Assignment

Name: BRIJ MOHAN

Roll No.: P2109

Reference: Cheney (Q12, Problems 3.1, Page-120)

Question: Let X = C[0,1], with its usual sup-norm. Select $t_i \in [0,1]$ and $v_i \in C[0,1]$, and define

$$f(x) = \sum_{i=1}^{n} [x(t_i)]^2 v_i.$$

Prove that f is differentiable at all points of X and give a formula for f'. Solution:

Given:

$$f: C[0,1] \to C[0,1]$$

$$f(x) = \sum_{i=1}^{n} [x(t_i)]^2 v_i,$$
(1)

where $x, v_i \in C[0, 1]$, and $t_i \in [0, 1]$. Now,

$$f(x+h) - f(x) = \sum_{i=1}^{n} [(x+h)(t_i)]^2 v_i - \sum_{i=1}^{n} [x(t_i)]^2 v_i$$

$$= \sum_{i=1}^{n} [x(t_i) + h(t_i)]^2 v_i - \sum_{i=1}^{n} [x(t_i)]^2 v_i$$

$$= \sum_{i=1}^{n} [x(t_i)]^2 v_i + \sum_{i=1}^{n} [h(t_i)]^2 v_i + \sum_{i=1}^{n} [2x(t_i)h(t_i)] v_i - \sum_{i=1}^{n} [x(t_i)]^2 v_i$$

$$= \sum_{i=1}^{n} [h(t_i)]^2 v_i + 2 \sum_{i=1}^{n} [x(t_i)h(t_i)] v_i$$
(2)

Thus, we can consider

$$Ah = 2\sum_{i=1}^{n} [x(t_i)h(t_i)]v_i,$$
(3)

or

$$A = 2\sum_{i=1}^{n} [x(t_i)]v_i$$

where $A: C[0,1] \to C[0,1]$ is a map that is to be claimed as bounded and linear map.

(i) For boundedness:

$$|Ah| = |2\sum_{i=1}^{n} [x(t_i)h(t_i)]v_i|$$

$$\leq 2\sum_{i=1}^{n} |x(t_i)h(t_i)|||v_i||_{\infty}$$

$$\leq 2\sum_{i=1}^{n} ||x||_{\infty} ||h||_{\infty} ||v_i||_{\infty}.$$
(4)

So, A is bounded and

$$|A| \le 2\sum_{i=1}^{n} ||x||_{\infty} ||v_i||_{\infty}.$$

(ii) For linearity:

Let us consider, two arbitrary functions $x, y \in C[0, 1]$ and $p, q \in [0, 1]$, then we need to show that

$$A(px + qy) = pA(x) + qA(y).$$

Now,

$$A(px + qy) = \left(2\sum_{i=1}^{n} [x(t_i)]v_i\right)(px + qy)$$

$$= \left(2\sum_{i=1}^{n} [x(t_i)]v_i\right)(px) + \left(2\sum_{i=1}^{n} [x(t_i)]v_i\right)(qy)$$

$$= p\left(2\sum_{i=1}^{n} [x(t_i)]v_i\right)(x) + q\left(2\sum_{i=1}^{n} [x(t_i)]v_i\right)(y)$$

$$= pA(x) + qA(y)$$
(5)

Hence, A is a bounded and linear map from C[0,1] to C[0,1]. Thus, we have

$$f(x+h) - f(x) - Ah = \sum_{i=1}^{n} [h(t_i)]^2 v_i$$
 (6)

So,

$$\lim_{h\to 0} \frac{||f(x+h) - f(x) - Ah||}{||h||} = \lim_{h\to 0} \frac{||\sum_{i=1}^{n} [h(t_i)]^2 v_i||}{||h||}$$

$$\leq \lim_{h\to 0} \frac{\sum_{i=1}^{n} |h^2(t_i)|||v_i||}{||h||}$$

$$\leq \lim_{h\to 0} \sum_{i=1}^{n} \frac{||h^2||||v_i||}{||h||}$$

$$= \lim_{h\to 0} \sum_{i=1}^{n} ||h||||v_i||$$

$$\to 0$$

Hence, f is Fréchet differentiable at all points of $X={\mathbb C}[0,1]$ and

$$f' = A = 2\sum_{i=1}^{n} [x(t_i)]v_i$$