
epi f and ~n x {r} have a closed intersection.

[(iii) ~ (i)] Suppose f is not lower semi-continuous at some x : there is a (sub)se­
quence (Yk) converging to x such that f(Yk) converges to p < f(x) ::::; +00. Pick
r E ]p, f(x)[: for k large enough, f(Yk) ::::; r < f(x) ; hence Sr(f) contains the tail
of (Yk) but not its limit x. Consequently, this Sr(f) is not closed. 0

Beware that, with Definition 1.1.1 in mind, the above statement (i) means more
than lower semi-continuity of the restriction of f to C : in (1.2.3), x need not be in
dom f . Note also that these concepts and results are independent from convexity.
Thus, we are entitled to consider the following definition:

Definition 1.2.3 (Closed Functions) The function f : ~n -+ ~ U {+oo} is said to
be closed if it is lower semi-continuous everywhere, or if its epigraph is closed, or
if its sublevel-sets are closed. 0
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The next step is to take the lower semi-continuous hull of a function [, whose
value at x E ffi.n is lim infy --+ x f(y). In view of the proof of Proposition 1.2.2, this
operation amounts to closing epi f. When doing so, however, we may slide down to
-00.

Definition 1.2.4 (Closure of a Function) The closure (or lower semi-continuous
hull) of a function f is the function cI f : ffi.n ---+ ffi. U {±oo} defined by:

cI f( x) := lim inf f(y) for all x E ffi.n ,
y--+x

(1.2.4)

epi (c1 J) := cI (epi J) .
or equivalently by

(1.2.5)
o

An I.s.c. hull may be fairly complicated to compute , though; furthermore , the gap be­
tween fey) and cl fey) may be impossible to control when y varies in a neighborhood of a
given point x . Now convexity enters into play and makes things substantially easier, without
additional assumption on f in the above definition:

- First of all, a convex function is minorized by an affine function (Proposition 1.2.1); closing
it cannot introduce the value -00.

- Second, the issue reduces to the one-dimensional setting, thanks to the following radial
construction of cl f .

Proposition 1.2.5 Let f E Cony JRn and x ' E ri dom f. There holds (in R U {+oo})

clf(x) = limf(x + t(x' - x» for all x E Rn
. (1.2.6)

ttO

Proof. Since X t := x + t(x' - x ) -+ x when t .j,. 0, we certainly have

(clJ)(x) ::;; liminf f(x + t(x' - x» .
tto

We will prove the converse inequality by showing that

lim supf(x+t(x'- x»::;;r forallr ): (clJ)( x)
ItO

(non-existence of such an r means that cl f (x) = +00, the proof is finished).
Thus let (x,r) E epi (cl J) = cl(epiJ). Pick r' > f( x') , hence (x' ,r') E riepif

(Proposition 1.1.9). Applying Lemma A.2.1.6 to the convex set epi f, we see that

t( x' , r') + (1- t)( x ,r) E riepif C epi f for all t E]O, 1] .

This just means

f(x + t(x' - x» ::;; tr' + (1 - t)r for all t E ]0,1]

and our required inequality follows by letting t .j,. O. o

Another way of expressing the same thing is that, to compute cl f at some point z, it
suffices to consider the restriction of f to a half-line, say x + R+ d, meeting ri dom f; here,
d stands for x' - x . The resulting one-dimensional function <pet) := cl f(x + td) becomes
"continuous" from the right at t = 0, in the sense that <p(0) = IimttO <pet ) - an equality in
RU{+oo}.

Some simple but important properties come in conjunction with the results of
the previous chapters:
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Proposition 1.2.6 For f E Conv IRn, there holds

cl f E Conv IRn
;

cl f and f coincide on the relative interior ofdom t

(1.2.7)

(1.2 .8)

Proof We already know from Proposition A.I .2.6 that epi cl f = cl epi f is a con­
vex set; also cl f ~ f "¥- +00; finally, Proposition 1.2.1 guarantees in the relation of
definition (1.204) that cl f(x) > -00 for all x: (1.2.7) does hold .

On the other hand , suppose x E ri dom f. Then the one-dimensional function
'P(t) = f(x + td) is continuous at t = 0 (Theorem 0.6.2); it follows from Proposi­
tion 1.2.5 that cl f coincides with f on ri dom f; besides, cl f (x) is obviously equal
to f (x) = +00 for all x (j. cl dom f .Altogether, (1.2.8) is true. 0

In particular, a finite-valued convex function (dom f = IRn ) is lower semi-continuous;
actually, Theorem 3.1.2 below will confirm that it is more than that : it is continuous, and even

locally Lipschitzian.

Due to their importance, closed convex functions deserve a special notation:

Notation 1.2.7 (The Set Cony IRn ) The set of closed convex functions on IRn is
denoted by Conv IRn . 0

(c) Outer Construction of Closed Convex Functions The property proved in
Proposition 1.2.5 corresponds to a direct (or inner) construction of cl f from (1.204).
Equivalently, cl f can be constructed as the largest l.s.c. (convex) function minoriz­
ing f. Correspondingly, the closed (convex) set epi cl f can also be described exter­
nally, as an intersection of closed (convex) sets. In view of §AA.2(b), these closed
convex sets can be restricted to be closed half-spaces: convexity provides another
simplification of the closure operation. Besides, in view of Proposition 1.2.1, these
half-spaces can be assumed non-vertical. This is the content of the next result.

Proposition 1.2.8 The closure of f E Conv IRn is the supremumofall affinefunc­
tions minorizlng f :

clf(x) = sup {(s,x)-b : (s,y)-b~f(Y)forallYElRn}. (1.2 .9)
(s,b)EIRn xlR

Proof A closed half-space containing epi f is characterized by a nonzero vector
(s, a) E IRn x IR and a real number b such that

(s,x) +ar ~ b for all (x ,r) E epif (1.2.10)

(we equip the graph-space IRn x IR with the scalar product of a product-space). Let
us denote by E C IRn x IR x IR the index-set of such triples (J = (s, a, b), with
corresponding half-space

H; := {(x ,r) (s,x) +ar ~ b}. (1.2 .11)
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In other words, epi (cl f) = cl (epi J) = n17 EE H;;.
Because of the particular nature of an epigraph , (1.2.10) implies 0: :::; °(let

r -t +(0) and, by positive homogeneity, the values 0: = 0 and 0: = -1 suffice: E
can be partitioned in

E 1 := {( s, -1 , b) (1.2.10) holds with 0: = -1}

and
Eo :={(s,O,b): (1.2.lO)holdswitho:=O}.

Indeed, E 1 corresponds to affine functions minorizing f (Proposition 1.2.1 tells
us that E1 =1= 0) and Eo to closed half-spaces of ~n containing dom f (note that
Eo = 0 if domf = ~n).

We have to prove that, even when Eo =1= 0, intersecting the half-spaces H;; over
E or over E 1 produces the same set, namely cl epi f . For this we take arbitrary
ao = (so,O,bo) E Eo and rrj = (sl ,-1,b1) EEl, we set

a(t) := (Sl + tso,-1 ,b1 + tbo) EEl for all t ;?: 0 ,

and we prove (see Fig. 1.2.1)

(S~(O,O)

(s1+tso,-1) (sF1)

Fig. 1.2.1. Closing a convex epigraph

It results directly from the definition (1.2.11) that an (x, r) inH~ nH;;; satisfies

(Sl + tso, x) - (b1+ tbo) ~ r for all t ;?: 0 , (1.2.12)

i.e. (x ,r) E H-. Conversely, take (x ,r) E H-. Set t = 0 in (1.2.12) to see that
(x, r) E H;;; . Also, divide by t > °and let t -t +00 to see that (x , r) E H~. The
proof is complete. 0
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1.3 First Examples

(a) Indicator and Support Functions Given a nonempty subset S C jRn, the func­
tion is : jRn ~ jR U {+oo } defined by

. () {° if xES,
IS x:= +00 if not

is called the indicator function of S . We mention here that other notations com­
monly encountered in the literature are 8s , 'l/Js, or even Xs . Clearly enough, is is
[closed and] convex if and only if S is [closed and] convex. Indeed, epi is = S X jR+

by definition.

More generally, if f E Conv IRn and if C is a nonemptyconvexset, the function

(x) := {f(X) ~fx E C,
'P +00 if not

is again convex under one condition: that dom f and C have a nonempty intersection (other­
wise 'P would be identically +(0). Furthermore, 'P is closed when so are f and C. Observe
in passing that 'P = f + ic .

Attached to a nonempty subset S, another function of interest is the support
function of S, already encountered in Remark AA.I .2:

<1s(x) := sup {(8, x) : 8 E S} .

It turns out to be closed and convex; this is already suggested by Proposition 1.2.8
and will be confirmed below in §2.1(b). Actually, the importance of this function
will motivate an extensive development in Chap. C. Here, we just observe that, for
a> 0,

sup (8,ax) = a sup (8, x) ,
sES sES

hence <1S (ax) = aaS (x): the epigraph of a support function is not only closed and
convex, but it is a cone in jRn x jR. Its domain is also a convex cone in jRn :

dom <1s = {a E jRn : 3r such that (8, a) ~ r for all 8 E S} .

(b) Piecewise Affine and Polyhedral Functions Let (81, b1) , . .. , (8 m , bm ) be m
elements given in jRn x jR and consider the function

jRn 3 Xf-7j(x) :=max{(8j,x)-bj : j=l, .. . , m } . (1.3.1)

Such a function is suggestively called piecewise affine: jRn is divided into (at most
m) regions in which j is affine: the j~h region, possibly empty, is the closed convex
polyhedron
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Th is terminology is slightly amb iguous, though: a function whose graph is made
up of pieces of affine hyperplanes need not be convex, while (1.3 .1) can be seen
to produce convex functions only (just as with a support function, convexity and
closedness of Jwill be confirmed below). It can even be seen that epi J is a closed
convex polyhedron; but again, (1.3.1) cannot describe all polyhedral epigraphs.

A polyhedral function will be a function whose epigraph is a closed convex
polyhedron. Its most general form is given by Definition A.4.2.5:

epif = {(x ,r) E IRn x IR : (Sj, x) + ajr ~ bj for j E J} ,

where J is a finite set, the (s , a , b)j being given in IRn x IR x 1R, (Sj ,aj) =j:. °(and
IRn x IR is equipped with the scalar product of a product-space). For this set to be
an epigraph, each aj must be nonpositive and, if aj < 0, we may assume without
loss of generality aj = -1. Furthermore, we may denote by {I , . .. , m} the subset
of J such that aj = -1, and by {m + 1, . . . , m + p} the rest (where aj = 0). With
these notations, we see that f (x) is given by (1.3.1) whenever x sat isfies the set of
constraints

(Sj , x) ~bj forj=m+l , . . . , m + p ;

otherwise, f(x) = +00. Of course, these constraints (usually termed linear, but
affine is more correct) define a closed convex polyhedron.

In a word, a polyhedral function is a function which is piecewise affine on its
domain, the latter being a closed convex polyhedron. Said otherwise, it is a closed
convex function ofthe form J+ip, where J is piecewise affine and ip is the indicator
of a closed convex polyhedron.

(c) Norms and Distances It is a direct consequence of the axioms that a norm is
a convex function, finite on the whole space (use Definition 1.1.1). More generally,
let C be a non empty convex set in IRn and, with an arbitrary norm III . III, define the
distance function

dc(x) := inf {Illy - x iii: Y E C} .

To establish its convexity, Definition 1.1.1 is again convenient. Take two sequences
(Yk) and (yU such that, for k -+ +00, IllYk - x iii and IIIY~ - x' III tend to dc(x) and
dc(x') respectively. Then form the sequence Zk := aYk + (1 - a)y~ E C with
a E )0, 1[; pass to the limit for k -+ +00 in

dc(ax + (1- a) x') ~ Ill zk - ax - (1- a)x'lll ~ alllYk - x iii + (1- a)llly~ - x'lII ·

Here again dom de = IRn ; the (lower semi-)continuity of de follows.
Clearly enough, de = del e so, with the help of Proposition A.2.1.8, we see that

C, cl C and ri C have the same distance function (associated with the same norm
III . IIi) · In particular, de is 0 on the whole of cl C; the following variant is slightly
more accurate, in that it distinguishes between int C and bd C:

Dc(x) := {dc(X) ~f x E CC,
-de c(x) If x E C ,
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where CC is the complement of C in IRn . Assuming that C and CC are both
nonempty, it is not particularly difficult to prove that Dc is convex, finite every­
where, and that

int C = {x E IRn

bdC = {x E IRn

(cl C)C= {x E IRn

Dc(x) < O} ,
Dc(x) = O} ,
Dc(x) > O} .

(d) Quadratic Forms Let A : IRn -+ IRn be a symmetric linear operator. Then the
quadratic form

f( x) := ~(Ax, x)

is a convex function - with dom f = IRn
- if and only if A is positive semi-definite,

i.e. its eigenvalues are all nonnegative. Call Al ~ . . . ~ An ~ 0 these eigenvalues ; it
is well-known that a basis can be formed with the corresponding eigenvectors, and
that as a result,

From the first inequality, direct but somewhat tedious calculations yield, with the
notation of (1.1.2):

f(ax + (1 - a)x') ~ af(x) + (1 - a)f(x') - ~Ana(l - a)llx - x'I12 .

Thus, if A is positive definite, f is strongly convex with modulus An > 0 (while
f is not even strictly convex when A is degenerate) . A straightforward proof comes
also from a general characterization of differentiable strongly convex functions, to
be seen below in Theorem 4.1.4 or 4.3.1.

For r ~ 0, the sublevel-sets of f :

S,.(J):= {x E IRn
: ~(Ax,x) ~ r}

are concentric elliptic sets: S",.(J) = .JK,S,.(J) . Their common "shape" is given
by the eigenvalues of A . They may be degenerate, in that they contain the subspace
Ker A (one should rather speak of elliptic cylinders if Ker A i- {O}). However,
S,.(J) is a neighborhood of the origin forr > 0: we have S,.(J) :> B(O, c) whenever
Alc2 ~ 2r .

(e) Sum of Largest Eigenvalues of a Matrix Instead of our working space IRn ,

consider the vector space Sn(IR) of symmetric n x n matrices . Denote the eigenval­
ues of A E Sn(lR) by Al(A) ~ ... ~ An(A) , and consider the sum fm of the m
largest such eigenvalues (m ~ n given):

m

Sn(lR) :3 A 1-7 fm(A) := 2:Aj(A).
j = l

This is a function of A, finite everywhere. Equip Sn(lR) with the standard dot­
product of IRn x n :
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n

((A, B)) := tr AB = L A i j B i j .

i ,j=1

The function f m turns out to have the following representation:

where n := {Q : QTQ = 1m } is the set of matrices made up of m orthonormal
n-columns. Indeed, n is compact and the above supremum is attained at Q formed
with the (normalized) eigenvectors associated with AI, ... , Am. Keeping Proposi­
tion 1.2.8 in mind, this explains that f m is convex, as being a supremum of linear
functions on Sn(IR).

Naturally, fdA) is the largest eigenvalue of A, while fn(A) is the trace of A, a
linear function of A. It follows by taking differences that f n - f m (for example the
smallest eigenvalue An = I; - fn-I) is a concave function on Sn(IR) .

(0 Volume of Ellipsoids Still in the space of symmetric matrices Sn(JE.), define the
function

A f-t f(A) := {lOg (det A-I) ~f A is positive definite,
+00 If not.

It will be seen in §3.1 that the concave finite-valued function AnO is continuous.
The domain of f, which is the set of A E Sn(JE.) such that An(A) > 0, is therefore
open, and even an open convex cone. It turns out that f is convex. To see it, start
from the inequality

det[aA+(l-a)A'] ~ (detA)""(detA')I-"",

valid for all symmetric positive definite matrices A and A' (and a E ]0, l[); take the
inverse of each side; remember that the inverse of the determinant is the determinant
of the inverse; finally, pass to the logarithms.

Geometrically, consider again an elliptic set

where A is a symmetric positive definite matrix. Up to a positive multiplicative
constant (which is the volume of the unit ball Ern)' the volume of E A is precisely
vdetA-I .

Because dorn f is open, ri dom f = int dom f = dom f, which establishes the
lower semi-continuity of f on its domain . Furthermore, suppose A k --+ A with A
not positive definite; by continuity of the concave function AnO, A is positive semi­
definite and the smallest eigenvalue of A k tends to 0: f(A k ) --+ +00. The function
f is closed.

(g) Epigraphical Hull and Lower-Bound Function of a Convex Set Given a
nonempty convex set C C JE.n X JE., an interesting question is: when is C the epi­
graph of some function f E Cony JE.n ? Let us forget for the moment the convexity
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issue, which is not really relevant. First, the condition f(x) > -00 for all x means
that C contains no vertical downward half-line:

{r E lE. : (x ,r) E C} is minorized for all x E lE.n . (1.3.2)

A second condition is also obvious: C must be unbounded from above, more pre­
cisely

(x ,r) E C ==> (x ,r') E C for all r' > r .

The story does not end here, though : C must have a "closed bottom", i.e.

[(x, r') E C and r' ..l- r] ==> (x, r) E C .

(1.3.3)

(1.3.4)

This time, we are done: a nonempty set C satisfying (1.3.2) - (1.3.4) is indeed an
epigraph (of a convex function if C is convex). Alternatively, if C satisfying (1.3.2),
(1.3.3) has its bottom open, i.e.

(x,r)EC ==> (x ,r-E)EC forsomeE=E(x ,r) > 0,

then C is a strict epigraph. To cut a long story short : a [strict] epigraph is a union of
closed [open] upward half-lines - knowing that we always rule out the value -00.

The next interesting point is to make an epigraph with a given set: the epigraph­
ical hull of C C lE.n x lE. is the smallest epigraph containing C. Its construction
involves only rather trivial operations in the ordered set lE. :

(i) force (1.3 .3) by stuffing in everything above C: for each (x , r) E C, add to C
all (x, r') with r' > r;

(ii) force (1.3.4) by closing the bottom of C: put (x ,r) in C whenever (x, r') E C
with r' -+ r.

These operations (i), (ii) amount to constructing a function :

x r-+ £c( x) := inf {r E lE. : (x , r) E C}, (1.3.5)

the lower-boundfunction of C ; clearly enough, epi £c is the epigraphical hull of C.
We have thatfc(x) > -00 for all x if (and only if) C satisfies (1.3.2) .

The construction of an epigraphical hull is illustrated on Fig. 1.3.1, in which the
point A and the curve T are not in C; nevertheless, there holds (epi, is the strict
epigraph)

epi, £c c C + {O} X lE.+ C epifc c cl (C + {O} X lE.+) . (1.3.6)

Theorem 1.3.1 Let C be a nonempty subset oflE.n x lE. satisfying (1.3.2), and let its
lower-boundfunction £c be defined by (1.3.5).

(i) IfC is convex, then ec E Conv lE.n ;

(ii) IfC is closed convex, then £c E Cony lE.n .
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A

Fig. 1.3.1. The lower-bound function

Proof. We use the analytical definition (1.1.1). Take arbitrary e > 0, a E ]0, 1[ and
(Xi, ri) E C such that ri ~ £c( Xi) + e for i = 1,2.

When C is convex, (axl + (1 - a) x2,arl + (1 - a)r2) E C, hence

The convexity of £c follows, since E > °was arbitrary ; (i) is proved .
Now take a sequence (Xk ' Pkh C epi £c converging to (x , p); we have to prove

£c(x) ~ P (cf. Proposition 1.2.2). By definition of £C(Xk), we can select, for each
positive integer k, a real number rk such that (Xk ' rk) E C and

(1.3.7)

We deduce first that (rk) is bounded from above. Also, when £c is convex, Proposi­
tion 1.2.1 implies the existence of an affine function minorizing £c: (rk) is bounded
from below.

Extracting a subsequence if necessary, we may assume rk -+ r. When C is
closed, (x , r) E C, hence £c(x) ~ r; but pass to the limit in (1.3.7) to see that
r ~ P; the proof is complete . 0

2 Functional Operations Preserving Convexity

It is natural to build up new convex functions from simpler ones, via operations
preserving convexity, or even yielding it. This approach goes together with that of
§A.I .2: convex epigraphs can be made up from simpler epigraphs. Here again, prov­
ing convexity of the new function will rely either on the analytical definition or on
the geometric one, whichever is simpler.

2.1 Operations Preserving Closedness

(a) Positive Combinations of Functions
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Proposition 2.1.1 Let II, . .. ,Jm be in Cony IRn {resp. in Cony IRn ] , let t t , . . . , t-«
be positive numbers, and assume that there is a point where all the fj 's are finite.
Then the fun ction f := 2::;:1tjli is in Cony IRn (resp. in Cony IRn ].

Proof. The convexity of f is readily proved from the relation of definition (1.1.1).
As for its c1osedness, start from

(valid for tj > 0 and f j closed); then note that the lim inf of a sum is not smaller
than the sum of lim inf's. 0

As an example, let f E Cony lRn and C C R" be closed convex, with dom f n C # 0.
Then the function f + ic of Example 1.3(a) is in Cony lRn

•

(b) Supremum of Convex Functions

Proposition 2.1.2 Let {Ii } jEJ be an arbitrary family of convex (resp . closed con­
vex] functions. If there exists Xo such that sUPJ f j(xo) < +00, then their pointwise
supremum f := sup {Ii : j E J} is in Cony IRn {resp. in Cony IRn }.

Proof. The key property is that a supremum of functions corresponds to an intersec­
tion of epigraphs: epi f = n jEJ epi is-which conserves convexity and c1osedness.
The only needed restriction is non emptiness of this intersection. 0

In a way, this result was already announced by Proposition 1.2.8. It has also been
used again and again in the examples of §1.3.

Example 2.1.3 (Conjugate Function) Let f : IRn --+ IR U {+oo} be a function not
identi cally +00 , minorized by an affine function (i.e., for some (80, b) E IRn x IR ,
I > (80,') - bon IRn ) . Then the function 1* defined by

IRn 3 8 I-t 1*(8) := sup {(8, x ) - f( x) : x Edam f}

is called the conju gate function of [, to be studied thoroughly in Chap. E. Observe
that 1*(80) ~ band 1*(8) > -00 for all 8 because domf i=- 0. Thus, 1* E
Cony IRn ; this is true without any further assumption on f, in particular its convexity
or closedness are totally irrelevant here. 0

(c) Pre-Composition with an Affine Mapping

Proposition 2.1.4 Let f E Cony IRn {resp. Cony IRn ] and let A be an affine map­
ping from IRm to IRn such that 1m A n dam f i=- 0. Then the fun ction

f 0 A : IRm 3 x I-t (f 0 A)(x) = f(A(x))

is in Cony IRm {resp. Cony IRm ] .
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Proof. Clearly (J 0 A)(x) > - 00 for all x ; besides , there exists by assumption
y = A(x) E IRn such that f(y) < + 00. To check convexity, it suffices to plug the
relation

A(ax + (1 - a) x') = aA(x) + (1 - a )A (x ' )

into the analytical definition (1.1.1) of convexity. As for closedness , it comes readily
from the continuity of A when f is itself closed . 0

Example 2.1.5 With f (closed) convex on R"; take z o E dom f , d E Rn and define

A : R3t>--tA(t) := xo+td ;

this A is affine, its linear part is t >--t Aot := td . The resulting f oA appears as (a parametriz a­
tion of) the restriction of f along the line Xo + Rd, which meets dom f (at xo).

This operation is often used in applications. Even from a theoretical point of view, the
one-dimensional traces of f are important , in that f itself inherits many of their properties ;
Proposition 1.2.5 gives an instance of this phenomenon . 0

Remark 2.1.6 With relation to this operation on f E Conv Rn [resp. Conv R"], call V
the subspace parallel to aff dom f. Then , fix Xo E dom f and define the convex function
fo E Conv V [resp. Conv V] by fo(Y) := f(xo + y) for all y E V .

This new function is obtained from f by a simple translation , composed with a restriction
(from Rn to V). As a result, dom fo is now full-dimensional (in V), the relative topology
relevant for fo is the standard topology of V . This trick is often useful and explains why
"flat" domains, instead of full-dimensional, create little difficulties . 0

(d) Post-Composition with an Increasing Convex Function

Proposition 2.1.7 Let f E Cony IRn [resp. Cony IRn ) and let g E Conv IR [resp.
Cony 1R) be increasing. Assume that there is Xo E IRn such that f( xo) E dom g,
and set g(+oo) := +00. Then the composite function g 0 f : x t--+ g(J(x)) is in
Cony IRn [resp. in Cony IRn ) .

Proof. It suffices to check the inequalities of definition: (1.1.1) for convexity, (1.2.3)
for closedness . 0

The exponential get) := exp t is convex increasing , its domain is the whole line, so
exp f(x) is a [closed] convex function of x E R" whenever f is [closed] convex. A function
f : Rn --* )0, + (0) is called logarithmically convex when log f E Conv Rn (we set again
log(+(0) = + (0). Because f = exp log f , a logarithmically convex function is convex.

As another application, the square of an arbitrary nonnegative convex function (for ex­
ample a norm) is convex: post-compose it by the function get) = (m ax {O, t})2 .

2.2 Dilations and Perspectives of a Function

For a convex function f and u > 0, the function

I« :Rn 3 x >--t fu(x) := uf(xju)

is again convex. This comes from Propositions 2.I.l and 2.1.4 but can also be seen geomet­
rically : since fu(x)ju = f( xju), the epigraphs and sublevel-sets are related by

epi fu = u epi f , epi ; [« = u epi, t, Sr(fu) = u Srju(f) ,
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which express that [« is a "dilated version" of f.
More interesting , however, is to study fu as a function of both variables x and u, i.e. to

consider the set of all dilations of f . We therefore define the perspective of f as the function
from R x Rn to R U {+oo} given by

l(u x) := {uf(xlu) ~f u > 0,
, +00 If not .

Proposition 2.2.1 Iff E Conv R", its perspective 1is in Conv Rn +1
•

Proof. Here also, it is better to look at 1with "geometric glasses" :

epil = {(u,x,r) E Rt x Rn x R : f(xlu) ~ rlu}
= {u(l,x' ,r') : u > 0, (x',r') E epif}

= Uu>o{u({l} x epi f) } = R;({l} x epif)

and epi 1is therefore a convex cone.

Fig. 2.2.1. The perspective of a convex function

o

Figure 2.2.1 illustrates the construction of epi1,as given in the above proof. Embed epi f
into R x Rn x R, where the first R represents the extra variable u ; translate it horizontally
by one unit; finally, take the positive multiples of the result. Observe that, following the same
technique, we obtain

dom 1=Rt ({1} x dom f) . (2.2.1)

Another observation is that, by construction, epi 1[resp. dom 1] does not contain the origin
ofR x R" x R [resp. R x R"},

Convexity of a perspective-function is an important property, which we will use later in
the following way. For fixed Xo E dom f, the function d f-t f(xo + d) - f( xo) is obviously
convex, so its perspective

r( u , d) := u(f(xo + diu) - f(xo)] (for u > 0) (2.2.2)
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is also convex with respect to the couple (u,d) E lEt~ x R" . Up to the simple change of
variable u >-+ t = 1/u, we recogni ze a difference quotient .

The next natural question is the closed ness of a perspective-functi on: admitt ing that f
itself is closed, trouble s can still be expected at u = 0, where we have brutally set }(O, .) =
+00 (possibly not the best idea . . . ) A relatively simple calculation of cI} is in fact given by
Proposition 1.2.5:

Proposition 2.2.2 Let f E Co ny lEtn and let x ' E ri dom f. Then the closure cI} of its
perspective is given as follows:

{

u f (x /u) if u > 0,
(cI })(u , x ) = Iima to af(x' - x + x /a ) if u = 0 ,

+00 if u < O.

Proof Suppose first u < O. For any x, it is clear that (u , x ) is outside cIdom } and, in view
of (1.2.8), cI} (u,x ) = +00.

Now let u ;;:: O. Using (2.2 .1), the assumption on x ' and the results of §A.2. 1, we see that
(1, x ' ) E ri dom}, so Proposition 1.2.5 allows us to write

(cI })(u, x ) = lim} ((u , x ) + a [(1, Xl ) - (u , x )])
ato

I· [ (1 )] f( ",+a(",'-"'))= ~n u + a - u u +a( l u) •

If u = 1, this reads cI1(1, x ) = cI f( x) = f( x) (because f is closed); if u = 0, we ju st
obtain our claimed relation. 0

Remark 2.2.3 Observe that the behaviour of } (u , .) for u -!- 0 just depends on the behaviour
of f at infinity. If x = 0, we have

cI} (O, 0) = lim af(x') = 0 [J(x l
) < + oo!] .

a t o

For x # 0, suppose for example that dom f is bounded; then f (Xl - X + x /a ) = +00 for a
small enough and cI}(O, x) = +00. On the other hand, when dom f is unbounded, cI 1(0 , .)
may assume finite values if, at infinity, f does not increase too fast.

For another illustration, we apply here Proposition 2.2.2 to the perspective-fun ction r of
(2.2.2). Assuming Xo E ri dom [ , we can take d l = 0 - which is in the relative interior of
the function d >-+ f( xo + d) - f( xo) - to obtain

(cI1')(0, d) = lim f( xo - d + Td) - f( xo) .
T-> +OO T

Because (T - 1)/ T -+ 1 for T -+ +00, the last limit can also be written (in lEt U {+00})

(cI1') (0, d) = lim f( xo + td) - f( xo) .
1->+00 t

We will return to all this in §3.2 below. o
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2.3 Infimal Convolution

Starting from two functions it and 12, forrn the set epi it + epi 12 c IRn x IR :

Under a suitable minorization property, this C has a lower-bound function £c as in
(1.3.5):

In the above minimization problem, the variables are rl , r2, Xl, X2, but the r/s can
be eliminated; in fact, £c can be defined as follows .

Definition 2.3.1 Let it and f2 be two functions from IRn to IRU{+oo}. Their infimal
convolution is the function from IRn to IR U {±oo} defined by

(it t 12)(x) := inf {it(XI) + 12(x2) : Xl + X2 = X}
= infyElRn[it(y) + 12(x - y)).

(2.3.1)

We will also call "infimal convolution" the operation expressed by (2.3.1). It is
called exact at X = Xl +X2 when the infimum is attained at (Xl , X2), not necessarily
unique. 0

This operation is admittedly complex but important and will be encountered on many
occasions. Let us observe right here that it corresponds to the (admittedly simple) addition
of epigraphs - barring some technicalities, see Remark 2.3.4 below. It is a good exercise to
visualize the infimal convolution of an arbitrary convex II and

- hex) = i{o}(x) + r (shift epi II vertically by r) ;
- hex) = i{xo}(x) (horizontal shift);
- hex) = iB(O ,r)( x) (horizontal smear);
- in one dimension: hex) = sx - r (it is gr [z that wins);

- hex) = 1 - VI -llxl12 for x E B(D , 1) (the "ball-pen function" of Fig. 2.3.1) ; translate
the bottom of the ball-pen (the origin of Rn x R) to each point in gr II ;

- h(x) = 1/211x1l 2 (similar operation, called the Moreau-Yosida regularization of f).

Fig. 2.3.1. The ball-pen function
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Remark 2.3.2 The classical (integral) convolution between two functions Hand F2 is

(H*F2)(x) := r H(y)F2(x-y)dy for all x ERn.JRn
For nonnegative functions, we can consider the "convolution of order p" (p > 0):

(H *P F2)(x) := {!lH(y)F2(X - y)]Pdy r iP

When p --+ + 00, this integral converges to sUPy F, (y )F2 (x - y ) (a fact easy to accept) . Now
take F; := exp (- I i) , i = 1,2; we have

(H *00 F2)(X) = s u pe- j,(yj-J2(x-y j = e" inf y [j, (Y)+J2 (x - y jJ .
y

Thus, the infimal convolution appears as a "convolution of infinite order" , combined with an
exponentiation. 0

To exclude the undesired value - 00 from the rang e of an inf-convolution, an ad­
ditional assumption is obviously needed: in one dimension , the infimal convolution
of the functions x and - x is identically -00. Our next result proposes a convenient
such assumption.

Proposition 2.3.3 Let the fun ctions ft and 12 be in Conv Rn. Suppose that they
have a common affine minorant: for some (s , b) E Rn x R,

hex) ~ (s, x ) - b for j = 1,2 and all x E Rn
.

Then their infimal convolution is also in Conv Rn.

Proof. For arbitrary x E Rn and Xl , Xz such that Xl+ Xz = x, we have by assump­
tion

ft(XI) + 12 (xz) ~ (s, x) - 2b > -00,

and this inequality extends to the infimal value (ft t h)(x) .
On the other hand, it suffices to choose particular values Xj E dom h, j = 1,2 ,

to obtain the point Xl+ Xz E dom (ft t h)· Finally, the convexity of ft t 12 results
from the convexity of a lower-bound function, as seen in §1.3(g) . 0

Remark 2.3.4 To prove that an inf-convolution of convex functions is convex, one
can also show the following relation between strict epigraphs:

epi, (ft t h) = epi, I, + epi, 12 .

In fact , (x , r ) E epi, (ft t h) if and only if there is E > 0 such that

ft (Xl) + 12 (xz) = r + E for some Xl and Xz adding up to X .

This is equivalent to h(Xj) < rj for some (Xl, r l) and (xz,rz ) adding up to (x , r )
(set rj := h(Xj) + E/2 for j = 1,2, to show the "=>" direction). This last property
holds if and only if (x , r ) E epi, ft + epi, h.

This proof explains why the infimal convolution is sometimes called the (strict)
epigraphic addition. 0
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Similarly to (2.3 .2), we have by construction

dom (It \!J h) = dom j', + domh ·

Let us mention some immediate properties of the infimal convolution:

It \!J 12 = 12 \!J It (commutativity)

(It \!J h) \!J 13 = It \!J (12 \!J h) (associativity)

f \!J i{O} = f (existence of a neutral element in Conv JRn)

It ~ 12 ==} It \!J 9 ~ 12 \!J 9 (t preserves the order).

With relation to (2.3.3), (2.3.4), more than two functions can of course be inf­
convolved:

(It \!J •• ' \!J fm)(x) = inf t~l h(Xj) : j~l Xj = x} .

Remark 2.3.5 If Cl and C2 are nonempty convex sets in jRn, then

This is due to the additional nature of the inf-convolution, and can also be checked
directly; but it leads us to an important observation: since the sum of two closed
sets may not be closed, an infimal convolution need not be closed, even if it is
constructed from two closed functions and if it is exact everywhere. 0

Example 2.3.6 Let C be a nonempty convex subset of jRn and III . III an arbitrary
norm. Then

ie \!J III . III = de ,

which confirms the convexity of the distance function de. It also shows that inf­
convolving two non-closed functions (C need not be closed) may result in a closed
function. 0

Example 2.3.7 Let I be an arbitrary convex function minorized by some affine function with
slope s . Taking an affine function 9 = (s, ·)-b, we obtain Itg = g-c,where c is a constant:
c = SUP y [(s, Y) - I(Y)I (already encountered in Example 2.1.3 c = r (s), the value at s of
the conjugate of f) .

Assuming I bounded below, let in particular 9 be constant: -g = 1:= inf', I(y) . Then
It (- f) = O. Do not believe, however, that the infimal convolution provides Conv R" with
the structure of a commutative group: in view of (2.3.5), the O-function is not the neutral
element! 0

Example 2.3.8 We have seen (Proposition 1.2.1) that a convex function is indeed minorized
by some affine function . The dilated versions t« = ulUu) of a given convex function I
are minorized by some affine function with a slope independent of u > 0, and can be inf­
convolved by each other. We obtain [« t lUi = lu+u'; the quickest way to prove this formula
is probably to use (2.3.2), knowing that epi, lu = u epi , I .

In particular, inf-convolving m times a function with itself gives a sort of mean-value
formula :

-Ir;U t · ··tf)(x) = I (-Ir;x) .
Observe how a perspective-function gives a meaning to a non-integer number of self-inf-

convolutions. 0
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Example 2.3.9 Consider two quadratic forms

li(x)= ~(Aj x , x) forj=1,2 ,

with Al and A2 symmetric positive definite. Expressing their infimal convolution as

~ inf [(AI y, y) + (A2 (x - y), x - y)] ,
y

the minimum can be explicitly worked out, to give (II t h)(x)
whcrcAI 2 := (All +A21 ) - I .

This formula has an interesting physical interpretation: consider an electrica l circuit made
up of two generalized resistors A l and A 2 connected in parallel. A given current-vector
i E Rn is distributed among the two branches (i = il + i 2), in such a way that the dissi­
pated power (A I i i, i l ) + (A2 i 2, i2 ) is minimal (this is Maxwell's variational principle); see
Fig. 2.3.2 . In other words, if i = fl + h is the real current distribution, we must have

The unique distribution eZI ,Z2) is thus characterized by the formulae

(2.3.6)

Q'
o

P'
o ~_=-_Q

Fig. 2.3.2. Equivalent resistors

Thus , A 12 plays the role of a generalized resistor equivalent to A l and A 2 connec ted in
parallel ; when n = 1, we get the more familiar relation 1/'{" = 1/'{"1+1/'{"2 between ordinary
resistances '{"I and '{"2 . Note an interpret ation of the optimality (or equilibrium) condition
(2.3.6). The voltage between P and Q [resp. P' and Q/] on Fig. 2.3.2, namely Alf l = A 2f2

[resp. A I2i], is independent of the path chosen : either through A I , or through A 2, or by
construction through A 12 •

The above example of two convex quadratic functions can be extended to gen­
eral functions, and it gives an economic interpretation of the infimal convolution :
let II(x) [resp. h(x)] be the cost of producing x by some production unit UI [resp.
U2 ]. If we want to distribute optimally the production of a given x between UI and
U2 , we have to solve the minimization problem (2.3.1). 0
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2.4 Image of a Function Under a Linear Mapping

Consider a constrained optimization problem, formally written as

inf {'P(u) : c(u) :::;; x} ,
uEU

(2.4.1)

where the optimization variable is u, the righthand side x being considered as a
parameter taken in some ordered set X . The optimal value in such a problem is
then a function of x, characterized by the triple (U, 'P ,c), and taking its values in
jR U ±{oo}. This is an important function, usually called the value function, or
marginal function, or perturbation function, or primal function, etc.

Several variants of (2.4.1) are possible: we may encounter equality constraints,
some constraints may be included in the objective via an indicator function, etc. A
convenient unified formulation is the following:

Definition 2.4.1 (Image Function) Let A : jRm -7 jRn be a linear operator and let
9 : jRm -7 jRU {+oo}. The image of 9 under A is the function Ag : jRn -7 jRU ±oo
defined by

(Ag)(x) := inf {g(y) : Ay = x}

(here as always, inf 0 = +(0).

(2.4.2)

o

The terminology comes from the case of an indicator function: when 9 = ic, with C
nonempty in R'", (2.4.2) writes

(A )(x) = {O if x = :4Y for some y E C ,
9 +00 otherwise .

In other words, Ag = iA(c) is the indicator function of the image of C under A (and we
know from Proposition A.1.2.4 that this image is convex when C is convex).

Even if U and X in (2.4.1) are Euclidean spaces, we seem to limit the generality when
passing to (2.4.2), since only linear constraints are considered. Actually, (2.4.1) can be put
in the form (2.4.2): with X = jRn and y = (u, v) E U x X = R'" , define Ay := v and
g(y) := <p(u) + ic(y), where

C:={y=(u,v)EjRm: c(u):::;;v} . (2.4.3)

Note that conversely, (2.4.2) can be put in the form (2.4.1) via an analogous trick turning its
equality constraints into inequalities.

Theorem 2.4.2 Let 9 of Definition 2.4.1 be in Conv jRm . Assume also that, for all
-1

x E jRn, 9 is bounded below on the inverse image A (x) = {y E jRm : Ay = x}.
Then Ag E Cony jRn.

Proof. By assumption, Ag is nowhere -00; also, (Ag)(x) < +00 whenever x =
Ay, with Y E dom g. Now consider the extended operator

A': jRm X jR:;) (y ,r) M A'(y,r) := (Ay,r) E jRm x JR .

The set A' (epi g) = : C is convex in jRn x jR , let us compute its lower-bound function
(1.3.5): for given x E jRn,
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infr{r (x ,r) E C} = infy,r{r : Ay = x andg(y) :::; r}
= infy{g(y) : Ay = x } = (Ag)(x) ,

and this proves the convexity of Ag = fc . o
-1

Usually, A (x) contains several points - it is an affine manifold of R" - and Ag(x) selects
one giving the least value of 9 (admitting that (2.4.2) has a solution). If A is invertible, Ag =
goA -1; more generally, the above proof discloses the following interpretation: epi (Ag) is

- 1

the epigraphical hull of the inverse image A' (epi g) (a convex set in Rn x R).

Corollary 2.4.3 Let (2.4.1) have the following form: U = jRP; ({J E Conv jRP;

X = jRn is equipped with the canonical basis; the mapping C has its components
Cj E Conv jRP for j = 1, . .. , n. Suppose also that the optimal value is > -00 for
all x E jRn, and that

dom ({J n dom Cl n ... n dom Cn #- 0.

Then the value function

V<p ,c(x ) :=inf{({J(u) Cj(u) :::;xj , f or j = 1, ... ,n }

lies in Conv jRn .

(2.4.4)

Proof Note first that we have assumed v<p ,c(x) > -00 for all x . Take Uo in the set
(2.4.4) and set M := maxj Cj(uo); then take Xo := (M , .. . , M) E jRn, so that
v cp ,c(xo) :::; ((J(uo) < +00. Knowing that v<p,c is an image-function, we just have to
prove the convexity of the set (2.4.3); but this in tum comes immediately from the
convexity of each Cj. 0

Taking the image of a convex function under a linear mapping can be used as a mould
to describe a number of other operations - (2.4.1) is indeed one of them. An example is the
infimal convolution of §2.3: with hand h in Cony R" , define 9 E Conv (Rn x R") by

Then we have Ag = h ;t hand (2.3.1) is put in the form (2.4.2). Incidentally, this shows
that an image of a closed function need not be closed.

The following example of an image function is frequently encountered:

Definition 2.4.4 (Marginal Function) Let 9 E Cony (jRn X jRm). Then

jRn 3xt-t ')'(x):=inf{g(x ,y): yEjRm}

is the marginal function of g. o
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Corollary 2.4.5 With the above notation, suppose that 9 is bounded below on the
set {x} x IW.m, for all x E IW.n. Then the marginal function 'Y lies in Cony IW.n .

Proof. The marginal function 'Y is the image of 9 under the the linear operator A
projecting each (x ,y) E IW.n x IW.m onto x E IW.n: A(x, y) = x. 0

Geometrically, a marginal function is given by Fig. 2.4.1, which explains why
convexity is preserved: the strict epigraph of 'Y is the projection onto IW.n x IW. of
the strict epigraph of 9 (C IW.n x IW.m x 1R). Therefore, epi, 'Y is also the image of a
convex set under a linear mapping; see again Example A.I.2.5.

~-------Rm
Fig. 2.4.1. The shadow of a convex epigraph

Remark 2.3.5 mentioned that an infimal convolution need not be closed. The
above interpretation suggests that a marginal function need not be closed either. A
counter-example for (x, y) E IW. x IW. is the (closed) indicator function g(x, y) =°if
x> 0, y > 0, xy :? 1, g(x, y) = +00 otherwise. Its marginal function infyg(x, y)
is the (non-closed) indicator of ]0,+00[. Needless to say, an image-function is not
closed in general.

As seen in §2.I(b), supremization preserves convexity. Here, if g( ., y) were concave for
each y, 'Y would therefore be concave : the convexity of'Y is a little surprising. It is of course
the convexity of 9 with respect to the coupleof variables x and y that is crucial.

2.5 Convex Hull and Closed Convex Hull of a Function

Given a (nonconvex) function g, a natural idea coming from §A.I.3 is to take the
convex hull co epi 9 of its epigraph. This gives a convex set, which is not an epi­
graph, but which can be made so by "closing its bottom" via its lower-bound func­
tion (1.3.5). As seen in §A.I.3, there are several ways of constructing a convex hull;
the next result exploits them, and uses the unit simplex L1k •

Proposition 2.5.1 Let 9 : IW.n -+ IW. U {+oo}, not identically +00, be minorized by
some affine function: for some (s, b) E IW.n x IW..

g(x) :? (s,x) - b for all x E IW.n. (2.5.1)
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Then, the following three fun ctions it , 12 and 13 are convex and coincide on ~n :

it (x ) := inf {r : (x , r) E coepi g},
h(x) :=sup{h(x ) : hEConv ~n , h ~ g} .

is(x) :=inf{L:~=lajg(Xj) : k = 1,2 , . ..
a E L1h , Xj E domg, L:~=1 ajxj = x } .

Proof. We denote by r the family of convex functions minorizing g. By assump­
tion, r =1= 0; then the convexity of it results from §1.3(g).

[12 ~ it] Con sider the epigraph of any h c T: its lower-bound function f'e pi h is h
itself; besides, it contains epi g, and co (epi g) as well (see Proposition A.l .3.4). In
a word, there holds h = f'epi h ~ f'co ep i 9 = it and we conclude 12 ~ it since h
was arbitrary in r.
[is ~ 12] We have to prove 13 E T', and the result will follow by definition of 12 ;
clearly 13 ~ g (take a E L11 !), so it suffices to establish 13 E Conv ~n. First, with
(s , b) of (2.5.1) and all x , {Xj} and {a j} as described by (2.5 .2) ,

h h

Lajg(x j) ~ Laj (( s , x j ) - b) = (s , x) - b ;
j=l j=l

hence 13 is minorized by the affine function (s, ·) - b. Now, take two points (x , r )
and (x' , r') in the strict epigraph of h . By definition of 13, there are k, {aj }, {Xj}
as described in (2.5.2), and likewise k', {aj }, {xj}, such that L:~=1 ajg(xj ) < r

d lik . "h' I ( ') Ian I ewise L.Jj=l ajg Xj < r .
For arbitrary t E ]0, 1[, we obtain by convex combination

h h'

L tajg(Xj) + L(1- t) ajg(xj) < tr + (1 - t)r' .
j=l j=l

Observe that

h h'

L taj Xj + L(I- t )a j x j = t x + (1 - t) x ' ,
j=l j=l

i.e. we have in the lefthand side a convex decomposition of tx + (1 - t) x ' in k + k'
elements; therefore, by definition of 13:

h h'

h(tx + (1- t) x ') ~ Lta jg(xj) + L(I- t) ajg(xj)
j=l j=l

and we have proved that epi, 13 is a convex set: 13 is convex.
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[II ~ 13] Let x E jRn and take an arbitrary convex decomposition x = L~=l CtjXj,
with Ctj and Xj as described in (2.5.2). Since (Xj,g(Xj)) E epig for j = 1, .. . , k,

k

( X, L Ctjg(Xj)) E coepig
J=l

and this implies II (x) ~ L~=l Ctjg(Xj) by definition of h. Because the decompo­
sition of x was arbitrary within (2.5.2), this implies II (x) ~ hex). 0

Note in (2.5.2) the role of the convention inf 0 = +00, in case x has no decomposition

- which means that x f/. co dom g. The restrictions x j E dom 9 could be equally relaxed
(an x j f/. dom 9 certainly does not help making the infimum); notationally, o should then be
taken in ri Llk, so as to avoid the annoying multiplication 0 x (+00). Beware that epi (co g)
is not exactly the convex hull co (epi g): we need to close the bottom of this latter set, as
in §1.3(g)(ii) - an operation which affects only the relative boundary of co epi g, though.
Note also that Caratheodory's Theorem yields an upper bound on k for (2.5.2), namely k ~

(n + 1) + 1 = n + 2.

Instead of co epi g, we can take the closed convex hull co epi 9 = cl co epi 9 (see
§A.IA). We obtain a closed set, with in particular a closed bottom: it is already an
epigraph, the epigraph of a closed convex function. The corresponding operation
that yielded II, 12, 13 is therefore now simpler. Furthermore, we know from Propo­
sition 1.2.8 that all closed convex functions are redundant to define the function
corresponding to 12:affine functions are enough . We leave it as an exercise to prove
the following result:

Proposition 2.5.2 Let 9 satisfy the hypotheses ofProposition 2.5.1. Then the three
functions below

fl(X) := inf {r : (x,r) E co epi g},
f2(X) := sup {hex) : hE Cony jRn, h ~ g},

f3(X):= sup {(s,x) - b : (s,y) - b ~ g(y)forally E jRn}

are closed, convex, and coincide on jRn with the closure ofthe function constructed
in Proposition 2.5.1. 0

In view of the relationship between the operations studied in this Section 2.5
and the convexification of epi g, the following notation is justified, even if it is not
quite accurate.

Definition 2.5.3 (Convex Hulls of a Function) Let 9 : jRn -+ jRn U {+oo}, not
identically +00, be minorized by an affine function. The common function II =
12 = h of Proposition 2.5.1 is called the convex hull of g, denoted by co g. The
closed convex hull of 9 is any of the functions described by Proposition 2.5.2; it is
denoted by co 9 or cl co g. 0
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If {9j }jEJ is an arbitrary family offunctions, all minorized by the same affine
function, the epigraph of the [closed] convex hull of the function infj EJ 9j is ob­
tained from UjEJ epi gj ' An important case is when the 9/S are convex; then, ex­
ploiting Example A.l .3.5, the formula giving f3 simplifies: several x j 's correspond­
ing to the same 9i can be compressed to a single convex combination.

Proposition 2.5.4 Let 91, . .. , 9m be in Cony IRn , all minorized by the same affine
function. Then the convex hull of their infimum is the function

IRn
'" x f-t [co (rninj 9j)](X) =

inf {~ O'.j9j(Xj) : 0'. E .dm , Xj E dom ej , ~ O'.jXj = X} .
j = l j=l

Proof. Apply Example A.l.3.5 to the convex sets Cj = epi 9j'

(2.5.3)

o

The above statement was made in the simple situation of finitely many 9j'S, but
the representation (2 .5.3) can be extended to an arbitrary family of convex functions
gj : it suffices to consider in the infimand all the representations of x as convex
combinations of finitely many elements x j E dom 9j .

Along these lines, note that an arbitrary function 9 : JRn --+ JR U {+oo} can be seen as
an infimum of convex functions: considering dom 9 as an index-set, we can write

where each g(x j ) denotes a (finite) constant function.

Fig. 2.5.1. A convex hull of needles

Example 2.5.5 Let ( Xl, bt}, . . . , (xm , bm ) be given in JRn x JR and define for j = 1, . .. , m

.(x) = { bj ~fx=xj ,
gJ +00 if not .

Then f := co (min gj) = co (min gj) is the polyhedral function with the epigraph illustrated
on Fig. 2.5.1, and analytically given by

0< E .1m , j~l O<jXj = X} if x E co { X l , •• . , X m } ,

if not .
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Calling bERm the vector whose components are the bi'S and A the matrix whose
columns are the Xi'S, the above minimization problem in a can be written - at least when
X E CO { X l , .. . ,Xm } :

o

To conclude this Section 2, Table 2.5 .1 summarizes the main operations on func­
tions and epigraphs that we have encountered.

Table2.5.1. Main operations yielding convexity

Operations
on functions: f =

I:'" t fj=l J J

SUPjEJ Ii

goA (A affine)

ug(x/u)
Ittfz

Ag (A linear)
infy g( ., y)

cog

Operations on sets:
epi f or epi , f =

nothing interesting
njEJ epi Ii

- 1

A'(epig)

R; ({I} x epi g)

epi , It + epi , fz
epigr. hull of A' (epi g)

ProjJRnX IR episg

epigr. hull of co epi 9

Closedness

preserved
preserved

preserved

must be forced

destroyed

destroyed
destroyed

can be forced

(3.1.1)

3 Local and Global Behaviour of a Convex Function

3.1 Continuity Properties

Convex functions tum out to enjoy remarkable continuity properties: they are locally
Lipschitzian on the relative interior of their domain. On the relative boundary of that
domain, however, all kinds of continuity may disappear.

We start with a technical lemma.

Lemma 3.1.1 Let f E Cony IRn and suppose there are xo. 8, m and M such that

m ~ f(x) ~ M for all x E B(xo,28) .

Then f is Lipschitzian on B(xo, 0); more precisely: for all y and y' in B(xo, 0),

M-m
If(y) - f(y')1 ~ 8 Ily - y'lI·

Proof. Look at Fig. 3.1 .1: with two different y and y' in B(xo, 8), take

, y'-y
y" := y + 0 Ily' _ yll E B(xo, 20) ;
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by construction, y' lies on the segment [V , y'l), namely

I lI y l - yll /I 8
y = y + y .

8 + lI y l - yll 8 + lI y l - yll
Applying the convexity of f and using the postulated bounds, we obtain

Then, it suffices to exchange y and yl to prove (3.1 .1).

Fig. 3.1.1. Moving in a neighborhood of Xo

o

This implies the local Lipschitz continuity of a convex function , as announced.

Theorem 3.1.2 With f E Conv IRn , let 5 be a convex compact subset ofri dam f.
Then there exists L = L(5) ~ 0 such that

(3.1.2)

Proof. [Preliminaries] First of all, our statement ignores x-values outside the affine
hull of the convex set dam f. Instead of IRn , it can be formulated in IRd , where d
is the dimension of dam f; alternatively, we may assume ri dam f = int dam f,
which will simplify the writing.

Make this assumption and let Xo E 5. We will prove that there are 8 = 8(xo) >
oand L = L(xo ,8) such that the ball Btx« , 8) is included in int dam f and

If(y) - f(yl)1 ~ Lily - ylll for all y and yl in B(xo,8) . (3.1.3)

If this holds for all Xo E 5 , the corresponding balls B (xo, 8) will provide a covering
of the compact set 5, from which we will extract a finite covering (Xl , 81, L 1 ) , . . . ,

(xk, 15k, Lk). With these balls, we will divide an arbitrary segment [x, Xl) of the con­
vex set 5 into finitely many subsegments, of endpoints Yo := x , . . . , Yi, . .. ,Ye :=

z ' , Ordering properly the vi's, we will have IIx - xiII = 2:;=1 IIYi - Yi-111;
futhermore, f will be Lipschitzian on each [Yi-1 , yd with the common constant
L := max {L1 , • . • ,Lk}. The required Lipschitz property (3.1.2) will follow.
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[Main Step] To establish (3.1.3), we use Lemma 3.1.1, which requires boundedness
of f in the neighborhood of xo. For this, we construct as in the proof of Theo­
rem A.2.1.3 (see Fig. A.2.1.1) a simplex Ll = co {vo, . .. , vn}r C dom f having Xo
in its interior: we can take J > 0 such that B(xo , 2J) C Ll.

Then any y E B(xo,2J) can be written: y = 2:7=00:iVi with 0: E Lln+1 , so
that the convexity of f gives

n

f(y) ~ L o:i!(Vi) ~ max {J(vo), . . . , f(vn)} = : M.
i= O

On the other hand, Proposition 1.2.1 tells us that f is bounded from below, say
by m , on this very same B(xo , 2J). Our claim is proved : we have singled out J > 0
such that m ~ f(y) ~ M for all y E B(xo, 2J). 0

Note that the key-argument in the main step above is to find a (relative) neigh­
borhood of x E ri dom f, which is convex and which has a finite number of extreme
points, all lying in dom f. The simplex Ll is such a neighborhood, with a minimal
number of extreme points

Remark 3.1.3 It follows in particular that f is continuous relatively to the relative
interior of its domain, i.e.: for Xo E ri dom f and x E ri dom f converging to Xo,
we have that f(x) -+ f(xo) .

An equivalent formulation of Theorem 3.] .2 is: f is locally Lipschitzian on the
relative interior of its domain, i.e. for all Xo E ri dom f, there are L(xo) and J(xo)
such that

If(x) - f(x/)1 ~ L(xo)llx - x'II for all x and x' in the set
S(xo) := B(xo, J(xo)) n aff dom f C ridom f .

In fact, the bulk of our proof is just concerned with this last statement. Of course,
when Xo gets closer to the relative boundary of dom f, the size J(xo) of the allowed
neighborhood shrinks to 0; but also, the local Lipschitz constant L(xo) may grow
unboundedly (gr f may become steeper and steeper). 0

Because of the phenomenon mentioned in the above remark, we cannot put
ri dom f instead of S in Theorem 3.1.2: a convex function need not be Lipschitzian
on the relative interior of its domain .

Let us sum up the continuity properties of a convex function.

- First of all it is aff dom f, and not IRn , that is the relevant embedding (affine)
space: there is no point in studying the behaviour of f when moving out of this
space. Continuity, and even Lipschitz continuity, holds when x remains "well in­
side" ri dom f.

- When x approaches rbd dom f, continuity may break down: f may go to infinity,
or jump discontinuously to some finite value, etc. Still, irregular behaviour of f is
limited by Proposition 1.2.5.

- Closing epi f if necessary, we obtain a lower semi-continuous function at a rea­
sonable price (specified by Proposition 1.2.5).
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- It remains to ask whether 1 can be assumed upper semi-continuous (on rbd dom I ,
and relative to dom f) . It turns out that this property automatically holds for uni­
variate functions. With several variables, the answer is no in general, though : a
counter-example is

jR2 3 x = (~ , 7]) f-t I(x) = sup {~a + 7](3 : ~a2 ~ (3} .
a ,/3

We see that 1(0) = 0, and we know from Proposition 2.1.2 that 1 E Conv jRn . In
fact, the optimal (a, (3) (if any) satisfies 1/2 a 2 = (3, so that

{

0 if ~ = 7] = 0 ,

1(~,7]) = s~P (~7]a2 +~a) = -;~ if 7] < 0 ,

+00 otherwise.

Thus, when x tends to 0 following the path 7] = -1 /2 e, then I(x) == 1 > 0 = 1(0) .

To conclude this subsection, we give a rather powerful convergence result: con­
vex functions converging pointwise to some (convex) function 1 do converge uni­
formly on each compact set contained in the relative interior of dom I. For the sake
of simplicity, we limit ourselves here to the case of finite-valued functions. For the
general case, just specify that the compact set S in the next statement must be in
ri dom I , and adapt the proof accordingly.

Theorem 3.1.4 Let the convex functions I» : jRn ---+ jR converge pointwise for
k ---+ +00 to 1 : jRn ---+ jR. Then 1 is convex and, for each compact set S, the
convergence of I» to 1 is uniform on S.

Proof. Convexity of 1 is trivial: pass to the limit in the definition (1.1.1) itself. For
uniformity, we want to use Lemma 3.1.1, so we need to bound i» on S indepen­
dently of k; thus, let r > 0 be such that S c B(O , r) .

[Step 1] First the function 9 := supj, Ik is convex, and g(x) < +00 for all x because
the convergent sequence (fk (x)h is certainly bounded. Hence, 9 is continuous and
therefore bounded, say by M, on the compact set B(O, 2r) :

Ik(X) ~ g(x) ~ M for all k and all x E B(O, 2r) .

Second, the convergent sequence (fk(O)h is bounded from below:

IL ~ !k(0) for all k .

Then , for x E B(O, 2r) and all k, use convexity on [-x , x] C B(O, 2r):

i.e. the Ik'S are bounded from below, independently of k. Thus, we are within the
conditions of Lemma 3.1.1: there is some L (independent of k) such that
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Ifk(Y) - f k(y')1 :::; LilY - y'll for all k and all y, y' in B(O, r ) . (3.1.5)

Naturally, the same Lipschitz property is transmitted to the limiting function f .

[Step 2] Now fix E > O. Cover S by the balls B(x ,E) for x describing S , and extract
a finite covering S C B(Xl , E) U· · · U B(Xm ,E). With x arbitrary in S, take an Xi
such that x E B (Xi, E). There is ki,€ such that, for all k ~ ki,€,

where we have also used (3.1.5), knowing that x and Xi are in S c B(O, r ). The
above inequality is then valid uniformly in x , providing that

k ~ max {k1,€ , . .. ,km ,€ } = : k€.

3.2 Behaviour at Infinity

D

Having studied the behaviour of f (x) when x approaches rbd dom f, it rema ins to
consider the case of unbounded x , An important issue is the behaviour of f( xo +td)
when t -+ +00 (xo and d being fixed). Once again, we make this study by viewing
epi f just as a convex set (unbounded), and we call for §A.2.2.

Thus we assume f E Cony IRn , which allows us to consider the asymptotic cone
(epi 1) 00 of the closed convex set epi f .It is a closed convex cone of R" x IR, which
clearly contains the half-line {O} x IR+. According to its Definition A.2.2.2,

(epil)oo = {(d ,p) E IRn x IR : (xo ,ro) +t(d,p) E epi f for all t > O}, (3.2.1)

where (xo, ro) is an arbitrary element of epi f .This can be written

(epi 1) 00 = {(d , p) : epi f + t(d , p) C epi f for all t > O}

and, since we already know that (epi 1) 00 is a convex cone :

(epil)oo = {(d ,p) : epi f + (d,p) c epiJ} .

This object turns out to define a new function :

Proposition 3.2.1 For f E Cony IRn , the asymptotic cone of epi f is the epigraph
ofthe function f :x, E Cony IRn defined by

d f-t f:x,(d) := sup f( xo + td) - f( xo) = lim f( xo + td) - f( xo) , (3.2.2)
t>o t t--++oo t

where Xo is arbitrary in dom f.

Proof. Since (xo, f( xo)) E epi f, (3.2.1) tells us that (d, p) E (epi 1) 00 if and only
if f(xo + td) :::; f( xo) + tp for all t > 0, which means
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f(xo + td) - f(xo)
sup ~ p . (3.2.3)
t>o t

In other words, (epi 1) 00 is the epigraph of the function whose value at d is the
lefthand side of (3.2.3); and this is true no matter how Xo has been chosen in dom f .
The rest follows from the fact that the difference quotient in (3 .2.3) is closed convex
in d, and increasing in t (the function t t--+ f(xo + td) is convex and enjoys the
property of increasing slopes, namely Proposition 0.6.1). 0

It goes without saying that the expressions appearing in (3.2 .2) are independent
of Xo : f /x, is really a function of d only. By construction, this function is positively
homogeneous: f /x, (ad) = af/x, (d) for all a > O. Our notation suggests that it is
something like a "slope at infinity" in the direction d.

Definition 3.2.2 (Asymptotic function) The function f /x, of Proposition 3.2 .1 is
called the asymptotic function, or recession function, of f. 0

Consider for example the indicator ic of a closed convex set C. By definition of the
asymptotic cone, we see that ic(xo + td) = 0 for all t > 0 if and only if dE Coo ; we obtain

(ic):x, = i(coo ) •

The next example is more interesting and extends Remark 2.2.3:

Example 3.2.3 Let f E Conv R". Take Xo E dom f and consider the convex function
d t-+ f(xo + d) - f(xo), whose domain contains 0, and whose perspective-function is r of
(2.2.2). The closure of r can be computed with the help of Proposition 2.2.2: with Xo + d'
arbitrary in ri dom f,

(el r)(O,d) = lim a[f(xo + d' - d + dla) - f(xo)] .
at o

Note that the term f( xo) < +00 can be suppressed, or replaced by f(xo + d') (because
a -!- 0); moreover, as in Remark 2.2.3, the above limit is exactly

lim f(xo + d' + td) = lim f(xo + d' + td) - f(xo + d') = f:x,(d) .
1--++ 00 t 1--++ 00 t

In summary, the function defined by

{

u[f(xo + diu) - f( xo)] if u > 0 ,
R x Rn '3 (u , d) t-+ f:x, (d) if u = 0 ,

+00 elsewhere

is in Conv(R x R"}; and only its "u > O-part" depends on the reference point Xo E dom f .
o

Our next result assesses the importance of the asymptotic function .

Proposition 3.2.4 Let f E Cony IRn . All the nonempty sublevel-sets of f have the
same asymptotic cone, which is the sublevel-set of f/x, at the level 0:

"ir E IR with Sr(f) =I- 0, [Sr(f)] oo = {d E IRn : f /x,(d) ~ O} .

In particular, the following statements are equivalent:
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(i) There is r for which Sr(f) is nonempty and compact;
(ii) all the sublevel-sets of f are compact;

(iii) f :XO (d) > 0 for all nonzero d E jRn.

Proof. By definition (A.2.2.l), a direction d is in the asymptotic cone of the
nonempty sublevel-set Sr(f) if and only if

x E Sr(f) ~ [x + td E Sr(f) for all t > 0] ,

which can also be written - see (1.104):

(x ,r) E epi f ~ (x + td ,r + t x 0) E epi f for all t > 0 ;

and this in tum just means that (d,O) E (epiJ)oo = epi f:XO . We have proved the
first part of the theorem.

A particular case is when the sublevel-set So(f:XO) is reduced to the singleton
{O}, which exactly means (iii). This is therefore equivalent to [Sr(f)] oo = {O} for
all r E jR with Sr(f) f:- 0,which means that Sr(f) is compact (Proposition A.2.2.3).
The equivalence between (i), (ii) and (iii) is proved. 0

Needless to say, the convexity of f is essential to ensure that all its nonempty sublevel­
sets have the same asymptotic cone. In Remark 1.1.7, we have seen (closed) quasi-convex
functions : their sublevel-sets are all convex, and as such they have asymptotic cones, which
normally depend on the level.

Definition 3.2.5 (Coercivity) The functions f E Conv jRn satisfying (i), (ii) or (iii)
are called O-coercive. Equivalently, the O-coercivefunctions are those that "increase
at infinity":

f(x) -+ +00 whenever Ilxll -+ +00,

and closed convex O-coercivefunctions achieve their minimum over jRn.
An important particular case is when f:XO (d) = +00 for all d f:- 0, i.e. when

f:XO = i{o} . It can be seen that this means precisely

~~i -+ +00 whenever Ilxll -+ +00

(to establish this equivalence, extract a cluster point of (xk/llxkllh and use the
lower semi-continuity of f:XO) . In words: at infinity, f increases to infinity faster
than any affine function; such functions are called I-coercive, or sometimes just
coercive. 0

Suppose for example that f is quadratic:

f(x) = !(Qx ,x) + (b,x) + c,

with Q a positive semi-definite symmetric operator, bERn and c E R . Then it is easy to
compute
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f ' (d) = { (b,d) ~f d E Ker Q ,
00 +00 If not .

In this particular case, the different sorts of coercivity coincide :

f is O-coercive <===> / is I-coercive <===> Q is positive definite.

The word "coercive" alone comes from the study of bilinear forms: for our more general
framework of non-quadratic functions, it becomes ambiguous, hence our distinction .

Proposition 3.2.6 A fun ction f E Conv R" is Lipschitzian on the whole of jRn ifand only
if f :x, is finit e on the whole of R" . The best Lipschitz constant for f is then

supU:x,(d) : Ildll = I} . (3.2.4)

Proof When the (convex) function f :x, is finite-valued, it is continuous (§3.1) and therefore
bounded on the compact unit sphere:

sup U :x, (d) : IIdil = I} =: L < +00 ,

which implies by positive homogeneity

Now use the definition (3.2.2) of f :x, :

f(x + d) - f(x) ~ Llldll for all x Edom f and dE R" ;

thus, dom f is the whole space (f(x + d) < +00 for all d) and we do obtain that L is a
global Lipschitz constant for [ ,

Conversely, let f have a global Lipschitz constant L . Pick Xo E dom f and plug the
inequality

f( xo + td) - f(xo) ~ Ltlldll for all t > 0 and d EjRn

into the definition (3.2.2) of /:x, to obtain i: (d) ~ Llldll for all d ER" .
It follows that s: is finite everywhere, and the value (3.2.4) does not exceed L . 0

Concerning (3.2.4), it is worth mentioning that d can run in the unit ball B (instead of
the unit sphere Ii), and/or the supremand can be replaced by its absolute value; these two
replacements are made possible thanks to convexity.

Remark 3.2.7 We mention the following classification , of interest for minimization theory:
let f E Conv jRn .

- If t: (d) < 0 for some d, then f is unbounded from below; more precisely: for all Xo E
dom j , f(xo + td) -l- -00 when t -+ +00.

- The condition f :x, (d) > 0 for all d :f= 0 is necessary and sufficient for f to have a nonempty
bounded (hence compact) set of minimum points.

- If f:x, ~ 0, with f:x, (d) = 0 for some d :f= 0, existence of a minimum cannot be guaranteed
(but if Xo is minimal , so is the half-line Xo + jR+ d).

Observe that, if the continuous function d H f:x,(d) is positive for all d :f= 0, then it is
minorized by some m > 0 on the unit sphere jj and this m also minorizes the speed at which
f increases at infinity. 0

To close this section, we mention some calculus rules on the asymptotic function. They
come directly either from the analytic definition (3.2.2), or from the geometric definition
epi f:x, = (epi 1)00 combined with Proposition A.2.2.5.
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Proposition 3.2.8

- Let [i , ... , f m be m f unctions of Conv jRn, and t 1 , . . . , tm be positive numbers. Assume
that there is Xo at which each Ii is finite. Then,

m

for I := E.7'=l t j Is . we have I:x, = L t j (Ii)~ .
j=l

- Let {Ii} jE J be a fa mily of functions in Cony R" . Assume that there is Xo at which
SUPjEJ Ii(x o) < += . Then,

f or I := SU Pj EJ Ii , we have I:x, = sup( Ii )~ .
j EJ

- Let A : jRn -+ jRm be affine with linear part Ao, and let I E Cony R'" . Assume that
A(jRn) n dom I -I- 0. Then (f 0 A):x, = I:x, 0 Ao. 0

We mention the corresponding formula for an image-functi on (2.4.2): it would be
(Ag) :x,(d) = inf {g:x,(z) : Az = d}, which can be written symbolically (Ag):x, = A(g:x,) .
However, this formula cannot hold without an additional assumption, albeit to guarantee
Ag E ConvjRn . One such assumption is: g:x,(z) > 0 for all z E KerA\{O} (appropri­
ate coercivity is added where necessary, so that the infimum in the definition of (Ag)(x) is
always attained) . Proving this result is not simple .

4 First- and Second-Order Differentiation

Let C C jRn be nonempty and convex. For a functi on I defined on C (j(x) < +00
for all x E C) , we study here the following questions:

- When I is convex and differentiable on C , what can be said of the gradient \7I ?
- When I is differentiable on C , can we characterize its convexity in terms of \7I ?
- When I is convex on C , what can be said of its first and second differentiability ?

We start with the first two que stions.

4.1 Differentiable Convex Fnnctions

First we assume that I is differentiable on C . Given Xo E C , the sentence "I is
differentiable at xo" is meaningful only if I is at least defined in a neighb orhood of
xo. Then, it is normal to assume that C is contained in an open set n on which I is
differentiable .

Theorem 4.1.1 Let I be a fun ction differentiable on an open set n c jRn , and let
C be a convex subset of n. Then

(i) I is convex on C if and only if

I(x) ~ I(xo) + (\7 I(xo), x - xo) f or all (xo, x ) E C x C; (4 .1.1)
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(ii) f is strictly convex on C if and only if strict inequality holds in (4.1.1) when­
ever x i Xo;

(iii) fis strongly convex with modulus c on C if and only if, for all (xo, x) E C x C,

f(x) ~ f(xo) + (\7f(xo) ,x - xo) + ~cllx - xo11 2
• (4.1.2)

Proof. [(i)) Let f be convex on C: for arbitrary (xo, x) E C x C and a E ]0,1[, we
have from the definition (1.1.1) of convexity

f(ax + (1 - a)xo) - f(xo) ~ a[f(x) - f(xo)].

Divide by a and let a to: observing that ax + (1 - a)xo = Xo + a(x - xo), the
lefthand side tends to (\7 f(xo), x - xo) and (4.1.1) is established.

Conversely, take Xl and X2 in C, a E ]0, 1[and set Xo := aXl + (1- a)x2 E C.
By assumption,

f(Xi) ~ f(xo) + (\7 f(xo), Xi - xo) for i = 1,2

and we obtain by convex combination

(4.1.3)

which, after simplification, is just the relation of definition (1.1.1).

[(ii)) If f is strictly convex, we have for Xo i x in C and a E ]0,1[,

f(xo + a(x - xo)) - f(xo) < a[f(x) - f(xo)] ;

but f is in particular convex and we can use (i):

(\7 f(xo) , a(x - xo)) ~ f(xo + a(x - xo)) - f(xo) ,

so the required strict inequality follows .
For the converse, proceed as for (i), starting from strict inequalities in (4.1.3).

[(iii)) Using Proposition 1.1.2, just apply (i) to the function f - 1/2 cll·11 2 , which is
of course differentiable. 0

Thus, a differentiable function is convex when its graph lies above its tangent hyper­
planes: for each xo, f is minorized by its first-order approximation f(xo) + (\7 f(xo), · - xo)
(which coincides with f at xo). It is strictly convex when the coincidence set is reduced to
the singleton (xo, f(xo» . Finally, f is strongly convex when it is minorized by the quadratic
convex function

X t-+ f(xo) + (\7 f(xo), x - xo) + ~cllx - xoll 2
,

whose gradient at Xo is also \7 f (xo) . These tangency properties are illustrated on Fig. 4.1.1.

Remark 4.1.2 Inequality (4.1.1) is fundamental. In case of convexity, the remainder term r
in the development

f(x) = f(xo) + (\7 f(xo), x - xo) + r(xo, x)

must be well-behaved; for example, it is nonnegative for all x and Xo ;also, r(xo, .) is convex.
o
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Xo slope Vf(xo)

Fig. 4.1.1. Affine and quadratic minorizations

curvature c

Both I-and \71-values appear in the relations dealt with in Theorem 4.1.1; we
now proceed to give additional relations, involving \71 only. We know that a dif­
ferentiable univariate function is convex if and only if its derivative is monotone
increasing (on the interval where the function is studied; see §0.6). Here, we need a
generalization of the wording "monotone increasing" to our multidimensional situ­
ation. There are several possibilities, one is particularly well-suited to convexity :

Definition 4.1.3 Let C C JRn be convex. The mapping F : C --+ JRn is said to be
monotone [resp. strictly monotone, resp . strongly monotone with modulus c > 0]
on C when, for all x and x' in C,

(F(x) - F( x'), x - x'} ~ 0
[resp. (F( x) - F(x'),x - x' } > 0 whenever x:j; x' ,

resp. (F(x) - F(x') ,x - x' } ~ cllx - x'1l 2 J. 0

In the univariate case, the present monotonicity thus corresponds to F being
increasing. When particularized to a gradient mapping F = \71, our definition
characterizes the convexity of the underlying potential function I:
Theorem 4.1.4 Let I be a function differentiable on an open set n c JRn , and let
C be a convex subset of n. Then, I is convex {resp. strictly convex, resp. strongly
convex with modulus c} on C if and only if its gradient \71 is monotone {resp.
strictly monotone, resp. strongly monotone with modulus c} on C.

Proof. We combine the "convex {:} monotone" and "strongly convex {:} strongly
monotone" cases by accepting the value c = 0 in the relevant relations such as
(4.1.2).

Thus, let I be [strongly] convex on C: in view of Theorem 4.1.1, we can write
for arbitrary Xo and x in C :

I(x) ~ I( xo) + (\7 I(xo), x - xo} + ! cllx - xol1 2

I(xo) ~ I(x) + (\7/(x), xo - z)+ !cllxo - x1l 2 ,

and mere addition shows that \71 is [strongly] monotone.
Conversely, let (xo,Xl) be a pair of elements in C. Consider the univariate func­

tion t f-7 'P(t) := I(xd, where Xt := Xo + t(Xl - xo); for t in an open interval
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containing [0,1], Xt E nand ip is well-defined and differentiable; its derivative at t
iSifJ/(t) = (\7f(xd,X1 - xo). Thus, we have for all U s; t' < t:( 1

ifJ/(t) - ifJ'(e) = (\7f(xt) - \7f(Xt'), Xl - xo)
= t~t' (\7 f(xt) - \7 f(xt') , Xt - Xt')

(4.1.4)

and the monotonicity relation for \7f shows that ip' is increasing, ifJ is therefore
convex (Corollary 0.6.5).

For strong convexity, set t' = 0 in (4.1.4) and use the strong monotonicity rela­
tion for \7 f :

(4.1.5)

Because the differentiable convex function sp is the integral of its derivative, we can
write

ifJ(l) - ifJ(O) - ifJ/(O) = 11

[ifJ/(t) - ifJ/(O)]dt ~ ~cllx1 - xol1 2

which, by definition of ifJ , is just (4.1.2) (the coefficient 1/2 is fo1 t dt!) .
The same technique proves the "strictly monotone ¢:} strictly convex" case; then,

(4.1.5) becomes a strict inequality - with c = 0 - and remains so after integration.
o

The attention of the reader is drawn on the coefficient e - and not 1/2 e - in the defini­
tion 4.1.3 of strong monotonicity. Actually, a sensible rule is: "Use 1/2 when dealing with
a square"; here, the scalar product (.1F, .1x) is homogeneous to a square . Alternatively, re­
member in Propos ition 1.1.2 that the gradient of 1/2 ell . 11 2 at x is ex.

We mention the following example: let f(x) := ~(Ax , x) + (b, x) be a quadratic convex
function: A is symmetric, call An ~ 0 its smallest eigenvalue. Observe that \7 f(x) = Ax +b
and that

(Ax - Ax', x - x') = (A(x - x') , x - x') ~ Anllx - x'I1 2
•

Thus \7 f is monotone [strongly with modulus An]. The [strong] convexity of f, in the sense
of (1.1.2), has been already alluded to in §1.3(d); but (4.1.2) is easier to establish here: simply
write

f(x) - f(xo) - (\7f(xo),x - xo) = ~(Ax,x) - ~(Axo,xo) - (Axo ,x - xo)

= ~(A(x - xo), x - xo) ~ ~Anllx - xol1 2
•

Note that for this particular class of convex functions, strong and strict convexity are equiva­
lent to each other, and to the positive definiteness of A.

Remark 4.1.5 Do not infer from Theorem 4.1.4 the statement "a monotone mapping is the
gradient of a convex function", which is wrong. To be so, the mapping in question must first
be a gradient, an issue which we do not study here. We just ment ion the following property: if
Q is convex and F : Q ~ jRn is differentiable, then F is a gradient if and only if its Jacobian
operator is symmetric (in 2 or 3 dimensions, curl F == 0). 0
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4.2 Nondifferentiable Convex Functions

A convex function need not be differentiable over the whole interior of its domain;
nevertheless, it is so at "many points" in this set. Before making this sentence math­
ematically precise, we note the following nice property of convex functions .

Proposition 4.2.1 For f E Conv IRn and x E int dom f, the three statements be­
low are equivalent:

(i) The fun ction
TIDn d I' f( x + td) - f( x)
1& 3 f-+ 1m "--'----"------=--'--'-

t.j.o t

is linear in d;

(ii) for some basis of IRn in which x = (e , ... ,~n), the partial derivatives ;~ (x)

exist at x,for i = l , . .. ,n;
(iii) f is differentiable at x.

Proof. First of all, remember from Theorem 0.6.3 that the one-dimensional function
t f-+ f( x + td) has half-derivatives at 0: the limits considered in (i) exist for all d.
We will denote by {b l , . .. , bn } the basis postulated in (ii), so that x = L~=1 ~ibi '

Denote by d f-+ £(d) the function defined in (i); taking d = ±b i , realize that,
when (i) holds,

This means that the two half-derivatives at t = 0 of the function t f-+ f( x + tbi )

coincide : the partial derivative of f at x along b; exists, (ii) holds. That (iii) implies
(i) is clear: when f is differentiable at z,

lim f(x + td) - f( x) = (\1f(x) , d) .
t.l.o t

We do not really complete the proof here, because everything follows in a
straightforward way from subsequent chapters. More precisely, [(ii) ~ (i)] is Propo­
sition C.l.I .6, which states that the function £ is linear on the space generated
by the b;'s, whenever it its linear along each bi . Finally [(i) ~ (iii)] results from
Lemma D.2.1.1 and the proof goes as follows. One of the possible definitions of
(iii) is:

I
, f(x + td') - f(x) . I' . d
1m IS mearm .

t.j.O,d'-+d t

Because f is locally Lipschitzian, the above limit exists whenever it exists for fixed
d' = d - i.e, the expression in (i). 0

Remark 4.2.2 The above result reveals three interesting properties enjoyed by convex func­
tions:
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- First, consider the restriction 'Pd(t) := f(x + td) of f along a line x + Rd. As soon as
there are n independent directions, say d1 , • •• , dn , such that each 'Pdi has a derivative at
t = 0, then the same property holds for all the other possible directions d E Rn

•

- Second, this "radial" differentiability property of 'Pd for all d (or for many enough d) suf­
fices to guarantee the "global" (i.e. Frechet) differentiability of f at x; a property which
does not hold in general. It depends crucially on the Lipschitz property of f.

- One can also show that, if f is convex and differentiable in a neighborhood of x, then Y' f
is continuous at x. Hence, if fl is an open convex set, the following equivalence holds true
for the convex f :

f differentiable on fl ¢:::::? f E C 1(fl) .

This rather surprising property will be confirmed by Theorem D.6.2.4. o

The largest set on which a function can be differentiable is the interior of its
domain . Actually, a result due to H. Rademacher (1919) says that a function which
is locally Lipschitzian on an open set il is differentiable almost everywhere in il.
This applies to convex functions, which are locally Lipschitzian (Theorem 3.1.2);
we state without proof the corresponding result:

Theorem 4.2.3 Let f E Cony jRn. The subset of int dom f where f fails to be
differentiable is ofzero (Lebesgue) measure. 0

4.3 Second-Order Differentiation

The most useful criterion to recognize a convex function uses second derivatives.
For this matter, the best idea is to reduce the question to the one-dimensional case :
a function is convex if and only if its restrictions to the segments [x,x'] are also
convex. These segments can in tum be parametrized via an origin x and a direction
d: convexity of f amounts to the convexity of t f-7 f(x + td) . Then, it suffices to
apply calculus rules to compute the second derivative of this last function. Our first
result mimics Theorem 4.1.4.

Theorem 4.3.1 Let f be twice differentiable on an open convex set il c jRn . Then

(i) f is convex on il if and only if \72f(xo) is positive semi-definite for all Xo E
il',

(ii) if \72f(xo) is positive definite for all Xo E il, then f is strictly convex on il;
(iii) f is strongly convex with modulus c on il if and only if the smallest eigenvalue

of \72f( ·) is minorized by c on il: for all Xo Eiland all d E jRn,

Proof. For given Xo E il, ae jRn and t E jR such that Xo + td E il, we will set

Xt := Xo + td and <p(t):= f(xd = f(x + td) ,

so that <p"(t) = (\72f(xt)d , d) .

[(i)) Assume f is convex on il; let (xo , d) be arbitrary in il x jRn, with d :j:. 0: sp is
then convex on the open interval 1 := {t E jR : Xo + td E il}. It follows
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°~ <p" (t) = (\72I(xdd, d) for all tEI:3 °
and \72/(xo) is positive semi-definite .

Conversely, take an arbitrary [Xo, Xl] C [l , set d := Xl - Xo and assume
\72/(Xt) positive semi-definite , i.e. <p"(t) ;?: 0, for t E [0,1]. Then Theorem 0.6.6
tells us that <p is convex on [0,1], i.e. I is convex on [xo , xr]. The result follows
since Xo and Xl were arbitrary in fl.

[(ii)] To establish the strict convexity of Ion [l , we prove that \7I is strictly mono­
tone on [l : Theorem 4.1.4 will apply. As above, take an arbitrary [xo,xr] C [l,

X l # xo, d := Xl - Xo, and apply the mean-value theorem to the function <p/,
differentiable on [0, I] : for some r E ]0, 1[,

<p' (1) - <p/(O) = <p"(r) = (\72/(x
r)d ,d) >°

and the result follows since

[(iii)] Using Proposition 1.1.2, apply (i) to the function I - 1/2 ell, 11 2 , whose Hes­
sian operator is \721 - cIn and has the eigenvalues .x - c, with .x describing the
eigenvalues of \72I. 0

Some differences have appeared with respect to §4.1:

- The sufficiency condition in (ii) is not necessary, even for univariate functions:
think of I(x) = 1/4 X 4•

- Theorem 4.1.1 stated that the affine (first-order) approximation of I around Xo
was actually a global minorization - more or less "comfortable". Here, we cannot
say that the quadratic second-order approximation (of I around xo)

minorizes I : think of I(x) = 1/2 x2 - 1/4 x4
, which is convex for Ixl 2 ~ 1/3.

- The present statements do not characterize convexity on a convex subset C C [l :

C must be open. The reason is that §4.l was dealing with the image (through I
or \7f) of pairs of points in C (xo and X, or X and z'). Here, \721 looks at I in
the neighborhood of a single point, say Xo. Thus, a statement like "I is convex on
C C [l if and only if \72/(') is positive semi-definite on C" may be wrong when
C is not open: 1((,7]) := e - 7]2 is convex on C = IR x {O} but its Hessian is
nowhere positive semi-definite .

Remark 4.3.2 Despite the last comment above, the convexity criterion using sec­
ond derivatives is still the most powerful, even if positive (semi-)definiteness is
not always easy to check. To recognize a convex function on a non-open set C,
the best chance is therefore to use the Hessian operator on [l = int C, hope­
fully nonempty, and then to try and conclude by passing to the limit: the property
C C cl (int C) = cl C is useful for that. 0
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Example 4.3.3 To illustrate Theorem 4.3.1, consider the function

n := {x = (e1
, • • • , C ) : ei > 0 for i = 1, . . . , n} ,

f : n 3 x H f( x) := -(ee··,C) l/ n .

Direct computations give its second derivatives, i.e. its Hessian operator associated with the
dot-product of R":

[)2 f f( x)
[)e i[)ej (x) = n 2ei ej (1 - n8i j )

where 8ij is Kronecker's symbol. We obtain, with d = (d1
, ••• , dn

) E R":

[\7 2f( x)dr d = f(~) [(t d;) 2 _ n t (d;)2] .
n . =1 e .=1 e

The £1- and £2-norms are related on Rn by the inequality m. lilt <JnIII ·111 2 (take a vector
of the type (±1, .. . , ±1) and use the Cauchy-Schwarz inequality); because f is negative on
n, the above expression is therefore nonnegative: f is convex. Observe in passing that we
obtain an equality if d and x are collinear: our f is positively homogeneous.

Observe here that f can be extended to cl n by posing f( x) = 0 if some ei is zero.
Convexity is preserved, and this illustrates Remark 4.3.2. 0

Remark 4.3.4 (Flat Domains) In all this Section 4, dom f was implicitly assum ed
full -dimensional, in order to have a nonempty int dom f .When such is not the case,
some kind of differentiation can still be performed. In fact , exploit Remark 2.1.6
and make a change of vari able, introducing the function y H fo(Y) := f( xo + y) ;
here Xo is fixed in dom f , y varies in the subspace V parallel to aff dom f. Now,
fo E Conv V and dom fo is full -dimensional in V . Equipping V with the induced
scalar product (., .) and the induced Lebesgue measure, the main results above can
be reproduced. More precisely: almost everywhere in int dom fo, i.e . for almost all
Xo + Y E ri dom f, there is a vector 8 E V (the gradient of fo at y) which gives the
first-order approximation of f around Xo

Vh E V, f( xo + Y + h) = f( xo + y) + (8, h) + o(llhll)

(the remainder term o(llhll) being nonnegative) ; thi s 8 could be called the "relative
gradient" of f at x := Xo + y ; it exists at Xo + Y if and only if the function t H

f( xo + Y + td) has a derivative at t = afor all d E V . 0

Exercises

1. Consider the function IR 3 x H f( x) := H~x2 . Determine the large st intervals
on which f is convex.

2. With 9 E Conv IR, define the function f : IRn -+ IRU {+oo} by f( x) := g(llxll) .
Show that f E Cony IRn .

Show that the function 1R2 3 x H f(x) := l+ llxll2 is "nowhere convex" , i.e. on

no set C C 1R2 (study the eigenvalues of its Hessian).
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3. Let f : [0, +oo[--t lR be continuous, twice differentiable on )0, +oo[ and satisfy
f(O) = 0,1" >°on )0, +00[.

-Showthatf'(x) > f~) for all x E)O,+oo[.

- Deduce that the function )0, +oo[ 3 x f-7 F(x) := fIXIJPdt is stricly convex on
)0,+00[ .

4. Let I be an open interval of lR, let f : I --t lR be three times continuously
differentiable on I , with 1" > °on I . Consider the function 'P defined by

I x I 3 (x ,y) f-7 'P(x, y) := f( x) - f(y ) - f'(y)( x - y).

We use the notation B := f" .
- Prove the equivalence of the following statements:

(i) 'P is convex (jointly in x and y);

(ii) B(y) + B'(y)(y - x ) ~ ~(~i for all (x , y) E I x I ;

(iii) ~ is concave on I .

- Check that 'P is convex in the following cases:
· I = lR and f(x) = ax2 + bx + c (a > 0);
· I = )0, +oo[ and f(x) = xlog x - x ;
· I = )0, I[ and f(x) = x logx + (1 - x) log(I - x) .

5. Prove the strict convexity of the function x f-7 f (x) := log ( l-llxlI 2 ) on the set

{x E lRn
: Ilxll < I} .

6. Denote by 0 := {x = (6 "" ,~n) : ~i > °fori = I , .. . , n} the positive
orthant of lRn

. A function f : 0 --t lR is said to be of Q-type when it has the form

p

f(6 , .. . , ~n ) = L Ck(6t1k " ' ( ~n tnk;
k=1

here the Ck'S are nonnegative coefficients and the aik's are real numbers (possibly
negative). Show that, if f is of Q-type, then

lRn 3 ("11 , . . . , "In) = Y f-7 g(y) := f(e'I1 ,. .. ,e'ln)

IS convex.

7. Let D be a convex open set in lRn . The function f : D --t )0, + oo[ is said to be
logarithmically convex when log f is convex on D.

Assuming that f is twice differentiable on D, show that the following statements
are equivalent:

(i) f is logarithmically convex;
(ii) f(x)'\7 2 f(x) - '\7 f(x) ['\7 f(xW ?= 0 for all xED;

(iii) the function x f-7 e(a ,x ) f(x) is convex for all a E lRn .
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8 *. Suppose that the convex functions f and 9 are such that f + 9 is affine. Show
that f and 9 are actually affine.

9. For a nonempty closed convex set C C jRn X jR, show that

[C = epi f with f E Cony jRn] <¢:::::::} [(0,1) E Coo and (0, -1) ¢ Coo] .

10. Show that the function log is concave on ]0, + oo[ and prove the inequality be­
tween arithmetic and geometric mean s:

IT( Xi) l /m ~ ~ f Xi for x l "" , Xm > 0 .
m

i=l i= l

lJ. For f E Cony jRn, prove the equality infxEJRn f( x) = infxEri dom f f( x) .
12. Here f and c are two finite-valued convex functions and C := {x : c(x) < o} is
assumed nonempty. Show that C is convex. What are its boundary and its closure?

Show that the function x H f( x) - log (- c(x)) is convex on C; what is its
domain? Same questions with the function x H f( x) + [max {O, c(x)}j2 .

13. Let jR2 '3 (~ , 1]) H f(~ , 1]) := e(1 + e"). Compute \72f. Is f convex, strictly
convex, strongly convex on the set {(~ , 1]) E jR2 : 1] > O}?

14*. Let C be a nonempty closed convex set, with nonempty complement C ". Show
that f := -de c + ie is closed convex.

Show that f remains convex if f( x) is replaced by dc(x ) for x ¢ C; i.e. f
becomes -de c + de.

15 *. For <p :]0, + 00[-+ jR convex, define the function SIp :]0, + oo[nx ]0, + oo[n by

(pl , . . . .v",«, .. . , qn) = (p;q) H S <p (p,q) := tqi<p(P:) .
i= l q

Check that SIp is convex. Setting P := I:~=l pi and Q := I:~=l qi, deduce the
inequality

S<p(p,q) ? Q<P(~) '

Defining e :]0, + 00[-+ jR by '¢(x) := x<p ( ~ ) ,

- How do S Ip and S ,p compare?

- Compute '¢ and SIp when <p(t) has the following expressions: t log t , (1 - 0) 2,

t o! with 0: > 1, (t _1)2, It - 11.

16*. Let f : ] - 1, +1[ -+ ]- 00,O[ be convex . Prove the convexity of the function

1]2
] - 1, +1[ x jR '3 (~ , 1]) H g(~ , 1]) := - f(~) .

Let f : la,b[ -+ ] - 00,O[ be convex. Prove the convexity of the funct ion

]0, + oo[ x [e , b[ '3 (~ , 1]) H h(~, 1]) := ~ log ( - f11])) .
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17. Show that the following function lies in Conv S(IRn) :

{

-1
S(IRn) 3 M 1-7 f(M) := t r (M-l) if M >- 0 ,

+00 otherwise.

18**. Let A E Sn(IR) be positive definite. Prove the convexity of the function

IRn 3 x 1-7 f(x) := (Ax , x)(A- 1x , x) .

19*. Let f := min {iI ,· · · , f m}, where iI,.. . , f m are convex finite-valued . Find
two convex functions 9 and h such that f = 9 - h.

20*. Let f : [0, +oo[ --+ [0, + oo[ be convex with f(O) = 0. Its mean-value on [0, xl
is defined by

F(O) := 0 , 11x

F (x ) := - f(t)dt for x> 0 .
x 0

Show that F is convex.

21 *. Let C:l0 be closed convex in IRn. Show that (dc):x, = d(c=) .

22. Let f E Conv IRn . Show that f~ (d) = lim inf ] t f (!f) :d' --+ d, t to} for all
dE IRn.

23. Show that f E Conv IRn is O-oercive if and only if there is e > °such that
f~ (d) :?e for all d of norm 1.

24. Consider the polyhedral function x 1-7 f( x) := . max ((Si , x )+ri) ' Show that
t= l ,. . . ,k

f~(d) = . max (si,d).
t= l , . .. ,k

25*. Let f : IR --+ IR be continuous. For h >°define

1 l x
+

h

IR 3 x 1-7 !h(x) := 2h f(t)dt.
x- h

Show that f is convex if and only if !h(x) :? f( x) for all x E IR and all h > 0.
Give a geom etric interpretation of this result.

26 **. Let f : IRn --+ IR be convex and differentiable over IRn. Prove that the follow­
ing three properties are equivalent (L being a positive constant) :

(i) IIV f( x) - V f( xl)11 ~ Lllx - x III for all x, x' in IRn ;
(ii) f( x') :? f( x) + (V f( x) , x' - x )+ AIIV f( x) - V f( x' )11 2 for all x , x' in IRn ;

(iii) (V f( x) - V f( x' ), X - x' ) :? iliV f( x) - V f( x l)lJ2 for all x, x' in IRn.



c. Sublinearity and Support Functions

Introduction In classical real analysis , the simplest functions are linear. In convex
analysis, the next simplest convex functions (apart from the affine functions, widely
used in §B. I.2), are so-called sublinear. We give three motivation s for their study.

(i) A suitable generalization of linearity. A linear function efrom jRn to IR, or a
linear form on jRn, is primarily defined as a function satisfying for all (Xl , X2) E
jRn x jRn and (tl' t2) E jR x jR:

(0.1)

A corresponding definition for a sublinear function (J from jRn into jR is: for all
(XI ,X2) E jRn x jRn and (tl ,t2) E jR+ X jR+ ,

(0.2)

A first observation is that requiring an inequality in (0.2), rather than an equal­
ity, allows infinite values for (J without destroying the essence of the concept of
sublinearity. Of course, (0.2) is less stringent than (0. I), but more stringent than the
definition of a convex function: the inequality must hold in (0.2) even if tl + t2 :1'1.
This confirms that sublinear functions, which generalize linear functions, are partic­
ular instances of convex functions .

Remark 0.1 Note that (0.1) and (0.2) can be made more similar by restricting tj and t z in
(0.1) to be positive - this leaves unchanged the definition of a linear function.

The prefix "sub" comes from the inequality-sign "~" in (0.2). It also suggests that sublin­
earity is less demanding than linearity, but this is a big piece of luck. In fact, draw the graph
of a convex and of a concave function and ask a non-mathematician: "which is convex?". He
will probably give the wrong answer. Yet, if convex functions were defined the other way
round, (0.2) should have the "~" sign. The associated concept would be superlinearity, an
unfortunate wording which suggests more or better than linear. 0

In a word, sublinear functions are reasonable candidates for "simplest non-triv ial
convex functions". Whether they are interesting candid ates will be seen in (ii) and
(iii). Here, let us just mention that their epigraphs are convex cones , the next simplest
convex epigraphs after half-spaces.

(ii) Tangential approximation ofconvex function s. To say that a function f : jRn ---+
jR is differentiable at X is to say that there is a linear function exwhich approximates
f(x + h) - f( x) to first order, i.e.

J. -B. Hiriart-Urruty et al., Fundamentals of  Convex Analysis

© Springer-Verlag Berlin Heidelberg 2001
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f( x + h) - f(x) = ex(h) + o(llhll) ·

This fixes the rate of change of f when x is moved along a line d: with c(t ) -t 0 if
t -t 0,

f(x + td) - f( x) = ex(d) + c(t ) for all t¥-O.
t

Geometrically, the graph of f has a tangent hyperplane at (x , f( x)) E IRn x IR;
and this hyperplane is the graph of the affine function h H f( x) + ex(h) .

When f is merely convex, its graph may have no tangent hyperplane at a given
(x , f( x)). Nevertheless, under reasonable assumptions, f(x + h) - f(x) can still be
approximated to first order by a function which is sublinear: there exists a sublinear
function h H ax (h) such that

f(x + h) - f(x) = ax(h) + o(llhll)·

This will be seen in Chap. D.
Geometrically, gr ax is no longer a hyperplane but rather a cone, which is there­

fore tangent to gr f (the word "tangent" should be understood here in its intuitive
meaning of a tangent surface, as opposed to tangent cones of Chap. A; neither gr ax
nor gr f are convex) .Thus, one can say that differentiable functions are "tangentially
linear", while convex functions are "tangentially sublinear". See Fig. 0.1, which dis­
plays the graphs of a differentiable and of a convex function. The graph of ex is the
thick line L , while the graph of ax is made up of the two thick half-lines 51 and 52.

R

R~. L

gr t

i i
! I
I I Rn

x-h x

tangential linearity

, ~rYS2
~
51 I i-+__~ l-__ Rn

x-h x

tangential sublinearity

Fig. 0.1. Two concepts of tangency

(iii) Nice correspondence with nonempty closed convex sets. In the Euclidean space
(IRn , ( ' , .) ), a linear form ecan be represented by a vector: there is a unique s E IRn

such that
e(x) = (s, x) for all x E IRn . (0 .3)

The definition (0.3) of a linear function is more geometric than (0.1), and just as
accurate. A large part of the present chapter will be devoted to generalizing the
above representation theorem to sublinear functions.

First observe that, given a nonempty set 5 c IRn , the function as : IRn -t
IR U {+00}defined by

as(x):= sup{(s , x) s E 5} (0.4)
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is sublinear. It is called the support function of S, already encountered in Sects AA.I
and B.1.3(a). When S is bounded, its support function is finite everywhere; other­
wise, as can take on the value +00 but it remains lower semi-continuous. Further­
more, it is easy to check that as is also the support function of the closure of S,
and even of the closed convex hull of S . It is therefore logical to consider support
functions of nonempty closed convex sets only.

Now, a key result is that the mapping S H as is then bijective: a lower semi­
continuous (i.e. closed) sublinear function is the support function of a uniquely de­
termined nonempty closed convex set. Thus, (004) establishes the announced repre­
sentation, just as (0.3) does in the linear case. Note that the linear case is covered : it
corresponds to S being a singleton {s} in (004).

This correspondence between nonempty closed convex sets of IRn and closed
sublinear functions allows fruitful and enlightening geometric interpretations when
studying these functions . Vice versa, it provides powerful analytical tools for the
study of these sets. In particular, when closed convex sets are combined (intersected,
added, etc.) to form new convex sets, we will show how their support functions are
correspondingly combined: the mapping (004) is an isomorphism, with respect to a
number of structures .

1 Sublinear Functions

1.1 Definitions and First Properties

Definition 1.1.1 A function a : IRn -+ IR U {+oo} is said to be sublinear if it is
convex and positively homogeneous (of degree I) : a E Cony IRn and

a(tx) = ta(x) for all x E IRn and t > o. (1.1.1)
o

Remark 1.1.2 Inequality in (1.1.1) would be enough to define positive homogene­
ity: a function a is positively homogeneous if and only if it satisfies

a(tx) ~ ta( x) for all x E IRn and t > o.

In fact, (1.1.2) implies (tx E IRn and t - 1 > O!)

a(x) = a(C1tx) ~ C 1a(tx)

which, together with (1.1.2), shows that a is positively homogeneous.

(1.1.2)

o

We deduce from (1.1.1) that a(O) = taCO) for all t > O. This leaves only two
possible values for a(O): 0 and +00. However, most of the sublinear functions to be
encountered in the sequel do satisfy a(O) = O. According to our Definition B.I.I.3
of convex functions , a should be finite somewhere; otherwise dom a would be
empty. Now, if a(x) < +00, (1.1.1) shows that a(tx) < +00 for all t > O. In
other words, dom a is a cone , convex because a is itself convex. Note that, being
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convex, a is continuous relatively to r i dom a , but discontinuities may occur on the
boundary-rays of dom a , including at O.

The following result is a geometric characterization of sub linear functions.

Proposition 1.1.3 A function a : IRn --+ IR U { + oo} is sublinear if and only if its
epigraph epi a is a nonempty convex cone in IRn x lit

Proof. We know that a is a convex function if and only if epi a is a nonempty
convex set in IRn x IR (Proposition B.l .I.6). Therefore, we just have to prove the
equivalence between positive homogeneity and epi a being a cone.

Let a be positi vely homogeneous. For (x ,r) E epia, the relation a(x) ~ r
gives

a(tx) = ta( x) ~ tr for all t > 0 ,

so epi a is a cone . Conversely, if epi a is a cone in IRn x lR, the property (x, a(x)) E
epi a implies (tx, ta(x)) E epi a, i.e,

a(tx) ~ ta( x) for all t > O.

From Remark 1.1.2, this is ju st positive homogeneity. o

Another important concept in analysis is subadditivity: a function a is subaddi­
tive when it satisfies

(1.1.3)

- watch the difference with (0.2) . Here aga in, the inequality is understood in
IR U {+oo}. Together with positive homogeneity, the above axiom gives another
characterization (analytical, rather than geometrical) of sublinear functions.

Proposition 1.1.4 A function a : IRn --+ IR U {+oo}, not identically equal to +00,
is sublinear if and only if one of the following two properties holds:

or
a is positively homogeneous and subadditive . (1.1.5)

Proof. [sublinearity => (1.1.4)] For Xl , X2 E IRn and tl , tz > 0, set t := tl +t2 > 0;
we have

a(tlxl + t2X2) = a (t[¥-XI + ~X2])

= to (¥-XI + ~X2)
~ t [¥-a(xd + tra(X2)] ,

[positive homogeneity]
[convexity]

and (1.1.4) is proved.

[(1.1.4) => (1.1.5)] A function satisfying (1.1.4) is obviously subadditive (take tl =
t2 = 1) and satisfies (take Xl = X2 = X, tl = t2 = 1/ 2 t)
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u(tX) ::::; tu(x) for all x E JRn and t > 0 ,

which is just positive homogeneity because of Remark 1.1.2.

[(1.1.5) => sublinearity] Take ts , t 2 > 0 with tl + t2 = 1 and apply successively
subadditivity and positive homogeneity :

hence a is convex.

Corollary 1.1.5 If a is sublinear, then

u(X) +u(-x) ~ 0 for all X E JRn .

Proof. Take X2 = -Xl in (1.1.3) and remember that u(O) ~ O.

o

(1.1.6)

o

convex

It is worth mentioning that, to become sublinear, a positively homogeneous func­
tion just needs to be subadditive as well (rather than convex, as suggested by Def­
inition 1.1.1); then , of course, it becomes convex at the same time. Figure 1.1.1
summarizes the connections between the classes of functions given so far. Note for
completeness that a convex and subadditive function need not be sublinear: think of
f(x) == 1.

,------------- ......
I I
I positively homogeneous I
I I

,------·-·----1 sublinear l1l
! subadditive i Jp
! jL ._.._.:;",..=~===~.L-- ~

Fig. 1.1.1. Various classesof functions

Similarly, one can ask when a sublinear function becomes linear. For a linear
function, (1.1.6) holds as an equality, and the next result implies that this is exactly
what makes the difference.

Proposition 1.1.6 Let o be sublinear and suppose that there exist Xl, . . . , x m in
dom o such that

(1.1.7)

Then a is linear on the subspace spanned by Xl, . .. , X m .

Proof. With Xl ,... ,Xm as stated, each -Xj is in dom rr. Let X := 'L-';=l tjXj
be an arbitrary linear combination of Xl, . .. , X m ; we must prove that u(x)
'L-';=l tju(Xj). Set
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J1 := {j : tj > O} , J2 := {j : tj < O}

and obtain (as usual, L0 = 0):

O"(X) = 0"(LJ
1
tjXj + Lh(-tj)(-Xj))

:( Lh tjO"(Xj) + Lh(-tj)O"(-Xj)

= Lh tjO"(Xj) + Lh tjO"(Xj) = L7=1 tjO"(Xj)

= - Lh tjO"(-Xj) - Lh(-tj)O"(Xj)

:( -0"(- L';::1 tjXj)

= -O"(-x):( O"(x) .

[from (1.1.4)]

[from (1.1.7)]

[from (1.1.7)]

[from (1.1.4)]

[from (1.1.6)]

In summary, we have proved O"(x) :( L7=1 tjO"(Xj) :( -O"( -x) :( O"(x). 0

Thanks to this result, we are entitled to define

U := {x E jRn : O"(x) + O"(-x) = O} (1.1.8)

which is a subspace of jRn : the subspace in which 0" is linear, sometimes called the
lineality space of 0". Note that U nonempty corresponds to 0"(0) = 0 (even if U
reduces to {O}).

What is interesting in this concept is its geometric interpretation. IfV is another subspace
such that unv = {o}, there holds by definition O"(x)+O"(-x) > 0 for all 0 =1= x E V. This
means that, if 0 =1= d E V, 0" is "V-shaped '' along d: for t > 0, O"(td) = at and a(-td) = (3t,
for some a and (3 in IR U {+oo} such that a + (3 > 0; whereas a + (3 would be 0 if d were
in U. See Fig. 1.1.2 for an illustration. For d of norm I, the number a + (3 above could be
called the "lack of linearity" of a along d: when restricted to the line d, the graph of a makes
an angle; when finite, the number a + (3 measures how acute this angle is.

=~-~~\-7 epi o

Fig. 1.1.2. Subspace of linearity of a sublinear function

Figure 1.1.2 suggests that gr a is a hyperplane not only in U, but also in the translations
of U: the restriction of a to {y} + U is affine, for any fixed y. This comes from the next
result.

Proposition 1.1.7 Let a be sublinear. If x E U, i.e. if

a(x)+a(-x)=O ,

then there holds
a(x + y) = a(x) + a(y) for all y E IRn

•

(1.1.9)

(1.1.10)
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Proof In view of subadditivity, wejust haveto prove"~" in (1.1.10). Start from the identity
y = x + y - x; applysuccessively subadditivity and (1.1.9) to obtain

a(y) ~ a(x + y) + a( - x) = a(x + y) - a(x) .

1.2 Some Examples

o

We start with some simple situations. IfK is a nonempty convex cone, its indicator
function

. () { 0 if x E K ,
IK x:= +00 if not

is clearly sublinear. In ~n x a the epigraph epi iK is made up of all the copies of
K, shifted upwards. Likewise, its distance function

dK(X) := inf {Illy - xiii: Y E K}

is also sublinear: nothing in the picture is essentially changed when both x and yare
multiplied by t > O. Another example is the function from ~2 to ~ U {+00}

a(x) = a(C ):= { -2V[i}!f ~,TJ ~ 0
<,,"7 +00 If not.

Its positive homogeneity is clear, its convexity is not particularly difficult to check
(see Example BA.3 .3), it is therefore sublinear. A good exercise is to try to visualize
its epigraph.

Example 1.2.1 Let f E Conv ~n; its perspective 1of §B.2.2, which is convex,
is clearly positively homogeneous (from ~n+I to ~ U {+oo}); it is an important
instance of sublinear function . For example, in ~2

f(u ~) := {~e/u !fu > 0,, +00 If not
(1.2.1)

is the perspective of ~ I-t f(~) = 1/2 e.
Note that 1(0 ,0) = +00. The closure of 1 can be computed with the help

of Example B.3.2.3: clearly enough, the asymptotic function of f is i{o} . Hence

(cl 1)(0, 0) = 0, while 1 coincides with its closure everywhere else. 0

Example 1.2.2 (Norms) We recall that a norm 11I·111 on ~n is a function from ~n to
[0, +oo[ satisfying the following properties:

(i) Illxlll = 0 if and only if x = 0;

(ii) Illtxlll = Itllllxlil for all x E ~n and t E ~;

(iii) Illxi +x2111 ~ IIIxdl + IIIx2111 for all (XI,X2) E ~n x ~n.

Clearly, III . III is a positive (except at 0) and finite sublinear function which,
moreover, is symmetric i.e. III - xiii = IIIxlll for all x. It is linear on no line: the
subspace U of (1.1.8) is reduced to {O}.
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Conversely, if a is a sublinear function from IRn into [0, +oo[which is linear on
no line, i.e. such that

a(x) + a( -x) > 0 for all x :j:. 0 ,

then Illxlll := max {a(x) ,a(-x)} is a norm on IRn • o

Example 1.2.3 (Quadratic Semi-Norms) Take a symmetric positive semi-definite
operator Q from IRn to IRn and define

f(x) := V(Qx, x) for all x E IRn
.

Convexity of f (i.e. its subadditivity, i.e. the Cauchy-Schwarz inequality) is rather
tedious to prove directly. Consider, however, the convex set

EQ:= {x E IRn
: (Qx, x) ~ I} .

Then f can be obtained as follows:

f(x) = inf {,\ > 0 (Qx,x) ~ ,\2}

= inf ] x > 0 : (Q X,X>~ 1}
= inf {,\ > 0 : XE EQ}

and we will see below that this establishes convexity - henc e sublinearity - of f.
Observe in passing that EQ is the sublevel-set at level I of both f and P =

(Q ., -). Decompose the space as IRn = KerQ EB I~ Q: the intersection of EQ with

1m Q is an elliptic set centered at the origin, say EQ. The entire EQ is the cylinder

EQ + Ker Q, whose asymptotic cone is just the subspace Ker Q. If and only if
Ker Q = {O}, i.e. Q is positive definite, is EQ compact; it is an elliptic body . On
the other hand, f is finite, nonnegative, symmetric because EQ has center 0; and
f is zero on the asymptotic cone Ker Q of EQ. Theorem 1.2.5 below establishes
the convexity of I. which is therefore a semi -norm, actually a norm if Q is positive
definite. 0

The mapping EQ I-t f, introduced in Example 1.2.3, is important in the context
of sublinear functions; let us put it in perspective.

Definition 1.2.4 (Gauge) Let C be a closed convex set containing the origin. The
function 'tc defined by

"fc(x ) := inf {A > 0 : x E '\C} (1.2.2)

is called the gauge of C. As usual, we set "fc(x ) := +00if x E ,\C for no X > O.
o

Geometrically, vc can be obtained as follows : shift C «; IRn ) in the hyperplane
IRn x {I} of the graph-space IRn x IR (by contrast to a perspective-function, the
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Fig. 1.2.1. The epigraph of a gauge

present shift is vertical, along the axis of function-values). Then the epigraph of '"Yc
is the cone generated by this shifted copy of C; see Fig. 1.2.1.

The next result summarizes the main properties of a gauge . Each statement
should be read with Fig. 1.2.1 in mind, even though the picture is slightly mislead­
ing, due to closure problems.

Theorem 1.2.5 Let C be a closed convex set containing the origin. Then

(i) its gauge 'tc is a nonnegative closed sublinearfunction;
(ii) '"YC is finite everywhere if and only if 0 lies in the interior ofC;

(iii) Coo being the asymptotic cone ofC,

{x E jRn : '"Yc(x) ~ r} = rC forallr > 0,
{x E jRn : '"Yc(x) = O} = Coo .

Proof. [(i) and (iii)] Nonnegativity and positive homogeneity are obvious from the
definition of"tc: also, '"Yc(O) = 0 because 0 E C . We prove convexity via a geomet­
ric interpretation of (1.2.2). Let

K c := cone(C x {I}) = HAC, A) E jRn x jR : C E C, A ;?: O}

be the convex conical hull of C x {I} C jRn X IR. It is convex (beware that K c need
not be closed) and '"Yc is clearly given by

'"Yc(x ) = inf {A : (X,A) E K c}.

Thus , '"Yc is the lower-bound function of §B.l .3(g), constructed on the convex set
Kn; this establishes the convexity of '"YC, hence its sublinearity.

Now we prove
{x E jRn : '"Yc(x) ~ I} = C . (1.2.3)

This will imply the first part in (iii), thanks to positive homogeneity. Then the second
part will follow because of (A.2.2.2) : Coo = n{rC : r > O} and closedness of vc
will also result from (iii) via Proposition B.1.2 .2.
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So, to prove (1.2.3), observe first that x E C implies from (1.2.2) that certainly
')'c(x ) ~ 1. Conversely, let x be such that ')'c(x ) ~ 1; we must prove that x E C.
For this we prove that Xk := (1-l/k) x E C for k = 1,2 , . .. (and then, the desired
property will come from the closedness of C). By positive homogeneity, ')'c(Xk ) =
(1 - l/k)')'c(x) < 1, so there is Ak E]O, 1[ such that Xk E AkC, or equivalently
x kIAk E C . Because C is convex and contains the origin, Ak(x kIAk) +(1- Ak)O =
X k is in C , which is what we want.

[(ii)] Assume 0 E int C. There is e > 0 such that for all x =1= 0, X E := cx/ llxli E C ;
hence rtc (x E ) ~ 1 because of (1.2.3) . We deduce by positive homogeneity

this inequality actually holds for all x E JRn (')'c(0) = 0) and ')'c is a finite function .
Conversely, suppose vc is finite everywhere. By continuity (Theorem B.3.1.2),

')'c has an upper bound L > 0 on the unit ball:

Ilxll ~ 1 ===} ')'c(x ) ~ L ===} x E LC ,

where the last implication comes from (iii). In other words, B(O, IIL) c C . D

Since "tc is the lower-bound function of the cone K c (= K c + {O} X JR+) of
Fig. 1.2.1, we know from (B.l.3.6) that K c C epi vc C cIK c; but ')'c has a closed
epigraph, therefore

ephc = cIK c = cone (C x {I}) . (l.2.4)

Since Coo = {O} if and only if C is compact (Proposition A.2.2.3) , we obtain
another consequence of (iii):

Corollary 1.2.6 C is compact if and only if ')'c(x ) > 0 f or all x =1= O. D

Example 1.2.7 The quadratic semi-norms of Example 1.2.3 can be generalized: let
f E Cony JRn have nonnegative values and be positively homogeneous of degree 2,
i.e.

o~ f(t x ) = e f (x ) for all x E JRn and all t > O.

Then, v7 is convex; in fact

v7(x) = inf {>.. > 0 : J f( x) ~ A}
= inf {>.. > 0 : f( x) ~ A2 }

=inf {A >O : xESl(f)} ,

which reveals the sublevel-set

Sl(f) = {x E JRn : f( x) ~ I} =: C .

In other words, v7 is the gauge of a closed convex set C containing the origin. D
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Gauges are examples of sublinear functions which are closed. This is not the
case of all sublinear functions : see the function 1of (1.2.1); another example in ]R2

is

{

0 ifTf > 0 ,
h(~ , Tf):= I~I if Tf = 0 ,

+00 ifTf < O.

By taking the closure, or lower semi-continuous hull, of a sublinear function (J,
we get a new function defined by

cl (J(x ) := lim inf (J(x' )
x' -+x

(1.2.5)

which is (i) closed by construction, (ii) convex (Proposition B.l .2.6) and (iii) posi­
tively homogeneous, as is immediately seen from (1.2.5). For example, to close the
above h, one must set h(~ , 0) = 0 for all ~ . We retain from this observation that,
when we close a sublinear function , we obtain a new function which is closed, of
course, but which inherits sublinearity. The subclass of sublinear functions that are
also closed is extremely important; in fact most of our study will be restricted to
these.

Note that, for a closed sublinear function (J,

(J(O) ~ lim (J(tx) = 0 for all x E dom (J,
uo

so certainly (J(O) = 0; otherwise, dom (J would be empty, a situation that we re­
ject from our definitions . Another observation is that a closed sublinear function (J
coincides with its asymptotic function :

(J:x, = (J if (J is closed and sublinear

(take Xo = 0 in the definition of Proposition B.3.2.1). In particular, if (J is finite
everywhere, then Proposition B.3.2.6 tells us that it is Lipschitzian, and its best
Lipschitz constant is

sup {(J(d) : Ildll = I} .

1.3 The Convex Cone of All Closed Sublinear Functions

(1.2.6)

Similarly to convex functions, sublinear functions , closed or not, can be combined
to give new sublinear functions .

Proposition 1.3.1 (i) If (JI and (J2 are [closed] sublinear and ti, t2 are positive
numbers, then (J := tl (JI + t2(J2 is [closed] sublinear, ifnot identically +00.

(ii) If {(Jj}jEJ is afamily of [closed] sublinear functions, then (J := SUPjEJ (Jj is
[closed] sublinear, ifnot identically +00.

Proof Concerning convexity and c1osedness, everything is known from §B.2. Note
in passing that a closed sublinear function is zero (hence finite) at zero. As for
positive homogeneity, it is straightforward. 0
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Proposition 1.3.2 Let {(Jj} jEJ be a family ofsublinear functions all minorized by
some linear function. Then

(i) (J := co (infj E J (Jj) is sublinear.
(ii) If J = {I, .. . , m} is afinite set, we obtain the infimal convolution

Proof. [(i)] Once again, the only thing to prove for (i) is positive homogeneity.
Actually, it suffices to multiply x and each Xj by t > 0 in a formula giving
co (infj (Jj)(x), say (B.2.S.3).

[(ii)] By definition, computing co (rninj (Jj )(x) amounts to solving the minimization
problem in the m couples of variables (Xj, aj) E dom (Jj x IR

I
inf 2::~1 aj(Jj(xj) aj ~ 0

2::7=1 aj = 1 , 2::~1 ajxj = x.
(1.3.1)

In view of positive homogeneity, the variables aj play no role by themselves: the
relevant variables are actually the products ajxj and (1.3.1) can be written - denot­
ing ajxj again by Xj:

We recognize the infimal convolution of the (J/s.

rn }2:: Xj = x .
j=1

o

From Proposition 1.3.1(i), the collection of all closed sublinear functions has an
algebraic structure: it is a convex cone contained in Cony IRn . It contains another
convex cone, namely the collection of finite sublinear functions.

A topological structure can be defined on the latter cone. In linear analysis, one
defines the Euclidean distance between two linear forms £1 = (81 ,') and £2
(82,.):

11£1 - £211 := 11 81 - 8211 = max 1£1 (X) - £2(x)l·
IIxll ~1

A distance can also be defined on the convex cone of everywhere finite sublinear
functions (the extended-valued case is somewhat more delicate, just as with un­
bounded sets; see some explanations in §O.S.2), which of course contains the vector
space of linear forms.

Theorem 1.3.3 For (Jl and (J2 in the set P of sublinear functions that are finite
everywhere, define

(1.3.2)

Then .:1 is a distance on P.
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Proof. Clearly L\(0"1 ,0"2) < +00 and L\(0"1,0"2) = L\(0"2 ,0"1) . Now positive ho­
mogeneity of 0"1 and 0"2 gives for all x i:- 0

100dx) - 0"2(x)1 = IlxIIIO"I( JfxTI) - 0"2 (JfxTI) I
::::; Ilxll maxllull=llO"I (u) - 0"2(u)1
::::; Ilxll L\(0"1 ,0"2) .

In addition, 0"1 (0) = 0"2(0) = 0, so

10"1 (x) - 0"2(x)1 ::::; Ilxll L\(0"1, 0"2) for all x E ~n

and L\ (0"1,0"2) = 0 if and only if 0"1 = 0"2.
As for the triangle inequality, we have for arbitrary 0"1,0"2, O"g in P

so there holds

L\ (0"1 , O"g) ::::; maxllxll :::;1 [10"1 (x) - 0"2(x)1 + 10"2(X) - O"g(x)ll
::::; maxllxll:::;1 10"1 (x) - 0"2(x)1 + maxllxll :::;1 10"2(x) - O"g(x)1 ,

which is the required inequality. o

The index-set in (1.3.2) can be replaced by the unit sphere Ilxll = 1, just as in
(1.2.6); and the distance between an arbitrary 0" E P and the zero-function (which
is in P) is just the value (1.2.6). The function L\(.,0) acts like a norm on the convex
cone P.

Example 1.3.4 Consider ~I ' IIh and III · 111 00 , the £1- and £oo-norms on Rn. They are finite
sublinear (Example 1.2.2) and there holds

n-l
.1(III ·IIh,III ·llloo)= ..;n .

To accept this formula, consider that, for symmetry reasons, the maximum in the definition
(1.3.2) of.1 is achieved at x = (l /vn, . . . , l /vn). 0

The convergence associated with this new distance function turns out to be the
natural one:

Theorem 1.3.5 Let (O"k) be a sequence offinite sublinear functions and let 0" be a
finite function. Then the following are equivalent when k --+ +00:

(i) (O"k) converges pointwise to 0";
(ii) (O"k) converges to 0" uniformly on each compact set of~n ;

(iii) L\(O"k , 0") --+ O.

Proof. First, the (finite) function 0" is of course sublinear whenever it is the point­
wise limit of sublinear functions. The equivalence between (i) and (ii) comes from
the general Theorem B.3.lA on the convergence of convex functions.

Now, (ii) clearly implies (iii). Conversely L\(O"k ' 0") --+ 0 is the uniform conver­
gence on the unit ball, hence on any ball of radius L > 0 (the maximand in (1.3.2)
is positively homogeneous), hence on any compact set. 0
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2 The Support Function of a Nonempty Set

2.1 Definitions, Interpretations

Definition 2.1.1 (Support Function) Let S be a nonempty set in ffin. The function
IJS : ffin ~ jR U {+oo} defined by

jRn 3 x M IJS(x) := sup {(s, x) : s E S}

is called the supportfunction of S.

(2.1.1 )

o

For a given S, the support function therefore depends on the scalar product:
changing (.,.) changes IJS. In (2.1.1), the space where s runs and the space where
IJS acts are dual to each other.

The supremum in (2.1.1) may be finite or infinite, achieved on S or not. In this
context, S can be interpreted as an index set: IJS(.) is the supremum of the collection
oflinearforms (s,·) over S. We obtain immediately:

Proposition 2.1.2 A support function is closed and sublinear.

Proof. This results from Proposition 1.3.1(ii) (a linear form is closed and convex!) .
Observe in particular that a support function is null (hence < +(0) at the origin.

o

The domain of IJS is a convex cone, closed or not. Actually, x E dom IJS means
that, for some r := IJs(x) :

S c {s E jRn : (s, x) :0.:; r} (2.1.2)

i.e. S is contained in a closed half-space "opposite" to x .

Proposition 2.1.3 The support function ofS is finite everywhere if and only if S is
bounded.

Proof. Let S be bounded, say S C B(O, L) for some L > 0. Then

(s, x) :0.:; IIsllllxll :0.:; Lllxll for all s E S ,

which implies IJs(x) :0.:; Lllxll for all x E jRn.

Conversely, finiteness of the convex IJS implies its continuity on the whole space
(Theorem B.3.1.2), hence its local boundedness: for some L,

(s, x) :0.:; IJs(x) :0.:; L for all (s, x) E S x B(O, 1).

If s =I 0, we can take x = s/lIsll in the above relation , which implies Iisli :0.:; L . 0

Observing that

-IJS( -x) = - sup [-(s , x)] = inf (s, x) ,
sES s ES

the number IJS(x) + IJS(- x) of (1.1.6) is particularly interesting here :
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Definition 2.1.4 (Breadth of a Set) The breadth of a nonempty set S along x # 0
is

as(x) + «s!- x) = sup (8, x ) - inf (8, x) ,
sE S s ES

a number in [0, +00]. It is 0 if and only if S lies entirely in some affine hyperplane
orthogonal to x ; such a hyperplane is expressed as

{y E IRn : (y ,x) = as (x)} ,

which in particular contains S. The intersection of all these hyperplanes is just the
affine hull of S. 0

If x has norm 1 and is interpreted as a direction, the breadth of S measures how
"thick" S is along x : it is the distance between the two hyperplanes orthogonal to x
and "squeezing" S. This observation calls for a more general comment: a sublinear
function x 1-+ a(x) being positively homogeneous, the norm of its argument x
has little importance. This argument should always be thought of as an oriented
direction, i.e. a normalized vector of IRn . Accordingly, we will generally use from
now on the notation a(d), more suggestive for a support function than a( x) .

Here, we give two geometric constructions which help interpreting a support
function.

Interpretation 2.1.5 (Construction in IRn) Given S c IRn and d # 0, consider
for each r E IR the closed half-space alluded to in (2.1.2):

Hi,r := {z E IRn : (z,d) :s; r } . (2.1.3)

If (2.1.2) holds, we can find r large enough so that S C Hir. The value as(d) is,
the smallest of those r: decreasing r as much as possible while keeping S in Hi, r
means "leaning" onto S the affine hyperplane Hd,r := {z E IRn : (z ,d) = r}. See
Fig. 2.1.1 for an illustration.

Fig. 2.1.1. Supporting hyperplanes and support functions

If (2.1.2) does not hold, however, this operation is impossible : S is "unbounded
in the oriented direction" d and as (d) = +00. Take for example S := IR+ x {O} in
IR2 • For d = (1,1) say (and assuming that (.,.) is the usual dot-product), no closed
half-space of the form (2.1.3) can contain S, even if r is increased to +00.
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If 5 is compact, the supremum of the (continuous) function (' , d) is achieved
on 5 , no matter how d is chosen. This means that, somewhere on the hyperplane
Hd,us(d) there is some Sd which is also in 5, actually a boundary point of 5 ; more
accurately, Sd lies in the face of 5 exposed by d (assuming 5 convex). 0

Figure 2.1.1 suggests (and Proposition 2.2.1 below confirms) that the support
functions of 5 and of co 5 coincide. Note also that the distance from the origin 0 to
the "optimal" hyperplane Hd,us(d) is l<1s(d/lldll)l.This is easily confirmed: project
the origin onto Hd,us(d) to obtain the vector t*d such that (d, t*d) = <1s(d} . Then
the distance from 0 to Hd ,us(d) is Ilt*dll.
Interpretation 2.1.6 (Construction in IRn +1 ) In the graph-space IRn x IR, we shift
5 down to IRn x {-I} and consider the convex conical hull K s of this shifted copy
of 5. Then the polar cone (Ks)O of Ks is nothing else than the epigraph of <1s.
Indeed

K s = IR+ co (5 x {-I}) = co [IR+ (5 x {-I})],

so that

(Ks)O = {(d,r) : t(s,d} - tr ~ 0 for all s E 5 and t > O}
= {(d,r) : (s,d) ~ r for all s E 5}
= {(d,r) : sUP8Es(s,d}~r}=epi<1s ,

This is illustrated on Fig.2.l.2. On this picture, 0 E 5 ; this implies <1s(d) ~ 0
for all d, which is obvious just from the definition (2.1.1) of o s : 0

Fig. 2.1.2. The epigraph of a support function

2.2 Basic Properties

First, we list some properties of support functions that are directly derived from their
definition .
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Proposition 2.2.1 For S C jRn nonempty, there holds (JS = (Jel S = (Jeo S; whence

(2.2.1)

Proof The continuity [resp.linearity, hence convexity] of the function (s , .), which
is maximized over S, implies that (JS = (JelS [resp. (JS = (JeoS]. Knowing that
co S = cl co S (Proposition A.IA.2), (2.2.1) follows immediately. 0

This result is of utmost importance: it says that the concept of support function
does not distinguish a set S from its closed convex hull. Thus, when dealing with
support functions , it makes no difference if we restrict ourselves to the case of closed
convex sets.

As a result of (2.1.1) and (2.2.1), we can write

s E coS ===} [(s,d) ~ (Js(d) for all d E jRn] .

Now, what about the converse? Can it be that the above (infinite) set of inequalities
still holds if s is not in co S? The answer is no:

Theorem 2.2.2 For the nonempty S C jRn and its support function (JS, there holds

s E coS {::::::::} [(s,d) ~ (Js(d) for all dE X], (2.2.2)

where the set X can be indijfere,!!ly taken as: the whole of jRn, the unit ball E(O, 1)
or its boundary the unit sphere E, or dom (JS.

Proof First, the equivalence between all the choices for X is clear enough ; in par­
ticular due to positive homogeneity. Because "=}" is Proposition 2.2.1, we have to
prove "~" only, with X = jRn say.

So suppose that s ~ co S. Then {s} and co S can be strictly separated (Theo­
rem AA.I.I): there exists do E jRn such that

(s , do) > sup {(s' , do) : s' E co S} = (Js(do) ,

where the last equality is (2.2.1). Our result is proved by contradiction. 0

As a result, a closed convex set is completely determined by its support func­
tion: between the classes of closed convex sets and of support functions, there is a
correspondence which is bijective, as illustrated on Fig. 2.2.1.

closed
take the SUD of <S,.> over C

SUpport
convex function
set C (J

filter x with "es. .» ~ (J?"

Fig. 2.2.1. Correspondence between closed convex sets and support functions

Thus, whether a given point s belongs to a given closed convex set S can be
checked with the help of (2.2.2), which holds as an equivalence. Actually, more can
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be said: the support function filters the interior, the relative interior and the affine
hull of a closed convex set.

This property is best understood with Fig . 1.1.2 in mind . Let V be the subspace
parallel to aff 5 , and U := V.L. Indeed, U is just given in (1.1.8) with a = as : U
can be viewed either as the subspace where the sublinear function as is linear, or
where the supported set 5 is flat; by contrast, as is V-shaped in V , while 5 is thick
along V . When drawn in the geometric space of convex sets, Fig . 1.1.2 becomes
Fig . 2.2 .2, which is very helpful to follow the next proof.

Theorem 2.2.3 Let 5 be a nonempty closed convex set in ffi.n. Then

(i) 8 E aff 5 if and only if

(8,d) = as(d) for all d with as(d) + as( -d) = 0 ;

(ii) 8 E ri 5 if and only if

(iii) in particular; 8 E int 5 if and only if

(8,d) < as(d) for all d:/;O .

(2.2.3)

(2.204)

(2.2.5)

ailS

v

Fig. 2.2.2. Affine hulls and orthogon al spaces

Proof. [(i)] Let first 8 E 5. We have already seen in Definition 2.104that

-as(- d) ~ (8,d) ~ as(d) for all d E ffi.n .

If the breadth of 5 along d is zero, we obtain a pair of equalities: for such d, there
holds

(8,d) = as (d) ,
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an equality which extends by affine combination to any element s E aff S.
Conversely, let s satisfy (2.2.3). A first case is when the only d described in

(2.2.3) is d = a; as a consequence of our observations in Definition 2.104, there is
no affine hyperplane containing S , i.e. aff S = ~n and there is nothing to prove.
Otherwise, there does exist a hyperplane H containing S; it is defined by

(2.2.6)

for some dn =1= a. We proceed to prove (s, ') ~ an-
In fact, the breadth of S along du is certainly a, hence (s,dJ[) = as(dH)

because of (2.2.3), while (2.2.6) shows that as(dH) = aH(dll ) . On the other hand,
it is obvious that all (d) = +00 if d is not collinear to dn - In summary, we have
proved (s,d) ~ aH(d) for all d, i.e, s E H . We conclude that our s is in any affine
manifold containing S : s E aff S.

[(iii)] In view of positive homogeneity, we can normalize d in (2.2.5). For s E int S,
there exists c > a such that s + ed E S for all d in the unit sphere E. Then, from
the very definition (2.1.1 ),

as(d) ~ (s + ed, d) = (s,d) + e for all dEB.

Conversely, let s E ~n be such that

as(d) - (s, d) > a for all dEE

which implies, because as is closed and the unit sphere is compact:

a < c := inf {as(d) - (s,d) : dEE} ~ +00.

Thus
(s, d) + e ~ as(d) for all dEB .

N...?w take u with Ilull < c. From the Cauchy-Schwarz inequality, we have for all
dE B

(s + u, d) = (s, d) + (u, d) ~ (s, d) + c ~ as(d)

and this implies s + u E S because of Theorem 2.2.2: s E int S and (iii) is proved.

[(ii)] Look at Fig. 2.2.2 again: decompose ~n = V ffi U, where V is the subspace
parallel to aff Sand U = V.L . In the decomposition d = dv +du, (' , du) is constant
over S, so S has a-breadth along du and

as(d) = sup (s, dv + du) = (s, du) + sup (s, dv)
sES sES

for any s E S. With these notations, a direction described as in (2.204) is a d such
that

as(d) + as(-d) = as(dv) + as(-dv) > a.
Then, (ii) is just (iii) written in the subspace V . o
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We already know that the domain of as is a convex cone, which consists of
all oriented directions "along which S is bounded" (remember Interpretation 2.1.5).
This can be made more explicit.

Proposition 2.2.4 Let S be a nonempty closed convex set in ~n . Then cI dom as
and the asymptotic cone Soc> ofS are mutually polar cones.

Proof. Recall from §A.3.2 that, if K 1 and K 2 are two closed convex cones, then
K 1 C K 2 if and only if (Kd O :J (K2 )0.

Let p E S oc> ' Fix So arbitrary in S and use the fact that S oc> = nt >ot(S - so)
(§A.2.2): for all t > 0, we can find St E S such that p = teSt - so). Now, for
q E dom as, there holds

(p,q) = t(St - sO ,q) ~ t[as(q) - (so,q)] < + 00

and letting t t 0 shows that (p,q) ~ O. In other words, dom o e C (S oc» O; then
cl dom as C (S oc» °since the latter is closed.

Conversely, let q E (dom as)O, which is a cone, hence tq E (dom as) Ofor any
t > O. Thus, given So E S, we have for arbitrary p E dom as

(So + tq,p) = (so,p) + t(q ,p) ~ (so,p) ~ as(p) ,

so So + tq E S by virtue of Theorem 2.2.2 . In other words : q E (S - so)/ t for all
t > 0 and q E S oc> ' 0

2.3 Examples

Let us start with elementary situations. The simplest example of a support function
is that of a singleton { s}. Then a{s} is merely (s, '), we have a first illustration
of the introduction (iii) to this chapter: the concept of a linear form (s, .) can be
generalized to s not being a singleton, which amounts to generalizing linearity to
closed sublinearity (more details will be given in §3). The case when S is the unit
ball B(O, 1) is also rather simple:

aB(O,l)(d) ~ (II~II ' d) = Ildli (if d t- 0)

and, for s E B(O, 1), the Cauchy-Schwarz inequality implie s (s,d) ~ Ildli. Alto­
gether,

aB(O,l) (d) = Ildll · (2.3 .1)

Our next example is the simplest possible illustration of Proposition 2.2.4,
namely when S oc> is S itself:

Example 2.3.1 (Cones, Half-Spaces, Subspaces) Let K be a closed convex cone
of~n. Then

a (d) = {O if (s , d~ ~ 0 for all s E K ,
K +00 otherwise .
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In other words, a K is the indicator function of the polar cone K O. Note the symme­
try: since K OO= K , the support function of K Ois the indicator of K. In summary:

Two particular cases are of interest. One is when K is a half-space:

K := {s E jRn : (s,v) :::; O} ;

then it is clear enough that

a (d) = {O if d = ~v with t ~ 0,
K +00 otherwise ,

(2.3.2)

Needless to say, the support function of the half-line jR+ v (the polar of K) is in tum
the indicator of K .

The other interesting case is that of a subspace. Let A : jRn -+ jRm be a linear
operator and H be defined by

H := Ker A = {s E jRn : A s = O} .

Then the support function of H is the indicator of the orthogonal subspace H> :

a (d) = i .l (d) = { 0 if (s, d~ = 0 for all s E H ,
1I Ii +00 otherwise .

The subspace H'': can be defined with the help of the adjoint of A :

If A or H are defined in terms of linear constraints

H :={sEjRn : (s ,aj)=Oforj=I , . . . ,m },

then H.': = {I::T=I Ajaj : A E jRm} .

All these calculations are useful when dealing with closed convex polyhedra,
expressed as intersections of half-spaces and subspaces.

Figure 2.3.1 illustrates a modification in which our cone K is modified to K' :=
K n B(O , 1). The calculus rules of §3.3 will prove what is suggested by the picture:
the support function of K' is the distance function to KO (check the similarity of
the appropriate triangles, and note that ato (d) = 0 when dE KO). 0

Example 2.3.2 The asymptotic cone of the set

S:={ s=(P,T)EjR2 : p >O,T ~I/p} (2.3.3)

is Soo = {(p ,T) E jR2 : p ~ 0, T ~ O} and, from Proposition 2.2.4, the closure of
dom o , is {(~ , 1]) : ~ :::; 0, 1] :::; O} .
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Fig. 2.3.1. Support function of a truncated cone

The exact status of the boundary of dom CYs (i.e. when ~'f] = 0) is not specified
by Proposition 2.2.4 : is CYs finite there? The computation of CYs can be done directly
from the definitions (2.1.1) and (2.3.3). Howeverthe following geometric argument
yields simpler calculations (see Fig. 2.3.2): for given d = (~ , 'f]) =/:. (0,0), consider
the hyperplane H d,u s(d) = Ha, ,8) : ~a + 'f],8 = CYs(d)}. It has to be tangent to the
boundary of S, defined by the equation a ,8 = 1. So, the discriminant cy~(d) - 4~'f]

of the equation in a
1

~a + tr: = CYs(d)
a

must be O. We obtain directly CYs(~, 'f]) = -2"f(ii for ~ < 0, 'f] < °(the sign is "-"
because °(j. S ; remember Theorem 2.2.2). Finally, Proposition 2.].2 tells us that the
closed function (~ , 'f]) 1-+ CYs(~ , 'f]) has to be 0 when ~'f] = 0. All this is confirmed
by Fig. 2.3.2. 0

dom (Js

Fig. 2.3.2. A support function

Remark 2.3.3 Two features concerning the boundary of dom I7S are worth mentioning on
the above example : the supremum in (2.1.1) is not attained when d E bd dom I7S (the point
S d of Fig. 2.1.1 is sent to infinity when d approaches bd dom I7S), and dom I7S is closed .
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Theseare not the only possiblecases: Example 2.3.1 showsthat the supremum in (2.1.1)
can well be attained for all d E dom as; and in the example

S := {(p, r) : r ~ ~l} ,
dom as is not closed. The difference is that, now, S has no asymptote "at finite distance".

o

Example 2.3.4 Just as in Example 1.2.3, let Q be a symmetric positive definite
operator from Rn to Rn. Its sublevel-set

EQ := {s E Rn (Qs,s) ~ I}

is elliptic , with support function

d I-t (TEQ (d) := max {( s,d) : (Qs,s) ~ I} . (2.3.4)

Calling Ql / 2 the square root of Q, the change of variable p = Ql /2 s in (2.3.4) gives

Q -l / 2d
whose unique solution for d f=. 0 (again Cauchy-Schwarz!) is p = IIQ 1/ 2dll and
finally

(TEQ(d) = IIQ-l /2dll = J(d,Q - 1d) . (2.3.5)

Observe in this example the "duality" between the gauge x I-t J (Qx , x ) of EQ
and its support function (2.3.5).

When Q is merely symmetric positive semi-definite, EQ becomes an elliptic
cylinder, whose asymptotic cone is Ker Q (remember Example 1.2.3) . Then Propo­
sition 2.2.4 tells us that

c1 dom (TEQ = (Ker Qt = (Ker Q).L = Im Q .

When dE Im Q, (TEQ (d) is finite indeed and (2.3.5) does hold, Q-1d denoting now
any element p such that Qp = d. We leave this as an exercise. 0

3 The Isomorphism Between Closed Convex Sets
and Closed Sublinear Functions

3.1 The Fundamental Correspondence

We have seen in Proposition 2.1.2 that a support function is closed and sublinear.
What about the converse? Are there closed sublinear functions which support no set
in Rn ? The answer is no: any closed sublinear function can be viewed as a support
function. The key lies in the representation of a closed convex function f via affine
functions minorizing it: when the starting f is also positively homogeneous, the
underlying affine functions can be assumed linear.
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Theorem 3.1.1 Let a be a closed sublinearfunction; then there is a linear function
minorizing a. In fact, a is the supremum of the linear functions minorizing it. In
other words, a is the support function ofthe nonempty closed convex set

Su := {s E ~n : (s ,d) :::; a(d) for all d E ~n} . (3.1.1)

Proof Being convex, a is minorized by some affine function (Proposition B.I.2.l):
for some (s ,r) E ~n x IR,

(s ,d) - r :::; a(d) for all d E ~n . (3.1.2)

Because a(O) = 0, the above r is nonnegative. Also, by positive homogeneity,

(s , d) - tr :::; a(d) for all d E ~n and all t > 0 .

Letting t -+ +00, we see that a is actually minorized by a linear function:

(s , d) :::; a(d) for all d E ~n . (3 .1.3)

Now observe that the minorization (3.1.3) is sharper than (3.1.2): when express­
ing the closed convex a as the supremum of all the affine functions minorizing it
(Proposition B.l :2.8), we can restrict ourselves to linear functions. In other words

a(d) = sup {(s, d) : the linear (s , ·) minorizes a} ;

in the above index-set, we just recognize Su . o

One of the important points in this result is the nonemptiness of S(f in (3.1.1); we have
here the analytical form of Hahn-Banach theorem: there exists a linear function minoriz­
ing the closed sublinear function a ; compare this with the geometric form given in Theo­
rem AA.I.I.

Another way of expressing Theorem 3.1.1 is that the closed convex set epi a is the in­
tersection of the closed half-spaces containing it; but since epi a is actually a cone, these
half-spaces can be assumed to have linear hyperplanes as boundaries (remember Corol­
lary A.4.2.7). A connection between S» and the cone polar to epi a is thus introduced;
Chap. D will exploit this remark.

The main consequence of this important theorem is an assessment of closed
sublinear functions . Section 2.2 has established a bijection from closed convex sets
onto support functions . Thanks to Theorem 3.1.1, this bijection is actually onto
closed sublinear functions, which is of course much more satisfactory: the latter
class of functions is defined in abstracto , while the former class was ad hoc, as far
as this bijection was concerned.

Thus, the wording "support function" in Fig. 2.2.1 can everywhere be replaced
by "closed sublinear". This replacement can be done in Theorem 2.2.2 as well:

Corollary 3.1.2 For a nonempty closed convex set S and a closed sublinear func­
tion a, the following are equivalent:
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(i) a is the support fun ction ofS ,
(ii) S = {8 : (8, d) :s; a(d} for all d E X}, where the set X can be indifferently

taken as: the whole of IRn, the unit ball B(O , 1) or its bounda ry, or dom a.

Proof. The case X = IRn is just Theorem 3.1.1. The other cases are then clear. 0

Remember the outer construction of §AA.2(b): a closed convex set S is geometric ally
characterized as an intersection of half-spaces, which in tum can be characterized in terms
of the support funct ion of S. Each (d, r) E IRn x IRdefines (for d # 0) the half-space Hi,r
via (2.1.3). This half- space contains S if and only if r ~ a( d), and Coroll ary 3.1.2 expresses
that

s=n{s : (s , d):( r for all d E lRn and r~ a(d)},

in which the couple (d, r ) plays the role of an index, runni ng in the index-set epi a C IRn x IR
(compare with the discussion after Definition 2.I.I). Of course, this index-set can be reduced
down to IRn : the above formul a can be simplified to

S = n{s : (s,d) :( a(d) for all d E X}

where X can be taken as in Corollary 3.1.2.

Recall from §A.2.4 that an exposed face of a convex set S is defined as the set
of points of S which maximize some (nonzero) linear form. This concept appears
as particularly welcome in the context of support functions:

Definition 3.1.3 (Direction Exposing a Face) Let C be a nonempty closed convex
set, with support function a . For given d :j:. 0, the set

Fc(d) := {x E C : (x , d) = a(d)}

is called the exposed face of C associated with d, or the face exposed by d. 0

For a unified notation, the entire C can be considered as the face exposed by O.
On the other hand, a given d may expose no face at all (when C is unbounded).

Symmetrically to Definition 3.1.3 , one can ask what are those d E IRn such that
(.,d) is maximi zed at a given x E C. We obtain nothing other than the normal cone
Nc(x) to C at x , as is obviou s from its Definition A.5.2.3. The following result is
simply a restatement of Proposition A.5.3 .3.

Proposition 3.1.4 For x in a nonempty closed convex set C, it holds

x E Fc(d) {:::::::} s e Nc(x). o

When d describes the set of normali zed directions, the corresponding exposed
faces exactly describe the boundary of C:

Proposition 3.1.5 For a nonempty closed convex set C, it holds

bdC = U{Fc(d) : dE X}

where X can be indifferently taken as: IRn \ {O}, the unit sphere ii,or dom ac \ {O}.
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Proof. Observe from Definition 3.1.3 that the face exposed by d # 0 does not
depend on Ildll . This establishes the equivalence between the first two choices for
X. As for the third choice , it is due to the fact that Fc(d) = 0 if d <t dom O"c .

Now, if x is interior to C and d # 0, then x + ed E C and x cannot be a
maximizer of (. , d): x is not in the face exposed by d. Conversely , take x on the
boundary of C. Then Nc(x) contains a nonzero vector d; by Proposition 3.1.4,
x E Fc(d) . 0

3.2 Example: Norms and Their Duals, Polarity

Let III . III be an arbitrary norm on jRn. It is a positive (except at 0) closed sublinear
function and its sublevel-set

B := { x E jRn : Ill xlll ~ I} (3.2.1 )

is particularly interesting . It is the unit ball associated with the norm, a symmetric,
convex, compact set containing the origin as an interior point; III . III is the gauge of
B (§1.2). On the other hand, why not take the set whose support function is III . III ?In
view of Corollary 3.1.2, it is defined by

{s E jRn : (s, x ) ~ II[ xlll for all x E jRn} = : B* . (3.2.2)

It is an easy exercise to check that B* is also symmetric, convex, compact; and it
contains the origin as an interior point (Theorem 2.2.3(iii)) .

Now, we have two closed convex sets Band B* . We can generate two more
closed sublinear functions : take the support function O"B of B and the gauge , B '

of B*. It turns out that we then obtain the same function, which actually is a norm,
denoted by III ·111*: the so-called dual norm of 111 ·1[1 .The game finishes there: the two
sets that III . 111* supports and is the gauge of, respectively, are Band B*.

Proposition 3.2.1 Let Band B* be defined by (3.2.1) and (3.2.2), where III . 1[1 is a
norm on jRn . The support function of B and the gauge ofB* are the same function
III . III * defined by

II[slll* := max {(s ,x) : Illxl[1 ~ I} . (3.2.3)

Furthermore, III . III * is a norm on jRn . The support function of its unit ball B*
and the gauge of its supported set B are the same function III · 111: there holds

III x III = max {(s , x) : Illslll* ~ I}.

Proof. It is a particular case of the results 3.2.4 and 3.2.5 below.

Note the following symmetric relation ("Cauchy-Schwarz")

(s,x) ~ III slll* Illxlll for all (s , x) E jRn x jRn ,

(3.2.4)

o

(3.2.5)

which comes directly from (3.2.3), using positive homogeneity. It expresses the du­
ality correspondence between the two Banach spaces (jRn, III . liD and (jRn, III . 111*).
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Furthermore, equality holds in (3.2.5) when s i=- 0 and x i=- 0 form an associated
pair via Proposition 3.1.4:

s
Illslll * E FB·(x) or equivalently

xWE FB( s) .

Thus, a norm automatically defines another norm (its dual); and the operation is
symmetric: the dual of the dual norm is the norm itself.

dual norm
as a closed sublinear
nonnegative function

take the
~--sublevel-set-­

at level 1

take the unit ball S
'----:sublevel-set --_.1 as closed convex set

at level 1 containing 0

Po\ari\),~
~-

Norm
as a closed sublinear
nonnegative function

unit ball S*
as a closed convex set

containing 0

Fig. 3.2.1. Dual norms and polar sets

Remark 3.2.2 The operation (3.2.3) - (3.2.4) establishes a "duality " correspon­
dence within a subclass of closed sublinear functions: those that are symmetric,
finite everywhere, and positive (except at 0) - in short, norms.

This analytic operation has its counterpart in the geometric world: starting from
a closed convex set which is symmetric, bounded and contains the origin as an
interior point - in short, a "unit ball" - such as B, one constructs via gauges and
support functions another closed convex set B* which has the same properties. This
correspondence is called polarity, demonstrated by Fig. 3.2.1: the polar (set) of B is

B * := {s : (s, x ) ~ 1 for all x E B} . (3.2.6)

As can be seen with a separation argument, the polar of B* is symmetrically (pro­
ceed as for Theorem A.4.2.6 and remember that 0 E B)

(B*)* := {x : (s, x) ~ 1 for all s E B*} = B. (3.2.7)
o

We leave it as an exercise to draw the unit balls of the ll- and loo-norms on jRn :

n

Ill xllh := :Llxil and III x III 00 := max {lxl l, ···, lxn l}
i= l

(proceed as in Interpretation 2.1.5 : a picture in jRn will do). Observe on the picture
thus obtained that they are in polarity correspondence if the scalar product is the
usual dot-product (x, y ) = X T y.
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Another situation is illustrated by the "hexagonal norm" of Fig. 3.2.2. Observe
how elongation in one direction corresponds to contraction for the polar. Also: a
facet of one of the sets is exposed by a vertex in the polar.

Fig. 3.2.2. Hexagonal unit-balls

Example 3.2.3 Other important norms are the quadratic norms, defined by

IlxIIQ := V(Qx ,x)

where Q is a symmetric positive definite linear operator. They are important because
they derive from a scalar product on jRn, namely :

(x ,Y)Q := (Qx , y) .

We refer to Example 2.3.4, more precisely formula (2.3.5), to compute the corre­
sponding dual norm

(IlsllQ)* = V(s,Q-1 S) = IlsllQ-l .

When Q = In' we get back the Euclidean norm (', .)1/2. A comparison of(2.3.1)
and (3.2.3) shows that it is self-dual : 11·11* = 11 ·11 .Among all the possible norms on
jRn, it is the only one having this property (once the scalar product is chosen!). 0

Actually, polarity neither relies upon symmetry, nor boundedness, nor on having
o as an interior point. To take gauges and support functions resulting in (3.2.6),
(3.2.7), the only important property is after all that 0 be in the closed convex set
under consideration (B or B*). In other words, the polarity relations (3.2.6) , (3.2.7)
establish an involution between sets that are merely closed convex, and contain the
origin. More precisely, we have the following result:

Proposition 3.2.4 Let C be a closed convex set containing the origin. Its gauge '"Ye
is the support function ofa closed convex set containing the origin, namely

CO:= {s E jRn : (s,d) ~ 1for all dEC},

which defines the polar (set) ofC,

(3.2.8)
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Proof We know that "(C (which, by Theorem 1.2.5(i), is closed, sublinear and non­
negative) is the support function of some closed convex set containing the origin,
say D; from (3.1.1),

D = {s E JRn : (s,d) ~ r for all (d,r) E ephc}.

As seen in (1.2.4), epi "(C is the closed convex conical hull of C x {I}; we can use
positive homogeneity to write

D = {s E JRn : (s, d) ~ 1 for all d such that "(e(d) ~ I} .

In view of Theorem 1.2.5(iii), the above index-set is just C; in other words, D = Co.
D

epi 'Ye = epi cre.

'.....'.'.'...........'.'.
•••••••• '.'.'"

••On!da = .OJ... [da

Fig. 3.2.3. Gauges and supports

Geometrically, the above proof is illustrated by Fig. 3.2.3, in which dual ele­
ments are drawn in dashed lines: D = Co is obtained by cutting the polar cone
(epi"(c)O at the level -1. Tum the picture upside down: cutting the polar cone
(epi "(c.)O at the level which has now become -1, we obtain (CO)o. But the polar­
ity between closed convex cones is involutive: the picture shows that (epi "(c. )° is
our original cone epi "(C. In other words, Coo = C, Proposition 3.2.4 has its dual
version:

Corollary 3.2.5 Let C be a closed convex set containing the origin. Its support
function ac is the gauge ofCO. D

Remark 3.2.6 The elementary operation making up polarity is a one-to-one mapping be­
tween nonzero vectors and affine hyperplanes not containing the origin, via the equation
inspired from (3.2.8):
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8 f-t H( 8) := Hs,l = {y E jRn : (8, y) = I} . (3.2.9)

Direct calculat ions show for example that the polar of the half-space

is the segment
(H-t = {(p ,O) : 0 :::;; p :::;; 1/2}.

This simple example suggests the following comment: if 17 is a given nonnegative closed
sublinear function, it is the gauge of a set G which can be immediately constructed: along°=f= 8 E R" , plot the point g(8) = 8/17(8) E [0, +00]8. Then G is the union of the segments
[0, g(8)], with 8 describing the unit sphere. If, along the same 8, we plot the point 17(8)8, we
likewise get a description of the set S supported by 17, but in a much less direct way: G is
now enveloped by the affine hyperplane orthogonal to s and containing the point 17(8)8; now,
differentiation is involved.

(" "M)
<.~ .

o

Fig. 3.2.4. Description of mutually polar sets

An expert in geometry will for example see on Fig. 3.2.4 that the polar of the circle

C = {(p ,T) : p2+ (T -1/2)2 :::;; 1/4}

has a parabolic boundary. We leave it as an exercise to compute the gauge of C, and to realize
that it is the support function of

P = {({, '1/) : e :::;; 1 - 'I/} .

Constructing a set from its gauge thus appears to be substantially easier than it is from its
support function . Furthermore, to make a support function , we need a scalar product, while
a gauge just needs an origin in R". These advantages , however, are balanced by the rich
calculus which can be developed with support functions, and which will be the subject of
§3.3. 0

It is clear from (3.2.8) that (8,d) :s; 1 for all (d , 8) E C x Co; this implies in
particular that no nonzero s E Co can be in the asymptotic cone of C . Furthermore,
the property (s ,d) = 1 means that d exposes in Co a face FCo (d) containing s ; and
s exposes likewise in C oo = C a face Fc (s) containing d. Because the boundary
of a closed convex set is described by its exposed faces (Proposition 3.1.5), the
following result is then natural ; compare it with Fig. 3.2.2.
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Proposition 3.2.7 Let C be a nonempty compact convex set having 0 in its interior;
so that Co enjoys the same properties. Then, for all d and 8 in lE.n , the following
statements are equivalent (the notation (3.2.9) is used)

(i) H( 8) is a supporting hyperplane to C at d;
(ii) H(d) is a supporting hyperplane to Co at 8;

(iii) d E bd C, 8 E bd Co and (8, d) = 1;
(iv) dEC, 8 E Co and (8,d) = 1 .

Proof. Left as an exercise; the assumptions are present to make sure that every
nonzero vector in lE.n does expose a face in each set. 0

Finally, suppose that C in (3.2.8) is a (closed convex) cone. By positive homo­
geneity, the number " I" can be replaced by any positive number, and even by "0"
(remember the proof of Theorem 3.1.1). We recogn ize the definition of polarity be­
tween closed convex cones. Remembering Example 2.3.1, we see that, for a closed
convex cone K, (7K O = 'YK, hence 'YK = i K, which could be checked directly from
Definition 1.2.4.

3.3 Calculus with Support Functions

From §1.3, the set of sublinear functions has a structure allowing calculus. Likewise,
a calculus exists with subsets of lE.n . Then a natural question is: to what extent are
these structures in correspondence via the supporting operation? In other words, to
what extent is the supporting operation an isomorphism? The answer turns out to be
very rich indeed.

We start with the order relation

Theorem 3.3.1 Let 5 1 and 52 be nonempty closed convex sets; call (71 and (72 their
support functions. Then

Proof. Apply the equivalence stated in Corollary 3.1.2:

51 C 5 2 {:::::::} 8 E 52 for all 8 E 51

{:::::::} (72(d) ~ (8, d) for all 8 E 5 1 and all d E lE.n

{:::::::} (72 (d) ~ SUP sE S , (8, d) for all d E lE.n . 0

In a way, the above result generalizes Theorem 2.2.2. The next statement goes
with Propositions 1.3.1 and 1.3.2.

Theorem 3.3.2

(i) Let (71 and (72 be the support fun ctions of the nonempty closed convex sets 51
and 52. If i, and t2 are positive, then
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(ii) Let {aj} jEJ be the support functions ofthe family ofnonempty closed convex
sets {Sj} jEJ. Then

SUPjEJaj is the support function of co {USj : j E J} .

(iii) Let {aj} jEJ be the support functions of the family of closed convex sets
{SjLEJ . If

S:= ns, # 0,
j EJ

then
as = co {inf aj : j E J} .

Proof [(i)] Call S the closed convex set cl(t 1S1 + t2S2). By definition, its support
function is

In the above expression, 81 and 82 run independently in their index sets S1 and S2,
tl and t2 are positive, so

as(d) = tl sup (8, d) + t2 sup (8, d) .
SESt SES2

[(ii)] The support function of S := UjEJSj is

sup (8,d) = sup [suPs .ES.(8j, d)] = supaj(d) .
sEUSj jEJ J J jEJ

This implies (ii) since as = acos.

[(iii)] The set S := nSj being nonempty, it has a support function as . Now, from
Corollary 3.1.2,

8 E S~ 8 E Sj for all j E J
~ (8, ') :(; aj for all j E J
~ (8, ') :(; infj EJ aj ~ (8,'):(; co(infj EJ aj)

where the last equivalence comes directly from the Definition B.2.S.3 of a closed
convex hull. Again Corollary 3.1.2 tells us that the closed sublinear function
co(inf aj) is just the support function of S. 0

Observe in (i) that, if S2 is bounded, then t1Sl + t2S2 is automatically closed.

As for (iii), we have seen in Proposition 1.3.2(ii) that , if J = {I, . .. , m} is a finite set,
then the "co" operation can be replaced by the infimal convolution: there holds

(3.3.1)

This last formula is a simplification of (iii), but the closure operation should not be forgotten,
and it is something really complicated; these issues will be addressed more thoroughly in
§E.2.3.
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Returning to the end of Example 2.3.1, let K be a closed convex cone and take K' :===
K n B(D , 1). In view of the above obser vation, the support function of K' is given by an
inf-convolution :

aK' (d) === cl {infy[aK(Y) + aBed - y)]} .
Since a K === iKo, the infimum forces y to be in K O, in which case aK vanishes; knowing
that aB(O,l) === II. II , the infimum is

inf {lid - yll : y E K O} .

Here, we are in a favourable case: this infimum is actually a minimum - achieved at the
projection PKO(d) - and the result is a finite convex function, hence continuous; the closure
operation is useless and can be omitted . In a word,

(3.3.2)

Positive homogeneity can also be explo ited in Theorem 3.3.2(i) to write

ats(d) = as(td) for all d E IRn and t > 0 ,

a formula which also hold s for negative t (just write the definition). More generally:

Proposition 3.3.3 Let A : IRn -+ IRm be a linear operator, with adjoint A * (for
some scalar product ((' , .)) in IRm ) . For S c IRn nonempty, we have

O"clA(S)(Y) = O"s(A*y) forally E IRm
.

Proof. Just write the definitions

0"A(S)(y) = sup ((As,V)) = sup (s, A*y)
s ES s ES

and use Proposition 2.2.1 to obtain the result. o

Taking an image-function (see §B.2.4) is another operation involving a linear
operator. Its status is slightly more delicate.

Proposition 3.3.4 Let A : IRm -+ IRn be a linear operator, with adjoint A * (for
some scalar product ((' , .)) in IRm ). Let 0" be the support function of a nonempty
closed convex set S c IRm • If 0" is minorized on the inverse image

-1

A (d) = {p E IRm
: Ap = d} (3.3 .3)

- 1

of each d E IRn
, then the support fun ction of the set (A*)(S) is the closure of the

image-function AO".

Proof. Our assumption is tailored to guarantee AO" E Conv IRn (Theorem B.2.4.2).
The positive homogeneity of AO" is clear: for d E IRn and t > 0,

(AO")(td) = inf O"(p) = inf to"(p/t) = t inf O"(q) = t(AO")(d) .
Ap=td A(pjt)=d Aq=d
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Thus, the closed sublinear function cI (Aa) supports some set 5'; by definition,
s E 5' if and only if

(s,d) ~ inf {a(p) Ap = d} for all d E IRn
;

but this just means
(s, Ap) ~ a(p) for all p E IRm

,

i.e. A*s E 5, because (s,Ap) = ((A*s,p)) . o

SnImA*=I=0 or OES-ImA*=S+(KerA).L .

-1

The inverse image (A *)(S) of the closed set S under the continuous mapping A* is
closed. By contrast, Aa need not be a closed function. As a particular case, suppose that S
is bounded (as is finite everywhere) and that A is surjective; then Aa is finite everywhere as

-1

well, which means that (A*)(S) is compact.

Remark3.3.5 The assumption made in Proposition 3.3.4 means exactly that the function
Aa is nowhere -00; in other words, its closure cl (Aa) is the support function of a nonempty

-1

set: (A*)(S) =1= 0.This last property can be rewritten as

(3.3.4)
o

It has already been mentioned that taking an image-function is an important
operation, from which several other operations can be constructed. We give two
examples inspired from those at the end of §B.2.4:

- Let 51 and 52 be two nonempty closed convex sets of IRn, with support func­
tions al and a2 respectively. With IRm = IRn x IRn , take A(x, y) := x + y
and a(dl,d2) := al(dd + a2(d2); observe that a is the support function of
5 := 51 x 52, associated with the scalar product

Then we obtain Aa = al t a2. On the other hand, the adjoint of A is clearly
given by

A *x = (x , x) E IRn x IRn for all x E IRn ,

so that the inverse image of 5 under A* is nothing but 51n52: we recover (3.3.1) .
- Let a be the support function of some nonempty closed convex set 5 c IRn x IRP

and let A(x, y) := z, so that the image of a under A is defined by

IRn 3 x t--+ (Aa)(x) = inf {a(x,y) : y E IRP} .

Now A* is
IRn 3 x t--+ A*x = (x,O) E IRn x IRP

and cI (Aa) is the support function of the slice {x E IRn : (x, 0) E 5}. This last
set must not be confused with the projection of 5 onto IRn, whose support function
is x t--+ as(x, 0) (Proposition 3.3.3).
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Having studied the isomorphism with respect to order and algebraic structures,
we pass to topologies . Theorem 1.3.3 has defined a distance L\ on the set of fi­
nite sublinear functions. Likewise, the Hausdorff distance L\H can be defined for
nonempty closed sets (see §O.5). When restricted to nonempty compact convex sets,
L\H plays the role of the distance introduced in Theorem 1.3.3:

Theorem 3.3.6 Let 5 and 5' be two nonempty compact convex sets of JRn . Then

L\(O"s, 0"5') := m ax 100s(d) - 0"5 ' (d)1 = L\H(5, 5').
IIdll ';;;l

Proof. As mentioned in §O.5.1, for all r ~ 0, the property

max{ds(d) : dE5'} :S;r

(3.3.5)

(3.3.6)

simply means 5' C 5 + B(O , r) .
Now, the support function of B(O, 1) is II . II - see (2.3.1) . Calculus rules on

support functions therefore tell us that (3.3.6) is also equivalent to

0"5' (d) :s; O"s(d) + rlldll for all d E JRn ,

which in tum can be written

max [0"5' (d) - O"s(d)] :s; r .
IIdll ';;;l

In summary, we have proved

maxds(d) = max [0"5' (d) - O"s(d)]
dES' IIdll ';;; l

and symmetrically

maxds,(d) = max [O"s(d) - 0"5' (d)] ;
dES IIdll ';;;l

the result follows. o

d

Fig. 3.3.1. Hausdorff distances

dO

Naturally, the max in (3.3.5) is attained at some do: for Sand S' convex compact, there exists
do of norm 1 such that
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Figure 3.3.1 illustrates a typical situation. When S' = {O}, we obtain the number

L\H({O} , S) = max IIsll = m ax as(d) ,
sES IIdll=!

already seen in (1.2.6); it is simply the distance from 0 to the most remote hyperplane
Hd ,<Js(d) touching S (see again the end ofInterpretation 2.1.5).

Using (3.3.5), it becomes rather easy to compute the distance in Example 1.3.4, which
becomes the Hausdorff distance (in fact an excess) between the corresponding unit balls.

When speaking of limits of nonempty convex compact sets to a nonempty con­
vex compact set, the following result is a further illustration of our isomorphism.

Proposition 3.3.7 A convex-compact-valuedand locally bounded multifunction F :
IRn --+ IRn is outer (resp . inner] semi-continuous at Xo E int dom F ifand only if
its supportfunction x f--7 f1F(x)(d) is upper (re sp. lower] semi-continuous at Xo for
all d ofnorm 1.

Proof. Calculus with support functions tells us that our definition (0.5.2) of outer
semi-continuity is equivalent to

VE: > 0,38 > 0 : y E B(xo ,8) ==} f1F( y)(d) ::::; f1F(xo)(d) + E:lldll for all d E IRn

and division by Ildll shows that this is exactly upper semi-continuity of the support
function for Ildll = 1. Same proof for inner/lower semi-continuity. 0

Thus, a convex-compact-valued, locally bounded mapping F is both outer and
inner semi-continuous at Xo if and only if its support function f1F(.) (d) is continuous
at Xo for all d. In view of Theorem 1.3.5, aF( .) (d) is then continuous at Xo uniformly
for d E B(O , 1); and Theorem 3.3.6 tells us that this property in tum means:

f1H (F( x),F(xo)) -t 0 when x -t xo .

The following interpretation in terms of sequences is useful.

Corollary 3.3.8 Let (Sk) be a sequence ofnonempty convex compact sets and Sa
nonempty convex compact set. When k -t +00, the following are equivalent

(i) Sk -t S in the Hausdorffsense, i.e. f1H (S k , S) -t 0;
(ii) f1sk -t f1s pointwise;

(iii) f1sk -t f1s uniformly on each compact set of IRn . 0

Let us sum up this Section 3.3: when combining/comparing closed convex sets,
one knows what happens to their support functions (apply the results 3.3.1- 3.3.3) .
Conversely, when closed sublinear functions are combined/compared, one knows
what happens to the sets they support. The various rules involved are summarized
in Table 3.3.1. Each Sj is a nonempty closed convex set, with support function f1j .

This table deserves some comments.
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- Generally speaking, it helps to remember that when a set increases, its support
function increases (first line); hence the "crossing" of closed convex hulls in the
last two lines.

- The rule of the last line comes directly from the definition (2.1.1) of a support
function, if each Sj is thought of as a singleton .

- Most of these rules are still applicable without closed convexity of each Sj (re­
membering that (75 = (7co5 )' For example, the equivalence in the first line requires
closed convexity of S2 only. We mention one trap, however: when intersecting
sets, each set must be closed and convex. A counter-example in one dimension
is Sl := {a, I} , S2 := {a, 2}; the support functions do not see the difference
between Sl n S2 = {a} and COS1n COS2 = [0,1].

Table 3.3.1. Calculus rules for support functions

Closed convex sets
SI C S2

.1H(Sl ,S2) (S, bounded)

Hausdor ff convergence
(on bounded sets)

tS (t > 0)

cI (SI + S2)
cI A(S) (A linear)

- 1

(A *)(S) (A linear)
n, EJ S, (nonempty)

CO(Uj EJSj)

Closed sublinear function s
o i ~ a2

.1(a1 , ( 2) (a i finite)
uniform/compact or

pointwise convergence
(on finite functions)

ta

a1+a2
cr c A "

cI (Aa)
co (infjEJ a j) (minorized)

sUP iEJ a j

Example 3.3.9 (Maximal Eigenvalues) Recall from §B.1.3(e) that, if the eigenval­
ues of a symmetric matrix A are denoted by Al(A) ? . .. ? An(A) , the function

m

Sn(lR) 3 A t--+ f m(A) := L Aj(A)
j=l

is convex - and finite everywhere. Its positive homogeneity is obvious, therefore it is
the support function of a certain convex compact set Cm of symmetric matrices. Let
us compute the set C1 when the scalar product in Sn(IR) is the standard dot-product
oflRnxn:

n

((A, B)) := tr AB = L Aij B ij .
i,j=l

Indeed, we know that

Al (A) = sup x T Ax = sup ((xx T , A )) .
xTx=l xTx=l
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Hence C1 is the closed convex hull of the set of matrices {xx T : x T x = I}, which
is clearly compact. Actually, its Hausdorff distance to {a} is

Incidentally, Al (-) is therefore nonexpansive in Sn (lR).
We leave it as an exercise to prove the following nicer representation of C1 :

generalizing to Sn (IE.) the expression of the unit-simplex in IE.n: C1 could be called
the unit spectraplex. D

3.4 Example: Support Functions of Closed Convex Polyhedra

Polyhedral sets are encountered all the time, and thus deserve special study. They
are often defined by finitely many affine constraints, i.e. obtained as intersections of
closed half-spaces; in view of Table 3.3.1, this explains that the infimal convolution
encountered in Proposition 1.3.2 is fairly important.

Example 3.4.1 (Compact Convex Polyhedra) First of all, the support function of
a polyhedron defined as

(3.4.1 )

is trivially
d I--t (Jp (d) = max {(Pi ,d) : i = 1, . . . , m} .

There is no need to invoke Theorem 3.3.2 for this: a linear function (., d) attains
its maximum on an extreme point of P (Proposition A.2.4 .6), even if this extreme
point is not the entire face exposed by d. D

Example 3.4.2 (Closed Convex Polyhedral Cones) Taking again Example 2.3.1,
suppose that the cone K is given as a finite intersection of half-spaces:

K = n{Kj : j = 1, .. . , m} ,

where
Kj :=H~ ,o :={SEIE.n: (aj ,s) :::;O}

(the ai's are assumed nonzero). We use Proposition 1.3.2:

(3.4 .2)

(3.4 .3)

Only those dj in K'j - namely nonnegative multiples of aj, see (2.3.2) - count to
yield the infimum ; their corresponding support vanishes and we obtain
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Here, we are lucky: the closure operation is useless because the righthand side is
already a closed convex function . Note that we recognize Farkas' Lemma A.4.3.3:
K O= dom oK is the conical hull of the aj 's, which is closed thanks to the fact that
there are finitely many generators. 0

Example 3.4.3 (Extreme Points and Directions) Suppose our polyhedron is de­
fined in the spirit of 3.4.1, but unbounded:

S := co {PI , . .. ,Pm} + cone Ic} , . . . ,ae} .

Then it suffices to observe that S = P + K O, with P of (3.4.1) and K of (3.4.2),
(3.4.3) . Using Table 3.3.1 and knowing that K OO= K - hence (jK O= iK:

{

._max (Pi ,d) if(aj,d) ~Oforj=l, .. . .e,
(js(d) = t-I ,... ,m . 0

+00 otherwise .

The representations of Examples 3.4.1 and 3.4.3 are not encountered so fre­
quently . Our next examples, dealing with half-spaces, represent the vast majority of
situations.

Example 3.4.4 (Inequality Constraints) Perturb Example 3.4.2 to express the sup­
port function of S := nH;;. b .' with

i» )

H;;'b := {s E IRn : (s,a) ~ b} (a i- 0) .

Here, we deal with translations of the K j 's : H~ ,bj 11:/112 aj + K j so, with the
help of Table 3.3.1 :

Provided that S i- 0,our support function as is therefore the closure of the function

{

inf{ ~ tjbj : ~ tjaj = d, t j ~ O} ifd E cone lcj , . .. , am } ,
d M j=l j=l

+00 otherwise. 0

Now we have a sudden complication: the domain of a is still the closed convex
cone KO, but the status of the closure operation is no longer quite clear. Also, it is
not even clear whether the above infimum is attained. Actually, all this results from
Farkas' Lemma of §A.4.3; before giving the details, let us adopt different notation .

Example 3.4.5 (Closed Convex Polyhedra in Standard Form) Even though Ex­
ample 3.4.4 uses the Definition A.4 .2.5 of a closed convex polyhedron, the follow­
ing "standard" description is often used. Let A be a linear operator from IRn to IRm ,

b E Im A c IRm
, KeIRn a closed convex polyhedral cone (K is usually charac­

terized as in Example 3.4.2). Then S is given by
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S := {s E IRn
: As = b, s E K} = ({so} + H) n K , (3.4.4)

where So is some point in IRn satisfying Aso = b, and H := Ker A.
With the expression of aH given in Example 2.3.1, we see that the support func­

tion of {so} + H is finite only on Im A*, where it is equal to

a{so}(d) + aH(d) = (so,d) = «b,z» ford = A*z, z E IRm

(here, «.,.» denotes the scalar product in IRm ) . Thus, as is the closure of the infimal
convolution

(a{so} + aH) t atc = (a{so} + aH) t iKo ,

which can be made explicit as the function

d f-7 inf {«b,z» : (z ,y) E IRm x K O, A*z + Y = d} .

Of course, this formula clearly reveals

dom oe = dom oj, + dom ij- . = ImA* + K O.

(3.4 .5)

In the pure standardform, IRn and IRm are both equipped with the standard dot­
product - A being a matrix with m rows and n columns - and K is the nonnegative
orthant; K Ois therefore the nonpositive orthant. Our "standard" S of (3.4.4) is now

{s E IRn
: As = b, s ~ O} ,

assumed nonempty. Then (3.4.5) becomes

inf {bT Z : AT z ~ d} ,

(3.4 .6)

(3.4 .7)

a function of d which is by no means simpler than in 3.4.4 - only the notation is
different. In summary, the support function

as(d)=sUp{STd : As=b, s ~O} (3.4 .8)

of the set (3.4.6) is the closure of (3.4.7), considered as a function of d E IRn .

Now, invoke Farkas' Lemma: write the equivalent statements (i)" and (ii)" from
the end of §A.4, with (x , p, a , r) changed to (-z , -d, s , -a):

is equivalent to

{z E IRn : AT z ~ d} c {z E IRn : bT Z ~ a}

3s ~ 0 such that As = b, s T d ~ a .

(3.4.9)

(3.4 .10)

In other words: the largest a for which (3.4.9) holds - i.e. the value (3.4 .7) - is also
the largest a for which (3.4.10) holds - i.e. as(d). The closure operation can be
omitted and we do have

as(d) = inf {bT Z : AT z ~ d} for all d E IRn .

Another interesting consequence can be noted. Take d such that as(d) < +00:
if we put a = as (d) in (3.4.9), we obtain a true statement, i.e. (3.4.10) is also true .
This means that the supremum in (3.4.8) is attained when it is finite. 0
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It is worth noting that Example 3.4.5 describes general polyhedral functions, up
to notational changes . As such, it discloses results of general interest, namely:

- A linear function which is bounded from below on a closed convex polyhedron
attains its minimum on this polyhedron.

- The infimum of a linear function under affine constraints is a closed sublinear
function of the righthand side; said otherwise, an image of a polyhedral function
is closed : in Example 3.4.5, the polyhedral function in question is

and (3.4.7) gives its image under the linear mapping [AT 10].

Exercises

1*. Let C1 and Cz be two nonempty closed convex sets in JRn and let 5 be bounded .
Show that C1 + 5 = Cz + 5 implies C1 = Cz-

2**. Let P be a compact convex polyhedron on JRn with nonempty interior. Show
that P has at least n + 1 facets.

3*. Let f : JRn -+ JR U {+oo} be positively homogeneous, not identically + 00 and
minorized by a linear function. Show that co f( x) is the supremum of a( x) over all
closed sublinear functions a minorizing f .

4*. Let f and g be two gauges. Show that f t g is still a gauge and that

{x : (f tg)(x) <l}= co({x: f( x) <l}U{x : g(x) < I}) .

5 **. Let C be a compact convex set with 0 E int C, so that its polar set Co enjoys
the same properties. Show that the following relations are equivalent:

(i) the hyperplane H s,l supports C at x E C;
(ii) the hyperpl ane H x,l supports Co at s E Co;

(iii) x E bdC, s E bd C", (s , x) = 1.

6. Draw a picture to compute the support function ar of the parabolic set P :=

{(~,1]) E JRz : 1] ~ ~1]Z }. What is dom rrj-? Show that a p is not upper semi­
continuous on its domain.

7. Let 111·111 be a norm on JRn and denote by 5 := {x E JRn : Illxlll = I} the associated
unit sphere . What is the convex hull of 5?

8. Let H be a hyperplane in JRn and suppose the set 5 is contained in one of the
corresponding half-spaces: 5 C H _. Show that co (5 n H) = (co 5) nH . Compare
with Exercise A.21.

9. Let x E C, where C is a closed convex set in JRn . Show that x E ri C if and only
if the normal cone Nc (x) is a subspace.
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10. Let f : ~n -+ IR U {+oo} and A c IRn be given (none of which is assumed
convex). Assume f is minorized by some affine function and set fA := f + iA.

- Show that co epi fA C {(x, T) E IRn x IR : x E co A , T ~ co f (x)} .
- Construct an example for which equality need not hold, even if A is closed convex.
- Show that equality does hold if f is affine.

II *. Recall that M );= 0 means: M E Sn (IR) is positive semidefinite. Show that the
unit spectraplex {M E Sn (IR) : M );= 0, tr NI = I} is a convex compact set, whose
support function is M t-+ Am ax (M).

12 *. In the Euclidean space of n x n real matrices (equipped with the scalar product
(M, P) = tr (M T P) = Lij MijPij and associated norme II . II), denote by S the
set of orthogonal matrices (M T M = M 1'vI T = In).

- Show that S is contained in the sphere B(O, yfii) = {M : IIMII = yfii} ; deduce
that S is compact.

- Show that the support function of Sis M t-+ as(M) = tr (M T M)1/2 [hint: usc
the polar decomposition of M] .

- Express the values of the support functions as(M) and aB(O,v'n)(M) in terms of
the eigenvalues of M T M.

13. Let K := {M E Sn (IR) : M );= O} be the cone of symmetric positive semidefi­
nite matrices. What are its interior int K and boundary bd K?

Show that the distance of a symmetric positive semidefinite matrix to the bound­
ary of K is its smallest eigenvalue: dbd K (M) = Amin (M) for M E K.

14*. Let (Skh be a nested family of compact sets in IRn (Sk+l C Sk for all k).
Show that co (nkSk) = nk co Si: Exhibit an example showing that the result be­
comes wrong if the Sk 'S are unbounded.

15*. Let F : IR --+ IRn be a multifunction such that F(t) is closed convex for each
t. Show that the graph of F is a convex set in IR x IRn if and only if the function
t t-+ aF( t) (d) is concave for all d E IRn.

Let C be closed convex in ~n and a' : IRn -+ IR be nonnegative and positively
homogeneous: +00 > a' (Ad) = Xa'(d) ~ 0 for all (A,d) E ~ x IRn . Show that ,
for any t ~ 0, the set F(t) := {x E IRn : (', x) ~ acO + ta'(·)} is closed convex
and contains C. What is its support function? Show that this defines a multifunction
F :~ --+ ~n whose graph is convex.



D. Subdifferentials of Finite Convex Functions

Introduction We have mentioned in our preamble to Chap. C that sublinearity per­
mits the approximation of convex functions to first order around a given point. In
fact, we will show here that, if I : jRn -+ jR is convex and x E jRn is fixed, then the
function

d H !,(x , d) := lim I(x + td) - I(x)
t -l-O t

exists and is finite sublinear. Furthermore, I' approximates I around x in the sense
that

I(x + h) = I(x) + !,(x, h) + o(llhll) . (0.1)

In view of the correspondence between finite sublinear functions and compact
convex sets (which formed a large part of Chap. C) , !,(x , ·) can be expressed for all
dE jRn as

r (x ,d) = IJs (d) = max {(8, d) : 8 E S}

for some nonempty compact convex set S. This S is called the subdifferential of
I at x and is traditionally denoted by 81(x) . When I is differentiabl e at z, with
gradient VI (x) , (O.l) shows that I' (x, .) becomes linear and S contains only the
element V I(x). Thus, the concept of subdifferential generalizes that of gradient,
just as sublinearity generalizes linearity.

The "subdifferentiation" thus introduced is supposed to generalize the ordinary
differentiation; one should therefore not be surprised to find counterparts of most of
the results encountered in differential calculus : first-order Taylor expansions, mean­
value theorems, calculus rules, etc. The importance of calculus rules increases in the
framework of convex analysis : some operations on convex functions destroy differ­
entiability (and thereby find no place in differenti al calculus) but preserve convexity.
An important example is the max-operation; indeed, we will give a detailed account
of the calculus rules for the subdifferential of max-functions.

This chapter deals with finite-valued convex functions exclusively: it is essen­
tial for practitioners to have a good command of subdifferential calculus, and this
framework is good enough. Furthermore, its generalization to the extended-valued
case then becomes easier to assimilate. Unless otherwise specified, therefore :

II : jRn -+ jR is convex ·1

J. -B. Hiriart-Urruty et al., Fundamentals of  Convex Analysis

© Springer-Verlag Berlin Heidelberg 2001
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This implies the continuity and local Lipschitz continuity of f .We note from (0.1),
however, that the concept of subdifferential is essentially local; for an extended­
valued I, most results in this chapter remain true at a point x E int dom f (as­
sumed nonempty). It can be considered as an exercise to check those results in this
generalized setting .

1 The Subdifferential: Definitions and Interpretations

1.1 First Definition: Directional Derivatives

Let x and d be fixed in ffi.n and consider the difference quotient of f at x in the
direction d:

q(t) ..__ f( x + td) - f( x)
for t > O.

t
The function t f-t q(t) is:
- increasing; this is Theorem 0.6.1, the criterion of increasing slopes;
- bounded near 0; this comes from the local Lipschitz property of f (§B.3.1).
For t decreasing to 0, q(t) has therefore a limit and the following definition makes
sense.

Definition 1.1.1 (Directional Derivative) The directional derivative of f at x in
the direction d is

j'(x ,d) :=lim {q(t): qO}=inf{q(t) : t >O} .

If sp denote s the one-dimensional function t f-t <p(t ) := f( x + td) , then

(1.1.2)
o

(1.1.3)

is nothing other than the right-derivative of <p at 0 (Theorem 0.6.3). Changing d to
-d in (1.1.1), one obtains

j'(x , -d) = lim f( x - td) - f( x) = lim f( x + Td) - f (x)
t LO t rtO -T

which is not the left-derivative of <p at 0 but rather its negative counterpart:

j'(x,-d) = -D_ <p(O) .

Proposition 1.1.2 Forfixed z, the/unction j'(x , ·) is finite sublinear.

(1.1.4)

Proof Let dl , d2 in ffi.n , and positive Q' I , Q'2 with Q'I + Q'2 = 1. From the convexity
of f :

f(x + t(Q'ldl + Q'2 d2 )) - f( x) =
f( Q' I(X + tdl) + Q'2 (X + td2)) - Q' d (x ) - Q'2f (x ) ~
~ Q'df(x + tdl ) - f( x)] + Q'2[j(X + td2) - f (x)]
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for all t . Dividing by t > 0 and letting t -.I- 0, we obtain

which establishes the convexity of f' with respect to d. Its positive homogeneity is
clear: for A > 0

f' (x , Ad) = lim Af( x + A~d) - f( x) = Alim f( x + rd) - f( x) = A!'(x ,d) .
uo t T -1-0 r

Finally suppose Ildll = 1. As a finite convex function, f is Lipschitz continuous
around x (Theorem B.3.1.2) ; in particular there exist c > 0 and L > 0 such that

If(x + td) - f(x)1 :( Lt for 0 :( t :( c .

Hence, If'(x ,d)1 :( L and we conclude with positive homogeneity:

II'(x,d)l :( Llldll for all d ERn. (1.1.5)
o

Remark 1.1.3 From the end of the above proof, a local Lipschitzconstant L of f around x
is transferred to !,(x, ') via (1.1.5). In view of (C.1.2 .6), this same L is a global Lipschitz
constant for t' (x , -}. This is even true of t' (y , .) for y close to x : with fJ and L such that f
has the Lipschitz constant L on B(x , fJ) ,

A consequence of Proposition 1.1.2 is that f'(x , ') is a support function, so the
following suggests itself:

Definition 1.1.4 (Subdifferential I) The subdifferential 8 f (x) of f at x is the
nonempty compact convex set of Rn whose support function is f'(x , ' ), i.e .

8f(x) := {s ERn : (s,d) :( f'(x ,d) for all d ERn}.

A vector s E 8f(x) is called a subgradient of fat x.

(1.1 .6)

o

A first observation is therefore that the concept of subdifferential is attached to a
scalar product,just because the concept of support is so; changing the scalar product
changes B],

All the properties of the correspondence between compact convex sets and finite
sublinear functions can be reformulated for 8f(x) and f'( x , .). For example, the
breadth of 8f(x) (cf. Definition C.2.1.4) along a normalized direction d is

f' (x , d) + f' (x , -d) = D+cp(O) - D _ cp(O) ;? 0

and represents the "lack of differentiability" of the function cp alluded to in (1.1.3),
(1.104); remember Proposition BA.2.1.
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Remark 1.1.5 In particular, for d in the subspace U of linearity of 1'(x , ·) - the
line alit y space of 1'(x, .), see (C.1.1.8) -r-, the corresponding sp is differentiable at
O. The restriction of 1'(x ,·) to U is linear (Proposition C.1.1.6) and equals (8, .),
no matter how 8 is chosen in af (x) . In words, U is the set of h for which h I--t

f (x + h) behaves as a function differentiable at h = O. See Fig . 1.1.1: af (x) is
entirely contained in a hyperplane parallel to U; said otherwise, U is the set of
directions along which af (x) has O-breadth.

We also recall from Definition C.2.IA that

-j'(x,-d) :::; (8,d) :::; j'(x ,d) for all (8,d) E af(x) x jRn . 0

U
!
I
i
! V--·-i------
ii af(x)

!
I

Fig. 1.1.1. Linearity-space of the directional derivative

It results directly from Chap. C that Definition 1.104 can also be looked at from the other
side: (1.1.6) is equivalentto !, (x, d) = sup {( s, d) : s E 8 f( xn.Remembering that 8 f( x)
is compact, this supremum is attained at some 8 - which depends on d! In other words: for
any d E R" , there is some Sd E 8 f (x) such that

f( x + td) = f( x) + t( Sd,d) + tCd(t) for t ? 0 _ (1.1.7)

Here cd(t) -+ 0 for t .j,. 0, and we will see later that cd can actually be made independent
of the normalized d; as for es , it is a subgradient giving the largest (s ,d) . Thus, from its
very construction, the subdifferential contains all the necessary information for a first-order
description of f .

As a finite convex function, d I--t l' (x ,d) has itself directional derivatives and
subdifferentials. These objects at d = 0 are of particular inte rest ; the case d :I 0
will be considered later.

Proposition 1.1 .6 The fin ite sublinear function d I--t 0'(d) := t' (x,d) satisfies

0"(0,8) = 1'(x,8) f or all 8 E jRn ;

0'(8) = 0'(0) + 0" (0, 8) = 0" (0,8) f or all 8 E jRn ;

aO'(O) = af(x) -

(1.1.8)

(1.1.9)

0 .1.10)
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Proof. Because (7 is positively homogeneous and (7(0) = 0,

d t8
) ; dO) = (7(15) = j'(x , 15) for all t > O.

This implies immediately (1.1 .8) and (1.1 .9). Then (1.1.10) follows from uniqueness
of the supported set. D

One should not be astonished by (1.1.8): tangency is a self-reproducing oper­
ation . Since the graph of j'(x , ·) is made up of the (half-)Iines tangent to gr f at
(x , f(x)), the same set must be obtained when taking the (half-)Iines tangent to
gr P(x , .). As for (1.1.9), it simply expresses that, when developing a sublinear
function to first order at 0, there is no error oflinearization: (1.1.7) holds with Ed == 0
in that case .

1.2 Second Definition: Minorization by Affine Functions

The previous Definition 1.104 of the subdifferential involved two steps : first, calcu­
lating the directional derivative, and then determining the set that it supports. It is
however possible to give a direct definition, with no reference to differentiation.

Definition 1.2.1 (Subdifferential II) The subdifferential of f at x is the set of vec­
tors s E IRn satisfying

f(y) ~ f( x) + (s ,y - x ) for all y E IRn . (1.2.1)
D

Of course, we have to prove that our new definition coincides with 1.104. This
will be done in Theorem 1.2.2 below. First, we make a few remarks illustrating the
difference between Definitions 1.104 and 1.2.1.

- The present definition is unilateral: an inequality is required in (1.2.1), expressing
the fact that the affine function y t-t f( x) + (s, Y - x) minorizes f and coincides
with f fory = x.

- It is a global definition, in the sense that (1.2.1) involves all y in IRn .

- These two observations do suggest that 1.2.1 deviates from the concept of differ-
entiation, namely :

(i) no remainder term shows up in (1.2.1), and
(ii) every y counts, not only those close to x .

Actually, the proof below will show that nothing changes if:

(i ') an extra o(lly - xiI) is added in (1.2.1), or
(ii') (1.2.1) is required to hold for y close to x only.

Of course, these two properties (i') and (ii') rely on convex ity of f ; more pre­
cisely on monotonicity of the difference quotient.
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- All subgradients are described by (1 .2.1) at the same time. By contrast, t' (x ,d) =
(8d'd) plots, for d ::f- 0, only the boundary of 8 f(x), one exposed face at a time .
The whole subdifferential is then obtained by convexification - remember Propo­
sition C.3.1.5.

Theorem 1.2.2 The definitions 1.104and 1.2.1 are equivalent.

Proof. Let 8 satisfy (1.1.6), i.e .

(8,d) ~ r (x, d) for all d E IRn
.

The second equality in (1.1.2) makes it clear that (1.2.2) is equivalent to

(1.2.2)

(d) f(x + td) - f(x)
8 , ~ t for all d E IRn and t > 0 . (1.2.3)

When d describes IRn and t describes IRt, y := x + td describes IRn and we
realize that (1.2.3) is just (1.2.1). D

The above proof is deeper than it looks: because the differencequotient is increasing, the
inequality of (1.2 .3) holds whenever it holds for all (d, t) E B(O, l)x]O , s]. Alternatively,
this means that nothing is changed in (1.2.1) if y is restricted to a neighborhood of x.

It is interesting to note that, in terms of first-order approximation of f, (1.2.1) brings
some additional information to (1.1.7): it says that the remainder term cd(t) is nonnegative
for all t ~ 0. On the other hand, (1.1.7) says that, for some specific s (depending on y),

(1.2.1) holds almost as an equality for y close to x .

Now, the path "directional derivative -+ subdifferential" adopted in §1.1 can be
reproduced backwards: the set defined in (1.2.1) is

- nonempty (Proposition RI.2.1) ,

- closed and convex (immediate from the definitions),

- bounded, due to a simple Lipschitz argument: for given 0 ::f- S E 8f (x), take in
(1.2.1) y = x + 88/11811 (8 > 0 arbitrary) to obtain

f(x) + L8 ~ f(y) ~ f(x) + 811811,

where the first inequality comes from the Lipschitz property B.3 .1.2, written on
the compact set B(x, 8).

As a result, this set of (1.2.1) has a finite-valued support function . Theorem 1.2.2
simply tells us that this support function is precisely the directional derivative
!,(x,·) of(1.1.2).

Remark 1.2.3 A (finite) sublinear function a has a subdifferential.just as any other
convex function . Its subdifferential at 0 is defined by

8a(0) = {8 : (8, d) ~ a(d) for all d E IRn } ,
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in which we recognize Theorem C.2.2.2. This permits a more compact way than
(C.2.2.2) to construct a set from its support function : a (finite) sublinear function is
the support of its subdifferential at 0:

u(d) = sup {(8, d) : 8 E ou(O)} .

In Fig. C.2.2.1, for example, the wording "filter with (8,·) ~ a'I" can be re-
placed by the more elegant "take the subdifferential of a at 0". 0

1.3 Geometric Constructions and Interpretations

Definition 1.2.1 means that the elements of of(x) are the slopes of the hyperplanes
supporting the epigraph of f at (x , f( x)) E IRn x lIt In terms of tangent and nor­
mal cones, this is expressed by the following result, which could serve as a third
definition of the subdifferential and directional derivative.

Proposition 1.3.1

(i) A vector 8 E IRn is a subgradient of f at x if and only if (8, -1) E IRn x IR is
normal to epi f at (x , f( x)) . In other words:

Nep i f (x, f (x)) = {(..\8, -..\) : 8 E of(x), ..\ ~ O} .

(ii) The tangent cone to the set epi f at (x , f(x)) is the epigraphofthe directional­
derivativefunction d 1-+ !,(x , d):

T epif(x ,f(x)) = {(d ,r) : r ~ !,(x ,d)}.

Proof. [(i)) Apply Definition A.5.2.3 to see that (8, -1) E Nepif(x , f(x)) means

(8,Y - x) + (-l)[r - f(x)] ~ 0 for all y E IRn and r ~ f(y )

and the equivalence with (1.2.1) is clear. The formula follows since the set of nor­
mals forms a cone containing the origin.

[(ii)] The tangent cone to epi f is the polar of the above normal cone, i.e. the set of
(d, r) E IRn x IR such that

(..\8,d) + (-..\) r ~ 0 for all 8 E of(x ) and X ~ O.

Barring the trivial case ..\ = 0, we divide by ..\ > 0 to obtain

r ~ m ax {(8, d) : 8 E of(x )} = !,(x,d) . o

Figure 1.3.1 illustrates this result. The right part of the picture represents the
normal cone N and tangent cone T to epi f at (x, f(x)). The intersection of N with
the space IRn at level -1 is just of(x) x {-I}. On the left part of the picture , the
origin is translated to (x , f(x)) and the translated T is tangent to epi f. Note that
the boundary ofT + (x , f( x)) is also a (nonconvex) cone, "tangent", in the intuitive
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(1.3.1)

Fig. 1.3.1. Tangents and normals to the epigraph

sense of the term, to the graph of j ; it is the graph of 1'(x, '), translated at (x , j(x)).
Compare Figs. A.5.1.1 and 1.3.1.

Proposition 1.3.1 and its associated Fig. 1.3.1 refer to Interpretation C.2.1.6,
with a supported set drawn in IRn x lit One can also use Interpretation C.2.1.5,
in which the supported set was drawn in IRn. In this framework, the sublevel-set
passing through x

Sj(x) := Sf(x)(J) = {y E IRn : j(y) :::; j(x)}

is particularly interesting, and is closely related to {)j (x):

Lemma 1.3.2 For the convex function j : IRn -+ IR and the sublevel-set (1.3.1), we
have

T Sf( x)(x) c {d: j'(x , d) :::; O} . (1.3.2)

Proof. Take arbitrary y E Sj(x), t > 0, and set d := t(y - x ). Then, using the
second equality in (1.1.2),

o~ t[j(y) - j(x)) = j(x + di;~ - j(x) ~ j '(x, d) .

So we have proved

1R+[Sj(x) - x) c {d : j'(x , d) :::; O} (1.3.3)

(note: the case d = 0 is covered since 0 E Sj (x) - x).
Because 1'(x,·) is a closed function, the righthand set in (1.3.3) is closed.

Knowing that TSf(x)(x) is the closure of the lefthand side in (1.3.3) (Proposi­
tion A.5.2.l), we deduce the result by taking the closure of both sides in (1.3.3).

o

The converse inclusion in (1.3.2) need not hold: for a counter-example, take
j(x) = 1/21IxI12. The sublevel-set Sj(O) is then {O} and 1'(0,d) = 0 for all d. In
this case, (1.3.2) reads {O} c IRn! To prove the converse inclusion, an additional
assumption is definitely needed - for example the one considered in the following
technical result.
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Proposition 1.3.3 Let 9 : JRn -+ JR be convex and suppose that g(xo) < 0 for some
Xo E JRn. Then

Itfollows

cl {z : g(z) < O} = {z : g(z ) :( O} ,

{z : g(z ) < O} = int {z : g(z) :( O} .

bd {z : g(z) :( O} = {z : g(z) = O} .

(1.3.4)

(1.3.5)

(1.3.6)

Proof. Because 9 is (lower semi-) continuous, the inclusion "e" automatically
holds in (1.3.4). Conversely, let z be arbitrary with g(z) :( 0 and, for k > 0, set

Zk := i xo + (1 -i)z .

By convexity of g, g(Zk) < 0, so (1.3.4) is established by letting k -+ +00.
Now, take the interior of both sides in (1.3.4) . The "int cl" on the left is actually

an "int ' (Proposition A.2.1.8), and this "int"-operati on is useless because 9 is (upper
semi-) continuous: (1.3.5) is establi shed. 0

The existence of XQ in this result is indeed a qualification assumption, often called Slater
assumption. When this X Q exists, taking closures, interiors and boundaries of sublevel-sets
amounts to imposing ":::;;", "<" and "= " in their definitions. Needless to say, convexity is
essential for such an equivalence: withn = 1, think of g(z ) := min{O, Izl- I}.

We are now in a position to characterize the tangent ial elements to a sublevel-set.

Theorem 1.3.4 Let j : JRn -+ JR be convex and suppose 0 rt 8j(x). Then, Sj(x)
being the sublevel-set (1.3.1),

T sj(x)(x) = {d E JRn : j'(x ,d) :( O}

int [Tsj(x)(x)] = {d E JRn : j'(x ,d) < O} =/= 0 .

(1.3.7)

(1.3.8)

Proof. From the very definition (1.1.6), our assumpti on means that l'(x, d) < 0 for
some d, and (1.1.2) then implies that j(x + td) < j(x) for t > 0 small enough : our
dis of the form (x + td - x)/ t with x + td E Sj(x) and we have proved

{d: j'(x,d) < O} e JR+[Sj(x) - x] e Tsj(x)(x) .

Now, we can apply (1.3.4) with 9 = 1' (x , -):

cl{d: j'(x ,d) < O} = {d : j'(x ,d) :( O} ,

(1.3.9)

so (1.3.7) is proved by closing the sets in (1.3.9) and using (1.3.2) . Finally, take the
interior of both sides in (1.3.7) and apply (1.3.5) with 9 = t '(x , .) to prove (1.3.8).

o

The above result can be formulated in terms of normal cones .
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Theorem 1.3.5 Let f : IE.n -t IE. be convex and suppose 0 rf- {} f (x) . Then a direc­
tion d is normal to Sf(x) at x ifand only if there is some t ~ 0 and some s E {} f (x)
such that d = ts :

Proof. Write (1.3.7) as

Ts!( x)(x) = {d E IE.n : (s,d) :s; 0 for all s E {}f(x)}
= {d E IE.n : (>..s,d) :s; 0 for all >.. ~ 0 and s E {}f(x)} = [IE.+{}f(xW .

The result follows by taking the polar cone of both sides, and observing that the
assumption implies closedness of IE.+ {}f(x) (Proposition A.1.4.7):

o

Remark 1.3.6 The assumption 0 ¢ {} f(x) , required by the above two results, can be formu­
lated in a number of equivalent ways:
- In view of Definition 1.1.4, it means f'(x,do) < 0 for some do.
- Using the other definition (1.2.1), there is some Xo such that f( xo) < f(x).
- The latter implies that the same assumptionholds everywhereon the level-setfO = f(x) .

As a result, the existence of one point x with 0 ¢ {}f (x) allows the computation of
the tangent and normal cone to the corresponding sublevel-setSf (x) at all its points: on its
boundary - which, thanks to (1.3 .6), is the level-set fO = f(x) - as well as on its interior
(trivial case). 0

Figure 1.3.2 illustrates these results. It is similar to Fig. 1.3.1, except that it is
drawn in IE.n. Its left part represents the horizontal cut of Fig . 1.3.1 at level f(x) , i.e.

Tep i ! (x , f (x» n {(d, r) E IE.n x IE. : r = O}

which is T s!(x)(x) x {O}; considered as a set in IE.n, it is the tangent cone to the
sublevel-set S f(x). In the right part of the picture, we have also drawn the subdif­
ferentia1, neglecting its vertical component drawn in Fig . 1.3.1 . The cone Ns!(x) (x)
generated by this subdifferential appears to be the projection (onto the same hori­
zontal space) of the normal cone Nepi !(x, f(x».

x

NSf(x)(X)

Fig. 1.3.2. Tangent and normal cones to a sublevel-set

All this confirms how a subdifferential generalizes a gradient: if {}f (x) is the
singleton r\7 f(x)}, the level-set f( ·) = f(x) has a tangent hyperplane at (x, f(x»;
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the cone T sj ex)(x) is the half-space oppos ite to "Vf(x); the cone Nsjex)(x) is
the half-line 1R+ "Vf( x). When 8 f(x) becomes "fatter", S f( x) becomes "narrower"
around x.

Drawing the normal cone to the sublevel-set, i.e. considering only nonnegative multi­
ples of the subgradients, does describe the sublevel-set locally around x; but it also destroys
some information, namely the magnitudes of these gradients. This information contains the
magnitudes of the directional derivatives, and Fig. 1.3.3 shows how to recover it, even in R" .
It is similar to Fig. 1.3.2 and should be compared to Fig. C.2.1.1: the supporting hyperplane
H := {s E Rn

: (d, s - x ) = I' (x , d)} is orthogonal to d; its (algebraic) distance to x is
t ' (x , d), if dis normalized. The half-line x + R+ d would cut the sublevel-set Sf( x )- l (f) at
the (algebraic) distance r (x ,d) if t H f( x + td) were an affine function of t ~ O.

f(.) = f(x)+f'(x ,d)

Fig. 1.3.3. Rate of decrease along a direction

2 Local Properties of the Subdifferential

In this section, we study some properties of 8 f (x) , considered as a generalization
of the concept of gradient, at a given fixed x .

2.1 First-Order Developments

As already mentioned, a finite convex function enjoys a "directional first-order ap­
proximation" (1.1.7), and an important result is that the convergence in (1.1.7) is
uniform in d on any bounded set: c d can be taken independent of the normalized d.

Lemma 2.1.1 Let f : IRn -+ IR be convex and x E IRn • For any e > 0, there exists
8 > °such that Ilhll ~ 8 implies

If(x + h) - f( x) - !,(x, h)1 ~ cllhll · (2 .1.1)

Proof. Suppose for contradiction that there is c > °and a sequence (hk) with
Ilhkll = : tk ~ 11k such that
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If(x + hk) - f(x) - f'(x, hk)1 > ctk for k = 1,2, . ..

Extracting a subsequence if necessary, assume that hk/tk -+ d for some d of norm
1. Then take a local Lipschitz constant L of f (see Remark 1.1.3) and expand :

ctk < If(x + hk) - f( x) - f'( x , hk)1
:s; If(x + hk) - f(x + tkd)l+

+If(x + tkd) - f(x) - f'(x , tkd)1 + If'(x , tkd) - f'( x , hk)1
:s; 2Lllhk - tkdll + If( x + tkd) - f( x) - tkf'(x ,d)l ·

Divide by tk > 0 and pass to the limit to obtain the contradiction c :s; O. 0

Another way of writing (2.1 .1) is the first-order expansion

or also

f( x + h) = f( x) + l' (x , h) + o(llhll) ,

lim f(x + td') - f(x) = f'(x d) .
uo , d' -s« t '

(2.1.2)

Remark 2.1.2 Convexity plays a little role for Lemma 2.1.1. Apart from the existence of a
directional derivative, the proof uses only Lipschitz properties of f and t' (x , .).

This remark is of general interest. When defining a concept of "derivative" D : IRn -+ IR
attached to some function f : IRn -+ IRat x E R"; one considers the property

f(x + h) - f( x) - D(h) 0
IIhll -+ , (2.1.3)

with h tending to O. In classical calculus, a linear D is postulated, while here we rather have
a sublinear D( ·) = t' (x , -). Actually, even without specifying the class of functions that D
belongs to, several sorts of derivatives can be defined, depending on the type of convergence
allowed for h:

(i) the point of view of Gateaux: (2.1.3) holds for h = td, d fixed in IRn
, t -+ 0 in IR;

(ii) the point of view of Frechet: (2.1.3) holds for h -+ 0;
(i') the directional point of view: as in (i), but with t > 0;

(ii ') the directional point of view of Dini: h = td', with t +0 and d' -+ din IRn
•

It should be clear from the proof of Lemma 2.1.1 that, once the approximating function D is
specified, (say line~ or sublinear), these four types of convergence are equivalent when f is
Lipschitzian aroundx. 0

Compare (2.1.2) with the radial development (1.1.7), which can be written with
any subgradient Sd maximizing (s, d). Such an Sd is an arbitrary element in the face
of 8f(x) exposed by d (remember Definition C.3.I.3). Equivalently, d lies in the
normal cone to 8f(x) at Sd; or also (Proposition A.5.3 .3), S d is the projection of
S d + d onto 8 f(x). Thus, the following is just a restatement of Lemma 2.1.1.

Corollary 2.1.3 Let f : IRn -+ IR be convex. At any x ,

f(x + h) = f(x) + (s , h) + o(llhll)

whenever one ofthe following equivalent properties holds:

S E F8 f (x ) (h) {:=:} hE N8 f (x ) ( S ) {:=:} S = P8f(x)(s + h) . 0
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In words: as long as the increment h varies in a portion of jRn that is in some
fixed normal cone to 8f(x), f looks differentiable ; any subgradient in the corre­
sponding exposed face can be considered as a "local gradient", active only on that
cone; see Fig. 2.1.1. When h moves to another normal cone, it is another "local
gradient" that prevails.

(1)t},(2)
f(x+h) - f(x) = <sl.h> X

for h E N()f(x)(Sl)

(1')

Fig. 2.1.1. Apparent differentiability in normal cones

Because 8 f (x) is compact, any nonzero h E jRn exposes a nonempty face.
When h describes jRn \ {a}, the corresponding exposed faces cover the boundary of
8f (x) : this is Proposition C.3.1.5. An important special case is of course that of
8f(x) with only one exposed face, i.e. only one element. This means that there is
some fixed s E jRn such that

lim f( x + td) - f(x) __ (s , d) c d J[))nlor all E ~ ,
t-l-O t

which expresses precisely the directional differentiability of f at x . Change d and
t to -d and -t to see that f is indeed Gateaux differentiable at x. From Corol­
lary 2.1.3 (see again Remark 2.1.2), this is further equivalent to

f(x + h) - f( x) = (s , h) + o(llhlD for all h E jRn ,

i.e. f is Frechet differentiable at x . We will simply say that our function is differen­
tiable at x, a non-ambiguous terminology.

We summarize our observations:

Corollary 2.1.4 Ifthe convex f is (Gateaux) differentiable at z, its only subgradient
at x is its gradient V'f(x) . Conversely, if8f(x) contains only one element s, then f
is (Frechet) differentiable at z, with V'f( x) = s. 0

Note the following consequence of Proposition C.l .l.6: if {dl , . . . , dk} is a
set of vectors generating the whole space and if f'(x, di ) = - f'(x, -di ) for
i = 1, .. . , k, then f is differentiable at x. In particular (take {dd as the canoni­
cal basis of jRn), the existence alone of the partial derivatives

:;(x) = !'(x , ei) = -!'(x,-ei) for i = 1, .. . ,n
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guarantees the differentiability of the convex f at x = (e ,.. .,~n) . See again
Proposition B.4.2.1 .

For the general case where ()f (x) is not a singleton, we mention here another
way of defining exposed faces : the function 1'(x, ') being convex, it has subdif­
ferentials in its own right (Proposition 1.1.6 studied the subdifferential at °only) .
These subdifferentials are precisely the exposed faces of ()f (x).

Proposition 2.1.5 Let f : \Rn -+ \R be convex. For all x and d in \Rn, we have

F8f(x)(d) = ()[j'(x , ·)](d).

Proof. If 8 E ()f(x) then 1'(x, d') ~ (8,d') for all d' E \Rn, simply because 1'(x,')
is the support function of ()f (x) . If, in addition, (8, d) = t' (x ,d), we get

l' (x, d') ~ t' (x , d) + (8, d' - d) for all d' E \Rn (2.1.4)

which proves the inclusion F8f (x ) (d) C ()[1'(x , ·)](d).
Conversely, let 8 satisfy (2.1.4) . Set d" := d' - d and deduce from subadditivity

l' (x , d) + t' (x, d") ~ l' (x ,d') ~ I' (x, d) + (8, d") for all d" E \Rn

which implies 1'(x, ') ~ (8, '), hence 8 E ()f(x) . Also, putting d' = 0 in (2.1.4)
shows that (8, d) ~ f'(x , d). Altogether, we have 8 E F 8 f(x ) (d). 0

Nepi f'(x•.)(O,O)

epi f(x,.)

Fig. 2.1.2. Faces of subdifferentials

This result is illustrated in Fig. 2.1.2. Observe in particular that the subdifferen­
tial of 1'(x, ') at the point td does not depend on t > 0; but when t reaches 0, this
subdifferential explodes to the entire ()f(x).
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Definition 2.1.6 A point x at which af(x) has more than one element - i.e. at
which f is not differentiable - is called a kink (or comer-point) of f . 0

We know that f is differentiable almost everywhere (Theorem 8.4.2.3). The set of kinks
is therefore of zero-measure (remember Remark A.2.1.7). In most examples in practice , this
set is the union of a finite number of algebraic surfaces in R" .

Example 2.1.7 Let q1, ... , qm be m convex quadratic functions and take f as the max of
the q/s. Given x E R", let J( x) := {j ~ m : qj (x) = f(x)} denote the set of active q/s
atx .

It is clear that f is differentiable at each x such that J(x) reduces to a singleton {j(x)}:
by continuity, J(y) is still this singleton {j(x)} for all y close enough to z, so f and its
gradient coincide around this x with the smooth qj (x) and its gradient. Thus , our f has all its
kinks in the union of the 1/2 m(m - 1) surfaces

Figure 2.1.3 gives an idea of what this case could look like, in R2
• The dashed lines represent

portions of E ij at which qi = qj < f. 0

Fig. 2.1.3. A maximum of convex quadratic functions

2.2 Minimality Conditions

We start with a fundamental result, coming directly from the definitions of the sub­
differential.

Theorem 2.2.1 For f : JRn -+ JR convex, the following three properties are equiva­
lent:

(i) f is minimized at x over JRn , i.e.: fey) ~ f(x) for all y E JRn;
(ii) 0 E af(x);

(iii) j'(x ,d) ~ Ofor all ae JRn .

Proof. The equivalence (i) {:} (ii) [resp. (ii) {:} (iii)] is obvious from (1.2.1) [resp.
(1.1.6)] . 0
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Naturally, x can be called "stationary", or critical, if 0 E of (x). Observe that
the equivalence (i) {:} (iii) says : f is minimal at x if and only if its tangential approx­
imation f'(x, ') is minimal at 0; a statement which makes sense, and which calls for
two remarks.

- When x is a local minimum of f (i.e. f(x) ~ f(y) for all y in a neighborhood
of z), (iii) holds; thus, convexity implies that a local minimum is automatically
global (i.e. f(x) ~ f(y) for all y).

- In the smooth case, the corresponding statement would be "the tangential approx­
imation (\7 f(x), ·) of fO - f(x) , which is linear, is identically 0". Here , the
tangential approximation f'(x, ·) need not be 0; but there does exist a minorizing
linear function, not necessarily tangential, which is identically O.

Remark 2.2.2 The property "0 E af (x)" is a generalization of the usual stationarity con­
dition "\7 f(x) = 0" of the smooth case. Even though the gradient exists at almost every z ,
one should not think that a convex function has almost certainly a O-gradient at a minimum
point. As a matter of fact, the "probability" that a given x is a kink is 0; but this probability
may not stay 0 if some more information is known about z, for example that it is a stationary
point. As a rule, the minimum points of a convex function are indeed kinks. D

2.3 Mean-Value Theorems

Given two distinct points x and y, and knowing the subdifferential of f on the whole
line-segment lx , y[, can we evaluate f(y) - f(x)? Or also, is it possible to express
f as the integral of its subdifferential? This is the aim of mean-value theorems.

Of course, the problem reduces to that of one-dimensional convex functions,
since

f(y) - f(x) = ep(l) - ep(O)

where
ep(t) := f(ty + (1 - t)x) for all t E [0,1] (2.3.1 )

is the trace of f on the line-segment [x,y].The key question, however, is to express
the subdifferential of sp at t in terms of the subdifferential of fat ty + (1- t)x in the
surrounding space IE.n. The next lemma anticipates the calculus rules to be given in
§4. Here and below, we use the following notation:

Xt := ty + (1 - t)x

where x and yare considered as fixed in IE.n .

Lemma 2.3.1 The subdifferential ofep defined by (2.3.1) is

oep(t)={(s,y-x): sEof(xt)}

or, more symbolically:
oep(t) = (of(xd,y - x).
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Proof. In terms of right- and left-derivatives (see Theorem 0.6.3), we have

D (t) -I' f( xt + T(Y - x)) - f( xt) - r: _)+<p - Hfl - xl, y x,
r.j.O T

D (t) - li f( Xt + T(Y - x )) - f( xt) - I'': ( )) .<p - nn - - Xt - Y - x
- rtO T "

so, knowing that
f'( Xl,y- x)= m ax (S,y- x) ,

sEa / tX t)

- f'( Xt , -(y - x )) = min (s , y - x ),
sE8!(xt)

we obtain 8<p(t) := [D_ <pet ), D+<p(t)] = {(s, y - x ) : s E 8 f( x)} . o

Remark 2.3.2 The derivative of <p exists except possibly on a countable set in JR. One should
not think that, with this pretext, f is differentiable except possibly at countably many points
of lx,yr. For example, with f(~ , '17) := I~ I , x := (0, 0), y := (0,1) , f is differentiable
nowhere on [x , y]. What Lemma 2.3.1 ensures, however, is that for almost all t, {)f(xt} has
a zero breadth in the direction y - x : f'( Xt ,y - x ) + f'( Xt , X - y) = O. 0

The function <p above is the key to proving mean-value theorems.

Theorem 2.3.3 Let f : lRn ---7 lR be convex. Given two points x i- y in lRn
, there

exist t E ]0, I] and s E 8f(xd such that

In other words,

fey) - f( x) = (s, y - x) . (2.3.2)

of(y)-f (x)E U {(8f(xd ,y- x)} .
tE lO,I[

Proof. Start from the function <p of (2.3.1) and, as usual in this context, con sider the
auxiliary function

'ljJ (t ) := <pet ) - <p(o) - t[<p(l) - <p(o)],

which is clearly con vex . Computing directional derivatives gives easily 8'ljJ(t )
8<p(t) - [<pel) - <p(0)]. Now 'ljJ is continuous on [0,1], it has been constructed so
that 'ljJ(O) = 'ljJ (I ) = 0, so it is minimal at some t E ]0,1[: at this t, °E 8'ljJ(t)
(Theorem 2.2.1). In view of Lemma 2.3.1, this means that there is s E 8 f (Xt) such
that

(s,y - x ) = <pel ) - <p(0) = fey) - f( x).

The mean-value theorem can also be given in integral form.

Theorem 2.3.4 Let f : lRn ---7 lR be convex. For x, y E lRn
,

f(y)-f( x) = 1\8f(Xt),y- X)dt .

o

(2.3.3)
o
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The meaning of (2.3.3) is as follows: if {s, : t E [0, I]} is any selection of
subgradients of f on the line-segment [x, y], i.e. St E 8 f( xd for all t E [0,1], then

f; (st, y - x)dt is independent of the selection and its value is f(y) - f(x).

Example 2.3.5 Mean-value theorems can be applied to nondifferentiable functions
in the same way as they are in (ordinary) differential calculus. As an example, let
f, 9 be two convex functions such that f(x) = g(x) and f(y) ~ g(y) for all y in a
neighborhood of x. It follows from the definitions that 8 f(x) C 8g(x).

Conversely, suppose that f, 9 are such that 8 f (x) c 8g(x) for all x E jRn; can
we compare f and g? Same question if 8f(x) n 8g(x) :j:. 0 for all x . The answer
lies in (2.3 .3): the difference f - 9 is a constant function (take the same selection in
the integral (2.3 .3)!).

An amusing particular case is when f and 9 are (finite) sublinear functions: then
f ~ 9 if and only if 8f(0) C 8g(0) (f and 9 are the support functions of 8 f(O) and
8g(0) respectively! See Remark 1.2.3 again) . 0

3 First Examples

Example 3.1 (Support Functions) Let C be a nonempty convex compact set, with support
function o o ,The first-order differential elements of ac at the origin are obtained immediately
from the definitions :

oac(O) = C and (ac)'(O, ·) = oc .
Read this with Proposition 1.1.6 in mind: any convex compact set C can be considered as
the subdifferential of some finite convex function f at some point x . The simplest instance is
f = ac,x = O.

On the other hand, the first-order differential elements of a support function a c at x -I°
are given in Proposition 2.1.5:

oac(x) = Fc(x) and (ac)'(x , ·) = aFc( x) . (3.1)

The expression of (ac)' (x , d) above is a bit tricky: it is the optimal value of the following
optimization problem (8 is the variable, x and d are fixed, the objective function is linear,
there is one linear constraint in addition to those describing C) :

I
m ax (d , 8) , 8 E C ,
(8,X) = ac(x) .

As a particular case, take a norm m· m. As seen already in §C.3.2, it is the gauge of its unit
ball B , and it is the support function of the unit ball B* associated with the dual norm III . 111* .
Hence

om ·m(O)=B*={8ElRn
: maxllldlU :;;;1(8 ,d) ~1} .

More generally, for x not necessarily zero, (3.1) can be rewritten as

0111 · lII(x) = {8 E B* : (8, x) = maxuEB* (u , x ) = Illxlll} . (3.2)

All the points 8 in (3.2) have dual norm I; they form the face of B * exposed by x . 0
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Example 3.2 (Gauges) Suppose now that, rather than being compact, the C of Example 3.1
is closed and contains the origin as an interior point. Then , another example of a convex finite
function is its gauge ,e (Theorem C.1.2.S). Taking into account the correspondence between
supports and gauges - see Proposition C.3 .2.4 and Corollary C.3 .2.S - (3.1) can be copied if
we replace C by its polar set

C o := {x : (8,X) ~ 1 for all 8 E C} .

So we obtain
che(O) = C o, h e)' (0, ,) = vc ,

and of course, Proposition 2.1.5 applied to C o gives at x =1= 0

che(x) = Feo(x) and h e)'(x,.)=aFco(x) '

Gauges and support functions of elliptic sets deserve a more detailed study. Given a
symmetric positive semi-definite operator Q, define

IR
n

3 x H f(x) := V(Qx ,x)

which isjust the gauge of the sublevel-set {x: f(x) ~ I}. From elementary calculus,

af(x) = {Vf(x)} = {f~:)} for x ~ Ker Q

while, for x E Ker Q, 8 E af(x) if and only if, for all y E IRn

(8,Y - x) ~ v(Qy, y) = V(Q(y - x), y - x) = IIQ1
/

2
(y - x)ll·

From the Cauchy-Schwarz inequality (remember Example C.2.3.4), we see that af(x) is
the image by Ql /2 of the unit ball B(O,1). 0

Example 3.3 (Distance Functions) Let again C be closed and convex. Another finite con­
vex function is the distance to C: de( x) := min {lly - x II: y E C} , in which the min is
attained at the projection pe(x) of x onto C. The subdifferential of de is

{

Nc(x) n B(O,1) if x E C ,
ade(x) = { x-Pc(X)} if x d C

Ilx-pC(x )1I ~,

(3.3)

a formula illustrated by Fig. C.2.3.l when C is a closed convex cone. To prove it, we dis­
tinguish two cases . When x ~ C, hence de(x) > 0, we can apply standard differential
calculus:

_ r;:; _ Vd~(x)
Vd e(x) - VVdc(x) - 2de(x) ,

so we have to prove Vd~(x) = 2[x - pc(x)] . For this, consider zi := d~(x + h) - d~(x) .
Because d~(x) ~ IIx - pc(x + h)1I 2

, we have

.:1 ~ Ilx + h - pe(x + h)1I 2
- IIx - pe(x + h)1I 2 = IIhll2 + 2(h, x - pe(x + h» .

Inverting the role of x and x + h, we obtain likewise

.:1 ~ IIx + h - pc(x) 11
2 -llx - pe(x)1I2 = IIhll2 + 2(h,x - pc(x» .

Remembering from (A.3.l .6) that pc is nonexpansive: .:1 = 2(x - pe(x) , h) +o(lIhll), and
this is what we wanted .
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Now, for x E C, let S E adc(x) , i.e. dc(x ') ~ (s , x ' - x) for all x ' E R" . This implies
in particular (s , x ' - x ) ~ 0 for all x' E C, hence S E Nc(x ); and taking x' = x + s, we
obtain

II sI1 2
~ de(x + s ) ~ IIx+ s - xII = II sll ·

Conversely, let s E Ne (x ) n B (O , 1) and, for all x ' ERn, write

(s , x' - z ) = (s , x' - pc(x ' ) + (s , pe(x ' ) - x ) .

The last scalar product is nonpositive because s E Nc(x ) and, with the Cauchy-Schwarz
inequality, the property II sil ~ 1 gives

(s, x ' - pe(x ') ~ II x ' - pc(x ' ) II = dc(x') .

Altogether, s E ode (x). Note that the set of kinks of de is exactly the boundary of C.
Consider the closed convex cone K := Nc(x ), whose polar cone is K O= T e(x) . As

seen in Chap. C, more particularly in (C.3.3 .2), the support function of K ' = K n B(O, 1) is
the distance to the tangent cone T e(x) . From (3.3), we see that

d~(x , ·) = dTc (x) for all x E C .

Example 3.4 (Piecewise Affine Functions) Consider the function

Rn '3 x I-t f( x) := max {Ii( x) : j = 1, .. . , m}

o

(3.4)

where each Ii is affine: Ii (x) := Tj + (s j, x ) for j = 1, . .. , m .
To compute the first-order differential elements of f at a given x , it is convenient to

translate the origin at this x . Thus, we rewrite (3.4) as

f(y) = f( x) + max {- ej +(sj, y- x) : j =I , . .. ,m } (3 .5)

where we have set, for j = 1, .. . , m

ej := f( x) - Tj - (Sj, x) = f( x) - f j(x) ~ 0

(look at the left part of Fig. 3.1 to visualize ej ).

(3.6)

Fig. 3.1. Piecewise affine functions: translation of the origin and directional derivative

Now consider f( x +td), as illustrated on the right part of Fig. 3.1, representing the space
Rn around x . For t > 0 small enough, those j such that ej > 0 do not count. Accordingly,
set

J(x) := {j : ej = O} = {j : Ii (x ) = f( x)} .

Rewriting (3.5) again as

f( x+td) = f( x)+ tmax{(sj ,d) : j E J (x )} forsmall t> O,
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it becomes obvious that

J'(x,d) = max {(sj ,d) : j E J(x)}.

From the calculus rule C.3.3 .2(ii) and Definition 1.1.4, this means exactly that

af(x)=co{Sj : jEJ(x)} . (3.7)

This result will be confirmed in §4.4. We have demonstrated it here nevertheless in intu­
itive terms, because it illustrates the effect of the (important) max operation on the subdiffer­
entia!. 0

4 Calculus Rules with Subdifferentials

Calculus with subdifferentials of convex functions is important for the theory, just as
in ordinary differential calculus. Its role is illustrated in Fig. 4.0.1 : if f is constructed
from some other convex functions Is -the problem is to compute 8 f in terms of the
8 f/s.

Anew
convex function f

Their
subdifferentials

Onera\iOn on closed convex
t' Sets

Fig. 4.0.1. Subdifferential calculus

To develop our calculus rules, the two definitions 1.1.4 and 1.2.1 will be used.
Calculus with support functions (§C.3.3) will therefore be an essential tool.

4.1 Positive Combinations of Functions

Theorem 4.1.1 Let II, h be two convexfunctionsfrom jRn to jR and tb t2 be posi­
tive. Then

(4.1.1)

Proof. Apply Theorem C.3.3.2(i): h8II(x) + t28h (x) is a compact convex set
whose support function is

(4.1.2)

On the other hand, the support function of 8(tl II + t2h) (x) is by definition the
directional derivative (hii + t2h)'(x, ') which, from elementary calculus, is just
(4.1.2) . Therefore the two (compact convex) sets in (4.1.1) coincide, since they have
the same support function . 0
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Remark 4.1.2 Needless to say, the sign of tl and t2 in (4.1.1) is important to obtain a result­
ing function which is convex. There is a deeper reason, though: take /I (x) = h(x) = II xll ,
tl = -t2 = 1. We obtain /I - 12 == 0, yet tla/l (0) + t2ah(0) = B(O, 2), a gross over­
estimate of {O}! 0

To illustrate this calculus rule, consider f : RP x Rq -+ R defined by

with /I and 12 convex on RP and Rq respectively. First, call

RP x Rq '3 (XI , X2) f-t !1(XI,X2) = /I(XI)

the extension of /I ; its subdifferential is obviously a!l(x I ,X2) = a/l(xI) x {O}. Then
Theorem 4.1.1 gives, after the same extension is made with 12,

(4 .1.3)

Remark 4.1.3 Given a convex function f : R" -+ R, an interesting trick is to view its
epigraph as a sublevel-set of a certain convex function, namely :

Rn x R '3 (x ,r) f-t g(x,r) := f(x) - r .

Clearl y enough, epi f is the sublevel-set 80(g). The directional derivatives of 9 are easy to
compute: g' (z, f( x) j d, p) = !' (z, d) - p for all (d , p) E R" x Rand (4.1.3) gives for all
x E Rn

ag(x,f(x)) = af(x) x {-I} ~ O.

We can therefore apply Theorems 1.3.4 and 1.3.5 to g, which gives back the formulae of
Proposition 1.3.1:

T epij(X,J(X)) = {(d,p) : !,(x ,d) ~ p} ,
intTepij(x,J(x)) = {(d,p): !,(x ,d) < p} =1= 0 ,

Nepij(X,J(X)) = R+[af(x) x {-I}l .

4.2 Pre-Composition with an Affine Mapping

o

Theorem 4.2.1 Let A : IRn -+ IRm be an affine mapping (Ax = Aox + b, with Ao
linear and bE IRm ) and let 9 be afinite convexfunction on IRm . Then

o(goA)(x) = A~og(Ax) for all x E IRn . (4.2.1 )

Proof. Form the difference quotient giving rise to (g 0 AY(x, d) and usc the relation
A(x + td) = Ax + tAod to obtain

(g 0 A)' (x, d) = g' (Ax, Aod) for ali d E IRn
.

From Proposition C.3.3.3, the righthand side in the above equality is the support
function of the convex compact set A(';og(Ax) . 0
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This result is illustrated by Lemma 2.3.1: with fixed x, y ERn, consider the affine
mapping A : R ---+ R"

At := x + t(y - X) .
Then Aot = t(y - x) , and the adjoint of Ao is defined by Aii(8) = (y - x ,8) for all 8 E Rn

.

Twisting the notation, replace (n,m,x,g) in Theorem 4.2.1 by (l,n,t,f) : this gives the
subdifferential a'P of Lemma 2.3.1 .

As another illustration, let us come back to the example of §4.I. Needless to say, the
validity of (4.1.3) relies crucially on the "decomposed" form of f . Indeed, take a convex
function f : RP x Rq ---+ R and the affine mapping

RP 3 Xl H AXI = (XI ,X2) E RP x Rq .

Its linear part is XI H Aoxi = (X1,0) and Aii(81,82) = 81. Then consider the partial
function

f 0 A: RP 3 Xl H f~~)(X1) = f(X1, X2) .

According to Theorem 4.2. I,

af~~) (XI) = {81 E RP : 382 E R
q

such that (81,82) E af(X1 , X2)}

is the projection of af (x I , X2) onto RP. Naturally, we can construct likewise the projection
of af(X1, X2) onto Rq, which yields the inclusion

(4.2.2)

Remark 4.2.2 Beware that equality in (4.2.2) need not hold, except in special cases; for
example in the decomposable case (4.1.3), or also when one of the projections is a singleton,
i.e. when the partial function f~~) , say, is differentiable. For a counter-example, take p = q =
1 and

f(X1 , X2) = IXI - x21 + ~(X1 + 1)2 + ~(X2 + 1)2 .

This function has a unique minimum at (-1, -1) but, at (0,0), we haveaf~i)(O) = [0,2] for
i = 1,2; hence the righthand side of (4.2.2) contains (0,0). Yet, f is certainly not minimal
there, af(O, 0) is actually the line-segment {2(a , 1 - a) : a E [0, I]}. 0

4.3 Post-Composition with an Increasing Convex Function
of Several Variables

As seen in §B.5.2.I(d), post-composition with an increasing one-dimensional con­
vex function preserves convexity. A relevant object is the subdifferential of the re­
sult; we somewhat generalize the problem, by considering a vector-valued version
of this operation.

Let II, .. . ,f m be m convex functions from IRn to 1R; they define a mapping F
by

IRn 3 x H F(x) := (II(x), . .. , fm(x)) E IRm
.

Equip IRm with the dot-product and let g : IRm -+ IR be convex and increasing
componentwise, i.e

yi ;? zi for i = 1, . . . , m ==? g(y);? g(z).

Establishing the convexity of the function
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IRn 3 x f-t (g 0 F)( x) := g(ft (x) , ... , Im(x))

is an elementary exercise . Another easy observation is that, if (pI , . . . , pm) E
8g(y) , then each pi is nonnegative: indeed, {el , . . . , em} being the canonical ba­
sis in IRm

,

m

g(y) ? g(y - ej ) ? g(y) + I>i(-ej)i = g(y) - pi .
i=l

Theorem 4.3.1 Let I, F and g be defin ed as above. For all x E IRn ,

8(g 0 F)( x) = n:= ::l pis, : (pI , . .. , pm) E 8g(F(x)) ,
Si E 81i(x)for i = 1, . .. ,m}. (4.3.1 )

Proof [Preamble] Our aim is to show the formula via support functions, hence we
need to establish the convexity and compactness of the righthand side in (4.3.1) ­
call it S. Boundedness and closedness are easy, coming from the fact that a subdif­
ferential (be it 8g or 81i) is bounded and closed. As for convexity, pick two points
in S and form their convex combination

m m m

S = 0: I>isi + (1 - 0: ) I>'is~ = Z)o:piSi + (1- o:)p'iS~] ,
i=l i=l i=l

where 0: E ]0, 1[. Remember that each pi and p,i is nonnegative and the above sum
can be restricted to those terms such that pili := o:pi + (1 - o:)p,i > O. Then we
write each such term as

It suffices to observe that pili E 8g(F(x)), so the bracketed expression is in 8 l i(X);
thus S E S.

[Step 1] Now let us compute the support function CJs of S . For d E IRn , we denote
by F' (x ,d) E IRm the vector whose components are II( x, d) and we proceed to
prove

CJs(d) = g' (F( x), F' (x ,d)) .

For any S = L ::l piSi E S , we write (s, d) as

(4.3.2)

m m

Lpi(Si,d) ~ Lpilf(x ,d) ~ g'(F(x) , F'( x , d)) ;
i=l i=l

(4.3.3)

the first inequality uses pi ? 0 and the definition of lI(x , ') = CJ8/;(x) ; the second
uses the definit ion g'(F(x) ,·) = CJ8g( F( x))'

On the other hand, the compactness of 8g(F(x)) implies the existence of an
m-tuple ((i) E 8g(F(x)) such that
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m

g'(F(x), F'(x, d)) = LifI(x,d),
i=1

and the compactness of each a fi(X) yields likewise an Si E a f;(x) such that

fI(x ,d) = (Si, d) fori = 1, . .. ,m .

Altogether, we have exhibited an S = 2::1 piSi E S such that equality holds in
(4.3 .3), so (4.3.2) is established.

[Step 2] It remains to prove that the support function (4.3.2) is really the directional
derivative (g 0 F)' (x ,d). For t > 0, expand F(x + td), use the fact that 9 is locally
Lipschitzian, and then expand g(F(x + td)):

g(F(x + td)) = g(F(x) + tF'(x,d) + o(t)) = g(F(x) + tF'(x, d)) + o(t)
= g(F(x)) +tg'(F(x) ,F'(x,d))+o(t) .

From there , it follows

(g 0 F)' (x, d) := lim g(F(x + td)) - g(F(x)) = g' (F(x) , F' (x , d)) . 0
ito t

Let us give some illustrations:

- When 9 is differentiable at F(x), (4.3.1) has a classical flavour :

m a
a(g 0 F)(x) = L a gi (F(x))af;(x) .

i=1 y

In particular, with g(y1, . . . , ym) = 1/22::1(yi+)2 (r" denoting max {a,r}),
we obtain

a [~ 2::1 Ut)2] = 2::1 !ta/; .
- Take g(y1, . . . , ym) = 2::1 (yi)+ and use the following notation:

Io(x) := {i : /;(x) = a}, I+(x):= {i : fi(X) > a} .

Then

- Finally, we consider once more our important max operation (generalizing Exam­
ple 3.4, and to be generalized in §4.4):

Corollary 4.3.2 Let [s , . .. , fm be m convexfunctionsfrom IRn to IR and define

f := max{ft, · · · , fm} .

Denoting by I(x) := {i : fi(X) = f(x)} the active index-set, we have

af(x) = co {Uaf;(x) : i E I(x)}. (4.3.4)
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Proof. Take g(y) = max {yl , . . . , yrn }, whose subdifferential was computed in
(3.7): {eil denoting the canonical basis of IRrn ,

8g(y) = co {ei : i such that yi = g(y)} .

Then, using the notation of Theorem 4.3.1, we write 8g(F(x)) as

{(/ , . . . , prn) : pi = afor i ~ I (x) , pi ~ afor i E I (x) , i~ pi = 1} ,

and (4.3.1) gives

8f(x) = { L pi8fi(X) : pi ~ afori EI(x) , L pi = 1}.
i E l (x ) iE l (x )

Remembering Example A.I.3.5, it suffices to recognize in the above expression
the convex hullannounced in (4.3.4) D

4.4 Supremum of Convex Functions

We come now to an extremely important calculus rule, generalizing Corollary 4.3.2.
It has no equivalent in classical differential calculus, and is used very often. In this
subsection, we study the following situation : J is an arbitrary index-set, {Ji } jEJ is
a collection of convex functions from IRn to IR, and we assume that

f(x) := sup {Ji(x) : j E J } < +00 for all x E IRn
. (4.4.1)

We already know that f is convex (Proposition B.2.1.2) and we are interested in
computing its subdifferential. At a given x, call

J( x) := {j E J : Ji(x) = f(x)}

the active index-set (possibly empty) .
Let us start with an elementary result.

Lemma 4.4.1 With the notation (4.4.1), (4.4.2),

8f(x):> co {U8fj(x) : j E J(x)} .

(4.4.2)

(4.4.3)

Proof. Take j E J(x) and 8 E 8Ji(x) ; from the definition (1.2.1) of the subdiffer­
ential,

f(y) ~ Ji(y) ~ Ji(x) + (8,Y - x) for all y E IRn ,

so 8f(x) contains 8Ji(x) . Being closed and convex, it also contains the closed
convex hullappearing in (4.4.3). D

Conversely, when is it true that the subdifferentials 8 Ji (x) at the active indices
j "fill up" the whole of 8f(x)? This question is much more delicate , and requires
some additional assumption, for example as follows:
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Theorem 4.4.2 With the notation (4.4.1), (4.4.2), assume that J is a compact set (in
some metric space), on which the functions j H fj(x) are upper semi-continuous
for each x E IRn . Then

8 f (x) = co {u8 fj (x) : j E J (x)} . (4.4.4)

Proof [Step 0] OUf assumptions make J(x) nonempty and compact. Denote by S
the curly bracketed set in (4.4.4); because of (4.4.3), S is bounded, let us check that
it is closed. Take a sequence (Sk) C S converging to s; to each Sk. we associate
some jk E J(x) such that Sk E 8Jik (x), i.e.

Jik(y) ~ Jik(x) + (Sk ' Y - x) for all y E IRn
.

Let k -+ 00; extract a subsequence so that i» -+ j E J(x); we have fjk(X)
f(x) = fj(x) ; and by upper semi-continuity of the function 1(.) (y), we obtain

Ji(y) ~ lim sup fjk (y) ~ Ji(x) + (s,y - x) for all y E IRn
,

which shows S E 8Ji (x) C S. Altogether, S is compact and its convex hull is also
compact (Theorem A.l.4.3).

In view of Lemma 4.4.1, it suffices to prove the "C'-inclusion in (4.4.4); for this,
we will establish the corresponding inequality between support functions which, in
view of the calculus rule C.3.3.2(ii), is: for all d E IRn ,

t' (x, d) ~ as(d) = sup Uj(x, d) : j E J(x)} .

[Step 1] Let e > 0; from the definition (1.1.2) of I' (x, d),

f(x+tdj-f(x) >I'(x,d)-c forallt>O .

For t > 0, set

Jt := {j E J : Ji(x + t~) - f(x) ~ I'(x ,d) - c}.

(4.4.5)

(4.4 .6)

The definition of f(x + td) shows with (4.4.6) that Jt is nonempty. Because J is
compact and f(-) (x + td) is upper semi-continuous, Jt is visibly compact. Observe
that J, is a superlevel-set of the function

0< t H Ji(x + td) - Ji(x) + Ji(x) - f(x)
t t'

which is nondecreasing: the first fraction is the slope of a convex function, and the
second fraction has a nonpositive numerator. Thus, Jt 1 C Jt 2 for 0 < tl ~ t2.

[Step 2] By compactness, we deduce the existence of some j* E nt>oJt (for each
T E ]0, t], pick some jT E JT C Jt ; take a cluster point for T t 0: it is in Jt ). We
therefore have
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Ii· (x + td) - f( x) ;? t[f'(x , d) - s ] for all t > 0 ,

hence j* E J (x) (continuity of the convex function Ii . for t +0). In this inequality,
we can replace f( x) by Ii. (x) , divide by t and let t +0 to obtain

O"s(d) ;? fj. (x , d) ;? f'( x , d) - c.

Since dE IRn and c > 0 were arbitrary, (4.4 .5) is established. o

Some comments on the additional assumption are worth mentioning. First, the result
concerns aI(x) , for which it is sufficient to know I only around x . It therefore applies if we
have some neighborhood V of x , in which I is representable as

I(y) = sup {Ii(y) : j E J(V)} for all y E V ,

where J (V) is a compact set on which j H Ii (y) is upper semi-continuous whenever y E V .
Secondly, this assumption deals with j only but this is somewhat misleading. The convexity
of each Ii actually implies that I is jointly upper semi-continuous on J x R".

Finally, the set J is usually a subset of some RP and our assumption then implies three
properties: J is closed, bounded, and the /(.) are upper semi-continuous. Let us examine what
happens when one of these properties does not hold.

If J is not closed, we may first have J(x) = 0, in which case the formula is of no help.
This case does not cause much trouble, though: nothing is changed if J is replaced by its
closure, setting

jj (x) := lim sup Ii' (x)
j ' -tj

for j E (el J)\]. A simple example is

R"3 xHIi(x) := x-j with jEJ=]O,l] . (4.4.7)

Closing J places us in a situation in which applying Theorem 4.4.2 is trivial. The other two
properties (upper semi-continuity and boundedness) are more fundamental:

Example 4.4.3 [Upper Semi-Continuity] Complete (4.4.7) by appending 0 to J and set
lo(x) == 0; then I(x) = x+ and

J(x) = {{O} ~fx ~ 0 ,o If x > 0 .

Here, j H Ii (x) is upper semi-continuous at x = °only; J(O) yields 0/0(0) = {OJ C
01(0) = [0,1] and nothing more.

Observe that, introducing the upper semi-continuous hull j( o)(x) of /(.)( x) does not
change I (and hence af), but it changes the data, since the family now contains the additional
function jo(x) = x +. With the functions jj instead of Ii, formula (4.4.4) works.

[Roundedness] Take essentially the same functions as in the previous example, but with other
notation:

lo(x) ==0, I j(x)=x-j forj=1,2, . ..

Now J = N is closed, and upper semi-continuity of /(.)(x) is automatic; I( x) and J( x) are
as before and the same discrepancy occurs at x = 0. 0

A special case of Theorem 4.4.2 is when each Ii is differentiable (see Corol­
lary 2.1.4 to remember what it means exactly).
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Corollary 4.4.4 The notation and assumptions are those of Theorem 4.4.2. Assume
also that each Ii is differentiable; then

al(x) = co {\7Ii(x) : j E J(x)}. D

A geometric proof of this result was given in Example 3.4, in the simpler situa­
tion of finitely many affine functions Is Thus, in the framework of Corollary 4.4.4,
and whenever there are only finitely many active indices at z, aI (x) is a compact
convex polyhedron, generated by the active gradients at x.

The case of J (x) being a singleton deserves further comments. We rewrite
Corollary 4.4.4 in this case, using a different notation.

Corollary 4.4.5 For some compact set YeW, let 9 : IRn x Y -+ IR be a function
satisfying the following properties:

- for each x E IRn, g(x, .) is upper semi-continuous;
- for each y E Y, g(., y) is convex and differentiable;
- the function 1:= sUPyEY g(. , y) is finite-valued on IRn;

-atsomex E IRn, g(x,·) ismaximizedatauniquey(x) E Y.

Then I is differentiable at this x, and its gradient is

\7/(x) = \7xg(x,y(x))

(where \7xg(x , y) denotes the gradient ofthe function g(., y) at x).

(4.4.8)

D

Computing f at a given x amounts to solving a certain maximization problem, to obtain
a solution y' , say (which depends on x!) . Then a practical rule is: to obtain the gradient of
I, simply differentiate 9 with respect to x, the variable y being set to this value y'. If, by
any chance, no other y E Y maximizes 9 at this z, one does get \7 f (x). If not, at least a
subgradient is obtained (Lemma 4.4.1).

Remark 4.4.6 When Y is a finite set, Corollary 4.4.5 can be easily accepted (see Corol­
lary 4.3.2): when x varies, v' stays locally the same, just because each g(., y) is continuous.

When Y is infinite, however, a really baffling phenomenon occurs: although f is a fairly
complicated function, its gradient exists (!) and is given by the very simple formula (4.4.8) (!!)
This result is perhaps easier to accept if one looks at the following naive calculation.

Suppose that we are in a very favourable situation: Y is some space in which differen­
tiation is possible; g(.,.) is a smooth function; the problem maxg(x + h, ·) has a unique
solution for h close to 0; and finally, this unique solution y(.) is a smooth function. Then
write formally

\7f(x) = \7xg(x,y(x» + \7yg(x,y(x»\7y(x)

and here comes the trickery: because y(x) is a maximal point, g(x, ·) is stationary at y(x);
the second term is therefore zero. 0

4.5 Image of a Function Under a Linear Mapping

Let 9 : IRm -+ IR be a convex function and A : IRm -+ IRn a linear operator. We
recall from §B.2.4 that the associated function
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IRn 3 x M (Ag)(x) := inf {g(y) : Ay = x} (4.5.1 )

- I

is convex, provided that, for all z, 9 is bounded from below on A (x) ; besides, Ag
is finite everywhere if A is surjective. Analogously to (4.4.2), we denote by

Y(x) := {y E IRm
: Ay = x, g(y) = (Ag)(x)} (4.5.2)

the set of minimizers in (4.5.1).

Theorem 4.5.1 With the notation (4.5.1), (4.5.2), assume A is surjective. Let x be
such that Y (x) is nonempty. Then, for arbitrary y E Y (x),

-I

a(Ag)(x) = {s E IRn
: A* s E ag(y)} = (A*)[ag(y)]

(and this set is thus independent ofthe particular optimal y).

(4.5.3)

Proof. By definition, s E a(Ag)(x) if and only if (Ag)(x') ~ (Ag)(x) + (s, x' - x)
for all x' E IRn , which can be rewritten

(Ag)(x') ~ g(y) + (s, x' - Ay) for all x' E IRn

where y is arbitrary in Y(x). Furthermore, because A is surjective and by definition
of Ag, this last relation is equivalent to

g(y') ~ g(y) + (s,Ay' - Ay) = g(y) + (A*s,y' - y) for all y' E IRm

which means that A *s E ag(y). 0

The surjectivity of A implies first that (Ag) (x) < +00 for all x, but it has a
more interesting consequence:

Corollary 4.5.2 Make the assumptions of Theorem 4.5.J. If 9 is differentiable at
some y E Y(x) , then Ag is differentiable at x.

Proof. Surjectivity of A is equivalent to injectivity of A* : in (4.5.3), we have an
equation in s: A*s = \1g(y), whose solution is unique, and is therefore \1(Ag)(x).

o

A first example of image-function is when A is a restriction in a product space:
9 being a convex function on IRn x IRm

, consider the marginal function, obtained by
partial minimization of g:

(4.5.4)

This f is put under the form Ag, if we choose A : IRn x IRm --* IRn defined by
A(x,y) :=x.
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Corollary 4.5.3 Suppose that the subdijferential ofgin (4.5.4) is associated with a
scalar product ((' , .)) preserving the structure ofa product space:

(((x , y), (x' , y'))) = (x , X')n + (y , y')m for x , x' E IRn and y, y' E IRm .

At a given x E IRn, take an arbitrary y solving (4.5.4). Then

of (x ) = {s E IRn ; (s ,O) E O(x,y)g(x,y)}.

Proof With our notation, A's = (s ,O) for all s E IRn. It suffices to apply The­
orem 4.5.1 (the symbol O(x,y)g is used as a reminder that we are dealing with the
subdifferential of 9 with respect to the variable (' , .) E IRn x IRm). 0

If 9 is differenti able on R" x Rm and is minimized "at finite distance" in (4.5.4), then
the resulting f is differentiable (see Remark 4.5.2) . In fact,

and the second component \7yg(x , y) is 0 just because y minimizes 9 at the given x . We do
obtain \7 f(x) = \7xg(x , y) with y solving (4.5.4) .

A geometric explanation of this differentiability property appears on Fig. 4.5 .1; the
shadow of a smooth convex epigraph is normally a smooth convex epigraph .

f{n

\i1()C) j l~~ : I
//~----_._-_._~-_..._._;

_.~ ._. ~_ Rm
, Vex)

Fig. 4.5.1. The gradient of a marginal function

Remark 4.5.4 The following counter-example emphasizes the necessity of a minimizer y to
apply Theorem 4.5.1; the function

R2 3 (x , y) t-+ g(x , y) := Vx 2+ e2y

is convex (check it), perfectly smooth (COO), but "minimal at infinity" (for all x). The resulting
marginal function f (x) = IxI is not a smooth function. 0

Another important instance of an image-function was seen in §B.2.3: the infimal
convolution of two functions , defined by
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Recall from the end of §B.2.4 that this operation can be put in the form (4.5 .1),
by considering

JRn x JRn 3 (Yl ,Y2) 1-7 g(yI,Yz):= h(yt} + !z(yz) E JR ,
JRn x JRn 3 (Yl' yz) 1-7 A(Yl , yz) := Yl + yz E JRn .

Corollary 4.5.5 Let hand !z : JRn -+ JR be two convex functions minorized by a
common affine function. For given z , let (Yl , yz) be such that the inf-convolution is
exact at x = Yl + Yz, i.e.: (h t !z)(x) = h (Yl) + !z(yz). Then

(4 .5 .6)

Proof. First observe that A*8 = (8,8). Also, apply Definition 1.2.1 to see that
(81,8 2) E ag(Yl,YZ) if and only if sj E ah(yt} and s , E a!z(yz). Then (4.5.6) is
just the copy of (4.5.3) in the present context. 0

Once again, we obtain a regularity result (among others): \lUI t !z)(x) exists
whenever there is an optimal (Yl, Y2) in (4.5 .5) for which either I, or [z is differ­
entiable. For an illustration, see again Example B.2.3 .9, more precisely (B.2.3 .6) .

Remark 4.5.6 In conclusion, let us give a warning: the max-operation (§4.4) does not de­
stroy differentiability if uniqueness of the argmax holds. By contrast, the differentiability of
a min-function (§4.5) has nothing to do with uniqueness of the argmin.

This may seem paradoxical, since maximization and minimization are just the same op­
eration, as far as differentiability of the result f is concerned. Observe, however, that the
differentiability obtained in §4.5 relies heavily on the joint convexity of the underlying func­
tion 9 of Theorem 4.5. I and Corollary 4.5.3. This last property has little relevance in §4.4.

o

5 Further Examples

With the help of the calculus rules developed in §4, we can study more sophisticated
examples than those of §3. They will reveal, in particular, the important role of §4.4 :
max-functions appear all the time.

5.1 Largest Eigenvalue of a Symmetric Matrix

We adopt the notation of §B.l.3(e): in the space Sn(JR) of symmetric n x n matrices
equipped with ((' , .)), the function

is convex and can be represented as

(5.1.1)
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Furthermore, the set of optimal u in (5.1.1) is the set of normalized eigenvectors
associated with the resulting AI .

Thus, Corollary 4.4.4 will give the subdifferential of )\} if the gradient of the
function M f-7 u T M u can be computed. This is easy: by direct calculation, we
have

(5.1.2)

so the linear function u f-7 uTM u supports the singleton {uu T} , a rank-one matrix
of Sn(l~) (its kernel is the subspace orthogonal to u). The subdifferential of Al at
M is therefore the convex hull of all these matrices :

(5.1.3)

Naturally, this is the face of OA1(0) exposed by M, where oAdO) was given in
Example C.3.3.9 . It is the singleton {'V Al(M) = uu T} - where u is a normal­
ized corresponding eigenvector - if and only if the maximal eigenvalue Al of M is
simple.

The directional derivatives of Al can of course be computed : the support func­
tion of (5.1.3) is, using (5.1.2) to reduce superfluous notation,

P f-7 A~ (M, P) = max {u T Pit : u normalized eigenvector for Al(M)} .

Remark 5.1.1 It is tempting to think of the problem as follows.
- There are a finite number of eigenvalues;
- each one is a root of the characteristic polynomial of M, whose coefficients are smooth

functions of M ,
- therefore , each eigenvalue is a smooth function of M .
- As a result, >'1 is a max of finitely many smooth functions.

If this reasoning were correct, Corollary 4.4.4 would tell us that OAt(M) is a compact
convex polyhedron ; this is certainly not the case of the set (5.1.3)! The flaw is that the roots
of a polynomial cannot be enumerated . When they are all distinct , each can be followed by
continuity; but when two roots coincide, this continuity argument vanishes. 0

As an example, let us study the cone of symmetric negative semi-definite ma­
trices, i.e. the sublevel-set K - := {M : Al(M) ~ a}. Its boundary is the set of
matrices M E K- that are singular (-In has Al(-In) < 0, so Proposition 1.3.3
applies). For such M, Proposition 1.3.4 characterizes the tangent and normal cones
us K: atM:

TK-(M) = {P : uTpu ~ a forallu E KerM},
NK-(M) = co {uuT : u E KerM} .

If M =I- 0, Example A.5.2.6(a) gives a more handy expression for the normal cone:

NK-(M) = {P E Sn(l~) : P >;= 0, ((M ,P)) = a} .

In problems involving largest eigenvalues, the variable matrix M is often im­
posed a certain pattern. For example, one considers matrices with fixed off-diagonal
elements, only their diagonal being free. In that case, a symmetric matrix M o is
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given and the function to be studied is Al (Mo+ D), where D is an arbitrary diago­
nal n x n matrix. Identifying the set of such diagonals with lRn , we thus obtain the
function

This f is Al pre-composed with an affine mapping whose linear part is the op­
erator Ao : lRn -t Sn (lR) defined by

We have

n

((Ao(x) , M)) = L ~i Mii for all x E lRn and ME Sn(lR) .
i= 1

Knowing that lRn is equipped with the usual dot-product, the adjoint of Ao is there­
fore defined by

n

X T A~M = L ~iu; for all x E lRn and ME Sn(lR).
i=1

Thus, Ail : Sn (lR) -t lRn appears as the operator that takes an n x n matrix and
makes an n-vector with its diagonal elements. Because the (i,j) th element of the
matrix uu T is uiu j , (5.1.3) gives with the calculus rule (4.2 . I)

8f(x) = co{ ((u 1)2, . . . , (un )2) : unormalizedeigenvectoratf(x)} .

5.2 Nested Optimization

Convex functions that are themselves the result of some optimization problem are
encountered fairly often. Let us mention, among others, optimization problems issu­
ing from game theory, all kinds of decomposition schemes, semi-infinite program­
ming, optimal control problems in which the state equation is replaced by an inclu ­
sion, etc . We consider two examples below: partially linear least-squares problems,
and Lagrangian relaxation.

(a) Partially Linear Least-Squares Problems In our first example, there are three
vector spaces: lRn , lRrn and lRP , each equipped with its dot-product. A matrix A(x) :
lRrn -t lRP and a vector b(x) E JRP are given, both depending on the parameter
x E lRn . Then one considers the function

lRn x lRrn 3 (x ,y) ~ g(x ,y) := ~IIA(x)y - b(x)11 2
• (5.2.1)

The problem is to minimize g, assumed for simplicity to be convex jointly in x and
y.

It makes good sense to minimize 9 hierarchically: first with respect to y (x being
fixed), and then minimize the result with respect to x. In other words, the function
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IRn 3 x I-t f( x) := min {g(x,y) y E 1R17l
}

is imp ortant for the sake of min imizing g.
Since y is given by a linear least-squares sys tem

AT(x)[A( x)y - b(x)] = ° (5.2.2)

which has always a solution (not necessarily unique), we are right in the fram ework
of Corollary 4.5.3. Without any assumption on the rank of A( x) ,

(5.2.3)

Here y is any solution of (5.2.2) ; b' is the matrix who se kt h row is the derivative of
b with respect to the k t h component ~k of x; A' (y) is the matrix who se k t h row is
yT (A~)T; A~ is the derivative of A with respect to e.Thus, \7 f (x) is available as
soon as (5.2.2) is solved.

(b) Lagrangian Relaxation Our second example is of utmost practical importance
for many applications. Consider an optimization problem briefly described as fol­
lows. Given a set U and n + 1 functions Co, C1 , . . . ,Cn from U to IE., consider the
problem

I
SUP co(u) , uE U ,
Ci (U) = 0, for i = 1, ... , n . (5 .2.4)

Associated with this problem is the Lagrange function, which dep ends on u E U
and x = (e ,. ..,~n) E IRn , and is defined by

n

g(x ,u) :=Co(u ) +L~ici(U).
i=l

Then another important object is the so-called dual fun ction

f( x) := sup {g(x ,u ) : u E U}, (5.2.5)

and a relevant problem towards solving (5.2.4) is to min imize f . Needless to say,
this dual function is convex, being the supremum of the affine functions g(.,u) .
Also, \7xg(x, u) = c(u ), if c(u ) is the vector with components Ci (U), i = 1, . . . , n.
In the good case s, when the hypotheses of Theorem 4.4.2 bring no trouble, the
subdifferential is given by Corollary 4.4.4:

f) f (x) = co {c(u) : u E U(x)} (5.2.6)

where U(x) := {x E U : g(x ,u) = f( x)} is the optimal set in (5.2.5).
According to (5.2.6), the subgradients of f are obtained from the constraint­

values at those u solving (5.2.5) ; at least, the inclusion "::)" always hold s in (5.2.6) .
An x minimizing f is characterized by the following condition: for some positive
integer p :::; n + 1, there exist U1 ,.'" up in U(x) and a set of convex multipliers
0: = ( 0:1 , . .. ,O:p ) E L1p such that
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P

g(X,Uk) = f(x) and 2:>l'kC(Uk) = 0 E IRn
.

k=I

In particular, if g(x,') happens to have a unique maximum u, then p = 1, which
means that c(u) = O.

At a non-optimal x, Theorem 1.3.4 tells us that

int TSf( x)(x) = {d E IRn : dT c(u) < 0 for all U E U(x)}

is the set of d's satisfying !,(x, d) < 0; these are called "descent directions".

5.3 Best Approximation of a Continuous Function on a Compact Interval

Let T be a compact interval of IR and <Po a real-valued continuous function defined
on T . Furthermore, n functions <PI , . . . , <Pn are given in the space C(T) of real ­
valued continuous functions on T ; usually, they are linearly independent. We are
interested in finding a linear combination of the <p;'s which approximates <Po best,
in the sense of the max-norm. In other words, we want to minimize over IRn the
error-function

f(x) := max {Ig(x, t)1 : t E T}

where g denotes the function (affine in x)

n

g(x, t) := L ~i<pi(t) - <po(t) = [<p(tW x - <Po(t) .
i=I

(5.3.1)

(5.3.2)

Minimizing f is one of the simplest instances of semi-infinite programming: opti­
mization problems with finitely many variables but infinitely many constraints.

The error-function is convex and, once more, enters the framework of Corol­
lary 4.4.4 (observe in particular that Igi = max {g, -g}). We neglect the case of
an x with f(x) = 0, which is not particularly interesting: g(x, ') == 0, x is optimal
anyway. Denoting by H the (usually n-dimensional) subspace of C(T) generated by
the <Pi 'S, we therefore assume <Po ~ H .

Fix an x with f(x) > 0, and call T(x) C T the set of t yielding the max in
(5.3.1); T(x) is nonempty from our assumptions. At each such t, we can define
c(t) E {-I, +1} by

c(t)g(x, t) = f(x) for all t E T(x).

Then, 8f(x) is the convex combination of all the n-vectors c(t)<p(t), where t
describes T(x). Deriving an optimality condition is then easy with Corollary 4.4.4
and Theorem 4.1.1:

Theorem 5.3.1 With the notations (5.3.1), (5.3.2), suppose <Po ~ H. A necessary
and sufficient condition for x = (~1 , . .. ,~n) E IRn to minimize f of (5.3.1) is that,
for some positive integer p ~ n + 1, there exist p points tl, . .. , t p in T, p integers
cl, . .. , c p in {-1, +I} and p positive numbers 0:1, ... ,O:p such that
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n

L e<Pi(tk) - <PO(tk) = ck!(X) for k = 1, .. . , p,
i=l

p

L O:kck<Pi(tk) = °for i = 1, . .. , n
k=l

(or equivalently: L:f=l O:kck 'I/J(tk) = °for all 'I/J E H). 0

Indeed, this example is formally identical to Lagrangian relaxation; the possible
differences are usually in the assumptions on T, which plays the role ofU in §5.2(b).

6 The Subdifferential as a Multifunction

Section 2 was mainly concerned with properties of the "static" set o! (x) . Here, we
study the properties of this set varying with z, and also with [ ,

6.1 Monotonicity Properties of the Subdifferential

We have seen in §B.4.1 that the gradient mapping of a differentiable convex function
is monotone, a concept generalizing to several dimensions that of a nondecreasing
function . Now, this monotonicity has its formulation even in the absence of differ­
entiability.

Proposition 6.1.1 The subdifferential mapping is monotone in the sense that, for
all Xl and X2 in IRn ,

(6 .1.1)

Proof The subgradient inequal ities

!(X2) ;:: !(Xl) + (81 ,X2 - Xl ) for all 81 E o!(xd
!(Xl) ;:: !(X2) + (82 ,XI - X2) for all 82 E O!(X2)

give the result simply by addition . o

A convex function can be "more or less non-affine", according to how much its
graph deviates from a hyperplane. We recall, for example, that! is strongly convex
with modulus c > °on a convex set C when, for all Xl, X2 in C, and all 0: E )0,1[,
it holds

It turns out that this "degree of non-affinity" is also measured by how much (6.1.1)
deviates from equality : the next result is to be compared to Theorems B.4.1.1 (ii)­
(iii) and B.4.1.4, in a slightly different setting : ! is now assumed convex but not
differentiable.



(6.1.4)

200 D. Subdifferentials of Finite Convex Functions

Theorem 6.1.2 A necessary and sufficient for a convex f unction f : ~n -+ ~ to be
strongly convex with modulus c > °on a convex set C is: fo r all X l> X2 in C,

f( X2) ;;:: f( XI) + (s , X2 - Xl ) + ~ I IX2 - xll12 f or all s E8 f(x d , (6.1.3)

or equivalently

(S2 - SI,X2 - Xl );;:: cllX2 - xll12 fo r all Si E 8f(Xi) , i = 1,2 .

Proof. For Xl, x2 given in C and a E ]0, 1[, we will use the notation

xC> := aX2 + (1 - a )x l = Xl + a (x2 - x d

and we will prove (6.1.3) => (6.1.2) => (6.1.4) => (6.1.3).

[(6.1.3) => (6.1.2)] Write (6.1.3) with Xl replaced by xC> E C : for s E 8 f (xc»,

f( X2) ;;:: f( x C» + (S, X2 - xc» + ~l lx2 - xc> 112,

or equivalently

f( X2) ;;:: f( x C» + (1- a) (s,x2 - Xl ) + ~ ( 1 - a)211x2 - x1112.

Likewise ,

f( Xl) ;;:: f( x C» + a (s,xl - X2 ) + ~a2 1lx l - x2 112.
Multipl y these last two inequalities by a and (1 - a ) respectively, and add to

obtain

a f (x2) + (1 - a )f (x d ;;:: f( x C» + ~llx2 - xdl2[a(1 - a )2+ (1 - a )a2].

Then realize after simplification that this is ju st (6.1.2).

[(6.1.2) => (6.1.4)] Write (6.1.2) as

f( x C» - f( Xl) C 2
a + 2(1 - a)llx2 - xdl ~ f( X2) - f( xd

and let a -!- °to obtain f'( Xl ' X2 - x d + ~ lIx2 - Xl 11 2 ~ f( X2) - f (xd, which im­
plies (6. 1.3). Then, copying (6.1.3) with Xl and X2 interchanged and adding yields
(6.1.4) directly.

[(6.1.4) => (6.1.3)] Apply Theorem 2.3.4 to the one-dimensional convex function
~ 3 a t-+ cp(a ) := f( x C» :

f( x2)-f(xd= cp(I)- cp(0) = ll(sc> , X2- XI)da (6.1.5)

where s" E 8f(x C» for a E [0,1] . Then take S l arbitrary in 8 f (XI) and apply
(6.1.4) : (sC> - Sl, xC> - Xl ) ;;:: cllxC> - xll12i.e., using the value of xC>,

a (sC>,x2 - Xl );;:: a (Sl,X2 - Xl ) + ca2 11x2 - xdl2 •

The result follows by using this inequality to minorize the integral in (6.1.5). 0
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Monotonicity properties of {}f characterize strictly convex functions in just the
same way as they do for strongly convex functions .

Proposition 6.1.3 A necessary and sufficient condition for a convex function f
IRn -+ IR to be strictly convex on a convex set C is: for all Xl , X2 E C with X2 =j:. Xl,

or equivalently

(S2-SI,X2-XI»O forall SiE{}f(Xi), i=1,2.

Proof. Copy the proof of Theorem 6.1.2 with c = 0 and the relevant "~"-signs

replaced by strict inequalities. The only delicate point is in the [(6.1.2) ~ (6.1.4)]­
stage: use monotonicity of the difference quotient. 0

6.2 Continuity Properties of the Subdifferential

Our aim here is to study continuity properties of the subdifferential: to what extent
can we say that {} f (x) "varies continuously" with z, or with f? We are therefore
dealing with continuity properties of multifunctions, and we refer to §O.5 for the
basic terminology.

We already know that {}f (x) is compact convex for each z, and the next two
results concern "global" properties .

Proposition 6.2.1 Let f : IRn -+ IR be convex. The graph of its subdijferential
mapping is closed in IRn x IRn .

Proof. Let (x k, S k) be a sequence in gr {}f converging to (x , s) E IRn x IRn . We
must prove that (x, s) E gr {}i, which is easy. We have for all k

pass to the limit on k, using continuity of f and of the scalar product. o

Proposition 6.2.2 The mapping {} f is locally bounded, i.e. the image {} f(B) of a
bounded set B c IRn is a bounded set in IRn .

Proof. For arbitrary x in Band S =j:. 0 in {}f(x) , the subgradient inequality im­
plies in particular f(x + s/llsll) ~ f(x) + Iisil. On the other hand, f is Lipschitz­
continuous on the bounded set B + B(O, 1) (Theorem B.3.1.2). Hence IIsll :s; L for
someL. 0

Remark 6.2.3 Combining these two results, we obtain a bit more than compact­
valuedness of {}f, namely: the image by {}f of a compact set is compact. In fact,
for (Xk) in a compact set, with a subsequence (Xk')' say, converging to x, take Sk E
{}f(Xk) and extract the subsequence (Sk') ' From Proposition 6.2.2, a subsequence
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of (SkI) converges to some S E jRn ; from Proposition 6.2.1, S E 8 f (x) . As ano ther
consequence, we obtain for example: the image by 8 f of a compact connected set
is compact connected.

On the other hand, the image by 8f of a convex set is certainly not convex
(except for n = 1, where convexity and connectedness coincide): take for f the e1­

norm on jR2; the image by 8f of the unit simplex .,12 is the union of two segments
which are not collinear.

Concerning the graph of8f, the same type of results hold: if K c jRn is compact
connected, the set

{(x , s) E jRn x jRn : x E K , S E 8 f (x )}

is compact connected in jRn x jRn . Also, it is a "skinny" set because 8f(x) is a
singleton almost everywhere (Theorem B.4.2.3). 0

Thanks to local boundedness, our mapping 8f takes its values in a compact set
when the argument x itself varies in a compact set ; the "nice" form (0.5.2) of outer
and inner semi-continuity can then be used.

Theorem 6.2.4 The subdifferential mapping of a convex fun ction f : jRn -+ jR is
outer semi-continuous at any x E jRn, i.e.

V'€ >0,38 >0 : YEB( x ,8) ===} 8f(y)c 8f(x)+B(0, €) . (6.2.1)

Proof. Assume for contradiction that, at some z, there are e > °and a sequence
(Xk, skh with

Xk -+ x for k -+ 00

Sk E 8f(Xk)' Sk f.8f(x) + B(O, €)
and
for k = 1,2, . . .

(6.2.2)

A subsequence of the bounded (Sk) (Proposition 6.2.2) converges to S E 8f(x )
(Proposition 6.2.1). Thi s contradicts (6.2.2), which implies S f. 8 f( x) + B(O, 1/ 2€).

o
In terms of directional derivatives , we recover a natural result, if we remember

that 1'(.,d) is an infimum of continuous functions [f( . + td) - fOJlt over t > 0:

Corollary 6.2.5 For f : jRn -+ jR convex, the fun ction I' (.,d) is upper semi­
continuous: at all x E jRn ,

I' (x , d) = lim sup I' (y,d) for all dE jRn .
y-tx

Proof. Use Theorem 6.2.4, in conjunction with Proposition C.3.3.7. 0

Remark 6.2.6 If f is differentiable at z, then Theorem 6.2.4 reads as follows: all
the subgradients at y tend to \7 f( x) when y tends to x . The inner semi-continuity
then follows: 8 f is actually continuous at x. In particular, if f is differentiable on
an open set [2 , then it is continuously differentiable on [2.

In the general case, however, inner semi-continuity is hopeless: for n = 1 and
f( x) := lxi ,8 f is not inner semi-continuous at 0: 8 f(O) = [-1,+l]is much larger
than , say, 8f(x) = {l} when x> O. 0
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All the previous results concerned the behaviour of 8 f (x) as varying with x.
This behaviour is essentially the same when f varies as well.

Theorem 6.2.7 Let Uk) be a sequence of (finite) convex functions converging
pointwise to f : jRn -+ jR and let (Xk) converge to x E jRn. For any e > 0,

8/k(Xk) c 8f(x) + B(O,e) for k large enough .

Proof. Let e > 0 be given. Recall (Theorem B.3.IA) that the pointwise convergence
of (/k) to f implies its uniform convergence on every compact set of jRn.

First, we establish boundedness: for Sk :j:. 0 arbitrary in 8fk(Xk), we have

The uniform convergence of (/k) to f on B(x, 2) implies for k large enough

and the Lipschitz property of f on B(x, 2) ensures that (Sk) is bounded.
Now suppose for contradiction that, for some infinite subsequence, there is some

Sk E 8fk(Xk) which is not in 8f(x) + B(O,c). Any cluster point of this (Sk) - and
there is at least one - is out of 8 f(x) + B(O, 1/2 c). Yet, with y arbitrary in jRn, write

and pass to the limit (on a further subsequence such that Sk -+ s): pointwise [resp.
uniform] convergence of Uk) to f at y [resp . around z], and continuity of the scalar
product give f(y) ;;:: f(x) + (s, Y - x) . Because y was arbitrary, we obtain the
contradiction S E 8f(x) . 0

The differentiable case is worth mentioning:

Corollary 6.2.8 Let (/k) be a sequence of (finite) differentiable convex functions
converging pointwise to the differentiable f : jRn -+ Ilt Then \7 fk converges to \7 f
uniformly on every compact set ofjRn .

Proof. Take S compact; suppose for contradiction that there exist e > 0 and a
sequence (Xk) C S such that

Extracting a subsequence if necessary, we may suppose Xk -+ xES; Theo­
rem 6.2.7 assures that the sequences (\7 fk(Xk)) and (\7 f(Xk)) both converge to
\7 f(x), implying 0;;:: e. 0



204 D. Subdifferentials of Finite Convex Function s

6.3 Subdifferentials and Limits of Subgradients

One of the main results of the previous section was the outer semi-continuity of the subdif­
ferential : (6.2.1) just means that this latter set contains all the possible limits of subgradients
calculated at all neighboring points .

It turns out that some sort of converse can be proved. Indeed consider sequences (Yk)
such that f is differentiable at each Yk. Recall from Theorem B.4.2.3 that f is differentiable
except possibly on a set of measure zero; call it d e, i.e.

Y E ,1 ¢:::::> Of(y) = {\7 f(y)} .

Thus , even if our given x is not in ,1, we can construct a sequence (Yk) C ,1 with
Yk -+ x . The corresponding sequence (\7 f(Yk» is bounded (by a Lipschitz constant of f
around z ), so we can extract some cluster point; according to §6.2, any such cluster point lies
in [)f( x) . Then we ask the question : how much of [)f( x) do we cover with all the possible
subgradients obtained with this limiting process ?

Example 3.4 can be used to illustrate the construction above: with the x of the right part
of Fig. 3.1, we let (Yk) be any sequence tending to x and keeping away from the kinky line
where h = h . For example , with the d of the picture , we can take Yk := x + (_l)kdfk, in
which case the corresponding sequence (\7 f(Yk» has two cluster points 81 and 82 - and our
set of limits is complete : no other sequence of gradients can produce another limit.

Observe in this example that [)f( x) is the convex hull of the cluster points 81 and 8 2 thus
obtained . It turns out that this is always the case. Setting

'Y f (x ) := {8 : 3(Yk) C ,1 with Yk -+ x , \7f(Yk) -+ 8}, (6.3.1)

it is rather clear that 'Yf (x) C co 'Yf (x) C [)f (x) . The next result, given without proof,
establishes the converse inclusion .

Theorem 6.3.1 Let f : R" -+ R be convex. With the notation (6.3.1), [)f(x) = cO'Y f (x )
for all x E R" , D

In summary, the subdifferential can be reconstructed as the convex hull of all possible limits
of gradients at points Yk tending to x. This gives a fourth possible definition of the subdiffer­
ential, in addition to I. 1.4, 1.2.1 and 1.3.I.

Remark 6.3.2 As a consequence of the above characterization, we indicate a practical trick
to compute subgradients: pretend that the function is differenti able and proceed as usual in
differential calculus . This "rule of thumb" can be quite useful in some situat ions .

For an illustration, consider the example of §5.1. Once the largest eigenvalue A is com­
puted, together with an associated eigenvector u, just pretend that A has multiplicity I and
differentiate formally the equation M U = AU. A differential dM induces the differenti als dA
and du satisfying M du + dM u = Adu + dA u .

We need to eliminate du; for this, premultiply by u T and use symmetry of M , i.e.
u T M = AUT :

AUT du + UT dM u = AUT du + dA u T u .

Observing that u T dM u = UUT dM, dA is obtained as a linear form of dM:

uuT

dA = - dM = S dM .
uTu

Moral : if A is differentiable at M, its gradient is the matrix S; if not, we find the expression
of a subgradient (depending on the particular u) .

This trick is only heuristic , however, and Remark 4.1.2 warns us against it: for n = 1,
take f = h - h with /I (x) = h(x) = [z] : if we "differentiate" naively /I and [z at 0
and subtract the "derivatives" thus obtained, there are 2 chances out of 3 of ending up with a
wrong result. D
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Example 6.3.3 Let d e be the distance-function to a nonempty closed convex set C. From
Example 3.3, we know several things : the kinks of d e form the set Llc = bd C ; for x E
int C , Vdc(x) = 0; and

x - pc(x)
Vde(x) = IIx _ pe(x)1I for x f/. C . (6.3.2)

Now take z'o E bdC; we give some indications to construct adc(xo) via Theorem 6.3.1
(draw a picture).

- First , , de (x o) contains all the limits of vectors of the form (6.3.2), for x --+ X O, x f/. C.
These can be seen to make up the intersection of the normal cone Ne( xo) with the unit
sphere (the multifunction x t---+ ode (x) is outer semi-continuous).

- If int C =1= 0,append {OJ to this set ; the description of ,de(xo) is now complete.
- As seen in Example 3.3, the convex hull of the result must be the trunc ated cone Nc(xo) n

B (O , 1). This is rather clear in the second case, when 0 E , de (x o); but it is also true even
if int C = 0: in fact Ne(xo) contains the subspace orthogonal to aff C , which in this case
contains two opposite vectors of norm I. 0

To conclude, let us give another result specifying the place in a!(x) that can be reached
by sequences of (sub)gradients as above.

Proposition 6.3.4 Let x and d =1= 0 be given in R" . For any sequence (t k , Sk, dk) c lRt x
R" x lRn satisfying

tktO , SkEa!(x+lkdk), dk--+d , !ork=I ,2, . ..

and any cluster point S O!( Sk), there holds

SEa!(x) and (s,d) = J'(x ,d) .

Proof The first property comes from the results in §6.2. For the second, use the monotonicity
of a!:

0::;; (Sk - s',x + tkdk - x ) = tk(Sk - S' ,dk) for all s' E a!(x) .

Divide by tk > 0 and pass to the limit to get J'(x , d) ::;; (s , d).The converse inequality being
trivial , the proof is complete. 0

In other words, tending to x "tangentially" to some directi on d produces a subgradi­

ent which is not arbitrary, but which lies in the face Faj(x)(d) exposed by the direction d.
When this direction describes the unit sphere, each exposed face of at (x) is visited (Propo­

sition C.3 .1.5). From this observation, we realize that the whole boundary of a!(x) is thus

visited .

Exercises

1. For f : IRn --t IR convex and s E <7 f(x), show that f( x + t s) ~ f( x) +tilsII 2 for
all t ~ O. Deduce that, for such an f, the image by <7f of a compact set is compact
[hint : use bounds of fl .
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2*. Let f : IRn -+ IR be convex . For given z, establi sh the following relations :

min {c~ °: f( x + d) ~ f( x) - clldll for all d E IRn} = min Il sll ;
s E8 j( x )

1
- sup{f(x+d)-f(x) : Ildll ~E} ~ max IIsll , for all s » 0 ;
E s E8 j (x )

8f(x) = nco{8f(x+d) : Ildll < E} .
,,>0

3*. Let GI and G2 be convex and set G := GI + G2. For Xi E Gi, i = 1,2, take
x := Xl + x2 E G.
-Show that Nc(x) = Nc ,(xd nNC2(X2).
- Deduce an expre ssion of 8dc(x) using 8dc, (Xi), i = 1,2.

4 *. Let cp : IR -+ IR be nondecreasing and set f( x) := J; cp(t )dt . Show that
8f(x ) = [cp(x-) , cp(x+)) (the segments whose endpoints are the left- and right­
limits of .p at x ).

5*. Let f : IRn -+ IR be convex. For given X E IRn , define

. { f( x') - f( x)}
l j (x ) := min o , :~ Ilx' _ xii .

Show thatej(x) = min {iisil : s E 8f(x)}.

6**. Let f : IR2 -+ IR be convex and twice continuously differentiable, with
det \72 f( x) = 1 for all x E IR2 . Show that \7 f is actually constant over IR2 (and
hence f is a strongly convex quadratic function) ; this is a theorem due to K. Jergens
(1954).

7*. Let f ,g : IRn -+ IR be two convex functions such that 8f(x) n 8g(x) i=- 0 for
all x E IRn . Show that f - g is actually constant.

8. Let f ,g : IRn -+ IR be two convex function s such that f + g is differentiable.
Show that f and g are actually differentiable.

9*. Let f : la,b[ -+ )0, +oo[ be concave. Show that g := 1/f is convex and

8(- J)( x) = [f( X)) 28g(x) for all x E la,b[ .

10**. Consider the affine function

IRn 3 x f-7 ft( x) := tx + JI=t2 ,
where t is a parameter in T := [-1 , +1).

What is the function SUPtET ft ? Illustrate on this example the formul a giving
the subdifferential of a supremum.



Exercises 207

II **. Consider the convex functions defined on JR2 by

{
h (X) := e ,

x = (~, TJ) r-+ h(x) := o:e + TJ ,

where 0: E ]0,1[ is a fixed parameter. Set f(x) := max {h (x) , h(x)}.
- Show directly that 0 minimizes f; compute a f (0) and realize that °E a f (0).
- Compute directly the directional derivative l' (0, -); realize that it coincides with

uof(O) O·
- Show that the "second-order difference quotient"

JR2 °-J. h (h) '= f(h) - f(O) - 1'(0, h)
3 r r-+ Q2· ~ IIhl1 2

has a limit when h = td with d fixed in JR2 and t -1- 0. Compute this limit as a
function of d and 0:. Study more particularly the case d = (±1 ,0).

- For given f , compute TJ(~) solving h (~, TJ) = h(~, TJ) . Show that Q2(~ , TJ(~)) has
a limit when ~ -+ 0.

- Compute the function

JR 3 ~ r-+ e(~) := min {f(~, TJ) : T/ E JR} .

Show that e(~) = f(~ , TJ) for any TJ :s; TJ(~) . Give the first and second derivatives
oU at 0.

12*. Let f and g be two convex increasing functions from JR to JR+.
- Show that f g is convex increasing;

- check that aUg)(x) = f(x )ag(x) + g(x)a f(x) for all x E lIt

13. Let C be convex compact and d :f 0. Show that auc(d) is the face ofC exposed
by d.

14. Let f : JRn -+ JR be such that a f (x) :f 0 for all x E JRn . Show that f is convex.

15*. Let f : JRn -+ JR be convex and take r < f (x). Denote by (x, r) the projection
of (x , r) onto epi f . Show that f(x) = rand

x-x
f(x) - r E af(x)

(draw a picture).

16*. This exercise illustrates §5.2(b). For given positive numbers V, VI , • . • , V m ,

Cl, . •. ,Cm , consider the convex, finite-valued function f : JR -+ JR defined by

f(x) := max {Vx + ~ (c, - XVi)Ui : Ui E {O, I} fori = 1, ... ,m}. (*x)
t=1
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(i) Compute the subdifferential of f, depending on the position of x with respect
to the ratios C;/Vi'

(ii) Show that f and 8 f coincide with the values and subdifferentials of the func­
tion defined by

(iii) Find the necessary and sufficient condition on V so that f is bounded from
below and attains its minimum.

(iv) Express the optimality condition for an x minimizing f, in terms of the u's
optimal in (*x) [resp. (**x)].

J7**. This is also an illustration of §5.2(b), in a more complicated situation . All
spaces IRk considered are equipped with the standard dot product. For x E IRn we
form

- the symmetric m x m matrix Q(x) := Qo + 2::7=1 XiQi,
- the m-vector b(x) := bo + 2::7=1 Xibi,
- the number c(x) := Co + 2::7=1 XiCi,
where each Qi E Sm(IR), bi E IRm and c; E IR is given. Then we define the function
f E Conv IRn by

x I-t f(x) := sup {c(x) + 2b(xr u - u T Q(x)u : u E IRm} .

What is its domain? Show thatintdomf = D:= {x E IRn : Q(x) >- O} .Compute
8 f (x) for xED; deduce that f is continuously differentiable on D.

Now let H be a subspace of IRm and define the function

What is the domain of ln and its interior DH ? Show that inf [n :s; inf f.
Suppose H is given explicitly as H = {x : Ax = O},with A : IRm -+ W linear.

Define the function 'P E Conv IRnx p , whose value at (x, y) is

What is dom 'P? Show that 'P is differentiable on D x IRP and deduce

fH(X) = inf 'P(x, y) , for all xED,
yElR p

hence
inf 'P(x,y) = inf fH(X) ~ inf fH(X).

(x ,y)ElRnx lRp xES! xElR n

J8. Let f : IRn -+ IR be convex piecewise affine. Show that, given x E IRn, there is
e > 0 such that8f(x') C 8f(x) whenever Xl E B(x,c).



E. Conjugacy in Convex Analysis

Introduction In classical real analysis, the gradient of a differentiabl e function f :
jRn -+ jR plays a key role - to say the least. Considering this gradient as a mapping
x 1-7 s(x ) = \1f(x) from (some subset X of) jRn to (some subset 5 of) jRn , an
interesting object is then its inverse: to a given s E 5, associate the x E X such that
s = \1 f( x) . This question may be meaningless : not all mappings are invertible! but
could for example be considered locally, taking for X x 5 a neighborhood of some
(xo, So = \1 f(xo)), with \12f continuous and invertible at Xo (use the local inverse
theorem).

Let us skip for the moment all such technicalities. Geometrically, we want to
find x such that the hyperplane in jRn x jR defined by the given (s , -1), and passing
through (x , f(x)), is tangent to gr f at x ; the problem is meaningful when this x
exists and is unique. Its construction is rather involved but analytically , an amazing
fact is that the new mapping x (· ) = (\1f)- I thus defined is itself a gradient map­
ping: say x( ·) = \1h, with h : 5 c jRn -+ lR. Even more surprising: this function h
has a simple expression, namely

53 s 1-7 h(s) = (s , x(s)) - f( x(s)) . (0.1)

To explain this, do a formal a posteriori calculation in (0.1): a differential ds induces
the differentials dx and dh, which are linked by the relation

dh = (s ,dx) + (ds , x ) - (\1 f(x) ,dx) = (s, dx) + (ds , x ) - (s , dx) = (ds , x)

and this defines x as the gradient of h with respect to s .

Remark 0.1 When \1f is invertible, the function

is called the Legendre transform (relative to f) . It should never be forgotten that,
from the above motivation itself, it is not really the function h which is primarily
interesting, but rather its gradient \1h. 0

The gradients of f and of h are inverse to each other by definition, so they
establish a reciprocal correspondence:

s = \1f(x) {:::::::} x = \1h(s) . (0.2)

J. -B. Hiriart-Urruty et al., Fundamentals of  Convex Analysis

© Springer-Verlag Berlin Heidelberg 2001
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In particular, applying the Legendre transform to h, we have to get back f . This
symmetry appears in the expression of h itself: (0.1) tells us that, for x and s related
by (0.2), f(x) + h(s) = (s, x).

Once again, the above statements are rather formal, insofar as they implicitly
assume that (\7 f)-I is well-defined. Convex analysis, however, provides a nice
framework to give this last operation a precise meaning.

First of all, observe that the mapping x I---t \7 f(x) is now replaced by a set­
valued mapping x t---+ 8 f (x) - see Chap. D. To invert it is to find x such that 8 f (x)
contains a given s; and we can accept a nonunique such x: a set-valued (8f) -1 will
be obtained, but the price has been already paid anyway.

Second, the construction of x(s) is now much simpler: s E 8 f (x) means that
oE 8 f (x) - {s} and, thanks to convexity, the last property means that x minimizes
f - (s, .) over IRn . In other words, to find x( s), we have to solve

inf{J(x)-(s,x): XEIRn
} . (0.3)

The Legendre transform - in the classical sense of the term - is well-defined when
this problem has a unique solution. At any rate, note that the above infimal value is
always well-defined (possibly -00); it is a (nonambiguous) function of s, and this
is the basis for a nice generalization.

Let us sum up: if f is convex, (0.3) is a possible way of defining the Legendre
transform when it exists unambiguously. It is easy to see that the latter holds when
f satisfies three properties:

- differentiability - so that there is something to invert;

- strict convexity - to have uniqueness in (0.3);

- \7 f(IRn) = IRn - so that (0.3) does have a solution for all s E IRn; this latter
property essentially means that, when Ilxll --+ 00, f(x) increases faster than any
linear function: f is l-coercive.

In all other cases, there is no well-defined Legendre transform; but then, the
transformation implied by (0.3) can be taken as a new definition, generalizing the
initial inversion of \7f. We can even extend this definition to nonconvex[, namely
to any function such that (0.3) is meaningful! Finally, an important observation is
that the infimal value in (0.3) is a concave, and even closed, function of s; this is
Proposition B.2.l .2: the infimand is affine in s, f has little importance, IRn is nothing
more than an index set.

The concept of conjugacy in convex analysis results from all the observations
above, and has a number of uses:

- It is often useful to simplify algebraic calculations;

- it plays an important role in deriving duality schemes for convex minimization
problems;

- it is also a basic operation for formulating variational principles in optimization
(convex or not);

- and this has applications in other areas of applied mathematics, such as probabil­
ity, statistics, nonlinear elasticity, economics, etc.
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1 The Convex Conjugate of a Function

1.1 Definition and First Examples

As suggested by (0.3), conjugating a function f essentially amounts to minimi zing
a perturbation of it. There are two degenerate situations we want to avoid :

- the result is +00 for some 8 ; observe that this is the case if and only if the result
is + 00 for all 8;

- the result is - 00 for all 8 .

Towards this end, we assume throughout that f : IRn -+ IR U{+oo} (not necessarily
convex) satisfies

f =:j. + 00 , and there is an affine function minorizing f on IRn • (1.1.1)

Note in particular that this implies f( x) > - 00 for all x . As before, we use the
notationdomf := {x : f( x) < + oo} i- 0. We know fromPropositionB.1.2.1 that
(1.1 .1) holds for example if f E Cony IRn .

Definition 1.1.1 The conjugate of a funct ion f satisfying (1.1.1) is the function f*
defined by

IRn :,) 8 t-7 1* (8) := sup {(8, x ) - f( x) : x E dom f} . (1.1.2)

For simplicity, we may also let x run over the whole space instead of dom f.
The mapping f t-7 f* will often be called the conjugacy operation, or the

Legendre-Fenchel transform . 0

A very first observation is that a conjugate function is associ ated with a scalar
produ ct on IRn : f* changes if (., .) changes. Of course, note also with relation to
(0.3) that f* (8) = - inf {f(x) - (8, x ) : x E dom f} .

As an immediate consequence of (1.1.2), we have for all (x, 8) E dom f x IRn

f*( 8) + f( x) ~ (s, x) . ( 1.1.3)

Furthermore, this inequality is obviously true if x rf. dom f : it does hold for all
(X,8) E IRn x IRn and is called Fenchel's inequality. Another observation is that
f* (8) > -00 for all 8 E IRn ; also, if x t-7 (80 , x ) + ro is an affine function smaller
than f, we have

-1*(80) = inf(f(x) - (so, x )] ~ ro, i.e. f*(80) ~ - ro < + 00 .
x

In a word, f* satisfies (1.1.1).
Thus, dom f* is the set of slopes of all the possible affine functions minori zing

f over IRn . Likewise, any 8 E dom f is the slope of an affine function smaller than
f*.
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Theorem 1.1.2 For f satisfying (1.1.1), the conjugate 1* is a closed convex func­
tion: 1* E Conv IRn .

Proof. See Example B.2.1.3. o

Example 1.1.3 (Convex Quadratic Functions) Let Q be a symmetric positive def­
inite linear operator on IRn , b E IRn and consider

f(x) := !(x, Qx) + (b, x ) for all x E IRn
. (1.1.4)

A straightforward calculation gives the optimal x = Q-l(S - b) in the defining
problem (1.1.2), and the resulting 1* is

1*(s) = !(s - b,Q-l(S - b)) for all s E IRn .

In particular, the function 1/211 . 112is its own conjugate.
Needless to say, the Legendre transformation is present here , in a particularly

simple setting: \7 f is the affine mapping x 1-7 Qx + b, its inverse is the affine map­
ping s 1-7 Q-l (s - b), the gradient of 1*.What we have done is a parametrization
of IRn via the change of variable s = \7 f(x) ; with respect to the new variable, f is
given by

f(x( s)) = !(Q-l(S - b),s - b) + (b,Q-l(S - b)) .

Adding 1*(s) on both sides gives f(x(s)) + 1*(s) = (Q-l(S - b), s) = (x(s), s),
which illustrates (0. I).

Taking b = 0 and applying FencheI's inequality (I .1.3) gives

(x , Qx) + (s,a:' s) ~ 2(s, x ) for all (x , s) ,

a generalization of the weIl-known inequality (obtained for Q = eI, C > 0):

cllxll 2 + ~ IIs11 2 ~ 2(s , x) for all C > 0 and x , s E IRn . o

When Q in the above example is merely positive semi-definite, a meaning can
still be given to (\7 f)-I provided that two problems are taken care of:
- first, s must be restricted to \7 f(lR n ) , which is the affine manifold b + 1m Q ;
-second, \7f(x + y) = \7f(x) for all y E KerQ, so (\7f)-I(S) can be defined

only up to the subspace Ker Q.
Using the definition of the conjugate function , we then obtain the foIlowing :

Example 1.1.4 (Convex Degenerate Quadratic Functions) Take again the quad­
ratic function (1.1.4), but with Q symmetric positive semi-definite. The supremum
in (1.1.2) is finite only if s - b E (Ker Q)1., i.e. s - b E Im Q; it is attained at an x
such that s - \7 f(x) = 0 (optimality condition D.2.2.1). In a word , we obtain

* { +00 if s ~ b + 1m Q ,
f (s)= !(x,s-b) otherwise,
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where x is any element satisfying Qx + b = s. This formul ation can be condensed
to

1*(Qx + b) = ~(x,Qx) for all x E JRn,

which is one more illustration of (0.1): add f (x) to both sides and obtain

f( x) + 1*(Qx + b) = (x, Qx + b) = (x , \l f( x) ).

It is also interesting to express 1* in terms of a pseudo-inverse: for example, Q­
denoting the Moore-Penrose pseudo-inverse of Q (see §0.3A ), 1* can be written

1*(s) = { ~(S-b,Q-(S-b» if s E ~+lmQ,
+ 00 otherwise .

In the above example , take b = 0 and let Q = PH be the orthogonal projecti on
onto a subspace H of R" : f( x) = 1/2 (X,plI X) = 1/ 21IPHXI12. ThenlmQ = H
and Q- = Q, so

(1 11 ' 112) *(s) = {~ll s\l 2 if s E 1! '
2 PH + 00 otherwi se.

Another interesting example is when Q is a rank-on e operator, i.e. Q = uu T,

with 0 ::j:. u E JRn (we assume the usual dot-product for (' , .) . Then 1m Q = JRu
and, for x E 1m Q, Qx = Ilul1 2x . Therefore ,

[1 (u T /] *(s) = { 211~1I 2 s if s an~ u are collinear ,
2 + 00 otherwise .

More on conjug acy involving quadratic function s will be seen in Example 2.104
and in §3.2.

Example 1.1.5 Let ic be the indicator function of a nonempty set C C JRn . Then

(ic)*(s) = sup [(s, x ) - ic(x)] = sup(s , x )
x Ed omic xEC

is just the support funct ion of C. If C is a closed convex cone, we conclude from
Example C.2 .3.1 that (ic) * is the indicator of its polar Co. If C is a subspace, (ic)*
is the indicator of its orthogonal C.L .

If C = JRn, Co = {O} ; ic == 0 and the conjugate of ic is 0 at 0, + 00 elsewhere
(this is the indicator of {O}, or the support of JRn).

A similar example is the nonconvex function x t-+ f(x) = Ill xIII 1/2, where III· III
is some norm. Then 1*(0) = 0; but if s ::j:. 0, take x of the form x = ts to realize
that

1*(s) ~ sup [t\ls112 - .jt"W] = + 00 .
t ~O

In other words, 1* is still the indicator function of {O}. The conjugacy operation has
ignored the difference between f and the zero function , simply because f increases
at infinity more slowly than any linear function. Note at this point that the conjugate
of 1* (the "biconjugate" of f) is the zero-function. 0
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1.2 Interpretations

The computation of f* can be illustrated in the graph-space IRn x Ilt For given
s E IRn , consider the family of affine functions x I---t (s, x) - r , parametrized by
r E Ilt They correspond to affine hyperplanes Hs,r orthogonal to (s , -1) E IRn+1

;

see Fig. 1.2.1. From (1.1.1), Hs,r is below gr j whenever (s, r) is properly chosen,
namely s E dom f* and r is large enough . To construct f*(s), we lift Hs,r as much
as possible subject to supporting gr [, Then, admitting that there is contact at some
(x,j(x» , we write (s,x) - r = j(x) , or rather, r = (s,x) - j(x), to see that
r = f*(s). This means that the best Hs,r intersects the vertical axis {O} x IR at the
altitude - f* (s).

Fig. 1.2.1. Computation of r in the graph-space

Naturally, the horizontal hyperplanes Ho,r correspond to minimizing j :

- f*(0) = inf {f(x) : x E IRn } .

The picture illustrates another definition of f* : being normal to Hs,r, the vector
(s, -1) is also normal to gr j (more precisely to epi f) at the contact when it exists.

Proposition 1.2.1 There holds for all x E IRn

f* (s) = aepi f (s, -1) = sup {(s, x) - r : (x, r) E epi f} .

It follows that the support function ofepi j has the expression

{
Uf* ( ~S) ifu>O,

aepif(s,-u) = aepif(s,O) = adomf(s) if u = 0,
+00 if u < O.

Proof. In (1.2.1), the right-most term can be written

sup sup [(s,x)-r]=sup[(s,x)-j(x)]
x r~f(x) x

(1.2 .1)

(1.2.2)

and the first equality is established. As for (1.2 .2), the case u < 0 is trivial; when
u > 0, use the positive homogeneity of support functions to get
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(Jepi 1(8, -U) = U(Jepi I (~8, -1) = u ]" (~8) ;

finally, for U = 0, we have by definition

(Jepi 1(8,0) = sup {(8, x) : (x , r) E epi f for some r E lR} ,

and we recognize (Jdom I (8). o

Assume f E Cony lRn . This result , illustrated in Fig. 1.2.1, confirms that the
contact-set between the optimal hyperplane and epi f is the face of epi f exposed
by the given (8, -1). From (1.2.2), we see that (Jepil and the perspective-function
of 1* (§B.2.2) coincide for U :f. °-up to the change of variable U I-t -u. As a
closed function, (Jepi I therefore coincides (still up to the change of sign in u) with
the closure of the perspective of 1*. As for u = 0, we obtain a relation which will
be used on several occasions:

Proposition 1.2.2 For f E Cony lRn ,

(Jdom 1(8) = (Jepi 1(8,0) = (J*) :x, (8) for all 8 E lRn
. (1.2.3)

Proof. Use direct calculations; or see Proposition B.2.2 .2 and the calculations in
Example B.3.2 .3. 0

The additional variable u introduced in Proposition 1.2.1 gives a second geomet­
ric construction: Fig. 1.2.1 plays the role of Fig. C.2.1.1, knowing that lRn is replaced
here by lRn +1 • Here again , note in passing that the closed convex hull of epi f gives
the same 1*. Now, playing the same game as we did for Interpretation C.2.1.6, 1*
can be looked at from the point of view of projective geometry, lRn being identified
with lRn x {-I}.

Consider the set epi f x {-I} C lRn x lR x lR, i.e. the copy of epi f, translated
down vertically by one unit. It generates a cone K I C lRn x lR x lR:

KI :={t(x,r,-l): t >O, (x ,r) EepiJ} . (1.2.4)

Now take the polar cone (K 1)° C lRn x lRx lR. We know from Interpretation C.2.1.6
that it is the epigraph (in lRn+1 x lR!) of the support function of epi f. In view of
Proposition 1.2.1, its intersection with lRn x {-I} x lR is therefore epi 1*. A short
calculation confirms this :

(Kit = {(8,0:,,B) E lRn x lR x lR : t(8,X) + tor - t,B :'(°
for all (x ,r) E epi f and t > O}

= {(8,0:,,B) : (8,X) + o:r :'( ,B for all (x ,r) E epiJ} .

Imposing 0: = -1, we just obtain the translated epigraph of the function described
in (1.2.1). Remembering Example 1.1.5, we see how the polarity correspondence is
the basis for conjugacy.

Figure 1.2.2 illustrates the construction, with n = 1 and epi f drawn horizon­
tally; this epi f plays the role of S in Fig. C.2.1.2. Note once more the symmetry:
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R pni7Ja/--------
epilx(-IJ

Fig. 1.2.2. A projective view of conjugacy

K f [resp. (Kf) 0] is defined in such a way that its intersection with the hyperplane
IRn x IR x {-I} [resp. IRn x {-I} x 1R] is just epi f [resp. epi f*].

Finally, we mention a simple economic interpretation. Suppose IRn is a set of goods and
its dual (IRn )* a set of prices: to produce the goods x costs f( x), and to sell x brings an
income (s , x ). The net benefit associated with x is then (s, x) - f(x) , whose suprema! value
r (s) is the best possible profit, resulting from the given set of unit prices s. Incidentally, this
last interpretation opens the way to nonlinear conjugacy, in which the selling price would be
a nonlinear (but concave) function of x .

Remark 1.2.3 This last interpretation confirms the waming already made on several occa­
sions: IRn should not be confused with its dual; the arguments of f and of r are not compa­
rable, an expression like x + s is meaningless (until an isomorphism is established between
the Euclidean space IRn and its dual).

On the other hand, f and r -values are comparable, indeed: for example, they can be
added to each other - which is just done by Fenchel's inequality (I.I.3)! This is explicitly
due to the particular value "- I " in (1.2.1), which goes together with the "- I " of (1.2.4) .

o

1.3 First Properties

Some properties of the conjugacy operation f f-t f* come immediately from its
definition.

(a) Elementary Calculus Rules Direct arguments prove easily a first result:

Proposition 1.3.1 The functions f, Ii appearing below are assumed to satisfy
(1.1.1 ).

(i) The conjugate ofthe function g(x) := f(x) + r is g*(s) = f*(s) - r,
(ii) With t > 0, the conjugate ofthe function g(x) := tf(x) is g*(s) = tf*(s/t) .

(iii) With t =I 0, the conjugate ofthe function g(x) := f(tx) is g*(s) = f*(s/t) .
(iv) More generally: if A is an invertible linear operator, (J 0 A)* = f* 0 (A -1)*.
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(v) The conjugate ofthe function g(x) := f(x - xo) is g*(s) = 1*(s) + (s , xo).
(vi) The conjugate ofthe function g(x) := f(x) + (so, x) is g*(s) = 1*(s - so).

(vii) If ft ~ h then fi ;::: f;·
(viii) "Convexity" ofthe conjugation: ifdom ft n dom [z =j:. 0 and a E ]0,1[,

[aft + (1 - a)h]* ~ aJ: + (1 - a)f; ;

(ix) The Legendre-Fenchel transform preserves decomposition: with

m

jR" := jR'" x . . . x jR"= " X t-7 f(x) := L h(Xj)
j=l

and assuming that jR" has the scalar product ofa product-space, there holds

m

1*(Sl, . .. , Sm) = Lf;(sj) .
j =l

o

Among these results , (iv) deserves comment: it gives the effect of a change of variables
on the conjugate function ; this is of interest for example when the scalar product is put in the
form (x, y) = (Ax) T Ay, with A invertible . Using Example 1.1.3, an illustration of (vii) is:

the only function I satisfying I = r is 1/211.112(start from Fenchel's inequality); and also,
for symmetric positive definite Q and P : Q =;< P implies p- I =;< Q-I ; and an illustration of
(viii) is: [aQ + (1 - a)Pt l =;< aQ-I + (1 - a)p- I.

Our next result expresses how the conjugate is transformed, when the starting function is
restricted to a subspace .

Proposition 1.3.2 Let I satisfy (I. I.I), let H be a subspace oflRn , and call PH the operator
of orthogonal projection onto H . Suppose that there is a point in H where I is finite. Then
I + iH satisfies (I. I.I) and its conjugate is

(1.3 .1)

Proof. When y describes IRn
, PHY describes H so we can write, knowing that PH is sym­

metric :
(f +iH)*(s):= sup{(s,x) - I(x) : x E H}

=sup{(s,PHy)-/(PHY) : yElRn
}

= sup {(PHS, y) - I(PHY) : y E IRn
} . D

When conjugating I + iJI, we disregard I outside H, i.e. we consider I as a function
defined on the space H; this is reflected in the "I 0 PH"<part of (1.3.1) . We then obtain
a "partial" conjugate, say t: E Cony H; the last "opH" of (1.3.1) says that, to recover
the whole conjugate (f + iH)* , which is a function of Cony IRn , we just have to translate
horizontally the graph of r along HJ..

Remark 1.3.3 Thus, if a subspace H and a function 9 (standing for I + iH) are such that
dom 9 C H, then g*(. + s) = g* for all s E H 1. • It is interesting to note that this property
has a converse: if, for some Xo E domg, we have g(xo + y) = g(xo) for all y E H, then
domg* C HJ.. The proof is immediate: take Xo as above and, for s rt HJ., take yo E H
such that (s, yo) = a =1= 0; there holds (s, )"yo) - g(xo + )"Yo) = )"a - g(xo) for all )" E IR;
hence

g*(s) ;::: sup>,[(s, Xo + )"yo) - g(xo + )"yo)]
= (s, xo) + sup>,[)"a - g(xo)] = +00 . D
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The above formulae can be considered from a somewhat opposite point of view: suppose
that IRn, the space on which our function f is defined, is embedded in some larger space
IRn+p. Various corresponding extensions of f to the whole of IRn+p are then possible. One
is to set f := +00 outside IRn (which is often relevant when minimizing f) , the other is the
horizontal translation f (x + y) = f (x ) for all y E IRP.

These two possibilities are, in a sense, dual to each other (see Proposition 1.3.4 below).
Such a duality, however, holds only if the extended scalar product preserves the structure
of IRn x IRP as a product-space: so is the case of the decomposition H + H .L appearing in
Proposition 1.3.2, because (s,x) = ( P H S , PH x) + (pH .L S , PH.L x).

Considering affine manifolds instead of subspaces gives a useful result :

Proposition 1.3.4 For f satisfy ing (1.1.1), let a subspace V contain the subspace parallel
to aff dom f and set U := V .L . For any z E aff dom f and any S E IRn decomposed as
S = st) + SV, there holds

reS) = (su , z ) + r(sv) .

Proof In (1.1.2), the variable x can range through z + V ::J aff dom f :

/*( s) = SUPvEV[(SU+ SV, z + v) - fez + v)]
= (su , z ) + sUPvEV [(sV , z + v) - fe z + v )]
= (su , z)+/*(sv). o

(b) The Biconjugate of a Function What happens if we take the conjugate of r
again ? Remember that r satisfies automatically (1.1 .1) if j does . We can therefore
compute the biconjugate function of j: for all x E IRn ,

f**( x ) := (f*)*( x) = sup {(s ,x) - f*(s) : s E IRn } . (1.3.2)

This operat ion appears as fundamental. The function r: thus defined turns out to
be the closed convexhull co j of the function t, already seen in Definition B.2.5.3:

Theorem 1.3.5 For j satisfy ing (1.1.1), thefunction f** of (1.3.2) is the pointwise
supremum ofall the affinefunct ions on IRn majorized by j. In other words

epi j ** = co (epi j ) . (1.3.3)

Proof. Call E C IRn x IR the set of pairs (s , r) defining affine functions (s , .) - r
majorized by j:

(s , r) E E <F=} j(x) ~ (s , x) - r for all x E IRn

<F=} r ~ sup {( s , x) - j(x) : x E IRn }

<F=} r ~ f* (s) (and s E domf*!) .

Then we obtain, for x E IRn ,

SUP (S,T)EL' [(S, x) - r] = sup {( s , x ) - r : s E dom f* , -r ~ - f*(s)}
= sup{(s, x)-f*(s) : s E domf*} =f**(x) .

Geometrically, the epigraphs of the affine function s associated with (s , r) E E
are the (non-vertical) closed half-spaces containing epi j . From §B.2.5, the epigraph
of their supremum is the closed convex hull of epi j , and this proves (1.3.3). 0
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Note: the biconjugate of an f E Conv ~n is not exactly f itself but its closure :
j** = cI f . Thanks to Theorem 1.3.5, the general notation

cof:= r: (1.3.4)

can be - and will be - used for a function simply satisfying (1.1.1); it reminds one
more directly that j** is the closed convex hull of f :

j**(x) = sup{(s ,x) - r : (s ,y) - r:::::; f(y) for all y E ~n} .
r .e

Corollary 1.3.6 If 9 is a function satisfying co f :::::; 9 :::::; f, then g*
function f is equal to its biconjugate j** ifand only if f E Conv ~n .

Proof. Immediate.

(1.3 .5)

j*. The

o

Thus, the conjugacy operation defines an involution on the set of closed convex functions.
When applied to strictly convex quadratic functions, it corresponds to the inversion of sym­
metric positive definite operators (Example 1.1.3 with b = 0). When applied to indicators of
closed convex cones, it corresponds to polarity (Example 1.1.5). For general f E Cony R" ,
it is the correspondence illustrated in Fig. 1.3.1 (a correspondence also based on polarity, see
Fig. 1.2.2). Of course, this involution property implies a lot of symmetry, already alluded to,
for pairs of conjugate functions.

(.)*

f E Cony Rn ------------------
(.f

Fig. 1.3.1. The *-involution

f E COr'iV Rn

o

(c) Conjugacy and Coercivity A basic question in (1 .1.2) is whether the supremum
is going to be +00. This depends only on the behaviour of f at infinity, so we extend
to non-convex situations the concepts seen in Definition B.3.2.5:

Definition 1.3.7 A function f satisfying (1.1.1) is said to be coercive [resp. I­
coercive] when

[
. f(x) ]lim f(x) = +00 resp. lim -II-II = +00 .

IIxll-++oo Ilxll-t+oo x

Proposition 1.3.8 If f satisfying (1.1.1) is I-coercive, then j*(s) < +00 for all
s E ~n.

Proof. Let s be given. The 1-coercivity of f implies the existence of a number R
such that f(x) ~ Ilsllllxll (hence (s ,x) - f(x) :::::; 0) whenever Ilxll ~ R. As a
result, we have in (1.1.2)
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sup {(s ,x) - Ilsllllxll : Ilxll ;:: R} ~ O.

On the other hand, (1.1.1) implies an upper bound

sup {(s, x) - f(x) : Ilxll ~ R} ~ M .

Altogether, f*(s) ~ max {O,M} .

For a converse to this property, we have the following:

Proposition 1.3.9 For f satisfying (1.1.1), the following holds:

(i) If Xo E int dom f then f* - (xo, .) is O-coercive;
(ii) in particular, if f is finite over ~n, then f* is J-coercive.

Proof. We know from (1.2.3) that (Tdom f = (1*)'00 so, using Theorem C.2 .2.3(iii),
Xo E int dom feint (codom f) implies (I*)'oo( s) - (xo, s) > 0 for all s =I- o.
By virtue of Proposition B.3.2.4, this means exactly that f* - (xo, .) has compact
sublevel-sets; (i) is proved.

Then, as demonstrated in Definition B.3.2.5, O-coercivity of f* - (xo, ') for all
Xo means 1-coercivity of f* . 0

Piecing together, we see that the 1-coercivity of a function f implies that f* is
finite everywhere, and this in tum implies I-coercivity of co f .

Remark 1.3.10 If we assume in particular f E Conv ~n, (i) and (ii) become equiv­
alences:

Xo E int dom f ¢::::::} f* - (xo,') is O-coercive ,
dom f = ~n ¢::::::} f* is l-coercive .

1.4 Subdifferentials of Extended-Valued Functions

For a function f satisfying (1.1.1), consider the following set:

of(x) := {s E ~n : f(y) ;:: f( x) + (s ,y - x) for all y E ~n} .

o

(1.4 .1)

When f happens to be convex and finite-valued, this is just the subdifferential of f
at x, defined in Definition D.1.2.1; but (1.4 .1) can be used in a much more general
framework. We therefore keep the terminology subdifferential for the set of (1.4.1),
and subgradients for its elements. Note here that of(x) is empty if x rt dom f: take
y E domf in (1.4.1).

Theorem 1.4.1 For f satisfying (1.1.1) and of defined by (1.4 .1), s E 0 f(x) if and
only if

f*(s) + f(x) - (s ,x) = 0 (or ~ 0) .

Proof. To say that s lies in the set (1.4.1) is to say that

(1.4 .2)

(s,y) - f(y) ~ (s , x) - f(x) for all y E domf,

i.e. f*(s) ~ (s,x) - f( x); but this is indeed an equality, in view of Fenchel's
inequality (1.1.3). 0
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As before, 8f (x) is closed and convex: it is a sublevel-set of the closed convex
function 1* - (' , x), namely at the level - f(x) . A subgradient of f at x is the slope
of an affine function minorizing f and coinciding with f at x ; 8 f (x) can therefore
be empty: for example if epi f has a vertical tangent hyperplane at (x , f( x)) ; or also
if f is not convex-like near x.

Theorem 1.4.2 Let f E Conv IRn . Then 8f (x) :j:. 0 when ever x E ri dom f.

Proof This is Proposition B.1.2. 1. o

When 8f (x) :j:. 0, we obtain a particular relationship at x between f and its
convexified version co f:

Proposition 1.4.3 For f satisfying (1.1.1), the following properties hold:

8f(x) :j:. 0 ====? (cof)(x) = f( x);
co f:::; s « f and g(x) = f(x) ====? 8g(x) = 8f(x) ;

8 E 8f(x) ====? x E 81*(8) .

(1.4 .3)

(1.4.4)

(1.4.5)

Proof Let 8 be a subgradient of fat x. From the definition (1.4.1) itself, the func­
tion y t-+ £s(y) := f(x) + (8, y-x) is affine and minorizes f, hence £s :::; co f :::; f;
because £s(x) = f(x), this implies (1.4.3).

Now, 8 E 8f(x) if and only if (1.4.2) holds. From our assumption in (1.4.4),
1* = g* = (co f)* (Corollary 1.3.6) and g(x) = f(x). Therefore

8 E 8f(x) {:=> g*(8) + g(x) - (8, X) = 0 ,

which expresses exactly that 8 E 8g(x) ; (1.4.4) is proved.
Finally, we know that 1** = co f :::; f; so, when 8 satisfies (1.4 .2), we have

1*(8) + 1**(x) - (8, X) = 1*(8) + (cof)(x) - (8,X) :::; 0 ,

which means x E 81* (8): we have just proved (1.4.5). o

Among the consequences of (1.4 .3), we note the following sufficiency condition
for convexity: if 8f (x) is nonempty for all x E IRn , then f is convex and finite­
valued on IRn . Another consequence is important:

Corollary 1.4.4 If f E Conv IRn , the following equivalences hold:

f(x) + 1*(8) - (8,X) = 0 (or :::; 0) {:=> 8 E 8f(x) {:=> x E 81*(8).

Proof This is a rewriting of Theorem 1.4.1, taking into account (1.4.5) and the
symmetric role played by f and 1* when f E Cony IRn

• 0

If 8 E 8f (x) (which in particular implies x E dom f) , the property 8 E dom 1*
comes immediately; beware that, conversely, dom 1* is not entirely covered by
8f(IRn ) : take f(x) = exp z, for which 1*(0) = 0; but 0 is only in the closure
of j'(IR).
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Even though it is attached to some designated z, the concept of subdifferential,
as defined by (104 .1), is global, in the sense that it uses the values of f on the whole
of IRn . For example,

inf {f(x) : x E IRn
} = - 1*(0)

and obviously

x minimizes f satisfying (1.1.1) {=:=} 0 E 8f(x).

Then a consequence of Corollary 10404 is:

Argminf(x) = 81*(0) for f E ConvlRn
.

x ElR n

2 Calculus Rules on the Conjugacy Operation

(1.4 .6)

The function f, whose conjugate is to be computed, is often obtained from some
other functions Ii, whose conjugates are known. In this section, we develop a set
of calculus rules expressing 1* in terms of the (li)* (some rudimentary such rules
were already given in Proposition 1.3.1) .

2.1 Image of a Function Under a Linear Mapping

Given a function 9 : IRm -+ IR U {+oo} satisfying (1.1.1), and a linear mapping
A : IRm -+ IRn , we recall that the image of 9 under A is the function defined by

IRn 3 x I--t (Ag)(x) := inf {g(y) : Ay = x}. (2.1.1 )

o

Let g* be associated with a scalar product (' , .)m in IRm ; we denote by (-, .)n the
scalar product in IRn , with the help of which we want to define (Ag) *. To make sure
that Ag satisfies (1.1.1), some additional assumption is needed: among all the affine
functions minorizing g, there is one with slope in (Ker A) .L = 1m A*:

Theorem 2.1.1 With the above notation, assume that 1m A * n dom g* =f; 0. Then
Ag satisfies (1.1 .1) and its conjugate is

(Ag)*=g*oA*.

Proof. First, it is clear that Ag oj. +00 (take x = Ay, with Y E domg) . On the
other hand, our assumption implies the existence of some Po = A *So such that
g*(po) < +00; with Fenchel's inequality (1.1.3), we have for all y E IRm

:

g(y) ~ (A*so,Y)m - g*(po) = (so, AY)n - g*(po) .

For each x E IRn , take the infimum over those y satisfying Ay = x: the affine
function (so, .) - g* (Po) minorizes Ag. Altogether, Ag satisfies (1.1.1).

Then we have for s E IRn

(Ag)*(s) = SUPxElRn[(s,x) - infAy=xg(y)]
= SUPxElRn,Ay=x[(S, x) - g(y)]
= SUPYElRm[(s,Ay) - g(y)] = g*(A*s).
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For example, when m = n and A is invertible, Ag reduces to goA - I , whose
conjugate is therefore g* 0 A *, given by Proposition 1.3.1(iv).

As a first application of Theorem 2.1.1, it is straightforward to compute the
conjugate of a marginal function:

I(x) := inf {g(x , z) : z E ffi'p} , (2.1.2)

where 9 operates on the product-space JRn x JRP . Indeed, just call A the projection
onto JRn : A (x, z) = x E JRn, so I is clearly Ag . We obtain :

Corollary 2.1.2 With 9 : JRn X JRP =: JRm --+ JR U { +oo} not identically +00, let
g* be associated with a scalar product preserving the structure of JRm as a product
space: (', ' )m = (', ')n + (', -}p.1fthere exists So E JRn such that (so, 0) E dom g*,
then the conjugate of I defined by (2.1.2) is

/*(s) = g*(s,O) for all s E JRn.

Proof It suffices to observe that, A being the projection defined above, there holds
for all YI = (XI, Zl) E JRm and X2 E JRn,

(AYI, X2)n = (Xl , X2)n = (Xl, X2)n + (Zl' O)p = (YI, (X2, O»m ,

which defines the adjoint A * X = (X,0) for all X E JRn. Then apply Theorem 2.1.1.
D

More will be said on this operation in §2.4. Here we consider another appli­
cation : the infimal convolution which, to II and 12 defined on JRn, associates (see
§B.2.3)

(II t h)(x) := inf'{j', (Xl) + 12 (X2) : Xl + X2 = X} . (2 .1.3)

Then Theorem 2.1.1 can be used, with m = 2n, g(XI,X2) := lI(xl) + h(x2) and
A(XI , X2) := Xl + X2 :

Corollary 2.1.3 Let hand 12 be two functions from JRn to JR U {+oo}, not identi­
cally +00, and satisfying dom Ii ndom 12 f- 0. Then their inf-convolution satisfies
(1.1.1), and (II t 12)* = Ii + 12'

Proof Equip JRn x JRn with the scalar product (', .) +(', -). Using the above notation
for 9 and A, we have g*(SI,S2) = li(st> + 12(s2) (Proposition 1.3.I(ix)) and
A*(s) = (s, s). Then apply the definitions. D

Example 2.1.4 The infimal convolution of a function with the kernel 1/2 ell , 11 2 (C > 0) is
the so-called Moreau-Yosida regularization, which turns out to have a Lipschitzian gradient.
With the kernel ell '11, we obtain the so-called Lipschitzian regularization (which can indeed
be proved to be Lipschitzian on the whole space). Then Corollary 2.1.3 gives, with the help
of Proposition 1.3.1(iii) and Example 1.1.3:

(f;y ~ell . 11 2)* =r + iell .112 and (f;y ell , 11)* =r + ~iB(o.c) .

In particular, if f is the indicator of a nonempty set CeRn , the above formulae yield

(~d~r = a o + ~II ' 11 2
, de= eTC + i B (o . l ) . o
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2.2 Pre-Composition with an Affine Mapping

In view of the symmetry of the conjugacy operation, Theorem 2.1.I suggests that
the conjugate of goA, when A is a linear mapping , is the image-function A *g*.
In particular, a condition was needed in §2.1 to prevent Ag(x) = -00 for some x .
Likewise, a condition will be needed here to prevent goA == +00. The symmetry is
not quite perfect, though: the composition of a closed convex function with a linear
mapping is still a closed convex function; but an image-function need not be closed,
and therefore cannot be a conjugate function.

We use notation similar to that of §2.1, but we find it convenient to distinguish
between the linear and affine cases.

Theorem 2.2.1 Take 9 E Cony IRm, Ao linear from IRn to IRm and consider the
affine operator A(x) := Aox + Yo E IRm. Suppose that A(IRn) n dom 9 :j:. 0. Then
goA E Cony IRn and its conj ugate is the closure of the convex function

IRn :7 8 t-+ inf {g*(p) - (Yo,P}m : A~p = 8} .
P

(2.2.1)

Proof We start with the linear case (yO = 0): suppose that h E Cony IRn satisfies
Im Ao n dom h :j:. 0. Then Theorem 2.1.I applied to 9 := h* and A := AD gives
(ADh*)* = h 0 Ao; conjugating both sides, we see that the conjugate of h 0 Ao is
the closure of the image-function A~h* .

In the affine case, consider the function h := g(·+yo) E Cony IRm ; its conjugate
is given by Proposition 1.3.1(v): h* = g* - (Yo, ·)m. Furthermore, it is clear that

(g 0 A)(x) = g(Aox + Yo) = h(Aox) = (h 0 Ao)(x) ,

so (2.2.1) follows from the linear case. o

Thus, the conjugation of a composition by a linear (or affine) mapping is not
quite straightforward, as it requires a closure operation. A natural question is there­
fore: when does (2.2.1) define a closed function of 8? In other words, when is an
image-function closed? Also, when is the infimum in (2.2. 1) attained at some p? We
start with a technical result, in which a qualification property comes again into play.

Lemma 2.2.2 Let 9 E Cony IRm be such that 0 E dom 9 and let Ao be linear from
IRn to IRm . Make the following assumption:

ImAon ridomg:j:. 0 i.e. 0 E ridomg - ImAo [= ri (domg - Irn Ao)] .

Then (g 0 Ao)* = ADg*,' for every 8 E dom (g 0 Ao)*, the problem

inf {g*(p) : A~p = 8}
P

(2.2.2)

has at least one optimal solution pand there holds (goAo)* (8) = Aog*(8) = g* (P).
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Proof. To prove (g 0 Ao)* = Aog*, we have to prove that Aog* is a closed function,
i.e. that its sublevel-sets are closed (Definition RI .2.3).

Thus , for given r E lR, take a sequence (Sk) converging to some S and such that
(Aog*)(Sk) ~ r. Take also bk t 0; from the definition of the image-function, we
can find Pk E jRm such that

Let qk be the orthogonal projection of Pk onto the subspace V := lin dom g- Im Ao.
Since V contains lin dom g, Proposition 1.3.4 (with z = 0) gives g*(Pk) = g*(qk)'
Furthermore, V .L = (lin dom g).L n Ker Ao; in particular, qk - Pk E Ker Ao. In
summary, we have singled out qk E V such that

(2.2.3)

Suppose we can bound qk. Extracting a subsequence if necessary, we will have
qk -+ ij and, passing to the limit , we will obtain (since g* is l.s.c)

g*(ij) ~liminfg*(qk)~r and Aoij=s .

The required closedness property Aog*(ij) ~ r will follow by definition. Fur­
thermore, this ij will be a solution of (2.2.2) in the particular case Sk == sand
r = (Aog*)(s) . In this case, (qk) will be actually a minimizing sequence of (2.2.2).

To prove boundedness of qk, use the assumption : for some E > 0, B m (0, c) n V
is included in dom 9 - Im A. Thus, for arbitrary z E B m (0, c) n V, we can find
Y E dom 9 and x E jRn such that z = Y - Aox. Then

(qk,Z)m = (qk,Y)m - (Aoqk,X)n
~ g(y) + g*(qk) - (Aoqk,X)n
~ g(y) + r + bk - (Sk' x)n .

[Fenchel (I. I.3)]

[(2.2.3)]

We conclude that sup {(qk' z) : k = 1,2, . ..} is bounded for any Z E Bm(O ,c)n V ,
which implies that qk is bounded; this is Proposition V.2.I.3 in the vector space V.

o

Adapting this result to the general case is now a matter of translation:

Theorem 2.2.3 Take 9 E Cony jRm, A o linear from jRn to jRm and consider the
affine operator A(x) := Aox + Yo E jRm . Make the following assumption:

A(jRn) n ri dom 9 i- 0.

Then,for every S E dom (g 0 A o)*, the problem

min {gO (p) - (p,Yo) : A(;p = s}
p

(2.2.4)

(2.2.5)

has at least one optimal solution p and there holds (g 0 A) * (s) = g*(p) - (p,Yo).
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Proof. By assumption, we can choose x E IRn such that y := A(x) E ri dom g.
Consider the function 9 := g('f} + .) E Conv IRm

• Observing that

(g 0 A)(x) = g(A(x) - y) = (g 0 Ao)(x - x) ,

we obtain from the calculus rule 1.3.1(v): (g 0 A)* = (g 0 Ao)* + (.,x) .
Then Lemma 2.2.2 allows the computation of this conjugate. We have 0 in the

domain of g, and even in its relative interior:

ri dom e = ridomg - {V} ::I 0 E ImAo ·

We can therefore write: for all s E dom (g 0 Ao)* [= dom (g 0 A)*],

(goAo)*(s) = min {g*(p) : A~p=s},
p

where the minimum is attained at some p.Using again the calculus rule 1.3.1(v) and
various relations from above, we have established

(g 0 A)* (s) - (s,x) = min {g*(p) - (P, Aox + Yo) : A~p = s}
=min{g*(p)-(p,yo) : Aop=s}-(s,x) . 0

It can be shown that the calculus rule (2.2.5) does need a qualification assumption such
as (2.2.4) . First of all, we certainly need to avoid goA == +00, i.e,

(2.2.Q.i)

but this is not sufficient, unless 9 is a polyhedral function (a situation which has essentially
been treated in §C.3.4).

A "comfortable" sharpening of (2.2.Q.i) is

A(lRn
) n int dom 9 i= 0 i.e. 0 E int dom 9 - A(lRn

) , (2.2.Q.ii)

but it is fairly restrictive, implying in particular that dom 9 is full-dimensional . More tolerant
is

oE int [domg - A(lRn
) ) , (2.2.Q.iii)

which is rather common. Various result s from Chap . C, in particular Theorem C.2.2.3(iii),
show that (2.2.Q.iii) means

O"domg(P) + (P, YO) > 0 for all nonzero P E Ker A~ .

Knowing that O"dom g = (g*)~ (Proposition 1.2.2), this condition has already been alluded
to at the end of §B.3.

Naturally, our assumption (2.2.4) is a further weakening; actually, it is only a slight gen­
eralization of (2.2.Q.iii). It is interesting to note that, if (2.2.4) is replaced by (2.2.Q.iii),
the solution-set in problem (2.2.5) becomes bounded; to see this, read again the proof of
Lemma 2.2.2, in which V becomes R'".

Finally consider an example with n = 1: given a function 9 E Conv IRm
,

fix Xo E domg, 0 i= d E IRm , and set 'ljJ(t) := g(xo + td) for all t E IR.
This 'ljJ is the composition of 9 with the affine mapping which , to t E IR, assigns
Xo + td E IRm • It is an exercise to apply Theorem 2.2.1 and obtain the conjugate:
'ljJ * (0:) = min {g*(s) - (s,xo) : (s,d) = o:} whenever, for example, Xo and dare
such that Xo + td E ri dom 9 for some t - this is (2.2.4). This example can be further
particularized to various functions mentioned in §1 (quadratic, indicator, . .. ).
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2.3 Sum of Two Functions

The formula for conjugating a sum will supplement Proposition 1.3.1(ii) to obtain
the conjugate of a positive combination of closed convex functions . Summing two
functions is a simple operation (at least it preserves c1osedness); but Corollary 2.1.3
shows that a sum is the conjugate of something rather involved: an inf-convolution.
Likewise, compare the simplicity of the composition goA with the complexity
of its dual counterpart Ag; as seen in §2.2, difficulties are therefore encountered
when conjugating a function of the type goA. The same kind of difficulties must
be expected when conjugating a sum, and the development in this section is quite
parallel to that of §2.2.

Theorem 2.3.1 Let gl , g2 be in Cony jRn and assume that dom gl n dom g2 f::- 0.
The conjugate (gl + g2)* oftheir sum is the closure ofthe convex function gi t g~ .

Proof. Call It := gi, for i = 1,2; apply Corollary 2.1.3: (gi t g~)* = gl +g2; then
take the conjugate again. 0

The above calculus rule is very useful in the following framework : suppose we
want to compute an inf-convolution, say h = f t 9 with f and 9 in Conv jRn. Com­
pute 1* and g*; if their sum happens to be the conjugate of some known function in
Conv jRn , this function has to be the closure of h.

Just as in the previous section, it is of interest to ask whether the closure opera­
tion is necessary, and whether the inf-convolution is exact.

Theorem 2.3.2 Let gJ, g2 be in Cony jRn and assume that

the relative interiors ofdom gl and dom g2 intersect , I
or equivalently: 0 E ri (dom gl - dom g2) .

Then (gl + g2)* = gi t g~ and.for every 8 E dom (gl + g2)*, the problem

inf{gi(p)+g~(q): p+q=8}

has at least one optimal solution (p,q), which therefore satisfies

(2.3.1)

Proof. Define 9 E Conv(jRn x jRn) by g(X1' X2) := gl (xd +g2(X2) and the linear
operator A : jRn -t jRn X jRn by Ax := (x, x) . Then gl + g2 = goA, and we proceed
to use Theorem 2.2.3. As seen in Proposition 1.3.1(ix), g*(p,q) = gi(p) + g~(q)

and straightforward calculation shows that A* (p, q) = p + q. Thus , if we can apply
Theorem 2.2.3, we can write

(gl +g2)*(8) = (goA)*(8) = (A*g*)(8)

= inf{gi(p) + g~(q) : p + q = 8} = (gi t g~)(8)
p ,q

and the above minimization problem does have an optimal solution.
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To check (2.2.4), note that dom g = dom gl x domg2, and 1m A is the diagonal
set L1 := {(s , s) : s E IRn } . We have

(x,x) E ri dom p, x ri dom g, = ri Idorn p. x dom c-)

(Proposition A.2.1 .11), and this just means that 1m A = L1 has a nonempty inter­
section with ri dom g. 0

As with Theorem 2.2.3, a qualification assumption - taken here as (2.3.1) playing the
role of (2.2.4) - is necessary to ensure the stated properties; but other assumptions exist that
do the same thing. First of all,

dom g. n domg2 i= 0 , i.e. 0 E dom p, - domg2 (2.3.Q.j)

is obviously necessary to havegl +g2 t= +00. Wesaw that this "minimal" condition was suf­
ficient in the polyhedral case. Here the results of Theorem 2.3.2 do hold if (2.3.1) is replaced
by:

gl and g2 are both polyhedral, or also
gl is polyhedral and dom tn n ri dom g2 i= 0.

The "comfortable" assumption playing the role of (2.2.Q.ii) is

int dom gl n int dom g2 i= 0 , (2.3.Q.jj)

which obviously implies (2.3.1). We mention a non-symmetric assumption, particular to a
sum:

(iIlt dom gr) n domg2 i= 0.
Finally, the weakening (2.2.Q.iii) is

oE int (dom g. - dom p-},

(2.3.Q.jj')

(2.3.Q.jjj)

which means £Tdam 91 (s)+£Tdam 92 ( -8) > 0 for all 8 i= 0; we leave it as an exercise to prove
(2.3.Q.jj') ~ (2.3.Q.jjj).

The following application of Theorem 2.3 .2 is important in optimization: take
two functions gl and g2 in Cony IRn and assume that

is a finite number. Under some qualification assumption such as (2.3.1),

a relation known as Fenchel's duality Theorem. If, in particular, g2
indicator function, we read (still under some qualification assumption)

inf {J(x) : x E C} = - min {J*(s) + 0"0(-s) : s E IRn } .

(2.3.2)

ic is an

It is appropriate to recall here that conjugate functions are interesting primarily via
their arguments and subgradients; thus, it is the existence of a minimizing s in the
righthand side of (2.3.2) which is useful, rather than a mere equality between two
real numbers.

To conclude this study of the sum, we mention one among the possible results
concerning its dual operation: the infimal convolution.
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Corollary 2.3.3 Take II and h in Cony IRn , with II O-coercive and [z bounded
from below. Then the inf-convolution problem (2.1.3) has a nonempty compact set
ofsolutions; furthermore lI th E Cony IRn .

Proof. Letting f-l denote a lower bound for [z , we have II (xd + h(x - xd ;::
II (Xl) + f-l for all Xl E IRn , and the first part of the claim follows.

For closedness of the infimal convolution, we set 9i := It , i = 1,2; because of
O-coercivity of II , 0 E int dom 91 (Remark 1.3.10), and 92(0) ~ - f-l . Thus, we can
apply Theorem 2.3.2 with the qualification assumption (2.3.Q.jj'). 0

2.4 Infima and Suprema

A result of the previous sections is that the conjugacy correspondence establishes
a symmetry between the sum and the inf-convolution, and also between the image
and the pre-composition with a linear mapping . Here we will see that the operations
"supremum" and "closed convex hull of the infimum" are likewise symmetric to
each other.

Theorem 2.4.1 Let {Ii } jEJ be a collection offunctions satisfying (1.1.1) and hav­
ing a common affine minorant: SUPjEJ I;( s) < +00 for some s E IRn .

Then their infimum I := inf j EJ Ii satisfies (1.1.1), and its conjugate is the
supremum ofthe I; 's:

(infj EJ Ij)* = SUPjEJ I; .

Proof. By definition, for all s E IRn

f*(s) = sUPx[(s,x) - inf j EJ Ij(X)]
= SUpx SUPj[(s, x) - Ij(x)]
= SUPj sUPx[(s, x) -li(x)] = SUPjEJ I;(s) .

(2.4.1)

o

This result should be compared to Corollary 2.1.2, which after all expresses the conjugate
of the same function, and which is proved in just the same way; compare the above proof with
that of Theorem 2.1.1. The only difference (apart from the notation j instead of z) is that the
space jRP is now replaced by an arbitrary set J , with no special structure, in particular no
scalar product. In effect, Theorem 2.4.1 supersedes Corollary 2.1.2: the latter just says that,
for 9 defined on a product-space, the easy-to -prove formula g* (s ,0) = sUPz g; (s, z) holds,
where the subscript x of g; indicates conjugacy with respect to the first variable only. In a
word, the conjugate with respect to the couple (x , z) is of no use for computing the conjugate
at (-,0) . Beware that this is true only when the scalar product considers x and z as two
separate variables (i.e. is compatible with the product-space). Otherwise , trouble may occur.

Example 2.4.2 The Euclidean distance to a nonempty set C c IRn is an inf­
function :

X 1--+ dc(x) = inf {fy(x) : y E C} with Iy(x) := Ilx - yll .

Remembering that the conjugate of the norm II . II is the indicator of the unit ball
(combine (C.2.3.I) and Example 1.1.5), the calculus rule 1.3.1(v) gives
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(fy)*(s) = iB(o,I)(S) + (s, y)

and (204.1) may be written as

dc(s) = iB(o ,I)(S) + sup (s,y) = iB(o ,1)(s) + O"c(s) ,
yEO

(204 .2)

a formula already given in Example 2.104. The same exercise can be carried out with
the squared distance. 0

Example 2.4.3 (Directional Derivative) With f E Cony ~n, let Xo be a point
where &f(xo) is nonempty and consider for t > 0 the functions

~n :3 d M ft(d) := f(xo + td) - f(xo) .
t

(204.3)

They are all minorized by (so, .), with So E &f (xo); also, the difference quotient is
an increasing function of the stepsize t; their infimum is therefore obtained for t -!- O.
This infimum is t(xo, .), the directional derivative of fat Xo (already encountered
in Chap . D, in a finite-valued setting). The conjugate of ft can be computed directly
or using Proposition 1.3.1:

(f )*( ) - f*(s) + f(xo) - (s,xo)
SM t S - t '

so we obtain from (204.1)

[f ' ( .)]*( ) - f*(s) + f(xo) - (s,xo)xo, s - sup .
t>o t

(20404)

In view of Theorem 104.1 , the supremand is always nonnegative and is 0 if and only
if s E &f(xo). In a word : [t(xo , .)]* = io!(xo)' Taking the conjugate again, we
obtain

[J'(xo ,·)]**(d)=O"Of(xo)(d)= sup (s ,d) foralld,
sEo!(xo)

i.e, the support function of the subdifferential is the closure of the directional deriva­
tive; a result which must be compared to §D.l .l .

At this point, it may be worth mentioning that the closure operation may be
necessary: indeed take f = iB (o,I), where B(O, 1) is the unit-ball of ~2. Taking
Xo = (0, -1) and d = b, 8), we clearly obtain as directional derivative

t' (x d) = {O !f8> 0,
, +00 If 8 ~ 0 ;

thus, t (xo, .) is not closed, and is therefore not a support function. However, its
closure is indeed the support function of {O} x ~_ (= &f(xo)). 0

A logical supplement to (204.1) is the conjugate of a supremum.
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Theorem 2.4.4 Let {gj }jEJ be a collection offunctions in Cony IRn . If their supre­
mum g := SUPjEJ gj is not identically +00, it is in Cony IRn , and its conjugate is
the closed convex hull of the gi 's:

(SUPjEJ gi)* = co (infj EJ gj) . (2.4.5)

Proof Call Ii := gj, hence Ii = gj, and g is nothing but the !* of (2.4 .1). Taking
the conjugate of both sides , the result follows from (1.3.4). 0

Example 2.4.5 Given, as in Example 2.4.2, a nonempty bounded set C , let

IRn 3 x r-+ Llc(x) := sup {llx - vll : y E C}

be the distance from x to the most remote point of cl C . Using (2.4 .2),

inf Uy)*( s) = i B (o,1) (s) + inf (s, y) ,
yE C yE C

so (2.4.5) gives Llc= co (iB(o,l) - O"- c). 0

Example 2.4.6 (Asymptotic Function) With I E Cony IRn ,Xo E dam I and ft as
defined by (2.4.3), consider the asymptotic function of §B.3.2;

I:x,(d) := sup {ft(d) : t > O} = lim {ft(d) : t ---t +oo} .

Clearly, It E Cony IRn and ft(O) = 0 for all t > 0, so we can apply Theorem 2.4.4:
I:x, E Cony IRn . In view of (2.4.4), the conjugate of I:x, is therefore the closed
convex hull of the function

. f!*(s)+/(xo)-(s ,xo)
s r-+ m .

t>o t

Since the infimand lies in [0, +00], the infimum is 0 if sEdom!*, +00 if not. In
summary, U:x,)* is the indicator of cl dorn j'". Conjugating again , we obtain I:x, =
O"dom t:» a formula already seen in (1.2 .3).

The comparison with Example 2.4.3 is interesting. In both cases we extremize
the same function, namely the difference quotient (2.4.3); and in both cases a sup­
port function is obtained (neglecting the closure operation). Naturally, the supported
set is larger in the present case of maximization. Indeed, dom j" and the union of
all the subdifferentials of I have the same closure. 0

2.5 Post-Composition with an Increasing Convex Function

For f E Cony jRn and 9 E Cony R, the function 9 0 f is in Cony R" if 9 is increasing
(Theorem B.2.1.7; we assume f(jRn) n domg # 0 and we set g(+00) = +00). A relevant
question is then how to express its conjugate, in terms of rand g" .

We start with some preliminary observations, based on the particular nature of g. The
domain of 9 is an interval unbounded from the left, whose relative interior is int dom 9 # 0.
Also, domg" c jR+ and (remember Proposition B.1.2.5)

g(y) =g**(y) =sup{py-g"(p) : pEridomg"}.
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Theorem 2.5.1 With f and 9 defined as above, assume that f (IRn
) n int dom 9 ::j:. 0. For all

s E dom (g 0 I) ". define the fun ction 7f;s E Conv IRby

{

ar ( ~s) +g*(a) if a> 0 ,
IR 3 a f-t 7f;s (a ) := <7dornf(S) + g*(O) if a = 0 ,

+00 if a < O.

Then (g 0 1) *(s) = m inoEIR 7f;s (a ).

Proof. By definition,

-(g 0 1)*(s) = inf, [g(f(x)) - (s , x )]
= infx,r {g(r) - (s,x ) : f( x) <r }
= infx,r[g(r) - (s,x ) + iepif (x , r) ] .

[g is increasing]

We must compute the conjugate of the sum of the two functions II(x , r) := g(r ) - (s, x )
and h := iepit- both with argument (x, r) E IRn x IR. We have dom II = IRn x dom g, so
int dom II = IRn x int dom g; hence, by assumption:

int dom II n dom [z = (IRn x int dom g) n epi f ::j:. 0.

Theorem 2.3.2, more precisely Fenchel 's duality theorem (2.3.2), can be applied with the
qualification condi tion (2.3.Q.jj'):

(g 0 fres) = min U; (-p ,a ) + f ; (p, - a) : (p,a ) E IRn x IR} .

The computation of the above two conjugates is straightforward and gives

(g 0 I)*(s) = min [g*(a ) + i{- s}(-p) + <7epi f (P, - a)] = min 7f;s( a) ,
P,Q Q:

where the second equality comes from (1.2.2). o

Let us take two examples , using the ball-pen f unction defined on its domain B(O , 1) by
f( x) = 1 - Jl -lIxIl 2 : here f(IRn

) = [0,1] U {+oo}.

- With g(r) = max {O, r} , we leave it to the reader to compute the relevant conjugates:
7f;s (a) has the unique minimum-point Q = 0 for all s.

- With 9 = i)-co ,o), the qualification assumption in Theorem 2.5.1 is no longer satisfied. We
have (g 0 I) * (s) = 0 for all s, while min., 7f;s (a) = Iis il - 1.

Remark 2.5.2 Under the qualification assumption, 7f;s always attains its minimum at some
Q ~ O. As a result, iffor example <7d o rn f( S) = (r) 'oo( s ) = + 00, or if g*(O) = + 00, we
are sure that Q > O. 0

Theorem 2.5.1 takes an interesting form in case of positive homogeneity, which can apply
to f or g. For the two examples below, we recall that a closed sublinear function is the support
of its subdifferential at the origin.

Example 2.5.3 If 9 is positively homogeneous, say 9 = a r for some closed interval e, the
domain of 7f;s is contained in e, on which the term g*(a) disappears. The interval esup­
ported by 9 has to be contained in IR+ (to preserve monotonicity) and the following example
motivates the case e= IR+ .

Consider the sublevel set C := {x E IRn
: f (x) < OJ, with f : IRn --+ IR convex;

its support function can be expressed in terms of [" , Indeed, write the indicator of C as the
composed function ic = i)-co,o) 0 f .This places us in the present framework: 9 is the support
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of R+ . To satisfy the hypotheses of Theorem 2.5.1, we have only to assume the existence of
an Xo with f (xo) < 0; then the result is: for 0 f s E dom ac, there exists a > 0 such that

ac(s) = min a]" (sja) = a j* (s j a ).
<» 0

Indeed, we are in the case of Remark 2.5.2 because dom f = R" . D

Example 2.5.4 In our second example, it is f that is positively homogeneous. Then, for all
s E dom (g 0 f) * ,

{

g*(a) if a > 0 and ~s E of(O) ,
'I/18 (a ) = adom!(S)+g*(O) i f a = O,

+00 if a < O.

If f is finite everywhere, i.e. of (0) is bounded, we have for all s f 0

(g 0 f) * (s) = min {g *(a) : a > 0 and ~sEaf (0) } .

As an application, let Q be symmetric positive definite and define the function

Rn 3 x I-t f(x) := V(Q -I X, X) ,

which is the support function of the elliptic set (see Example C.2.3.4)

EQ:=of(O)={sERn
: (s,Qs)(l}.

The composition of f with the function r I-t g(r) := 1/2 r 2 is the quadratic form associated
with Q- , whose conjugate is known (see Example 1.1.3):

(gof)(X)=~(Q-IX , X) and (gof)*(s)=~(s,Qs) .

Then
~(s , Qs) = min {~a2 : a ? 0 and s E aEQ}

is the half-square of the gauge function 'YEQ (Example C.2.3.4) .

3 Various Examples

D

The examples listed below illustrate some applications of the conjugacy operation.
It is an obviously useful tool thanks to its convexification ability; note also that the
knowledge of f* fully characterizes co I, which is f in case the latter is already in
Conv IRn ; another fundamental property is the characterization (1.4.2) of the subd­
ifferential. All this concerns convex analysis more or less directly, but the conjugacy
operation is instrumental in several areas of mathematics.
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3.1 The Cramer Transformation

Let P be a probability measure on IRn and define its Laplace transform Lp : IRn -+
]0, +00] by

IRn 3 S t-+ Lp(s) := r exp (s , z ) dP( z) .}jR n
The so-called Cramer transform of P is the function

IRn 3 x t-+ Cp(x):= sup {(s , x) -logLp(s) : s E IRn } .

It is used for example in statistics. We recognize in Cp the conjugate of the function
log Lp , which can be shown to be convex (as a consequence of Holder's inequality)
and lower semi-continuous (from Fatou's lemma). We conclude that Cp is a closed
convex function, whose conjugate is log Lp .

3.2 The Conjugate of Convex Partially Quadratic Functions

Given a linear symmetric positive semi-definite operator B and a subspace H, let
us consider

IRn 3 x t-+ g(x) := {~(BX , x) ifhx Ell ' (3.2 .1)
+00 ot erwise .

Such a function (closed, convex, homogeneous ofdegree 2) is said to be partially
quadratic. Its conjugate turns out to have just the same form, so the set of convex
partially quadratic functions is stable with respect to the conjugacy operation (cf.
Example 1.1.4).

Proposition 3.2.1 The function 9 of (3.2.1) has the conj ugate

*(s) = {~(s , (PH 0 B 0 PH)-S) if s E l~B + u - ,
9 +00 otherwise ,

where PH is the operator oforthogonal projection onto Hand (-)- is the Moore­
Penrose pseudo-inverse.

Proof. Set 1 := 1 / 2 (B·, .), so that 9 = 1 + in and g* = U 0 PH)* 0 PH (Proposi­
tion 1.3.2). Knowing that U 0 PH)( x) = 1 /2 ((PH 0 B 0 PH)x, x), we obtain from
Example 1.104 the conjugate g* (s) under the form

(1 0
)*( s) = {~(s , (PH 0 B 0 PH)- S) if PHS.E Im (PH 0 B 0 PH),

PH PH +00 otherwise .

It could be checked directly that Im (pHoB 0 P1I) + H> = Im B + H>. A
simpler argument, however, is obtained via Theorem 2.3.2, which can be applied
since dom 1 = IRn • Thus,

which shows that dom g* = Im B + H? . o



3 Various Examples 235

For example, suppose H = Im B. Calling A := B- the pseudo-inverse of B
(hence A - = (B-) - = B), we see that 9 of (3.2.1) is just 1* of Example 1.1.4 with
b = O. Since Im B + H..L = IE.n , and using the relations PH 0 B = B 0 PH = B, we
obtain finally that g* is the j of (1.1.4) - and this is perfectly normal : g* = 1** = j .

As another example, take the identity for B . Then Im B = IE.n and Proposi­
tion 3.2.1 gives immediately the formul a already seen in Example 1.1.4:

3.3 Polyhedral Functions

For given (8i , bi) E IE.n x IR, i = 1, .. . , k, set f i(X) := (8i , x) - bi and define the
piecewi se affine function

IE.n 3 Xf--tj( x ) :=max{Ji(x) : i = l, .. . , k} . (3.3 .1)

Proposition 3.3.1 At each 8 E co {81, .. . , 8k} = dom 1*, the conjugate of j has
the value (Ll k is the unit simplex)

k

1*(8) = min t~ cab,

Proof. Set gi(8) := i{s.} + b, and

k

DELlk , i~ ois, =8}. (3.3.2)

(8) := (inf ') (8) = { b, if 8 = ~i for some i = 1, . . . , k,
9 g2 +00 otherwise .

Apply Proposition B.2.5.4 to see that co 9 = 1* of (3.3.2). The rest follows from
Theorem 2.4.1 or 2.4.4, with a notational flip of j and g. 0

In IE.n x IE. (considered here as the dual of the graph-space) , each of the k vertical
half-lines {(s. , r) : r ~ bi} , i = 1, . . . , k is the epigraph of gi = it ,and these half­
lines are the "needles" of Fig. B.2 .5.1. Now, the convex hull of these half-lin es is a
closed convex polyhedron, which is just epi 1*. Needless to say, (3.3.1) is obtained
by conjugating again (3.3.2) .

Example 3.3.2 Suppose that the only available inform ation about a function j E
Conv IE.n is a finite sampling of function- and subgradient-values, say j(Xi) and
s, E 8j(Xi) for i = 1, .. . , k. By convexity, we therefore know that 'PI ~ j ~ 'P2 ,
where

'P l (Y) := max {j( Xi) + (8i ,Y - Xi) : i = 1, . . . , k},
'P2 := co (mini gi) with gi(Y):= i{xi}(Y) + f( Xi) for i = 1, . . . , k .

The resulting bracket on j is drawn in the left-part of Fig. 3.3.1. It has a counterpart
in the dual space : 'P2 ~ 1* ~ 'Pi , illustrated in the right-part of Fig. 3.3.1, where



236 E. Conjugacy in Convex Analysis

(jl2

Fig. 3.3.1. Sandwiching a function and its conjugate

'P~(S) = co [min {i{si}(s) + (Si,Xi) - f(Xi)}] '
'P;(s) = max {(S,Xi) - f(X i) : i = 1, . .. , k} .

Note: these formulae can be made more symmetric, with the help of the relations
(Si,Xi) - f(Xi) = 1*(Si).

The function 'PI above is often called the cutting-plane approximation of f. The
relation 'PI ~ f is certainly richer than the relation f ~ 'Pz, which ignores all the
first-order information contained in the subgradients s.. The interesting point is that
the situation is reversed in the dual space: the cutting-plane approximation 'Pz of 1*
is obtained from the poor primal approximation VJz and vice versa . 0

Because the f of (3.3 .1) increases at infinity no faster than linearly, its conjugate
1* has a bounded domain: it is not piecewise affine, but rather polyhedral. A natural
idea is then to develop a full calculus for polyhedral functions, just as was done in
§3.3 for the quadratic case.

As seen in §B. 1.3(b), a polyhedral function has the general form 9 = f + ip,
where P is a closed convex polyhedron and f is defined by (3.3.1). The conjugate
of 9 is given by Theorem 2.3.2 : g* = 1* t C7p, i.e,

k k
g*(s) = min [2:: cab, + C7p (s - 2:: O'.iSi)] .

a E .d k i = l i= l
(3.3 .3)

This formula may take different forms , depending on the particular description of
P. When P = co {PI, . . . ,Pm} is (compact and) described as a convex hull, C7p is
the maximum ofjust as many linear functions (Pj, .) and (3.3.3) becomes an explicit
formula, Let us consider the case of a dual description of P .

Example 3.3.3 With the notation above and f of (3.3.1), suppose that P is de­
scribed as an intersection (assumed nonempty) of half-spaces:

Hj := {x E IRn
: (Cj ,x) ~ dj } for j = 1, . .. ,m

and P := nHj = {x E IRn
: ex ~ d}.
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It is convenient to introduce the following notation: JRk and JRm are equipped
with their standard dot-products; A [resp. C] is the linear operator which, to x E JRn,
associates the vector whose coordinates are (8i' x) in JRk [resp. (Cj , x) E JRm]. It is

not difficult to compute the adjoints of A and C: A*a = L:~=l a i8 i for a E JRk
and C*"( = L:';=l "(j Cj for "( E JRm. Then we want to compute the conjugate of the
polyhedral function

{

.E1ax (8 j, x) - bj if Cx ~ d ,
X I-t g(x) := J-l ,. .. ,k .

+00 if not ,

and (3.3.3) becomes g*(8) = min {b T a + (Jp(8 - A*a) : a E L\d.
To compute o», we have its conjugate i p as the sum of the indicators of the

Hj 's; using Theorem 2.3.2 (with the qualification assumption (2.3.Q.j), since all the
functions involved are polyhedral),

{m m }
(Jp(p) = min jJ;l (JHj (8j) : j'f; 8 j =p .

Using Example C.3.4.4 for the support function of H], it comes

(Jp (p) = min {dT
"( : C*"( = p} .

Piecing together, we finally obtain g* (8) as the optim al value of the problem in
the pair of variables (a ,"():

I
min (bT a + dT

"( ) , a E L\k' "( E (JR+)m ,
A* C* (3.3.5)a+ ,,( = 8 .

Observe the nice image-function exhibited by the last constraint, characterized
by the linear operator [A*IC*]. The only difference between the variables a (in­
volving the piecewise affine 1) and "( (involving the primal constraints that define
P) is that the latter do not have to sum up to I; they have no a priori bound. Also,
note that the constraint of (3.3.4) can be more generally expressed as Cx - d E K
(a closed convex polyhedral cone), which induces in (3.3 .5) the constraint "( E K O
(another closed convex polyhedral cone, standing for the nonnegative orthant).

Finally, g* is a closed convex function . Therefore, there is some s E JRn such
that the feasible domain of (3.3.5) is nonempty, and the minimal value is never - 00 .

These properties hold provided that g in (3.3.4) satisfies (1.1.1), i.e. that the domain
Cx ~ dis nonempty. 0

4 Differentiability of a Conjugate Function

For f E Conv JRn, we know from Corollary 1.4.4 that 8 E af(x) if and only if
x E a1*(s); and this actually was our very motivation for defining 1*, see the
introduction to this chapter. Geometrically, the graph of af and of a1* in JRn x
JRn are images of each other under the mapping (x , 8) I-t (8, x ). Knowing that a
convex function is differentiable when its subdifferential is a singleton, smoothness
properties of1*correspond to monotonicity properties ofaf, in the sense of §D.6. 1.
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4.1 First-Order Differentiability

Theorem 4.1.1 Let f E Conv IRn be strictly convex. Then int dom 1* :j; 0 and 1*
is continuously differentiable on int dom 1*.

Proof. For arbitrary Xo E dom f and nonzero d E IRn , consider Example 2.4.6.
Strict convexity of f implies that

a< f( xo - tdj - f (xo) + f (xo + tdj - f( xo) for all t > 0 ,

and this inequ ality extends to the suprema: a < f :x,( -d) + f :x,(d). Remembering
that f :x, = (Jdom r: (Proposition 1.2.2), this means

(Jdom t: (d) + (Jd om f * (-d) > 0,

i.e. dom 1* has a positive breadth in every nonzero direction d: its interior is
nonempty - Theorem C2.2.3(iii).

Now suppose that there is some s E int dom 1* such that [)1* (s) contains two
distinct points X l and X2 . Then s E [)f (XI) n [) f (X2 ); by convex combination of
the relations

1*( s) + f( Xi) = (S, Xi) fori = 1,2

we deduce, using Fenchel's inequality (1.1.3) :

which implies that f is affine on [Xl , X2 ], a contradiction. In other words, [)1* is
single-valued on int dom 1*, and this means that 1* is continuou sly differentiable
there (Remark 6.2.6). 0

For an illustration, consider the function IRn 3 X 1-7 f(x) .- )1 + Il x11 2 ,

whose conjug ate is

IRn 3 s 1-7 1*( s) = {-)1 -l lsl12 if Iisil ~ 1 ,
+00 otherwise.

Here, f is strictly convex (compute \72f to check this), dom 1* is the unit ball, on
the interior of which 1* is differentiable, but [)1* is empty on the boundary.

Incidentally, observe also that 1* is strictly convex; as a result , f is differen­
tiable. Such is not the case in our next example : with n = 1, take

f( x) := [z] + ~X2 = max { ~X2 + X, ~X2 - x } .

Use direct calculations or calculus rules from §2 to compute

{

~ (s + 1)2 for s ~ -1 ,
1*(s) = a for - 1 ~ s ~ 1 ,

~ (s - 1)2 for s ~ 1 .

(4.1.1)
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This example is illustrated by the instructive Fig . 4.1.1. The left part displays
gr I, made up of two parabolas; f*(s) is obtained by leaning onto the relevant
parabola a straight line with slope s. The right part illustrates Theorem 2.4.4: it
displays l /ZSZ + sand l/Z SZ - s, the conjugates of the two functions making up f ;
epi f* is then the convex hull of the union of their epigraphs.

x

s

Fig. 4.1.1. Strict convexity corresponds to differentiability of the conjugate

Theorem 4.1 .1 gives a sufficient condition for smoothness of a closed convex
function (namely f*). Apart from possible side-effects on the boundary, this condi­
tion is also necessary:

Theorem 4.1.2 Let f E Conv JRn be differentiable on the set f? := int dom f.
Then f* is strictly convex on each convex subset C C \7 f(f?) .

Proof. Let C be a convex set as stated. Suppose that there are two distinct points
Sl and Sz in C such that f* is affine on the line-segment [Sl' sz]. Then, setting
s := l /Z (Sl + sz) E C c \7 f(f?), there is x E f? such that \7 f(x) = s, i.e.
x E 8 f* (s) . Using the affine character of r, we have

Z

0= f(x) + f*(s) - (s,x) = ~ '2)f(x) + f*(Si) - (Si,X)]
i=l

and, in view of Fenchel's inequality (1.1.3), this implies that each term in the bracket
is 0: x E 8 f* (sr) n8 f* (S2), i.e . 8 f (x) contains the two points Sl and S2, a contra­
diction to the existence of \7f (x) . 0

The strict convexity of f* cannot in general be extended outside \7f (f?); and be
aware that this set may be substantially smaller than one might initially guess.

We gather the results of this section, with a characterization of the "ideal situa­
tion", in which the Legendre transform alluded to in the introduction is well-defined.

Corollary 4.1.3 Let f : JRn -+ JR be strictly convex, differentiable and I-coercive.
Then

(i) f* is also finite-valued on JRn, strictly convex, differentiable and I-coercive;
(ii) the continuous mapping \7f is one-to-one from JRn onto JRn, and its inverse is

continuous;
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(iii) 1*(8) = (8, (\7 f)-I (8)) - f ((\7f)-I (8)) for all 8 E ~n . o

The simplest such situation occurs when f is a strictly convex quadratic func­
tion, as in Example 1.1.3, corresponding to an affine Legendre transform . Another
example is f(x) := exp (~llxI12).

4.2 Lipschitz Continuity of the Gradient Mapping

Along the same lines as in §4.1, better than strict convexity of f and better than
differentiability of 1* correspond to each other.

The next result is stated for a finite-valued f, mainly because the functions con­
sidered in Chap. D were such; but this assumption is actually useless.

Theorem 4.2.1 Assume that f : ~n -+ ~ is strongly convex with modulu s c > °on
~n :forall(xl ,x2) E ~n x ~n and a E]O,l[,

Then dom 1* = ~n and \71* is Lipschitzian with constant 1/c on ~n :

Proof. We use the various equivalent definitions of strong convexity (see Theo­
rem D.6.1.2). Fix Xo and 80 E 8 f(xo): for all°:f. d E ~n and t ~°

hence f:x,(d) = (Tdom f' (d) = +00, i.e. dom 1* = ~n. Also, f is in particular
strictly convex, so we know from Theorem 4.1.1 that 1* is differentiable (on ~n).

Finally, strong convexity of f can also be written (81 - 82,Xl - X2) ~ cllxl - x2112,

in which we have s, E 8f(Xi), i.e. Xi = \71*(8i), for i = 1,2. The rest follows
from the Cauchy-Schwarz inequality. 0

This result is quite parallel to Theorem 4.1.1 : improving the convexity of f from
"strict" to "strong" amounts to improving \71* from "continuous" to "Lipschitzian".
The analogy can even be extended to Theorem 4.1.2:

Theorem 4.2.2 Let f : ~n -+ ~ be convex and have a gradient-mapping Lips­
chitzian with constant L >°on ~n : for all (Xl , X2) E ~n x ~n,

Then 1* is strongly convex with modulus 1/L on each convex subset C C dom 81*.
In particular; there holds for all (Xl, X2) E ~n x ~n

(4.2.2)
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Proof. Let Sl and Sz be arb itrary in dom 81* c dom 1* ; take sand s' on the
segment [Sl ' sz]. To establi sh the strong convexity of 1*, we need to minori ze the
remainderterm 1* (s') - 1*(s) - (x , s' - s), with x E 81*(s) . Forthis, we minorize
1*(s') = SUP y[(s' , y) - f(y)], i.e. we majorize f(y) :

f( y) = f( x) + (\7 f( x) , y - x) +11

(\7 f( x + t(y - x )) - \7 f( x) , y - x)dt

:::; f( x) + (\7 f( x) , y - x ) + ~Llly - xllz=
= - 1*(s) + (s , y) + ~L lly - xllz

(we have used the property I; t dt = 1/2, as well as x E 81*(s), i.e. \7 f( x) = s).
In summary, we have

1*(s') ~ 1*(s) + sup [(s' - s,y ) - ~Llly - x IIZ] .
y

Observe that the last supremum is nothing but the value at s' - s of the conjugate of
l/Z LII . - xll z. Using the calculus rule 1.3.1, we have therefore proved

1*(s') ~ 1*(s) + (s' - s, x ) + Alis' - s llz (4.2.3)

for all s, s' in [S l ' sz] and all x E 81*(s) . Replacing s' in (4.2.3) by Sl and by Sz,
and setting s = aS1 + (1 - a) sz, the stron g convexity (4.2.1) for 1* is established
by convex combination.

On the other hand, replacing (s , s' ) by (Sl ' sz ) in (4.2.3):

1*(sz) ~ 1*(sd + (sz - Sl,X1) + Allsz - sl l1 z for all Xl E 81*( Sl).

Then, replacing (s, s') by (sz, sd and summing: (Xl - xz, Sl - sz) ~ 1/Llls1- szllz.
In view of the differentiability of I, this is just (4.2.2), which has to hold for all
(Xl , xz ) simply because 1m 81* = dom \7f = jRn. 0

For a convex function , the Lipschitz property of the gradient mapping thus ap­
pears as equivalently expressed by (4.2.2); a result which is of interest in itself.
Naturally, Corollary 4.1.3 has also its equivalent, namely: if f is strongly convex
and has a Lipschitzian gradient-mapping on jRn , then 1* enjoys the same properties.
These properties do not leave much room, though: f (and 1*) must be "sandwiched"
between two positive definite quadratic functions.

Exercises

1. Let C be a closed convex set.

(i) Show that the subdifferential of its indicator function is the normal cone:
Oic(x) = Nc(x) for all x E C.
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(ii) In particular, compute aic(O), where C is the two-dimensional disk of center
el := (1,0) and radius 1:

C :={XEIR2: Ilx- elll ~1}={x=(~,r7): (~-1)2+1]2 ~1} .

(iii) With iI , h closed convex, prove the formulaa(iI +h)(x) :::J aiI (x)+ah(x)
for all x .

(iv) With C of (ii), use the example (ic + i- c) to demonstrate that equality need
not hold in general.

(v) Reali ze that equality holew ir C is shifted to the left.

(vi) Meditate this exercise with Theorems 1.4.2 and A.2 .1.lain mind .

2 *. In what follows, 9 is a function from IRn to IR U {+oo} and h : IRn -+ IR is
convex; set f := 9 - h.

(i) Show that 1*(s) = sup [gOes + p) - h*(p)] for all s E IRn .
pEdomh*

Deduce

inf [g(x) - hex)] = inf [h*(p) - g*(p)].
xEIRn pEdom ti:

(ii) Now we consider the problem of maximizing a finite-valued function h over a
set S c IRn . Let 0: := sUPxES hex) .
- Write 0: as the infimum over IRn of a function f as described in (i).

- Show that -0: = inf [hOe s) - as(s)].
sEdom ti:

- Let A be a symmetric positive definite operator. Using the above method,
show that

-Amax(A) = inf (2I1sll- (A- 1 s, s)) = inf (11s112- 2J(As, s)) .
sEIR n sElRn

3. A function f E Cony IRn is said to be invariant under an orthogonal transforma­
tion U if f (Ux) = f (x) for all x E IRn . Show that f is invariant under U if and
only if so is 1* .
4. Let f E Cony IRn ; take a set G c IRn and a function 9 : IRn -+ IR U {+oo}
satisfying

ridomf C G c domf ,
g(x) 2: f( x) for all x E IRn ,

g(x) = f( x) for all x E ridomf .

Then establish the relations

inf g(x) = inf g(x) = inf f( x) .
x EG xEIRn xEIR n
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5 *. This exercise is based on Proposition 3.3.1 giving the conjugate of a polyhedral
function . Given (Si' bi ) E lRn x lR for i = 1, , k, consider the closed convex
polyhedron P := {x E lRn : (Si' x ) ::::: bi , i = 1, ,k}. Show

k k

P ::f 0 {=:::} L cab, ~ 0 for all a E (lRt)k such that L a isi = 0 ,
i= l i= l

or equivalently

k k
P = 0 {=:::} :3a E (lR+)k such that L a iSi = 0 and L cab, < O.

i = l i=l

6*. Given p > 0, consider the functions f p, gp, hp defined on lR by:

fp( x) = gp(x) = hp( x) = _1_XP+1 for x ~ 0 ,
p+1

while, for x < 0:

h (x) = _1_( - x)P+I .
p p+1

Show that f; = gl /p' s; = f1/p, h; = hI/po

7*. Let p; r1, " " rm;a1, .. . , am be real numbers, with p and the ris positive . For
i = 1, . .. ,m, set

1
lR 3 x I-t f i( X) := ( ) p ix - ailp+ 1 .

p+ 1 r i

Show that (II t · · · t f m)( x) = (p+~)rp Ix- a1 P+1 for all x E lR, where r := L i ri
and a := L i ai.

8*. Let aI , ... , am be positive real numbers. Using the inf-convolution of the func­
tions lR 3 x I-t 1/2 aix 2 and of their conjugates, establish the formula

(
m 1 )-1 {m m }L - = min L aix ; : L Xi = 1 .

i=l ai i= l i= l

9. Let K be a closed convex cone of lRn and f E Conv lRn
. Assume f is continuous

at some Xo E K . Then show infxEK f( x) = - minsEKo f*(s).

10. Compute the conjugate of the function ch (hyperbolic cosine) on lR. Deduce an
antiderivative of (sh):? (inverse of the hyperbolic sine).

11*. For real m and (J , consider the function qm,u : lR -+ lR defined by

(x-m) 2 .
qm,u(x) := 2(J2 If (J ::f 0 , and qm,o = i{m} .

Compute (qm,u)*. Deduce qm,u t qm' ,u' = qm+m' ,v'u2+u,2.
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12*. In the space Sn (IR) equipped with its standard scalar product, consider

f(X) := ~IIXI12 - Crnxf .
. { ~ tr S2 if tr S = 0

Show that f IS convex and that f*(S) = 4 ' .
+00 iftrS:j:. 0

13*. As in §B. l .3(f), consider the function

S (IR) 3 A t-+ f(A) := { -logedet A) - n/2 if A is ~ositive definite ,
n +00, otherwise .

- Knowing that f is differentiable on its domain, what can be said about strict con­
vexity of f*?

- Assume A positive definite . Develop det A along the i t h column of A to obtain
\7(det )(A) = (det A) A-I , so that \7f (A) = - A-I .

- Compute f* . Show directly that f is convex, and even strictly convex.
- Deduce the inequality tr (A- 1B) + tr (B- 1A) > 2n, valid for any two different

positive definite matrices A and Bin Sn(IR) .

14. Let f : IRn -7 IR be convex, Coo and l-coercive on IRn. Show that f* is Coo .

15. Let f and 9 be in Conv IRn.
For s E IRn, show the equivalence of the following statements:

(i) f*( s) + g*(- s) ~ 0;
(ii) there exists r E IR such that

f(x) ? (s , x) + r ? -g(x) , for all x E IRn .

Assuming the existence of some x E IRn such that f(x) = -g(x), establish the
relation

{s E IRn : f*(s) + g*(-s) ~ O} = of(x) n -og(X) .



Bibliographical Comments

Some notion of convexity appeared already in Archimedes' works. Closer to us,
modem convexity theory resulted in several branches, using often the same tools or
basic concepts, but with problems to solve of diverse nature : geometric convexity
is one example. In the present book, it is the variational aspect, or the relationship
with continuous optimization that we have stressed.

The development of convexity during the last half-century owes much to W. Fen­
chel (1905-1988), J.-J. Moreau (1923-) , R.T. Rockafellar (1935-). Fenchel was very
"geometrical"; Moreau, according to his own words, did applied mechanics : he "ap­
plied Mechanics to Mathematics"; while the concept of "dual problem" is a con­
stant leading thread for Rockafellar. Besides mechanics, one should not forget that
convexity comes naturally into play in another branch of science : thermodynam­
ics. There , "convexifying" a function (passing from f to co 1) is a common opera­
tion. The works of the physici st J.w. Gibbs (1839-1903) were a benchmark in this
respect: read A.S. Wightman's introduction to [24]: "Convexity and the notion of
equilibrium state in thermodynamics and statistical mechanics".

For the reader wanting to start a library, here are some suggested books:

- First of all, the reference book to keep on the shelf, as far as convex analysis in
finite dimension is concerned, is [42].

- Convex sets and functions in infinite dimension: [34], [14, Chaps I-III], [43, 7],
[5, Part I], [11, 21, 38], [28, Chaps VI-VII], [9, Chap 9].

- Convexity and mathematical economics: [35, 6, 5].
- Convexity in variational problems : [1,14,23,48,50]
- and, concerning more particularly optimization algorithms: [18, Vol.2], [36, 47].
- Convexity and approximation theory : [20, 28].
- Convexity in statistics, in statistical mechanics : [8, 15].
- Use of convexity in nonsmooth analysis: [44, 12,45,9].

Let us also mention [17] for a load of additional exercises and references.
We now give some comments for more detail on subjects treated in the present

volume.

Chapter A. The first systematic study of convexity (in finite dimension) is due to
H. Minkowski (1864-1909); most ideas on the subject can be found in his works, at
least in seminal form. Theorem 1.3.6 of Caratheodory (1873-1950) goes back also to
the very beginning ofthe xx» Century . A proof of the Fenchel-Bunt Theorem 1.3.7
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can be found in [13, Thm 18(ii)], or [25, Lemma B.2.2]. Along the lines of these
results , we mention the following theorem (of Shapley-Folkman). Let Sl,. . . ,Sk be
subsets of R" and S := Sl + .. . + Sk (we know that co S = co Sl + . . . + co Sk).
Any x E co S can be expressed as X l + .. . + X k, with Xi E co Si, and the set of i
such that X i (j. S, having at most n elements. This theorem and Caratheodory's can
be viewed as particular cases of a more general result ([3, Lemma I]), relating the
dimension of a face of C exposed by s and that of A( C) (A being affine) exposed
by As. Minkowski's Theorem 2.3.4 has a generalization to infinite dimension, due
to Krein and Milman : a compact convex set C in a Hausdorff locally convex vector
space is the closed convex hull of its extreme points. This explains that Minkowski's
theorem often appears under the banner "theorem of Krein-Milman".

Moreau's Theorem 3.2.5 goes back to 1962: [33]. For developments around the
Minkowski-Farkas lemma and the associated historical context, consult for example
[40, 46]. The use of separation theorems to obtain multipliers in nonlinear program­
ming, and their development through the ages, are recorded in [39].

We have totally neglected here combinatorial aspects in the study ofconvex sets,
and convex geometry. These subjects are treated in [29,46, 16]. To know more on
closed convex polyhedra, we recommend [10].

Chapter B. The variational formulation of the sum of the m largest eigenvalues of
a symmetric matrix A, as the support function of [l = {Q : QT Q = im } (§1.3(ej),
is due to Ky Fan (1949). Incidentally, it can be shown that co [l is nothing more than
the set of positive semi-definite matrices A satisfying tr A = m and Al (A) :::; l.

The operator (All +A21)-1 , constructed in Example 2.3.9, is called the parallel
sum of Al and A2 ; this parallel addition appeared for the first time in [2]. For more
on the variational approach of this operation, see [32].

A proof of Theorem 4.2.3 can be found for example in [41, §44]. This last work
contains interesting complements on convex functions .

Chapter C. The concept of support function has its roots in the works of Min­
kowski, who considered the three-dimensional case . However, the note [22] of
L. Hormander, written in a general context of locally convex topological spaces,
was extremely influential in modem developments.

Let 1-£ be the set of positively homogeneous functions from IRn to IR. This is a
vector space, which can be equipped with the norm (assumed finite for simplicity)

1-£ 3 h f-+ III hili := sup Ih(x)l .
Ilxll=l

In 1-£, we find the convex cone K of (finite-valued) sublinear functions a : IRn -t IR.
Besides , consider the set C of nonempty compact convex sets in IRn . The isomor­
phism of§3

C 3 C f-+ ae EKe 1-£

is sometimes called Radstrom's embedding.
Formula (3.3.5), expressing the Hausdorff distance LJ.H between two sets Sand

S' with the help of their support functions, appears in [22]. We mention that distance
functions can also be used: in fact,



Bibliographical Comments 247

L).1l(S,S') = sup Ids(x) - ds,(x)l·
x E lRn

Both formulae are applicable to some extent to unbounded sets Sand S' .

Chapter D. Various names appear in 1963 to denote a vector s satisfying (1.2.1):
R.T. Rockafellar in his thesis (1963) calls s "a differential of f at x" ; it is J.-J. Mo­
reau who, in a Note aux Cornptes-Rendus de l'Academic des Sciences (Paris, 1963),
introduces for s the word "sons-gradient".

In the years 1965-70, various calculus rules concerning sup-functions (§4.4)
started to emerge. The time was ripe and several authors contributed to the subject:
B.N. Pschenichnyi, V.L. Levin, R.T. Rockafellar, A. Sotskov, . .. who worked in the
field and used various assumptions. However, the most elaborated results are due to
M. Valadier. Concerning counter-examples, K.C. Kiwiel found (4.4.7) and Remark
4.5.4 comes from [26]. Generally speaking, our assumptions in this Section 4.4
(finite-dimensional context, finite-valued functions) are more restrictive than those
used by most of the above-mentioned authors; however, they allow more refined
statements and less technical proofs .

The work presented in §5.l on the maximal eigenvalue has a complete exten­
sion to the sum f m(M) of the m largest eigenvalues of a symmetric matrix M .
As indicated in our preceding comments on Chap. IV, 8 f m (0) is the set of positive
semi-definite matrices A such that tr A = m and X, (A) :( 1. A general formula for
the subdifferential is then:

8fm(!v1) = {A E 8fm(0) : «A, M)) = fm(!vl)} ,

i.e. 8fm(M) is the face of 8fm(0) exposed by M . More explicit formulae can be
given; see [19,37] and the references therein .

Chapter E. As suggested from the introduction to this chapter, the transformation
f M f* has its origins in a publication of A. Legendre (1752-1833), dated from
1787. Since then, this transformation has received a number of names in the litera­
ture: conjugate, polar, maximum transformation, etc. However, it is now generally
agreed that an appropriate terminology is Legendre -Fenchel transform , which we
precisely adopted in this chapter. Let us mention that W. Fenchel (1905-1988) wrote
in a letter to C. Kiselman, dated March 7, 1977: "I do not want to add a new name,
but if I had to propose one now, I would let myself be guided by analogy and the
relation with polarity between convex sets (in dual spaces) and I would call it for ex­
ample parabolic polarity". Fenchel was influenced by his geometric (projective) ap­
proach, and also by the fact that the "parabolic" function f : x M f(x) = 1/2 11 x112

is the only one that satisfies f* = f . In our present finite-dimensional context, it
is mainly Fenchel who studied "his" transformation, in papers published between
1949 and 1953.

The close-convexification - biconjugacy - of a function arises naturally in vari­
ational problems : minimizing an objective function like f: £(t, x(t) , x(t))dt is re­

lated to the minimization of the "relaxed" form f: co£(t,x(t) ,x(t))dt, where col



248 Bibliographical Comments

denotes the closed convex hull of the function £(t,x , ·). For references on these
questions, see [14, 23].

The calculus rules of §2 are all rather classical. Among the proofs giving the
conjugate of a sum, see for example [4]; the conjugate of an infimal convolution
can then be seen as a corollary, and this reverts our present path §2.2 - §2.3. Post­
composition with an increasing convex function is treated in [27] for vector-valued
functions.

Proposition 3.2.1 was published in [32, §II.3]. As demonstrated in [30], conju­
gating quadratic functions turns out to be a fundamental operation for the so-called
SDP relaxation, which has many important applications; see an overview in [49].

Section 4.2 opens the way to second-order studies of convex functions; see [31]
and the references therein.
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(-) (notation for sequences) , 2

-.' (inverse image), I
:= (equal s by definition), 1
(-, .) (sca lar product), 6
- of matrices, 7, 84
:::; (in Rn ) , 22
)r (positive semi-definite), 8
I'I (notation for sets) , 1
+(one-sided convergence), 2
..1 (orthogonal), 8
;j;, see inf-convolution
aff, see hull (affine)
Argmin, argmin, 3
bd (boundary), 4
cl, see closure
co (convex hull), 28
co (closed convex hull), 31
cone (convex conical hull) , 33
cone (closed convex conical hull) , 33
Conv R" (set of convex func tions), 74
Conv Rn

( " closed " " "), 80
L1, see unit simplex
d . , see distance
ep i, see epigraph
c( ·),10
ext (set of extreme points), 41
'Y, see gauge
gr (graph of a mapp ing) , 12
H- (closed half-space), 20
i. , see indicator function
i.e., 1
1m (image of a linear operator), 9
inf (infimum), 1
int, see interior
Ker (kernel), 9
e. ,see lower-bound function
lim ext (limes exterior), 12, 64, 65
lim inf (limes inferior), 4, 13,64
lim int (limes interior), 13, 64, 65
lim sup (limes superior), 4, 13, 64
lin , see hull (linear)

max (maximum), 1
min (minimum), 1
.- , see pseudo-inverse
0( ·),10
p ., see projection
R U {+ oo} (extended real numbers), 5-6
rbd (relative boundary), 34
ri (relative interior), 34
(1 ., see support function
' . (subst ar), 2
sup (supremum), 1
Sn(R) (symmetric real matrices), 6
tr (trace of a matrix), 7

active (set), 67,176,187-190
addition, see sum
adjoint, 8, 141, 153, 154, 184, 195,237
affine
- combination, 26
- funct ion, 77, 126, 158,214
- hull, see hull
- hyperplane, 19,51,62,126,135,149,198
- manifold, 20, 26 , 34, 37, 62, 218
-- projection onto -,48
- mapping, 23, 24, 38, 68, 88, 109, 184,212
- minorant, 77, 80,93,98, 167,211 ,218,

222 ,229
affinely independent, 26, 27
angle , 47, 48, 66, 126
apex, 21
approximation, see first-, second-order
asymptotic cone, 39, 39-41 , 65,128,129,141
- of an epigraph, 106
- of sublevel-sets, 107
- and compactness, 40
- and polarity, 150
- and support function, 140
- calculus rules, 40
asymptotic function, 106
- of the conjugate, 215
- of a sublinear function, 131
- and perspective, 107, 127
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- conjugate of -,231

ball-pen functi on, 92, 232
barycentric, 27
basi s, II, 19, 30,84, 113
- canonical -,6,21,22,49,67,97,175,185
biconjugate, 213, 218
bipolar, 57
bottom, 76, 86, 92, 98
Bouligand, 63
boundary, 145, 150
breadth, 135, 165, 178

Caratheodory, 29, 31,42, 100
Cartesian product, 3, 23, 24, 38, 40, 68
Cauchy-Schwarz, 10
closed, closedness
- funct ion , 78, 212
-- (image), 154,224
-- (inf-convolution), 94, 227
- - (marginal), 98
- multifunction, see multifunction
- of the subdifferential mapping, 200
- of the tangent cone, 63
- set, 24, 41,143-161
-- (extreme points), 41
closure, 4, 75, 189
- of a cone, 57
- of a function, 79, 80,100,219
- - (directional derivative), 230
-- (image), 153,224
- - (inf-convolution), 227
- of a perspective, see perspective
- of a set, 24, 31, 34, 36
coercive, coercivity
- 0-,108
- 1-,108,210,239
- and conjugacy, 219
- without convexity, 219
compact, compactness, 4, 24, 67, 85
- of an Argmin, 109
- of a conical hull, 33
- of a convex hull , 31
- of an index set, 188-190
- of an inverse image, 154
- of a sublevel-set, 107, 128
- and asymptotic cone, 40
- and continuity of convex functions, 103
- and convergence of functions, 105
- and convergence of grad ient s, 202
- and extreme points, 42, 46
- and gauge, 130
- and Hausdorff topology, 12, 155-156

- and polarity, 151
- of subdifferentials, 20 I
concave, 75,98
cone, 5, 21, 62, 82, 85, 213
- as an epigraph , 121-161
- asymptotic -, see asymptotic
- bipolar -, 57
- closed -, 59
- extreme point of -,41
- of positive semi-definite matrices, 194
- polar -, see pol ar cone
- polyhedral -, see polyhedral cone
- support function of -, 140
conica l combination, 33
conical hull, see hull
conjugate, conjugacy, 88, 94, 211
- of an asymptotic function, 231
- of a directional derivative, 230
- of a distance, 223, 229
- of an indicator, 213
- of an inf-convolution, 223
- of a marginal function, 223
- of a polyhedral function , 236
- of a quadratic function, 212
- of a trace, 217
- and coercivity, 219
- and differentiability, 237-241
- calculus rules , 216 , 222-233
- nonlinear -, 216
- of a distance
- - to a subspace, 213
- perspective of -,214
constrained optimization problem, 96
constraint, 32, 67, 83, 141, 159, 197
contingent cone, 63
continuous, 4, 14, 20,46, 197
- (convex functions) , 79, 102-105
- (support functions), 156
continuously differentiable, see differen-

tiable
convergence,4,174
- in extended reals, 6
- of convolutions, 93
- of functions, 105, 133, 156
- of grad ient s and subgradients, 202
- of sets , 12, 156
- one-sided, 2
- speed of -, 10
- uniform -,105,133,156,173,202
convex combination, 27, 27-31, 33, 41, 45,

76,101
convex function, 73, 75
- combination of -, 87-98



- continuity of -, 102-105
- differentiability of -, 110-117
- proper -, 74
- univariate -, 14-16
convex multiplier, 21, 197
convex set: combination of -,22-24
convexification, 100, 167,233
comer point, see kink
Cramer transformation, 234
criterion for convexity, 16, 114, 199,200,

221
criterion of increasing slopes, see slope
critical point (or stationary) , 177, 191
cutting plane, 236
cylinder, 84, 128, 143

decomposition, 184, 195,217
- Moreau -, 51, 62
decreasing , 2
degenerate , 84, 212
derivative, 16, 62, II I, 175
- generalized -, 174
- one-sided -, 15, 62, 113, 164
- second -, 16, 115
development , see first-, second-order
difference quotient, 64, 91,164,231
- monotonicity of -, 15, 167
- of sets, 40, 64
differentiable, differentiability, 10, 110-117,

175,186,190
- of an image, 191
- of a marginal function, 192
- of a sup, 190
- and conjugacy, 237-241
- continuously -, 63, 202
differential, 10,203, 209
differential inclusion, 195
dimension , 29, 30, 36
- of an affine manifold, 20
- of a convex set, 34, 43, 45
- full-, 26, 43, 89, 116, 226
- one-, 31, 43, 79,89,114,164,178
Dini,174
direction, 39,45, 135,204
- exposing a face, 145
- extreme -, 159
- normal -, 65
- tangent -, 62
direction subspace, see parallel
directional derivative, 164, 164-167, 169,

174
- of the largest eigenvalue, 194
- as a support function, 165, 168, 230
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- closedness of -, 230
- epigraph of -, 169
- upper semi-cont inuity of -,201
distance , 12, 46, 64, 83, 94, 127

- between functions, 132
- between sets, 12, 135, 155, 156, 158
- between unit balls, 156
- conjugate of -, 229
- subdifferential of -, 180, 204
- to a polar cone, 141
- to a support, 136
domain
- of a function, 74
- of a mapping, 12
- of a support function, 134
- support function of -,214
dot-product, 7, 21 , 49, 84, 116, 147, 160, 185,

195,2 37
dual , duality, 8,146,218
- and economics, 216
- between gauges and supports, 143
- between norms, 146-148, 180
- between points and hyperplanes, 20
- established by conjugacy, 216, 227, 228,

235
- establi shed by supports, 134
- Fenchel -, 228
- Lagrangian -, 196
- norm,146

edge,43,45
eigenvalue, 84, 113, 157, 193
eigenvector, 85
electrical circuit, 95
elliptic set, 84, 85, 128, 233
- gauge of -, 180
- support function of -, 143
epigraph , 74, 75, 85, 136
- of the directional derivative, 169
- of a sublinear function, 124
- closed -, 78
- closed convex hull of -, 100
- convex hull of -, 98
- exposed face of -, 215
- relative interior of -, 76
- strict -, 74, 75, 86, 93, 98
- support function of -,214
epigraphic hull, see hull
Euclidean
- norm, 9, 148
- space, 6, 6-11 , 19,20,55,96,122,216
excess, 12, 14
exposed (face, point), 44, 43-46, 48, 50, 136,

145, ISO, 158, 167, 180, 194
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- of an epigraph, 215
- of a polar set, 148
- of a subdifferential, 175, 204
- and normal cone, 68, 174
- describing a boundary, 145
extended-valued, 5, 74, 163
extreme point, 41, 41-43, 45, 46, 104, 159

face, 42, 44
- exposed -, see exposed (face, point)
facet, 43, 45, 148
Farkas, 58-62, 159, 160
feasible direction, 64
Fenchel
- duality theorem, 228
- inequality, 211
- transformation, see Legendre-Fenchel
Fenchel-Bunt's theorem, 31
first-order approximation, II , III , 121, 166,

168,173-175
form, 8
- bilinear -, 6, II
- - and coercivity, 108
- linear -, see linear
- quadratic -, 8, 84, 95, 108
- - conjugate of -, 212
-- square root of -, 128
Frechet, 114, 174, 175

Gateaux, 174
gauge, 128, 128-131 , 143, 146-151 , 180,

233
- of a unit ball, 146
- subdifferential of -, 180
gradient, 10,112,117,209
graph, 62, 74, Ill , 198,200

Hahn-Banach, 52, 144
half-line , 21, 31 , 36, 39, 122
- horizontal -, 79, 109, 172
- support function of -, 141
- vertical -, 76, 86, 235
half-space, 20, 23, 44, 64, 77, 135, 172
- intersection of -, 23, 55, 56, 65, 69, 80,

141, 158, 159,236
- normal cone to -, 66
- support function of -, 141
Hausdorff, see distance between sets
Hessian, 11
hull, 26-33
- affine -, 26, 27, 68
- - of an epigraph, 76
- - and support functions, 135, 138
- - for relative topology, 30,33-36, 55, 117

- closed conical -, 33, 60
- closed convex -,31,55, 123, 137, 152,

188
- - of a function, 100, 152, 218
- - of exposed points, 45
- conical -,33, 58, 136
- - polar of -, 49
- convex-,28,42,46, 137, 188,203
- - of a function, 100
- epigraphic -, 86, 97
- linear -, 26, 58, 68
- lower semi-continuous -, see closure
hyperplane , see affine, supporting
hypograph, 7S

idempotent , 9, 46
image of a mapping, 12, 24, 58
image-function, 96, 109, 153, 161, 224, 237
- subdifferential of -, 191
implicit function theorem, 64
increasing, 2
indicator function, 82, 127, 141
- conjugate of -, 213
inf-convolution , 92, 158, 160, 223, 227
- and perspective, 94
- as an image-function, 97
- closedness of -, 94, 227
- economic interpretation , 95
- exact-, 92, 94, 193,227,229
- of quadratic forms, 95
- of sublinear functions, 132
- of support functions, 152
infimal value, 2
infimand,2
infimum, 1, 5
- of a function, 2
- of functions, 98, 20 I
- - sublinear -, 131
- sum of -,3
- transitivity of -, 3
inner semi-continuous, see semi-com.
interior, 4,21 ,24,33, 129,226
- and support functions, 138
- and tangent cone, 63
- relative -, see relative
intersection, 23, 32
- of asymptotic cones, 40
- of closures, 37
- of convex sets, 22, 28, 31, 75
- of half-spaces, see half-space
- of normal cones, 68
- - translated -, 69
- of relative interiors, 37, 53



- of tangent cones, 68
- support funct ion of -, 152
inverse image, 1, 24, 38,41 , 68, 69, 96, 153,

t54,209
isomorphism, 7, 151-157

Jacobian, 11, 113
Jensen's inequality, 76

kernel, 58
kink, 176, 177, 181,204
Kronecker, 7

Lagrangian relaxation, 196
Laplace transform, 234
least -squares, 195
Lebesgue, 114, 117
Legendre-Fenchel, 209, 211, 217, 239
level-set, 172
Iineality space, 126
- and subdifferential, 166
linear
- combination, 26, 30, 197
- form, 10, 11,45,46,121 ,122, 134, 140,

203

- - distance between -, 132
- funct ion , 52, 125, 138, 161, 174
- hull, see hull
- hyperplane, 67
- minorant, 131, 143, 177
- operator, 7, 22,23, 41, 48, 68,141, 153, 159,

191,224
-- symmetric -, 8, 9, 11,41,46,84-85,95,

113, 157, 193
- subspace, 26
linearly independent, 26, 63, 197
Lipschitz, 102, 108, 114, 165,240-241
- and Moreau-Yosida, 223
- and sublinearity, 131
locally bounded, 13, 156,200
log-convex, 89
lower semi-continuous, see semi-cont.
lower-bound function, 86, 92, 98
- as a gauge, 129

majorize, majorization, 2
manifold, see affine manifold
marginal function, 97, 192
- conjugate of -, 223
- smoothness of -, 98, 192
marginal price, 216
matrix, 6, 101
minimand,2
minimizer, see minimum, minimum point
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minimizing sequence, 2, 4
minimum, minimum point, 3
- and asymptotic function, 109
- global -,3, 177
- local -, 177
- of a linear function, 161
Minkowski, 24, 42 , 45, 57
rninorant, see linear, affine, quad ratic
minorize, minorization, 2, 116
monotone operator, 48, 112, 198
- strongly -, 112
Moreau, see decomposition
Moreau-Yosida, see regularization
multifunction, 12, 156,200
- closed -, 13, 200
- introduction to -,12-14
multiplier, see convex multiplier

negative , 2
nested , 14,40,65, 75
nonexpan sive, 46, 48, 158
nonnegative, 2
nonpositive , 2
normal cone, 65, 145
- and expo sed face , 68, 174
- calculus rules, 68
- to an epigraph, 169
- to positive semi-definite matrices, 194
- to a sublevel-set, 171
normal, orthogonal, 8, 57, 66, 85,172
- and polarity, 49
- and projection, 48
- supplement, 8, 9, 20, 62, 141,213

objective function, 2, 96
ordered set , 1,4,5, 13, 14,49,94,96, 151
orthant, 22, 160, 237
- polar of -, 49
orthogonal, see normal
- projection, see projection
outer description, 32, 57, 69, 80,145
outer semi-continuous, see semi-cont.

parallel, 20, 34, 55, 77, 89, 117, 138, 166,
218

partially quadratic, see quadratic
perspective-function, 90, 91, 127, 128
- and asymptotic function, 107
- and inf-convolution, 94
- closure of -, 91, 107
- of a conjugate, 215
perturbation function, 96
piecewise affine, 82,181 ,235
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polar cone, 49,57,58,66,67, 141,215
- and support function , 136,140,213
- to an epigraph, 144
polar set, 148, 180
- of a unit ball, 147
polyhedral
- cone, 56, 158,237
- function , 82, 101
polyhedron,56,83,190,235
- and Farkas lemma, 6 I
- normal and tangent cones to -, 67
- support function of -,141,158-161
positive , 2
- (semi-jdefinite, 8, 84, 108, 115, 143,212
- definite, 95, 148,180,233
- semi-definite, 128, 194, 234
positively homogeneous, 106, 116, 123
primal,236
primal function, 96
projection, 46-48, 136, 153, 174,223
- and support functions, 154
- onto a cone, 49-51
- onto a subspace , 9, 24,75, 172, 184, 213,

217,234
projective geometry, 215
pseudo-inverse, 9,213,234

quadratic function , see fonn (quadratic)
- partially -, 212, 234
quadratic minorant, 1I I
qualification, 38, 39, 53, 68, 171,224--228,

232
quasi-convex, 75, 108

Rademacher, I 14
radial , 35, 79, 114,174
range, see image of a mapping
recession (cone, function), see asymptotic
regularization (Lipschitzian), 223
regularization (Moreau-Yosida), 92, 223
relative
- boundary, 34,36,42,55,68, 100
- - of a domain, 76, 102
- closure, 34
- interior, 34, 33-39, 68,75,227
- - of a domain, 80, 104
-- of an epigraph, 76
-- of a face, 43
-- of a sum, 39
- - and support functions, 138
-- convexity of -,36
- - monotonicity of -, 35, 38
relaxation, see Lagrange

sandwich , 37, 66, 241
second-order approximation, I I, I 16
selection , 12, 179
self-adjoint, 8
semi-continuous
- inner -,14, 156,202
- lower -, 4, 78, 156
- outer -, 14, 156, 20 I, 204
- upper -, 4, 104, 156, 188-190, 20 I
semi-infinite programming, 197
separation, 52, 51-54, 58, 62, 147
- basic theorem, 5 I
- proper -, 53
- weak -, 53
set-valued, see mutifunction
shadow, 24, 192
simplex, see unit simplex
Slater, 171
slice, 24, 154
slope, 8,106, 169,211
- criterion of increasing -, 15, 106, 164,

189,230
smear, 29, 92
spectraplex, 158
star-shaped, 19
stationary point, 177, 191
Straszewicz, 45
strict epigraph, 98
strictly convex, 73, 84, 110, 112, 115,200,

210, 238-240
strongly convex, 73, 84, I 10, I 12, I15, 199,

240-241
strongly monotone , see monotone
subadditive , 124
subdifferential, 165, 167, 169,203
- of a distance, 180
- of extended-valued functions, 220, 230
- of an image, 191
- of the largest eigenvalue, 194
- of a max, 182, 187, 190
- of nonconvex functions , 220
- of a post-composition, 185
- of a pre-composition, 184
- of a quadratic function, 180
- of a sum, 183
- of a supremum, 187-191
- calculus rules, 182-193
- continuity properties, 200-202
- inversion of -, 209-2 I0
- monotonicity of -, 198-200
sublevel-set, 2, 46, 75, 84, 107, 194,221
- of a norm, 146
- of a quadratic function, 128



- of a sublinear function , 130
- closed -, 78
- construction of -, 75
- normal cone to -, 171
- support function of -, 232
- tangent cone to -, 171
sublinear function, 123, 164, 168, 174
- closed -,131
- distance between -, 132
sum
- of epigraphs, 93
- of functions, 88,109,131 ,151
- - subdifferential of -, 183
- of infima , 3
- of sets, 24, 68
- - closedness of -, 24
support function, 52, 53, 56, 134
- of a cone , 140
- of a domain, 215 , 226 , 231
- of an elliptic set, 143
- of an epigraph, 214
- of a half-line, 141
- of a half-space, 141
- of an intersection, 152
- of a projection, 154
- of a slice, 154
- of a subdifferential, 165, 230
- of a sublevel-set, 232
- of a subspace, 141
- and affine hull, 138
- and relative interior, 138
- calculus rules, 151-157
- domain of -, 134
- subdifferential of -, 168, 179
supporting hyperplane, 44, 69, 151, 172,214
- existence of -, 54
- nontrivial -, 55
- to a cone, 57
- to an epigraph, 77, 169
supremand, 2
supremum of a real set, 1, 5
supremum of functions, 88, 99, 109,

187-191
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- affine -, 80, 218
- linear -, 144, 182
- sublinear -, 131, 152
symmetric, see linear operator

tangent cone , 63, 65,169 ,181
- calculus rules, 68
- closedness of -, 63
- construction of -, 69
- to a sublevel -set, 17 I
- to an epigraph, 169
- to the positive semi-definite matrices, 194
tangent, tangency, 62-69, Ill , 122,167,204
- direction, 62
- hyperplane, III , 122, 172
trace
- of a function, 178
- of a matrix, 7,85
translation, 23, 26, 52, 62, 66, 126
- of a graph, 169, 181
-- horizontal>, 90, 217, 218
-- vertical-, 215
transpose, 8
transversality condition, 51

uniform convergence, see convergence
unilateral , 5, 22, 48, 49, 58, 62, 74, 78, 167
unit ball, 9, 33, 109, 137, 146,230
- and dual norm, 146
- support function of -, 140
unit simplex, 20, 27, 35, 67, 76, 98, 104,235
unit sphere, 9, 109, 133, 137, 145,204
upper semi-continuous, see semi-cont.

V-shape, 126, 138
value function, 96
variational, 47, 95
vertex, see exposed point
volume, 85

Yosida, see regularization


