R-07 Convex and Nonsmooth Analysis

Separation of a convex Set and a Point

Theorem Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and let $x \notin C$. Then there exists $s \in \mathbb{R}^n$ such that

$$\langle s, x \rangle > \sup_{y \in C} \langle s, y \rangle.$$

Proof By projection inequality we have

$$\langle x - P_C(x), y - P_C(x) \rangle \le 0, \forall y \in C.$$

Since $x \notin C$ and *C* is closed $s := x - P_C(x) \neq 0$, and hence we have

$$\langle s, y + s - x \rangle \le 0, \forall y \in C$$

which implies that

$$0 < ||s||^2 \le \langle s, x - y \rangle, \forall y \in C.$$

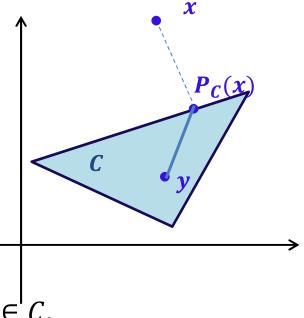
Let $0 < t < ||s||^2$.

$$\langle s, x \rangle > t + \langle s, y \rangle, \forall y \in C$$

Then

$$\langle s, x \rangle \ge t + \sup_{y \in C} \langle s, y \rangle > \sup_{y \in C} \langle s, y \rangle.$$

Note We can choose *s* with ||s|| = 1.



Separation of a convex Set and a Point

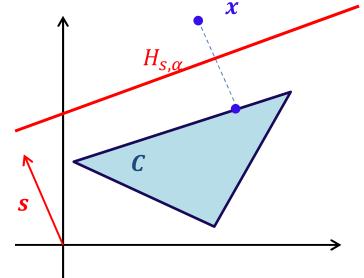
Corollary Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and let $x \notin C$. Then there exists $s \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ such that

$$\langle s, x \rangle > \alpha > \langle s, y \rangle.$$

Proof Choose

$$\alpha = \frac{1}{2}(\langle s, x \rangle + \sup_{y \in C} \langle s, y \rangle).$$

The hyperplane $H_{s,\alpha}$ strictly separates *C* and $\{x\}$.



Theorem Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and let $x \notin C$. Then there exists $s' \in \mathbb{R}^n$ such that

$$\langle s', x \rangle < \inf_{y \in C} \langle s', y \rangle.$$

Proof Choose s' = -s in previous theorem.

Support Function

Let $C \subseteq \mathbb{R}^n$ be a nonempty convex set. A function $\sigma_C : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ defined as

$$\sigma_C(s) := \sup_{y \in C} \langle s, y \rangle$$

is called support function of C.

- i) $\sigma_C(ts) = t\sigma_C(s), \forall t > 0$, (positive homogeneous)
- ii) $\sigma_C(s + s') = \sigma_C(s) + \sigma_C(s')$. (subadditive)

So, σ_C is a sublinear function. σ_C is a convex function

Example For $C = [-5, \infty[\subseteq \mathbb{R} \text{ we have } \sigma_C(s) = \begin{cases} -5s, & s \leq 0, \\ +\infty, & s > 0. \end{cases}$ Example For $C = [-1,2] \times [0,3] \subseteq \mathbb{R}^2$ we have

$$\sigma_{C}(s_{1}, s_{2}) = \begin{cases} 2s_{1} + 3s_{2}, & s_{1} \ge 0, s_{2} \ge 0, \\ 2s_{1}, & s_{1} \ge 0, s_{2} < 0, \\ -s_{1} + 3s_{2}, & s_{1} < 0, s_{2} \ge 0, \\ -s_{1}, & s_{1} < 0, s_{2} < 0, \end{cases}$$
$$= \max \{2s_{1}, -s_{1}\} + \max \{3s_{2}, 0\}.$$

Separation Theorem: Analytic form of Hahn–Banach Theorem

Let $C \subseteq \mathbb{R}^n$ be a nonempty closed convex set and let $x \notin C$. Then there exists $s \in \mathbb{R}^n$ such that

$$\langle s, x \rangle > \sup_{y \in C} \langle s, y \rangle = \sigma_C(s).$$

Hence if $\sigma_C(s) \ge \langle s, x \rangle$, $\forall s \in \mathbb{R}^n$ then $x \in C$.

Also if $x \in C$ then $\sigma_C(s) = \sup_{y \in C} \langle s, y \rangle \ge \langle s, x \rangle, \forall s \in \mathbb{R}^n$.

 $x \in C \iff \sigma_C(s) \ge \langle s, x \rangle, \forall s \in \mathbb{R}^n.$

Theorem (Hahn–Banach Theorem) Let W be a vector subspace of a vector space U. Let $f: W \to \mathbb{R}$ be linear and $p: U \to \mathbb{R}$ be sublinear. If for all $w \in W$, $f(w) \leq p(w)$, then there is a linear function $F: U \to \mathbb{R}$ such that

(i) $f(w) = F(w), \forall w \in W$, (ii) $F(u) \le p(u), \forall u \in U$.

Strict Separation of Two Convex Sets

Corollary Let C_1 , C_2 be two nonempty closed convex sets in \mathbb{R}^n with $C_1 \cap C_2 = \emptyset$. If C_2 is bounded, there exists $s \in \mathbb{R}^n$ such that

$$\min_{y \in C_2} \langle s, y \rangle > \sup_{y \in C_1} \langle s, y \rangle.$$

Proof The set $C_1 - C_2$ is convex and closed as C_2 is compact. As $C_1 \cap C_2 = \emptyset$ it follows that $0 \notin C_1 - C_2$. Hence by separation theorem there exists $s \in \mathbb{R}^n$ separating $\{0\}$ and $C_1 - C_2$, that is,

$$0 = \langle s, 0 \rangle > \sup_{\substack{y \in C_1 - C_2}} \langle s, y \rangle$$

=
$$\sup_{\substack{y_1 \in C_1}} \langle s, y_1 \rangle + \sup_{\substack{y_2 \in C_2}} \langle s, -y_2 \rangle$$

=
$$\sup_{\substack{y_1 \in C_1}} \langle s, y_1 \rangle - \inf_{\substack{y_2 \in C_2}} \langle s, y_2 \rangle$$

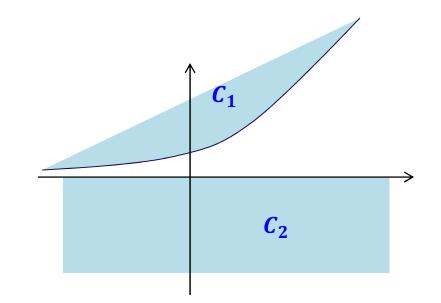
=
$$\sup_{\substack{y_1 \in C_1}} \langle s, y_1 \rangle - \min_{\substack{y_2 \in C_2}} \langle s, y_2 \rangle$$

as C_2 is compact.

Note
$$\sup_{y_1 \in C_1} \langle s, y_1 \rangle + \sup_{y_2 \in C_2} \langle s, -y_2 \rangle < 0 \Leftrightarrow \sigma_{C_1}(s) + \sigma_{C_2}(-s) < 0.$$

Failure of Strict Separation

Let $C_1 = \{(x_1, x_2) : x_2 \ge e^{x_1}\}$ and $C_2 = \{(x_1, x_2) : x_2 \le 0\}.$



Weak separation

Let C_1, C_2 be two nonempty closed convex sets in \mathbb{R}^n . They are weakly separated if \uparrow

 $\inf_{y \in C_2} \langle s, y \rangle \ge \sup_{y \in C_1} \langle s, y \rangle.$

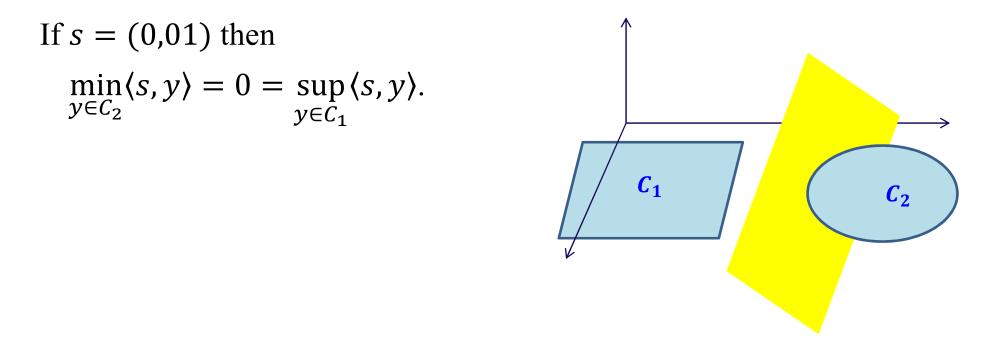
 C_1

 $\min_{y \in C_2} \langle (0,01), y \rangle = 0 = \max_{y \in C_1} \langle (0,0,1), y \rangle$

The sets C_1 and C_2 are properly separated if

$$\inf_{y \in C_2} \langle s, y \rangle \ge \sup_{y \in C_1} \langle s, y \rangle & \sup_{y \in C_2} \langle s, y \rangle > \inf_{y \in C_1} \langle s, y \rangle.$$

Theorem Two nonempty closed convex sets C_1 and C_2 in \mathbb{R}^n can be properly separated if $\operatorname{ri} C_1 \cap \operatorname{ri} C_2 = \emptyset$.



Separation is proper if s = (1,0,0).

How to find a supporting hyperplane not containing whole of *C*?

Let *C* be a nonempty convex sets in \mathbb{R}^n and $x \in bdC$.

 C_0

If $intC = \emptyset$ either $x \in riC$ or $x \in rbdC$.

If $x \in riC$ then only supporting hyperplane is affC.

Supporting hyperplane not containing whole

of *C* is possible only when $x \in rbdC$.

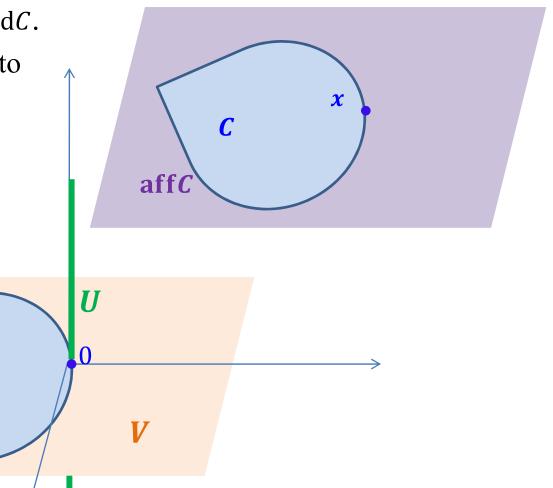
Let *V* be the subspace parallel to aff*C* and $U = V^{\perp}$. Clearly,

 $\langle s, y - x \rangle = 0, \forall s \in U, y \in C.$

Let $C_0 = C - x$.

Then C_0 is a convex set and

 $0 \in rbdC_0$.



continued

Let $\{x_k\} \subseteq V \setminus clC_0$ be such that $x_k \to 0$. Since $x_k \notin clC_0$ there exists $s_k \in V$ with $||s_k|| = 1$ separating {0} and C_0 , that is, $\langle s_k, y \rangle \leq \langle s_k, 0 \rangle = 0, \forall y \in C_0.$ Taking limit along subsequence there exists $s \in V$ with ||s|| = 1 such that H_{s,r} $\langle s, y \rangle \leq 0, \forall y \in C_0$ X which implies that С $\langle s, y \rangle \leq \langle s, x \rangle, \forall y \in C.$ aff*C* If $r = \langle s, x \rangle$, then $H_{s,r}$ is the nontrivial supporting hyperplane at *x*. $H_{s_k,0}$ U S_k C_0

continued

H_{s,r}

X

C

aff*C*

In fact $H_{s,r}$ is the nontrivial supporting hyperplane at x if $s \notin U$. Any s with the decomposition $s = s_V + s_U$ is a nontrivial supporting hyperplane at x if $s_V \neq 0$. Otherwise, for all $y \in C$ we have

$$r = \langle s, y \rangle = \langle s_V, y \rangle + \langle s_U, y \rangle = \langle s_V, y \rangle + \langle s_U, y - x \rangle + \langle s_U, x \rangle$$
$$= \langle s_V, y \rangle + \langle s_U, x \rangle$$

N

 C_0

which implies that $\langle s_V, . \rangle$ is constant on *C*. This further implies that $\langle s_V, . \rangle$ is constant on aff*C* and hence $s_V \in U$. As $U \cap V = \{0\}$ it follows that $s_V = 0$ which is a contradiction.