R-07 R-07
Convex and Nonsmooth Analysis

Closed Convex Hull of a Set

Closed Convex Hull of a Set
Closed convex hull of a set $S \subseteq \mathbb{R}^n$, denoted by $\overline{co}S$, is the in
closed convex sets containing S.
Theorem The closed convex hull $\overline{co}S$ is the closure of the conve **nvex Hull of a Set**
, denoted by $\overline{\cos}$, is the intersection of all
, is the closure of the convex hull of S, that

Closed Convex Hull of a Set
Closed convex hull of a set $S \subseteq \mathbb{R}^n$, denoted by \overline{cos} , is the intersection of all
closed convex sets containing S .
Theorem The closed convex hull \overline{cos} is the closure of the con is, $\overline{\cos}$ = cl(coS).

Example $cl(cos) \neq co(cls)$. Let $S = \{(0,0)\} \cup \{(t,1): t \geq 0\}$.

Theorem If S is a set in \mathbb{R}^n then

.

Proof $S \subseteq \text{co}S \implies \text{cl}S \subseteq \text{cl}(\text{co}S) \implies \text{co}(\text{cl}S) \subseteq \text{co}(\text{cl}(\text{co}S)) = \text{cl}(\text{co}S)$

Boundedness and compactness of convex hull
() If S is bounded then coS is bounded. **Boundedness and compactness of convex hull**
Theorem i) If S is bounded then coS is bounded.
ii) If S is compact then coS is compact.
Proof i) If S is bounded there exists $M > 0$ such that **Boundedness and compactness of convex**
Theorem i) If S is bounded then coS is bounded.
ii) If S is compact then coS is compact.
Proof i) If S is bounded there exists $M > 0$ such that
 $||u|| \le M$, $\forall u \in S$.

$$
||u|| \le M, \qquad \forall u \in S.
$$

**Boundedness and compactness of convex hull

Theorem i) If S is bounded then coS is bounded.**

ii) If S is compact then coS is compact.

Proof i) If S is bounded there exists $M > 0$ such that
 $||u|| \le M$, $\forall u \in S$.

Let $x \$ **Boundedness and compactness of convex hull**

Theorem i) If *S* is bounded then co*S* is bounded.

ii) If *S* is compact then co*S* is compact.
 Proof i) If *S* is bounded there exists $M > 0$ such that
 $||u|| \le M$, $\forall u \in$ **Boundedness and compactne**
heorem i) If *S* is bounded then co*S* is bounded.

If *S* is compact then co*S* is compact.
 roof i) If *S* is bounded there exists $M > 0$ such tha
 $||u|| \le M$, $\forall u \in$

et $x \in \text{coS}$. Then b Δ_{n+1} such that $x = \sum_{i=1}^{n+1} \alpha_i x_i$. Now, **Iness and compactness of convex h**
ded then co*S* is bounded.
co*S* is compact.
I there exists $M > 0$ such that
 $||u|| \le M$, $\forall u \in S$.
Carathéodory theorem there exist $x_1, x_2, ..., x_n$
 $\sum_{i=1}^{n+1} a_i x_i$. Now,
 $\sum_{i=1}^k a_i x_i || \$

$$
||x|| = ||\sum_{i=1}^{k} \alpha_i x_i|| \le \sum_{i=1}^{k} \alpha_i ||x_i|| \le (\sum_{i=1}^{k} \alpha_i) M = M.
$$

Hence \cos is bounded.

Theorem i) If S is bounded then coS is bounded.

ii) If S is compact then coS is compact.

Proof i) If S is bounded there exists $M > 0$ such that
 $||u|| \le M$, $\forall u \in S$.

Let $x \in \cos S$. Then by Carathéodory theorem there exis $x_2, ..., x_{n+1} \in S, \alpha \in$
 $M = M.$

be a sequence in co*S*

E *S* and ii) If *S* is compact then co*S* is compact.
 Proof i) If *S* is bounded there exists *M* > 0 suo
 $||u|| \le M$,

Let $x \in \cos S$. Then by Carathéodory theoren
 Δ_{n+1} such that $x = \sum_{i=1}^{n+1} \alpha_i x_i$. Now,
 $||x|| = ||\sum_{i=1}^{k}$ between the costal solution.

Alternatives and that
 $||u|| \leq M$, $\forall u \in S$.
 $\forall u \in S$.
 $\forall u \in S$.
 $\sum_{i=1}^{n+1} \alpha_i x_i$. Now,
 $= \left\| \sum_{i=1}^{k} \alpha_i x_i \right\| \leq \sum_{i=1}^{k} \alpha_i ||x_i|| \leq (\sum_{i=1}^{k} \alpha_i) M = M$.

Alternative cost is closed. $k \gamma k \gamma k \in \mathcal{S}$ and $_2$, …, x_{n+1} \in 3 driu x_2^k , ..., $x_{n+1}^k \in S$ and $k = (\alpha^k, \alpha^k, \alpha^k) \in$ 1, a_2 , ..., a_{n+1}) $\in \Delta_{n+1}$ $k \alpha^k \alpha^k \in \mathbb{R}$ $_{2}$, ..., a_{n+1}) \in Δ_{n+1} suc α_{n+1}^{k} , ..., $\alpha_{n+1}^{k}) \in \Delta_{n+1}$ such that exists $M > 0$ such that
 $||u|| \le M$, $\forall u \in S$.

éodory theorem there exist $x_1, x_2, ..., x_{n+1} \in S$.
 x_i . Now,
 $|x_i x_i|| \le \sum_{i=1}^k \alpha_i ||x_i|| \le (\sum_{i=1}^k \alpha_i) M = M$.

i closed. Let $x \in cl(cos)$. Let $\{x^k\}$ be a sequence i
 k we can c $k = \nabla^{n+1} \alpha^k x^k$ $i \lambda i$. $k_{\gamma}k$ i \cdot $n+1 \overline{a_i^k x_i^k}.$ Let $x \in \cos S$. Then by Carathéodory theorem there exist $x_1, x_2, ..., x_{n+1} \in S$, $\alpha \in \Delta_{n+1}$ such that $x = \sum_{i=1}^{n+1} \alpha_i x_i$, Now,
 $||x|| = ||\sum_{i=1}^{k} \alpha_i x_i|| \le \sum_{i=1}^{k} \alpha_i ||x_i|| \le (\sum_{i=1}^{k} \alpha_i) M = M$.

Hence $\cos S$ is bounded.

(i $|a_i x_i| \le \sum_{i=1}^k \alpha_i ||x_i|| \le (\sum_{i=1}^k \alpha_i) M = M.$

is closed. Let $x \in \text{cl}(\cos S)$. Let $\{x^k\}$ be a sequence in $\cos x^k$ we can choose $x_1^k, x_2^k, ..., x_{n+1}^k \in S$ and
 Δ_{n+1} such that
 $x^k = \sum_{i=1}^{n+1} \alpha_i^k x_i^k$.

d S is $\|x_i\| \le \sum_{i=1}^k \alpha_i \|x_i\| \le (\sum_{i=1}^k \alpha_i) M = M.$

closed. Let $x \in \text{cl}(\cos)$. Let $\{x^k\}$ be a sequence in $\cos k$
 κ we can choose $x_1^k, x_2^k, ..., x_{n+1}^k \in S$ and
 $n+1$ such that
 $x^k = \sum_{i=1}^{n+1} \alpha_i^k x_i^k$.

S is comp and α and

sequences $\{\alpha^k\}$ and $\{x^k_i\}$, $i=1,2,...,n+1$ which converge. Let $x^{k_l}_i \rightarrow x_i, i=1,2,...,n+1$ $i, i =$ 1,2, ..., $n + 1$ and $\alpha^{k_l} \rightarrow \alpha$. As S and Δ_{n+1} are closed it follows that $x_i \in S$, $\overline{}$

$$
x = \sum_{i=1}^{n+1} \alpha_i x_i \in \text{coS}.
$$

?

Cl(COS) = CO(ClS)?
Theorem If S is compact then $cl(cos) = co(clS)$.
Proof As S is compact so coS is compact. Hence
 $cl(cos) = cos$.
As S is closed we have $S = clS$. Hence,

$$
cl(cos) = cos.
$$

$$
cl(cos) = cos = co(cls).
$$

. As is closed we have Hence, . Theorem If is bounded then . Proof As we have This implies . (1) Also we have From (1)-(3) we have

As S is bounded so cIS is compact. Hence by the previous theorem

$$
cl\big(co(clS)\big) = co(cl(clS)) = co(clS).
$$
 (2)

$$
co(clS) \subseteq cl(cos)
$$
 (3)

$$
\mathrm{cl}(\mathrm{co}S) \subseteq \mathrm{co}(\mathrm{cl}S) \subseteq \mathrm{cl}(\mathrm{co}S).
$$

Convex cone

Convex c
A set $K \subseteq \mathbb{R}^n$ is said to be a cone if for x
 $\alpha x \in K$.
A convex cone K is a cone which is conve **CONVEX CONE**

is said to be a cone if for $x \in K$ and $\alpha > 0$, we have
 $\alpha x \in K$.
 K is a cone which is convex.

.

A convex cone K is a cone which is convex.

Convex cone
 $A \text{ set } K \subseteq \mathbb{R}^n$ is said to be a cone if for $x \in K$ and $\alpha > 0$, we have
 $\alpha x \in K$.

A convex cone K is a cone which is convex.

Theorem A cone K is convex if and only if for every $x, x' \in K$ we have
 $x +$ $x + x' \in K$. A set $K \subseteq \mathbb{R}^n$ is said to be a cone if for $x \in K$ and $\alpha > 0$
 $\alpha x \in K$.

A convex cone K is a cone which is convex.

Theorem A cone K is convex if and only if for every x , $x + x' \in K$.

Proof Let K be a convex cone. A convex cone *K* is a cone which is convex.

Theorem A cone *K* is convex if and only if for every $x, x' \in K$ we have
 $x + x' \in K$.

Proof Let *K* be a convex cone. Let $x, x' \in K$. As *K* is convex we have
 $\frac{1}{2}x + \frac{1}{2}$

Proof Let K be a convex cone. Let $x, x' \in K$. As K is convex we have

$$
\frac{1}{2}x + \frac{1}{2}x' \in K.
$$

$$
x + x' = 2\left(\frac{1}{2}x + \frac{1}{2}x'\right) \in K.
$$

$$
\lambda x \in K
$$
, and $(1 - \lambda)x' \in K$.

Hence by the assumption we have

$$
\lambda x + (1 - \lambda) x' \in K.
$$

Conical Combinations and Conical Hull

Conical Combinations and Conical Hull
Let $\{x_i\}_{i=1}^k$ be a finite set of points in \mathbb{R}^n . A conical
combination of these points is a point of the form
 $x = \sum_{i=1}^k \lambda_i x_i, \lambda_i \ge 0, i = 1, 2, ... k.$ **Conical Combinations and Conical Hull**
Let $\{x_i\}_{i=1}^k$ be a finite set of points in \mathbb{R}^n . A conical
combination of these points is a point of the form
 $x = \sum_{i=1}^k \lambda_i x_i, \lambda_i \ge 0, i = 1, 2, ... k$.
Conical hull of a set **Conical Combinations and Conical Hull**

Let $\{x_i\}_{i=1}^k$ be a finite set of points in \mathbb{R}^n . A conical

combination of these points is a point of the form
 $x = \sum_{i=1}^k \lambda_i x_i$, $\lambda_i \ge 0$, $i = 1, 2, ... k$.

Conical hul **Conical Combinations and Conical Hull**

Let $\{x_i\}_{i=1}^k$ be a finite set of points in \mathbb{R}^n . A conical

combination of these points is a point of the form
 $x = \sum_{i=1}^k \lambda_i x_i$, $\lambda_i \ge 0$, $i = 1, 2, ... k$.

Conical hul Let $\{x_i\}_{i=1}^k$ be a finite set of points in \mathbb{R}^n . A conical
combination of these points is a point of the form
 $x = \sum_{i=1}^k \lambda_i x_i, \lambda_i \ge 0, i = 1, 2, \dots k$.
Conical hull of a set $S \subseteq \mathbb{R}^n$, denoted by cone*S*, is

$$
x = \sum_{i=1}^{k} \lambda_i x_i, \ \lambda_i \ge 0, i = 1, 2, \dots k.
$$

combination of these points is a point of the form
 $x = \sum_{i=1}^{k} \lambda_i x_i, \lambda_i \ge 0, i = 1, 2, ... k.$

Conical hull of a set $S \subseteq \mathbb{R}^n$, denoted by cone*S*, is the set of

all conical combinations of finite set of points of *S*. $x = \sum_{i=1}^{k} \lambda_i x_i, \lambda_i \ge 0, i = 1, 2, ... k.$
Conical hull of a set $S \subseteq \mathbb{R}^n$, denoted by cone*S*, is the set all conical combinations of finite set of points of *S*.
Clearly, $0 \in \text{cone}S$.
Theorem Conical hull of a set *S*

Conical Convex Hull of a Set

Conical hull in terms of convex hull

Conical hull in terms of convex hull

Theorem If S is a set in \mathbb{R}^n then cone $S = \mathbb{R}^+(\cos)$.

Proof Let $x \in \text{cone}S$. Then there exist $k \in \mathbb{N}$, $x_i \in S$, $\lambda_i \ge 0$, $i = 1, 2, ..., k$, such that
 $x = \sum_{i=1}^k \lambda_i x_i$. **Conical hull in terms of con**

If *S* is a set in \mathbb{R}^n then cone $S = \mathbb{R}^+$ (co.)
 $x \in \text{cone}S$. Then there exist $k \in \mathbb{R}$

such that
 $x = \sum_{i=1}^k \lambda_i x_i$.
 $\frac{k}{n} \lambda_i$ If $\hat{\lambda} = 0$ then $x = 0 \in \mathbb{R}^+$ (co. S)

$$
x = \sum_{i=1}^k \lambda_i x_i.
$$

Conical hull in terms of convex hull

Theorem If S is a set in \mathbb{R}^n then coneS = $\mathbb{R}^+(cos)$.

Proof Let $x \in \text{cone}S$. Then there exist $k \in \mathbb{N}$, $x_i \in S$, $\lambda_i \ge 0$, $i = 1, 2, ..., k$, such that
 $x = \sum_{i=1}^k \lambda_i x_i$. $x = \hat{\lambda} \sum_{i=1}^k \frac{\lambda_i}{\hat{\lambda}} x_i \in \mathbb{R}^+ (\cos).$ Theorem If S is a set in \mathbb{R}^n then coneS = $\mathbb{R}^+(cos)$.

Proof Let $x \in \text{coneS}$. Then there exist $k \in \mathbb{N}$, $x_i \in S$, $\lambda_i \ge 0$, $i = 1, 2, ..., k$, such that
 $x = \sum_{i=1}^k \lambda_i x_i$.

Let $\hat{\lambda} = \sum_{i=1}^k \lambda_i$. If $\hat{\lambda} = 0$ there exist $k \in \mathbb{N}$, $x_i \in S$, $\lambda_i \ge 0$, $i =$
 $\sum_{i=1}^{k} \lambda_i x_i$.
 $x = 0 \in \mathbb{R}^+ (\cos)$. Let $\hat{\lambda} > 0$. Then
 $\sum_{i=1}^{\lambda_i} \frac{\lambda_i}{\hat{\lambda}} x_i \in \mathbb{R}^+ (\cos)$.

Then there exist $\alpha \ge 0$, $x_i \in S$, $\lambda_i \ge$, such that
 $\sum_{i=1}$

$$
x = \alpha \sum_{i=1}^{k} \lambda_i x_i = \sum_{i=1}^{k} \alpha \lambda_i x_i \in \text{cone}S.
$$

Remark $0 \in \mathbb{R}^+$ (coS) = coneS.

Conical hull in terms of convex hull

Theorem If S is a set in \mathbb{R}^n then cone $S = \mathbb{R}^+(\cos) = \cos(\mathbb{R}^+S)$. **Conical hull in terms of convex hull**

Theorem If S is a set in \mathbb{R}^n then cone $S = \mathbb{R}^+(\cos S) = \cos(\mathbb{R}^+ S)$.

Proof Let $x \in \mathbb{R}^+(\cos S)$. Then there exist $\alpha \ge 0$, $x_i \in S$, $\lambda_i \ge 0$, $i = 1, ..., n + 1$, $\sum_{i=1}^k \lambda_i = 1$ **all hull in terms of convex hull
** \mathbb{R}^n **then cone** $S = \mathbb{R}^+(\cos) = \cos(\mathbb{R}^+S)$ **.

Then there exist** $\alpha \ge 0$ **,** $x_i \in S$ **,** $\lambda_i \ge$ **, such that
** $\lambda_i x_i = \sum_{i=1}^k \lambda_i(\alpha x_i) \in \cos(\mathbb{R}^+S)$ **.
** \mathbb{R}^+S **). Then there exist u_i \in \math Conical hull in terms of convex hull**

Theorem If S is a set in \mathbb{R}^n then cone $S = \mathbb{R}^+(\cos S) = \cos(\mathbb{R}^+S)$.
 Proof Let $x \in \mathbb{R}^+(\cos S)$. Then there exist $\alpha \ge 0$, $x_i \in S$, $\lambda_i \ge 0$, $i = 1, ..., n + 1$, $\sum_{i=1}^k \lambda_i =$ **all hull in terms of convex hull
** \mathbb{R}^n **then cone** $S = \mathbb{R}^+(cos) = co(\mathbb{R}^+S)$ **.

Then there exist** $\alpha \ge 0$ **,** $x_i \in S$ **,** $\lambda_i \ge$ **, such that
** $\lambda_i x_i = \sum_{i=1}^k \lambda_i (\alpha x_i) \in co(\mathbb{R}^+S)$ **.
** \mathbb{R}^+S **). Then there exist u_i \in \mathbb{**

$$
x = \alpha \sum_{i=1}^{k} \lambda_i x_i = \sum_{i=1}^{k} \lambda_i (\alpha x_i) \in \text{co}(\mathbb{R}^+ S).
$$

$$
x=\sum_{i=1}^k\lambda_i u_i.
$$

As $u_i \in \mathbb{R}^+$ S, there exist $x_i \in S$, $\alpha_i \geq 0$, $i = 1, ..., n + 1$, such that $u_i = \alpha_i x_i$. Hence

$$
x=\sum_{i=1}^k \lambda_i \alpha_i x_i.
$$

 $x = \alpha \sum_{i=1}^{n} \lambda_i x_i = \sum_{i=1}^{n} \lambda_i (\alpha x_i) \in \text{co}(\mathbb{R}^+ S).$
Conversely, let $x \in \text{co}(\mathbb{R}^+ S)$. Then there exist $u_i \in \mathbb{R}^+ S, \lambda_i \ge 0, i = 1, ..., n + 1, \sum_{i=1}^{k} \lambda_i = 1$, such that
 $x = \sum_{i=1}^{k} \lambda_i u_i$.
As $u_i \in \mathbb{R}^+ S$, ther $\frac{i^{ai}}{\hat{s}} x_i \in \mathbb{R}^+ (\cos).$

cl(coneS) and cone(clS)

cl(coneS) and cone(clS)
We have $cl(cos) = co(clS)$ if *S* is compact. But such a relation fails
to hold even when *S* is compact when "co" is replaced by "cone".
Example $cl(coneS) \neq cone(clS)$ **cl(coneS) and cone(clS)**
We have cl(coS) = co(clS) if S is compact. But such a relation fails
to hold even when S is compact when "co" is replaced by "cone".
Example cl(coneS) \neq cone(clS)
Let $S = \{(x, y): (x - 1)^2 + y^2 \le 1$ Example $cl(coneS) \neq cone(cS)$

Let $S = \{(x, y): (x - 1)^2 + y^2 \le 1\}.$

Closed conical hull

Closed conical hull of a nonempty set S in \mathbb{R}^n , denoted by $\overline{\mathrm{cone}}S$, is defined as $\overline{\text{cone}}S$:= $\text{cl}(\text{cone}S)$. **Closed conical hull**
Closed conical hull of a nonempty set S in \mathbb{R}^n , denoted by
 $\overline{\text{cone}}S := \text{cl}(\text{cone}S)$.

Theorem If S is a nonempty compact set in \mathbb{R}^n such that 0
 $\overline{\text{cone}} S = \text{cone} S$.

Proof We need to s

Theorem If S is a nonempty compact set in \mathbb{R}^n such that $0 \notin \cos$ then

.

Closed conical hull

Closed conical hull of a nonempty set *S* in \mathbb{R}^n , denoted by cone*S*, is defined as
 $\overline{\text{cone}}S := \text{cl}(\text{cone}S)$.

Theorem If *S* is a nonempty compact set in \mathbb{R}^n such that $0 \notin \text{coS}$ th over $\frac{1}{\sqrt{1+\frac{1}{\sqrt{$ **Closed conical hull**

Closed conical hull of a nonempty set *S* in \mathbb{R}^n , denoted by come*S*, is defined as
 $\overline{\text{cone}}S := cl(\text{cone}S)$.

Theorem If *S* is a nonempty compact set in \mathbb{R}^n such that $0 \notin \text{co}S$ then
 Closed conical hull of a nonempty set S in \mathbb{R}^n **, denotes** $\overline{\text{cone}} S := \text{cl}(\text{cone})$ **

Theorem If S is a nonempty compact set in** \mathbb{R}^n **subsequence of** $\overline{\text{cone}} S = \text{cone}$ **.

Proof We need to show** $\text{cl}(\text{cone} S) = \text{cone} S$ **.
 Sed conical hull**

t S in \mathbb{R}^n , denoted by cones, is defined as
 $\overline{e}S := cl(\text{cone}S)$.

t set in \mathbb{R}^n such that $0 \notin \cos$ then
 $\overline{me} S = \text{cone} S$.

= cones.

. We know $\cos S = \mathbb{R}^+(\cos S)$.

closed. Let $t_k x_k \in \mathbb{R}$ S:= cl(coneS).

set in \mathbb{R}^n such that $0 \notin \cos$ then
 $\overline{e} S = \text{cone} S$.

coneS.

We know coneS = $\mathbb{R}^+(\cos)$.

osed. Let $t_k x_k \in \mathbb{R}^+(\cos)$ such that $t_k x_k \rightarrow y$

As S is compact so \cos is compact. Thus then
 $x \neq 0$ 1 to show cone S is closed. We know cone $S = \mathbb{R}^+(cos)$.

ugh to show $\mathbb{R}^+(cos)$ is closed. Let $t_k x_k \in \mathbb{R}^+(cos)$ such that $t_k x_k \rightarrow y$.
 S and $0 \notin cos$ so $x_k \neq 0$. As S is compact so cos is compact. Thus there

sequ

$$
t_{k_l}||x_{k_l}|| \to ||y||.
$$

As $||x_{k_l}|| \rightarrow ||x||$, $||x_{k_l}|| \neq 0$, $||x|| \neq 0$

$$
t_{k_l} = t_{k_l} \frac{\|x_{k_l}\|}{\|x_{k_l}\|} \to \frac{\|y\|}{\|x\|}.
$$

Let $t = \frac{\|y\|}{\|x\|}$. As $x_{k_1} \to x$ and $t_{k_1} \to x$ $||x||$ \sim $\frac{E}{k_l}$ \sim $\frac{E}{k_l}$ have $y = \overline{t}x \in \mathbb{R}^+$ (coS).

Corollary If S is a nonempty compact set in \mathbb{R}^n such that $0 \notin \cos$ then $cl(coneS) = cone(clS).$