Department of Mathematics MPhil/PhD Coursework Examination **Topics in Analysis**

(August 2021)

Time: 3 hrs for attempting the paper + 1 hr for downloading and uploading Max. Marks : 70

Attempt SEVEN questions in all. All symbols carry their usual meaning.

- 1. (a) State and prove Banach's Contraction Principle. (6)
 - (b) Let $X = l^2$ with its usual norm and the mapping f be given by $f(x) = (1/2, x_1, x_2, x_3, ...)$ where $x = (x_1, x_2, ...) \in l^2$. Show that F has no fixed points and state, with justification, why Banach's Contraction Principle does not yield a fixed point in this case? (4)
- 2. (a) Let $(X, \|\cdot\|)$ be a Banach space and $f : [a, b] \to X$ be a Riemann integrable function. If the function $t \mapsto \|f(t)\|$ is also Riemann integrable, then show that

$$\left\|\int_{a}^{b} f(t) dt\right\| \leq \int_{a}^{b} \|f(t)\| dt.$$
(5)

- (b) Is the function $f: (0,1) \to L^{\infty}(0,1)$ Bochner integrable when (a) $f(t) := \chi_{(0,t)}$ (b) $f(t) := tx_0$ where x_0 is a fixed element of $L^{\infty}(0,1)$. Justify. (3+2)
- 3. (a) What is meant by an algebra? Give an example of (a) an algebra of functions which is closed; (b) a collection of functions which is not an algebra. (3)
 - (b) Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Let \mathcal{A} be the set of all functions of the form $f(e^{i\theta}) = \sum_{n=0}^{N} c_n e^{in\theta}$ where $N \in \mathbb{N}, c_n \in \mathbb{C}, \theta \in \mathbb{R}$. Show that \mathcal{A} is an algebra which separates points of \mathbb{T} and vanishes at no point of \mathbb{T} . Further, show that $\int_0^{2\pi} f(e^{i\theta})e^{i\theta} d\theta = 0$ for $f \in \mathcal{A}$ and deduce that there are continuous functions on \mathbb{T} which are not in the uniform closure of \mathcal{A} . Is the Stone Weierstrass theorem applicable here? Give reasons. (7)
- 4. (a) For a mapping f: D → X where X is a normed space and D an open subset of X, explain the difference between the statements (a) f' is continuous at x (b) f'(x) is continuous. Prove that if f'(x) exists, then it is continuous and differentiable.
 - (b) Let $g \in C[0,1], \alpha \in \mathbb{C}$ be fixed. Define $F : C[0,1] \to C[0,1]$ by $F(x) = \alpha g \cdot x, x \in C[0,1]$ where \cdot represents pointwise multiplication. Find the derivative of F. (4)
- 5. (a) Let $f : D \to Y$ be differentiable at $x \in D$ and Z be a normed linear space and $B : Y \to Z$ be a bounded linear operator. Prove that $B \circ f$ is Frechet differentiable at x and find $(B \circ f)'(x)$. (4)

- (b) Let $f : H \to \mathbb{R}$ where H is a real Hilbert space and $a \in H$ be fixed. Define $f(x) := \langle a, x \rangle^2, x \in H$. Show that f is differentiable and find its derivative. (6)
- 6. (a) Let f be defined on an open set Ω in the direct sum space X = X₁ ⊕ X₂ ⊕ X₃, (where each X_j is a Banach space), and take values in a normed space Y, such that all partial derivatives D_jf exist in Ω and are continuous at every point x₀ in Ω. Show that f is Frechet differentiable at x₀ and find an expression for the Frechet derivative of f at x₀. (5)
 - (b) Let $\alpha \in [0, 1]$ where $\cos \alpha = \alpha$. Define X to be the space of all continuously differentiable functions on [0, 1] that vanish at α with norm given by $||x|| = \sup_{0 \le t \le 1} |x'(t)|$. Prove that there exists a positive number δ such that if $y \in X$, and $||y|| < \delta$ then there exists an $x \in X$ satisfying $\sin \alpha x + x \circ \cos = y$. (5)
- 7. (a) Let $z_1 = 3 + 4i$, $z_2 = -i$ and $z_3 = \infty$. Compute the spherical distance between (a) z_1, z_2 , (b) z_1, z_3 and (c) $\frac{1}{z_1}, \frac{1}{z_3}$. Show further that spherical distance defines a metric d_{∞} on the extended complex plane $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$. (3 + 2)
 - (b) Let d denote the usual distance metric on \mathbb{C} and d_{∞} the spherical metric on \mathbb{C}_{∞} . For $a \in \mathbb{C}$ designate $B(a, \epsilon)$ an open ball in (\mathbb{C}, d) and by $B_{\infty}(a, \epsilon)$ an open ball in $(\mathbb{C}_{\infty}, d_{\infty})$. Show that if $a \in \mathbb{C}$ and r > 0 then there exists a $\rho > 0$ such that $B_{\infty}(a, \rho) \subset B(a, r)$. Conversely, show that if $a \in \mathbb{C}$ and $\rho > 0$ then there exists r > 0 such that $B(a, r) \subset B_{\infty}(a, \rho)$. (5)
- 8. (a) Show that if f is a meromorphic function in a domain D then it is continuous in D with respect to the spherical distance. (4)
 - (b) Let $\{f_n\}$ be a sequence of meromorphic functions defined in a domain D. Show that $\{f_n\}$ converges uniformly with respect to spherical distance on compact subsets of D to a function f if and only if about each z_0 there is a closed disc $B(z_0, r)$ about z_0 of radius r > 0 in which $|f_n - f| \to 0$ or $|\frac{1}{f_n} - \frac{1}{f}| \to 0$ uniformly as $n \to \infty$. (6)
- 9. (a) When is a family of meromorphic functions called normal? Give non-trivial examples of (i) a normal family of holomorphic function (ii) a normal family of meromorphic functions. (5)
 - (b) Consider the statement "A family of normal holomorphic functions which is locally uniformally bounded in a domain D is normal in D." State an analog of this result for a family of meromorphic functions. Check whether or not the family $\{f_n\}$ where $f_n(z) = \frac{z}{(z-1/n)}$ is normal on the disc of radius 1 centered at 2? (5)
- 10. (a) Let *F* be a normal family of holomorphic functions in a domain *D* satisfying min_{z∈σ} |f(z)| ≤ M ∀f ∈ *F* where σ is a bounded and closed subset of *D* and *M* is a positive number. Show that the family *F* is uniformly bounded on each bounded closed subset *E* of *D*. Illustrate this result with a non-trivial example.
 (6)
 - (b) Let $f_n(z) := 1 + 3^n z + 3^{2n} z^2$ and $g_n(z) = \frac{z}{(z \frac{1}{3^n})}$. What can you deduce about the normality of the families $\{f_n\}$ and $\{g_n\}$ in the domain $D = \{z : |z| < 3\}$. Justify. (4)