R-07 Convex and Nonsmooth Analysis

Tangent Direction and Tangent Cone

Let $S \subseteq \mathbb{R}^n$ be a nonempty set. A direction $d \in \mathbb{R}^n$ is said to be a tangent direction to *S* at $x \in S$ if there exist a sequence $\{x_k\} \subseteq S$ and a sequence $\{t_k\}$ such that, when $k \to \infty$,

$$x_k \to x, t_k \downarrow 0, \frac{x_k - x}{t_k} \to d$$

The set of all such directions is called the tangent cone (contingent cone, or Bouligand's cone) to S at $x \in S$, and is denoted by $T_S(x)$.

Tangent Cone

i) Clearly, $0 \in T_S(x)$. ii) If $d \in T_S(x)$ then $\alpha d \in T_S(x)$ for $\alpha > 0$. If $d \in T_S(x)$ then there exists a sequence $\{x_k\} \subseteq S$ and a sequence $\{t_k\}$ such that, when $k \to \infty$, 20-

$$x_k \to x, t_k \downarrow 0, \frac{x_k - x}{t_k} \to d.$$

Let $r_k = \frac{t_k}{\alpha}$. As $t_k \downarrow 0$ we have $r_k \downarrow 0$ and
 $\frac{x_k - x}{r_k} = \alpha \left(\frac{x_k - x}{t_k}\right) \to \alpha d.$
iii) If $x \in \text{int}S$ then $T_S(x) = \mathbb{R}^n$.
Clearly, $T_S(x) \subseteq \mathbb{R}^n$.

Let $d \in \mathbb{R}^n$. Since $x \in \text{int}S$ there exists $\delta > 0$ such that $B_{\delta}(x) \subseteq S$. Clearly,

$$\begin{aligned} x_k &= x + \frac{\delta d}{2k \|d\|} \in B_{\delta}(x) \subseteq S. \\ \text{Let } t_k &= \frac{\delta}{2k \|d\|}. \text{ Then } t_k \downarrow 0 \text{ and } \frac{x_k - x}{t_k} = d \to d. \\ \text{Thus, } d \in T_S(x), \text{ and hence } \mathbb{R}^n \subseteq T_S(x). \end{aligned}$$

iii)

Tangent cone is not necessarily convex

Equivalent Definition

Proposition A direction d is tangent to S at $x \in S$ if and only if there exist a sequence $\{d_k\} \subseteq \mathbb{R}^n$ and a sequence $\{t_k\}$ such that, when $k \to \infty$,

$$d_k \rightarrow d, t_k \downarrow 0, x + t_k d_k \in S$$
, for all k .

Proof Let $d \in T_S(x)$, then there exist a sequence $\{x_k\} \subseteq S$ and a sequence $\{t_k\}$ such that, $x_k \to x$, $t_k \downarrow 0$, $\frac{x_k - x}{t_k} \to d$. Define

$$d_k = \frac{x_k - x}{t_k}$$
, for all k .

Then $d_k \rightarrow d$ and $x + t_k d_k = x_k \in S$, for all k.

Conversely, let there exist a sequence $\{d_k\} \subseteq \mathbb{R}^n$ and a sequence $\{t_k\}$ such that, $d_k \to d$, $t_k \downarrow 0$, $x + t_k d_k \in S$, for all k. Define

 $x_k = x + t_k d_k$, for all k.

Then $\{x_k\} \subseteq S$ and $\frac{x_k - x}{t_k} = d_k \to d$.

Tangent cone is closed

Proposition The tangent cone is a closed set. **Proof** Let $\{d_l\} \subseteq T_S(x)$ be such that $d_l \to d$. For each d_l there exist a sequence $\{x_l^k\} \subseteq S$ and a sequence $\{t_l^k\}$ such that, for $k \to \infty$, $x_l^k \to x, t_l^k \downarrow 0, \frac{x_l^k - x}{t_l^k} \to d_l.$ For each l > 0 we can find $\overline{k}_l \in \mathbb{N}$ such that $\left\|\frac{x_l^k - x}{t_l^k} - d_l\right\| < \frac{1}{l} \quad \text{for all } k \ge \overline{k}_l.$ For l = 1, in particular for $k = k_1 = \overline{k}_1$ we have $\left\|\frac{x_1^{k_1} - x}{t_1^{k_1}} - d_1\right\| < 1.$ For l = 2, in particular for $k = k_2 = \max\{k_1, \overline{k}_2\}$ we have $\left\|\frac{x_2^{k_2} - x}{t_2^{k_2}} - d_2\right\| < \frac{1}{2}.$ For l = 3, in particular for $k = k_3 = \max\{k_2, k_3\}$ we have $\left\|\frac{x_3^{k_3} - x}{t^{k_3}} - d_3\right\| < \frac{1}{3}.$

continued

Proceeding like this we get

$$\left\|\frac{x_l^{k_l} - x}{t_l^{k_l}} - d_l\right\| < \frac{1}{l}$$

where $k_{l+1} \ge k_l$ for all *l*. As $x_l^k \to x$ and $k_{l+1} \ge k_l$ for all *l* it follows that $x_l^{k_l} \to x$ as $l \to \infty$. Similarly, $t_l^{k_l} \downarrow 0$ as $l \to \infty$.

Given $\varepsilon > 0$ there exists $\hat{l} \in \mathbb{N}$ such that $\frac{1}{\hat{l}} < \frac{\varepsilon}{2}$. Hence

$$\left\|\frac{x_l^{k_l} - x}{t_l^{k_l}} - d_l\right\| < \frac{\varepsilon}{2}, \qquad \forall l \ge \hat{l}.$$

As $d_l \rightarrow d$ there exists $\overline{l} \in \mathbb{N}$ such that

$$|d_l - d| < \frac{\varepsilon}{2}, \qquad \forall \ l \ge \overline{l}.$$

Let $\tilde{l} = \max\{\hat{l}, \bar{l}\}$. Then

$$\left\|\frac{x_l^{k_l} - x}{t_l^{k_l}} - d\right\| < \varepsilon, \qquad \forall l \ge \tilde{l}.$$

Hence there exist a sequence $\{x_l^{k_l}\} \subseteq S$ and a sequence $\{t_l^{k_l}\}$ such that, for $l \to \infty$,

$$x_l^{k_l} \to x, t_l^{k_l} \downarrow 0, \frac{x_l^{k_l} - x}{t_l^{k_l}} \to d$$

which implies that $d \in T_S(x)$.

Distance function

Let $S \subseteq \mathbb{R}^n$ be a nonempty set. A function $d_S \colon \mathbb{R}^n \to \mathbb{R}$ defined as $d_S(x) = \inf_{x \in S} ||y - x||$

is called distance function.

Example Let $S = \{(x_1, x_2) : x_1^2 + x_2^2 \le 1\}.$

$$d_{S}(x_{1}, x_{2}) = \begin{cases} 0, & \text{if } x_{1}^{2} + x_{2}^{2} \leq 1, \\ \sqrt{x_{1}^{2} + x_{1}^{2}} - 1, & \text{if } x_{1}^{2} + x_{2}^{2} > 1. \end{cases}$$