Your Roll Number:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.Phil and Ph.D. Coursework Examinations, August 2021 MATH20-R08: HYPERBOLIC SYSTEM OF CONSERVATION LAWS AND BOUNDARY LAYER THEORY

Time: 3 hours

Maximum Marks: 70

Instructions: • Write your roll number on the space provided at the top of this page immediately on receipt of this question paper. • Question no. 1 is compulsory. Attempt 5 questions in all. • Answer ANY 2 questions from each section B and C • All the symbols have their usual meaning.

Section A

(Answer all the parts)

(1)	(a)	Derive the relation for temperature increase through adiabatic compression.	[3 Marks]
	(b)	Compute the ratio of inertial force and viscous force per unit vol- ume for steady viscous flow of an incompressible fluid. Explain the corresponding non-dimensional number.	[4 Marks]
	(c)	Explain the constitutive relations with examples.	[3 Marks]
	(d)	Describe the Nusselt number.	[2 Marks]
	(e)	Explain the different mode of heat transfer with necessary equa- tions.	[2 Marks]
		Section B	
		(Answer any TWO questions)	
(2)	(a)	Define hyperbolic system of conservation laws. Describe the method of finding the solution of conservation laws $U_t + AU_x = 0, U(x, 0) = U_0(x)$, where A is constant matrix with m distinct eigenvalues.	[7 Marks]
	(b)	Derive mass and momentum equation for one dimensional fluid flow in planer, cylindrical and spherical symmetry.	[7 Marks]
(3)	(a)	Derive the jump condition across the discontinuity in solution of a Riemann problem. Is single conservation equation can have two jump conditions? Justify your answer.	[7 Marks]
	(b)	Discuss the uniqueness of the solution of an IVP $u_t + uu_x = 0, x \in \mathbb{R}, t > 0$	[7 Marks]

$$u(x,0) = \begin{cases} 0, & \text{if } x < 0\\ 1, & \text{if } 0 < x, \end{cases}$$

(4) (a) Derive the system of linearised equations of gas dynamics. Check [8 Marks]

MATH20-R08:Hyperbolic system of conservation laws and boundary layer theory - 2-

its hyperbolicity. And hence derive the wave equations for density and speed of the gas flow.

- (b) Derive the relation for weak solution of an IVP $u_t + (\phi(u))_x = [6 \text{ Marks}]$ $0, x \in \mathbb{R}, t > 0, \text{under IC } u(x, 0) = u_0(x)$. Differentiate between genuine and weak solution of the IVP. Section C (Answer any TWO questions)
- (5) (a) Define mass and momentum thickness of boundary layer and [6 Marks] derive their expression over a long flat plate.
 - (b) Derive the Blasius's equation with conditions for boundary layer [8 Marks] flow over a semi-infinite flat plate. Find the expression for shear stress at the wall and drag coefficient for the flow.
- (6) (a) Derive the energy equation for motion of compressible fluid [7+3 Marks] under heat conduction. Derive the corresponding equation for constant thermal conductivity of perfect gas and incompressible fluid.
 - (b) Describe the difference between forced and natural convection, [4 Marks] Grashof Number, and Prandltl Number. .
- (7) (a) Describe the simplification of the basic equations of thermal [7 Marks] boundary layer flow. Write the corresponding equation for two dimensional compressible fluid flow.
 - (b) Write the system of basic equations and boundary condition [7 Marks] for the thermal boundary layer in a natural convection over a vertical hot plate. Using similarity transformation reduce the equations in system of ODEs. Compute the total heat transfer from length *l* and breadth *b* of the plate. Also compute the mean Nusselt number over the plate.