R-07 R-07
Convex and Nonsmooth Analysis

Convex Set

Convex Se

A set $C \subseteq \mathbb{R}^n$ is said to be a conve
 $[x, x'] \subseteq C$, where the closed line seg

defined as
 $[x, x'] := \{tx + (1 - t)\}$ **CONVEX Set**
is said to be a convex set if for $x, x' \in C$ we have
re the closed line segment $[x, x']$ joining x and x' is
 $[x, x'] := \{tx + (1-t)x': t \in [0,1]\}.$ **CONVEX Set**
 $\mathcal{C} \subseteq \mathbb{R}^n$ is said to be a convex set if for $x, x' \in \mathcal{C}$ we have
 $\mathcal{C} \subseteq \mathbb{R}^n$ is said to be a convex set if for $x, x' \in \mathcal{C}$ we have
 $\mathcal{C} \subseteq \mathbb{R}^n$, where the closed line segment $[x,$ joining x and x' is **CONVEX Set**

A set $C \subseteq \mathbb{R}^n$ is said to be a convex set
 $[x, x'] \subseteq C$, where the closed line segment

defined as
 $[x, x'] := \{tx + (1-t)x': t$

Equivalently, if for $x, x' \in C$ we have $]x, x'[\subseteq$
 $x'[\cdot] = \{tx + (1-t)x': t\}$ **Convex Set**

A set $C \subseteq \mathbb{R}^n$ is said to be a convex set if for $x, x' \in C$
 $[x, x'] \subseteq C$, where the closed line segment $[x, x']$ joining x a

defined as
 $[x, x'] := \{tx + (1-t)x': t \in [0,1]\}.$

Equivalently, if for $x, x' \in C$ we have

$$
[x, x'] := \{tx + (1 - t)x' : t \in [0, 1]\}.
$$

Equivalently, if for $x, x' \in C$ we have $]x, x' \in C$ where

$$
]x, x' \in \{tx + (1 - t)x' : t \in [0, 1]\}.
$$

 $x_1, x_2 \in C \implies (1 - \lambda)x_1 + \lambda x_2 \in C$ for $\lambda \in [0,1]$.

Convex Set

Convex Set
A set $C \subseteq \mathbb{R}^n$ is said to be a *convex set* if for $x, y \in C$ we have $[x, y] \subseteq C$.

Star-shaped set

A set $C \subseteq \mathbb{R}^n$ is said to be star-shaped set at $x \in C$ if for $x' \in C$ we have

A set C is convex if and only if it is star-shaped at every $x \in C$.

Hyperplane

A hyperplane associated with $(s, r) \in \mathbb{R}^n \times \mathbb{R}$, $s \neq 0$ is a set do by $H_{s,r}$, defined as $H_{s,r} := \{x \in \mathbb{R}^n : \langle s, x \rangle = r\}.$ is a set denoted by $H_{S,r}$, defined as **Hyperplane**

rplane associated with $(s,r) \in \mathbb{R}^n \times \mathbb{R}$, $s \neq$, defined as
 $H_{s,r} := \{x \in \mathbb{R}^n : \langle s, x \rangle = r\}.$

plane is a convex set. This hyperplane is parall

$$
H_{S,r} := \{x \in \mathbb{R}^n : \langle s, x \rangle = r\}.
$$

. Hyperplane
 A hyperplane associated with $(s, r) \in \mathbb{R}^n \times \mathbb{R}$, $s \neq 0$ is a set denoted

by $H_{s,r}$, defined as
 $H_{s,r} := \{x \in \mathbb{R}^n : \langle s, x \rangle = r\}.$

Hyperplane is a convex set. This hyperplane is parallel to t

Affine manifold / Affine subspace / Affine set

Affine manifold / Affine subspace / Affine set
A set $V \subseteq \mathbb{R}^n$ is said to be an affine manifold or affine subspace if
 $x_1, x_2 \in V \implies (1 - \lambda)x_1 + \lambda x_2 \in V$ for $\lambda \in \mathbb{R}$.
Affine suspaces in \mathbb{R}^3 are planes, line **Affine manifold / Affine subspace / Affine set**

A set $V \subseteq \mathbb{R}^n$ is said to be an affine manifold or affine subspace if
 $x_1, x_2 \in V \implies (1 - \lambda)x_1 + \lambda x_2 \in V$ for $\lambda \in \mathbb{R}$.

Affine suspaces in \mathbb{R}^3 are planes, l Affine manifold / Affine subspace / Affine set

A set $V \subseteq \mathbb{R}^n$ is said to be an affine manifold or affine subspace if
 $x_1, x_2 \in V \implies (1 - \lambda)x_1 + \lambda x_2 \in V$ for $\lambda \in \mathbb{R}$.

Affine suspaces in \mathbb{R}^3 are planes, lin

Affine subspaces and Subspaces

ospaces and Subspaces
is an affine subspace and if $v \in V$ then $V - v$ is a
 S and $\alpha \in \mathbb{R}$. Then there exists $v' \in V$, such that
 $x = v' - v$. subspace.

Affine subspaces and Subspare
Theorem 1 If a set $V \subseteq \mathbb{R}^n$ is an affine subspace and if
subspace.
Proof Let $S = V - v$. Let $x \in S$ and $\alpha \in \mathbb{R}$. Then there exist:
 $x = v' - v$. **Affine subspaces and Subspaces**

Theorem 1 If a set $V \subseteq \mathbb{R}^n$ is an affine subspace and if $v \in V$ then $V - v$ is a

subspace.

Proof Let $S = V - v$. Let $x \in S$ and $\alpha \in \mathbb{R}$. Then there exists $v' \in V$, such that
 $x = v$ $x = v' - v$. **Affine subspaces and Subspaces**

Theorem 1 If a set $V \subseteq \mathbb{R}^n$ is an affine subspace and if $v \in V$ then $V - v$ is a

subspace.
 $\text{Proof} \text{Let } S = V - v. \text{ Let } x \in S \text{ and } \alpha \in \mathbb{R}$. Then there exists $v' \in V$, such that
 $x = v' - v$

As V is an affine subspace we have $(1 - \alpha)v + \alpha v' \in V$. Hence,

$$
\alpha x = \alpha (v' - v) = (1 - \alpha)v + \alpha v' - v \in S.
$$

$$
x'=v'-v, x''=v''-v.
$$

2 2 $\binom{3}{2}$ $\binom{3}{2}$ v'' (begun v' , v'' 2 $\binom{2}{1}$ security 2 2 . Clearly, $\frac{v'}{2} + \frac{v''}{2} - v \in S$ and $2 \t2 \t2 \t3 \t3$ v'' or ϵ such that ϵ $2 \times 2 \times 3 \times 3$ and hence by the previous justification $x^{\prime} + x^{\prime \prime} \in S$

Simplices

Cones

A set $K \subseteq \mathbb{R}^n$ is said to be a cone if for $x \in K$ and $\alpha > 0$, we have $\alpha x \in K$.

convex cone

nonconvex cone

Cones

Properties of Convex Sets

Properties of Convex Sets

Lemma 1 If $\{C_i\}_{i\in I}$ is a family of convex sets in \mathbb{R}^n then $\bigcap_{i\in I} C_i$

is a convex set.

Proof. Let $x, y \in \bigcap_{i\in I} C_i$. As C_i is convex we have **Properties of Convex Sets**

Lemma 1 If $\{C_i\}_{i \in I}$ is a family of convex sets in \mathbb{R}^n then $\bigcap_{i \in I} C_i$

is a convex set.

Proof. Let $x, y \in \bigcap_{i \in I} C_i$. As C_i is convex we have
 $[x, y] \subseteq C_i$ for $i \in I$

which i **Properties of Convex Sets**

Lemma 1 If $\{C_i\}_{i \in I}$ is a family of convex sets in \mathbb{R}^n then $\bigcap_{i \in I} C_i$

is a convex set.

Proof. Let $x, y \in \bigcap_{i \in I} C_i$. As C_i is convex we have
 $[x, y] \subseteq C_i$ for $i \in I$

which i

Properties of Convex S
 Lemma 1 If $\{C_i\}_{i \in I}$ is a family of convex sets in a convex set.
 Proof. Let $x, y \in \bigcap_{i \in I} C_i$. As C_i is convex we h
 $[x, y] \subseteq C_i$ for $i \in I$ $[x, y] \subseteq C_i$ for $i \in I$ **Properties of Convex Sets

Lemma 1** If $\{C_i\}_{i \in I}$ is a family of convex sets in $\mathbb F$

is a convex set.

Proof. Let $x, y \in \bigcap_{i \in I} C_i$. As C_i is convex we have
 $[x, y] \subseteq C_i$ for $i \in I$

which implies that
 $[x, y] \subseteq \bigcap$ is a convex set.

Froof. Let $x, y \in \bigcap_{i \in I} C_i$. As C_i is convex we h
 $[x, y] \subseteq C_i$ for $i \in I$

which implies that
 $[x, y] \subseteq \bigcap_{i \in I} C_i$.

Lemma 2 If C_i , $i = 1, 2, ..., k$, are convex sets t
 $C_1 + C_2 + \cdots + C_k$

is a convex set *Proof.* Let $x, y \in \bigcap_{i \in I} C_i$. As C_i is convex we have
 $[x, y] \subseteq C_i$ for $i \in I$

which implies that
 $[x, y] \subseteq \bigcap_{i \in I} C_i$.

Lemma 2 If C_i , $i = 1, 2, ..., k$, are convex sets then
 $C_1 + C_2 + \cdots + C_k$

is a convex set.
 Proof.

$$
[x,y] \subseteq \bigcap_{i \in I} C_i.
$$

$$
C_1 + C_2 + \dots + C_k
$$

 $x = x_1 + x_2 + \cdots + x_k$, $y = y_1 + y_2 + \cdots + y_k$,

which implies that
 $[x, y] \subseteq \bigcap_{i \in I} C_i$.

Lemma 2 If C_i , $i = 1, 2, ..., k$, are convex sets then
 $C_1 + C_2 + \cdots + C_k$

is a convex set.

Proof. Let $x, y \in C_1 + C_2 + \cdots + C_k$. Then
 $x = x_1 + x_2 + \cdots + x_k$, $y = y_1 + y_2 + \cdots + y_k$,

where x_i s then
 $y_2 + \cdots + y_k$,

is convex we have

, for $\lambda \in [0,1]$
 $C_1 + C_2 + \cdots + C_k$. Lemma 2 If C_i , $i = 1, 2, ..., k$, are convex sets then
 $C_1 + C_2 + \cdots + C_k$

is a convex set.

Proof. Let $x, y \in C_1 + C_2 + \cdots + C_k$. Then
 $x = x_1 + x_2 + \cdots + x_k$, $y = y_1 + y_2 + \cdots +$

where $x_i, y_i \in C_i$, $i = 1, 2, ..., k$. As each C_i is conve

Properties of Convex Sets

