## MATH21-R07: CONVEX AND NONSMOOTH ANALYSIS

## Attempt any five questions.

Find both coS and  $\overline{co}S$  for a set S in  $\mathbb{R}^2$  both in the set form and geometrically where

$$S = \{(x, e^{-x}) : x \ge 0\} \cup \{(x, -e^{-x}) : x > 0\}.$$

2. Find faces and exposed faces of the set

the set 
$$C = \{x \in \mathbb{R}^3 : 2x_1^2 + x_2^2 + 3x_3^2 \le 1, x_3 \ge 0\}.$$

$$C = \{x \in \mathbb{R}^3 : 2x_1^2 + x_2^2 + 3x_3^2 \le 1, x_3 \ge 0\}.$$

$$C = \{x \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_2^2 \le 1\}$$

3. Find the projection of (1,1,1) on the set

$$C = \{x \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 \le 1\}$$

and find supporting hyerplane passing through the point of projection.

4. Give an example of a convex C in  $\mathbb{R}^2$ , a point  $x \in \mathbb{R}^2$  and a supporting hyperplane  $H_{s,r}$  such that  $C \cap H_{s,r} = \{x\}$ , and  $cl(C) \cap H_{s,r}$  is an unbounded set with x in its relative interior.

5. Find the asymptotic cone of the set

$$S = \{ x \in \mathbb{R}^2 : x_1^3 \le x_2 \}.$$

Also find another nonconvex set with same asymptotic cone.

6. Find the tangent and normal cones of  $C_1 \cap C_2$  at origin where

$$C_1 = \{x \in \mathbb{R}^3 : x_1 \le x_3\}$$

$$C_2 = \{x \in \mathbb{R}^3 : -x_1 \le x_3\}.$$

7. For the sets  $C_1$  and  $C_2$  considered in Q. 6, find the tangent cone of  $A(C_1 \cap C_2)$  where  $A: \mathbb{R}^3 \to \mathbb{R}^2$  is defined as  $A(x) = (x_1, x_3)$ ?

8. Let  $C = \{(x_1, x_2) : x_1^2 + x_2^2 \le 4\}$ . Find a nonconvex set D such that D - D = C.

## MATH21-R07: CONVEX AND NONSMOOTH ANALYSIS Attempt all questions

- **6.** Find the subdifferential of the function f at each x = 0 where
  - (c)  $f(x) = \max\{3x, x^2, -2x\},\$
  - (d)  $f(x) = x^2 + |x|^3 + e^{|x|}$ .
- J. Calculate the support function of the set

$$C = co\{(0,0), (1,1), (-1,1)\}.$$

- **8**. Find the inf convolution of the real valued functions f and g defined on  $\mathbb{R}$  as
  - (c) f(x) = 1 and  $g(x) = -e^x$ ,
  - (d)  $f(x) = 2x^4$  and g(x) = x.
- If f(x,y) = g(x+2y) and  $g(x) = x^2 x$ , where  $x,y \in \mathbb{R}$ , then find the directional derivative of f at the point (1,2) in the direction of  $d = (2, -3\sqrt{2})$ . Is the function f differentiable? Justify.
- 10. Give an example of a subadditive function which is not positively homogeneous. Also, give an example of a positively homogeneous function which is not subadditive.