R-07 Convex and Nonsmooth Analysis

Convex Set

A set $C \subseteq \mathbb{R}^n$ is said to be a convex set if for $x, x' \in C$ we have $[x, x'] \subseteq C$, where the closed line segment [x, x'] joining x and x' is defined as

$$[x, x'] := \{tx + (1 - t)x' : t \in [0,1]\}.$$

Equivalently, if for $x, x' \in C$ we have $]x, x'[\subseteq C$ where
 $]x, x'[:= \{tx + (1 - t)x' : t \in]0,1[\}.$

A set C is convex if

 $x_1, x_2 \in C \implies (1 - \lambda)x_1 + \lambda x_2 \in C \text{ for } \lambda \in [0, 1].$

Convex Set

A set $C \subseteq \mathbb{R}^n$ is said to be a *convex set* if for $x, y \in C$ we have $[x, y] \subseteq C$.

By convention an empty set is a convex set.

Star-shaped set

A set $C \subseteq \mathbb{R}^n$ is said to be star-shaped set at $x \in C$ if for $x' \in C$ we have

A set C is convex if and only if it is star-shaped at every $x \in C$.

Hyperplane

A hyperplane associated with $(s,r) \in \mathbb{R}^n \times \mathbb{R}$, $s \neq 0$ is a set denoted by $H_{s,r}$, defined as

$$H_{s,r} := \{ x \in \mathbb{R}^n : \langle s, x \rangle = r \}.$$

Hyperplane is a convex set. This hyperplane is parallel to the subspace $H_{s,0}$. The vector s is orthoganal to the hyperplane, that is,

Affine manifold / Affine subspace / Affine set

A set $V \subseteq \mathbb{R}^n$ is said to be an affine manifold or affine subspace if $x_1, x_2 \in V \implies (1 - \lambda)x_1 + \lambda x_2 \in V$ for $\lambda \in \mathbb{R}$. Affine suspaces in \mathbb{R}^3 are planes, lines and single points. A hyperplane is an affine subspace of dimension n - 1.

Affine subspaces and Subspaces

Theorem 1 If a set $V \subseteq \mathbb{R}^n$ is an affine subspace and if $v \in V$ then V - v is a subspace.

Proof Let S = V - v. Let $x \in S$ and $\alpha \in \mathbb{R}$. Then there exists $v' \in V$, such that x = v' - v.

As V is an affine subspace we have $(1 - \alpha)v + \alpha v' \in V$. Hence, $\alpha x = \alpha(v' - v) = (1 - \alpha)v + \alpha v' - v \in S$. Let $x', x'' \in S$, then there exist $v', v'' \in V$ such that x' = v' - v, x'' = v'' - v.

Now $x' + x'' = v' + v'' - 2v = 2\left(\frac{v'}{2} + \frac{v''}{2} - v\right)$. Clearly, $\frac{v'}{2} + \frac{v''}{2} - v \in S$ and hence by the previous justification $x' + x'' \in S$

Simplices

Unit simplex in \mathbb{R}^k is denoted by Δ_k , and is defined as

Cones

A set $K \subseteq \mathbb{R}^n$ is said to be a cone if for $x \in K$ and $\alpha > 0$, we have $\alpha x \in K$.

convex cone

nonconvex cone

Cones

Properties of Convex Sets

Lemma 1 If $\{C_i\}_{i \in I}$ is a family of convex sets in \mathbb{R}^n then $\bigcap_{i \in I} C_i$ is a convex set.

Proof. Let $x, y \in \bigcap_{i \in I} C_i$. As C_i is convex we have $[x, y] \subseteq C_i$ for $i \in I$

which implies that

$$[x, y] \subseteq \bigcap_{i \in I} C_i.$$

Lemma 2 If C_i , i = 1, 2, ..., k, are convex sets then

$$C_1 + C_2 + \dots + C_k$$

is a convex set.

Proof. Let $x, y \in C_1 + C_2 + \dots + C_k$. Then

 $x = x_1 + x_2 + \dots + x_k, \quad y = y_1 + y_2 + \dots + y_k,$

where $x_i, y_i \in C_i, i = 1, 2, ..., k$. As each C_i is convex we have

 $(1 - \lambda)x_i + \lambda y_i \in C_i, i = 1, 2, ..., k$, for $\lambda \in [0, 1]$ which implies that for $\lambda \in [0, 1]$

 $(1-\lambda)x + \lambda y = \sum_{i=1}^{k} (1-\lambda)x_i + \lambda y_i \in C_1 + C_2 + \dots + C_k.$

Properties of Convex Sets

