R-07 Convex and Nonsmooth Analysis

Closed Convex Hull of a Set

Closed convex hull of a set $S \subseteq \mathbb{R}^n$, denoted by $\overline{co}S$, is the intersection of all closed convex sets containing S.

Theorem The closed convex hull $\overline{co}S$ is the closure of the convex hull of S, that is, $\overline{co}S = cl(coS)$.

Example $cl(coS) \neq co(clS)$. Let $S = \{(0,0)\} \cup \{(t,1): t \ge 0\}$.

Theorem If S is a set in \mathbb{R}^n then

 $co(clS) \subseteq cl(coS).$

Proof $S \subseteq coS \Rightarrow clS \subseteq cl(coS) \Rightarrow co(clS) \subseteq co(cl(coS)) = cl(coS)$ as cl(coS) is a convex set.

Boundedness and compactness of convex hull

Theorem i) If *S* is bounded then co*S* is bounded.

ii) If *S* is compact then co*S* is compact.

Proof i) If S is bounded there exists M > 0 such that

$$||u|| \le M, \qquad \forall u \in S.$$

Let $x \in coS$. Then by Carathéodory theorem there exist $x_1, x_2, ..., x_{n+1} \in S, \alpha \in \Delta_{n+1}$ such that $x = \sum_{i=1}^{n+1} \alpha_i x_i$. Now,

$$||x|| = \left\|\sum_{i=1}^{k} \alpha_{i} x_{i}\right\| \le \sum_{i=1}^{k} \alpha_{i} ||x_{i}|| \le (\sum_{i=1}^{k} \alpha_{i}) M = M.$$

Hence coS is bounded.

ii) It is enough to show coS is closed. Let $x \in cl(coS)$. Let $\{x^k\}$ be a sequence in coS such that $x^k \rightarrow x$. For each x^k we can choose $x_1^k, x_2^k, ..., x_{n+1}^k \in S$ and $\alpha^k = (\alpha_1^k, \alpha_2^k, ..., \alpha_{n+1}^k) \in \Delta_{n+1}$ such that $x^k = \sum_{i=1}^{n+1} \alpha_i^k x_i^k$.

Since Δ_{n+1} is compact and S is compact we can extract subsequences of the sequences $\{\alpha^k\}$ and $\{x_i^k\}$, i = 1, 2, ..., n + 1 which converge. Let $x_i^{k_l} \rightarrow x_i, i = 1, 2, ..., n + 1$ and $\alpha^{k_l} \rightarrow \alpha$. As S and Δ_{n+1} are closed it follows that $x_i \in S$, = 1, 2, ..., n + 1 and $\alpha \in \Delta_{n+1}$. Hence

$$x = \sum_{i=1}^{n+1} \alpha_i x_i \in \text{coS.}$$

cl(coS) = co(clS)?

Theorem If *S* is compact then cl(coS) = co(clS).

Proof As *S* is compact so co*S* is compact. Hence

$$cl(coS) = coS.$$

As *S* is closed we have S = clS. Hence,

$$cl(coS) = coS = co(clS).$$

Theorem If S is bounded then
$$cl(coS) = co(clS)$$
.
Proof As $S \subseteq clS$ we have $coS \subseteq co(clS)$. This implies
 $cl(coS) \subseteq cl(co(clS))$. (1)

As S is bounded so clS is compact. Hence by the previous theorem

$$cl(co(clS)) = co(cl(clS)) = co(clS).$$
 (2)

Also we have

$$co(clS) \subseteq cl(coS)$$
 (3)

From (1)-(3) we have

$$cl(coS) \subseteq co(clS) \subseteq cl(coS).$$

Convex cone

A set $K \subseteq \mathbb{R}^n$ is said to be a cone if for $x \in K$ and $\alpha > 0$, we have

 $\alpha x \in K$.

A convex cone *K* is a cone which is convex.

Theorem A cone K is convex if and only if for every $x, x' \in K$ we have $x + x' \in K$.

Proof Let K be a convex cone. Let $x, x' \in K$. As K is convex we have

$$\frac{1}{2}x + \frac{1}{2}x' \in K.$$

As K is a cone we have

$$x + x' = 2\left(\frac{1}{2}x + \frac{1}{2}x'\right) \in K.$$

Conversely, let $x, x' \in K$ and $\lambda \in [0,1]$. As K is a cone we have

$$\lambda x \in K$$
, and $(1 - \lambda)x' \in K$.

Hence by the assumption we have

$$\lambda x + (1-\lambda)x' \in K.$$

Conical Combinations and Conical Hull

Let $\{x_i\}_{i=1}^k$ be a finite set of points in \mathbb{R}^n . A conical combination of these points is a point of the form

$$x = \sum_{i=1}^{k} \lambda_i x_i, \ \lambda_i \ge 0, i = 1, 2, \dots k.$$

Conical hull of a set $S \subseteq \mathbb{R}^n$, denoted by coneS, is the set of all conical combinations of finite set of points of S.

Clearly, $0 \in \text{cone}S$.

Theorem Conical hull of a set S in \mathbb{R}^n is the intersection of all convex cone containing S and the origin.

Theorem Conical hull of a set S in \mathbb{R}^n is the smallest convex cone containing S and the origin.

Conical Convex Hull of a Set

Conical hull in terms of convex hull

Theorem If S is a set in \mathbb{R}^n then cone $S = \mathbb{R}^+(coS)$. **Proof** Let $x \in coneS$. Then there exist $k \in \mathbb{N}$, $x_i \in S, \lambda_i \ge 0, i = 1, 2, ..., k$, such that

$$x = \sum_{i=1}^k \lambda_i x_i.$$

Let $\hat{\lambda} = \sum_{i=1}^{k} \lambda_i$. If $\hat{\lambda} = 0$, then $x = 0 \in \mathbb{R}^+(\text{co}S)$. Let $\hat{\lambda} > 0$. Then $x = \hat{\lambda} \sum_{i=1}^{k} \frac{\lambda_i}{\hat{\lambda}} x_i \in \mathbb{R}^+(\text{co}S)$.

Conversely, let $x \in \mathbb{R}^+(coS)$. Then there exist $\alpha \ge 0$, $x_i \in S, \lambda_i \ge 0$, i = 1, ..., n + 1, $\sum_{i=1}^k \lambda_i = 1$, such that

$$x = \alpha \sum_{i=1}^{k} \lambda_i x_i = \sum_{i=1}^{k} \alpha \lambda_i x_i \in \text{cone}S.$$

Remark $0 \in \mathbb{R}^+(coS) = coneS$.

Conical hull in terms of convex hull

Theorem If S is a set in \mathbb{R}^n then cone $S = \mathbb{R}^+(coS) = co(\mathbb{R}^+S)$. *Proof* Let $x \in \mathbb{R}^+(coS)$. Then there exist $\alpha \ge 0$, $x_i \in S, \lambda_i \ge 0, i = 1, ..., n + 1, \sum_{i=1}^k \lambda_i = 1$, such that

$$x = \alpha \sum_{i=1}^{k} \lambda_i x_i = \sum_{i=1}^{k} \lambda_i (\alpha x_i) \in \operatorname{co}(\mathbb{R}^+ S).$$

Conversely, let $x \in co(\mathbb{R}^+S)$. Then there exist $u_i \in \mathbb{R}^+S$, $\lambda_i \ge 0$, i = 1, ..., n + 1, $\sum_{i=1}^k \lambda_i = 1$, such that

$$x = \sum_{i=1}^k \lambda_i u_i$$
 .

As $u_i \in \mathbb{R}^+ S$, there exist $x_i \in S$, $\alpha_i \ge 0$, i = 1, ..., n + 1, such that $u_i = \alpha_i x_i$. Hence

$$x = \sum_{i=1}^k \lambda_i \alpha_i x_i \,.$$

If $\sum_{i=1}^{k} \lambda_i \alpha_i = 0$ then $x = 0 \in \mathbb{R}^+(\cos S)$. Let $\hat{\delta} = \sum_{i=1}^{k} \lambda_i \alpha_i > 0$. Then $x = \hat{\delta} \sum_{i=1}^{k} \frac{\lambda_i \alpha_i}{\widehat{\delta}} x_i \in \mathbb{R}^+(\cos S)$.

cl(coneS) and cone(clS)

We have cl(coS) = co(clS) if S is compact. But such a relation fails to hold even when S is compact when "co" is replaced by "cone". *Example* $cl(coneS) \neq cone(clS)$

Let $S = \{(x, y): (x - 1)^2 + y^2 \le 1\}.$

Closed conical hull

Closed conical hull of a nonempty set S in \mathbb{R}^n , denoted by $\overline{\text{cone}S}$, is defined as $\overline{\text{cone}S}$:= cl(coneS).

Theorem If S is a nonempty compact set in \mathbb{R}^n such that $0 \notin coS$ then

 $\overline{\operatorname{cone}} S = \operatorname{cone} S$.

Proof We need to show cl(coneS) = coneS.

It is enough to show coneS is closed. We know cone $S = \mathbb{R}^+(\cos S)$.

So it is enough to show $\mathbb{R}^+(coS)$ is closed. Let $t_k x_k \in \mathbb{R}^+(coS)$ such that $t_k x_k \to y$. As $x_k \in coS$ and $0 \notin coS$ so $x_k \neq 0$. As S is compact so coS is compact. Thus there exists a subsequence $x_{k_l} \to x \in coS$, $x \neq 0$. As $t_k x_k \to y$ we have

$$t_{k_l} \| x_{k_l} \| \to \| y \|.$$

As $||x_{k_l}|| \to ||x||$, $||x_{k_l}|| \neq 0$, $||x|| \neq 0$, we have

$$t_{k_l} = t_{k_l} \frac{\|x_{k_l}\|}{\|x_{k_l}\|} \to \frac{\|y\|}{\|x\|}.$$

Let $t = \frac{\|y\|}{\|x\|}$. As $x_{k_l} \to x$ and $t_{k_l} \to t$ we have $t_{k_l} x_{k_l} \to tx$. By uniqueness of limit we have $y = tx \in \mathbb{R}^+(\cos S)$.

Corollary If S is a nonempty compact set in \mathbb{R}^n such that $0 \notin coS$ then cl(coneS) = cone(clS).