Department of Mathematics MPhil/PhD Coursework Supplementary Examination

Topics in Analysis

(November 2022) Time: 3 hr Max. Marks: 70

Attempt SEVEN questions in all. All symbols carry their usual meaning.

- 1. Let $K: [a,b] \times [a,b] \to \mathbb{R}$ be continuous. Find conditions on $\lambda \in \mathbb{R}$ such that the integral equation $x(t) = \lambda \int_a^t K(t,\tau)x(\tau) d\tau$ has a unique solution in $x \in C[a,b]$. (10)
 - 2: State and prove Banach's Contraction Principle. Let $X = c_0$, the Banach Space of all real sequences that tend to zero, equipped with norm $||x|| := \max_i |x_i|$ and suppose that the mapping f is given by $f(x) = (1, 1, 1, x_1, x_2, x_3, \dots)$ where $x = (x_1, x_2, \dots) \in X$. Verify if the conclusion of the above theorems holds for f and if not, give reasons, justifying your claims in detail. (10)
 - (a) Let X, Y be Banach spaces and $f : [a, b] \to X$. When is f said to be Riemann integrable? Show that if f is continuous it is Riemann integrable. (6)
 - (b) Let (M, Σ, μ) be measure space and X a Banach space. When is a function $f: M \to X$ said to be strongly measurable? When is a strongly measurable function $f: M \to X$ Bochner measurable and how is its Bochner integral defined? (4)
 - 4. State Stone-Weierstrass's Theorem for an algebra of complex continuous functions defined on a compact set K. Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Let \mathcal{A} be the set of all functions of the form $f(e^{i\theta}) = \sum_{n=0}^{N} c_n e^{in\theta}$ where $N \in \mathbb{N}$, $c_n \in \mathbb{C}$, $\theta \in \mathbb{R}$. Determine which of the conditions of the above mentioned result are satisfied by \mathcal{A} . Further check whether or not the conclusion of the theorem holds? Give a reason in either case.
 - 5. (a) Let $F: C[0,1] \to C[0,1]$ given by $(F(\phi))(t) = \int_0^t \phi^2(s) \, ds$. Find the Frechet derivative of F at any $\phi_0 \in C[0,1]$.
 - (b) Let L be a bounded linear operator on a real Hilbert space H and define $F: H \to \mathbb{R}$ by $F(x) = \langle x, Lx \rangle + \langle x, x \rangle$. Find the Frechet derivative of F at $x_0 \in H$.
 - 6. (a) Let f be defined on an open set Ω in the direct sum space $X = X_1 \oplus X_2 \oplus X_3 \dots X_n$, (where each X_j is a Banach space), and take values in a normed space Y, such that all partial derivatives $D_j f$ exist in Ω and are continuous at every point x_0 in Ω . Show that f is Frechet differentiable at x_0 and find an expression for the Frechet derivative of f at x_0 .
 - (b) Let $f: \Omega \to Y$ be Frechet differentiable, where $\Omega \subset X$, is open, X, Y are open and suppose $a, b, x_0 \in \Omega$ with the line segment S joining a to b contained in Ω . Show that $||f(b) f(a) f'(x_0)(b a)|| \le ||b a|| \sup_{x \in S} ||f'(x) f'(x_0)||$. (5)

- 7. State and prove an Inverse Function Theorem for a function $f:\Omega\to Y$ where $\Omega\subset X$ is an open set and X,Y are Banach spaces. You may clearly state and use an appropriate implicit function theorem if required. (10)
- 8. Define convolution f * g for $f \in L^p(\mathbb{R}^N)$, $g \in L^1(\mathbb{R}^N)$, $1 \le p < \infty$. Show further that $f * g \in L^p(\mathbb{R}^N)$ and $||f * g||_p \le ||f||_p ||g||_1$. (10)
- (a) Let $\Omega \subset \mathbb{R}^N$ be open. When is a function $f \in L^1_{loc}(\Omega)$ said to be weakly differentiable? Show that for $\Omega = (-1, 1)$ the function f(t) = |t| + t is weakly differentiable and find its weak derivative. (4)
 - (b) Show that if $f \in L^1_{loc}(\Omega)$ is weakly differentiable with weak derivative of f zero, then f = constant. (6)
- 10. Let $\Omega = (a, b) \subset \mathbb{R}$. Define the spaces $W^{1,p}(a, b), 1 \leq p < \infty$. Define an inner product on $W^{1,2}(a, b)$ that makes it a Hilbert space, giving full justification. (10)