VI.3:CALCULUS OF VARIATIONS AND LINEAR PROGRAMMING

Total marks:150 (Theory: 75, Internal Assessment: 25+ Practical: 50)
5 Periods (4 lectures +1 students’ presentation),
Practicals(4 periods per week per student)

(1°'&2"! Week)

Functionals, Some simple variational problems, The variation of a functional, A necessary
condition for an extremum, The simplest variational problem, Euler’s equation, A simple
variable end point problem.

[1]: Chapter 1 (Sections 1, 3, 4 and 6).

(3"&4™ Week)

Introduction to linear programming problem, Graphical method of solution, Basic feasible
solutions, Linear programming and Convexity.

[2]: Chapter 2 (Section 2.2), Chapter 3 (Sections 3.1, 3.2 and 3.9).

(5"& 6™ Week)

Introduction to the simplex method, Theory of the simplex method, Optimality and
Unboundedness.

[2]: Chapter 3 (Sections 3.3 and 3.4).

(7"& 8" Week)
The simplex tableau and examples, Artificial variables.
[2]: Chapter 3 (Sections 3.5 and 3.6).

(9"&10" Week)

Introduction to duality, Formulation of the dual problem, Primal-dual relationship, The
duality theorem, The complementary slackness theorem.

[2]: Chapter 4 (Sections 4.1, 4.2, 4.4 and 4.5).

(11"&12"™ Week)

Transportation problem and its mathematical formulation, Northwest-corner method,
Least-cost method and Vogel approximation method for determination of starting basic
solution, Algorithm for solving transportation problem, Assignment problem and its
mathematical formulation, Hungarian method for solving assignment problem.

[3]: Chapter 5 (Sections 5.1, 5.3 and 5.4)
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PRACTICAL/LAB WORK TO BE PERFORMED ON A COMPUTER:
(MODELLING OF THE FOLLOWING PROBLEMS USING EXCEL
SOLVER/LINGO/MATHEMATICA, ETC.)

(i) Formulating and solving linear programming models on a spreadsheet using excel solver.
[2]: Appendix E and Chapter 3 (Examples 3.10.1 and 3.10.2).
[4]: Chapter 3 (Section 3.5 with Exercises 3.5-2 to 3.5-5)

(i) Finding solution by solving its dual using excel solver and giving an interpretation of the
dual.
[2]: Chapter 4 (Examples 4.3.1 and 4.4.2)

(iii) Using the excel solver table to find allowable range for each objective function coefficient,
and the allowable range for each right-hand side.
[4]: Chapter 6 (Exercises 6.8-1 to 6.8-5).

(iv) Formulating and solving transportation and assignment models on a spreadsheet using

solver.
[4]: Chapter 8 (CASE 8.1: Shipping Wood to Market, CASE 8.3: Project Pickings).

From the Metric space paper, exercises similar to those given below:

1. Calculate d(x,y) for the following metrics

(i) X=R, d(x,y)=Ix-yl, (i) X=R® d(x,y)= (X (x-y)?)"
x: 0,1, me x:(0,1,-1), (1,2,mM), (2,-3,5)
y: 1,2, \2 y: (1, 2,.5), (e,2,4), (-2,-3,5)

(i) X=C[0,1], d(f,g)= sup If(x)-g(x)l

f(x): X2, sin X, tan x
g(x): x, Ixl, cos x

2. Draw open balls of the above metrics with centre and radius of your choice.
3. Find the fixed points for the following functions

f(x)=x2 , 9(X)=sin x, h(x)= cos x in X=[-1, 1],
f(x,y)= (sin x, cos y), g(x,y) = (¢, y?) in X={ (x,y): X*+y?<1},
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under the Euclidean metrics on R and R? respectively.

4. Determine the compactness and connectedness by drawing sets in R?.
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From [1]: Chapter 1:

Section 1: Examples of functionals from page 1 to first paragraph of page 3.

Section 3: Pages 9 —11, except Lemma 3. Page 13, Theorem 2 (statement only).

Section 4: Subsection 4.1 up to Theorem 1 (with proof), subsection 4.2 including all four cases
of the Euler’s equation and examples (pages 18-22).

Section 6: Example on brachistochrone problem, page 26.

From [2]: Chapters 2, 3 and 4:

Section 2.2: Examples 2.2.1, 2.2.2 and problem set 2.2 (pages 17-18), 1 to 5.

Section 3.1: Example 3.1.1 and problem set 3.1 (pages 60-61), 1, 2, 3[(a) to (e)].

Section 3.2: Examples 3.2.1, 3.2.2 and problem set 3.2 (pages 70-71), 1, 2, 3, 4[(a), (b)], also no
geometric representations.

Section 3.3: Complete and problem set 3.3 (pages 76-77), 1 to 4.

Section 3.4: Complete with Theorem 3.4.3 (statement only), and problem set 3.4 (pages 83-84), 1, 2.
Section 3.5: Examples 3.5.1, 3.5.2 and problem set 3.5 (pages 89-90), 2[(b) to ()], 6(a).

Section 3.6: Examples 3.6.1, 3.6.2 and problem set 3.6 (pages 98-100), 2[(a) to (d)].

Section 3.9 and Section 4.1: Complete, except problem sets.

Section 4.2: Complete with problem set 4.2 (pages 130-131), 1.

Section 4.4: Theorem 4.4.1, Corollary 4.4.1, 4.4.2, 4.4.3, Theorem 4.4.2(statement only),
Corollary 4.4.4. Simple problems based on the duality theorem.

Section 4.5: Theorem 4.5.1 (statement only), Examples 4.5.1, 4.5.2 and problem set 4.5 (page 158), 1, 2.

From [3]: Chapter 5: Sections 5.1, 5.3 and 5.4 complete with emphasis on methods and problems.
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ELEMENTS
OF THE THEORY

l. Functionals. Some Simple Variational Problems

Variable quantities called functionals play an important role in many
problems arising in analysis, mechanics, geometry, etc. By a functional, we
mean a correspondence which assigns a definite (real) number to each function
(or curve) belonging to some class. Thus, one might say that a functional is
a kind of function, where the independent variable is itself a function (or
curve). The following are examples of functionals:

1. Consider the set of all rectifiable plane curves.! A definite number is
associated with each such curve, namely, its length. Thus, the length
of a curve is a functional defined on the set of rectifiable curves.

2. Suppose that each rectifiable plane curve is regarded as being made
out of some homogeneous material. Then if we associate with each
such curve the ordinate of its center of mass, we again obtain a
functional.

3. Consider all possible paths joining two given points 4 and B in the
plane. Suppose that a particle can move along any of these paths,
and let the particle have a definite velocity v(x, y) at the point (x, »).
Then we obtain a functional by associating with each path the time the
particle takes to traverse the path.

! In analysis, the length of a curve is defined as the limiting length of a polygonal line
inscribed in the curve (i.e., with vertices lying on the curve) as the maximum length of
the chords forming the polygonal line goes to zero. If this limit exists and is finite, the
curve is said to be rectifiable.

|
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4. Let y(x) be an arbitrary continuously differentiable function, defined
on the interval [a, b].2 Then the formula

b ’
J0) = [ y2) d
defines a functional on the set of all such functions y(x).

5. As a more general example, let F(x, y, z) be a continuous function of
three variables. Then the expression

T = [ Flox, y(0), ¥ M

where y(x) ranges over the set of all continuously differentiable functions
defined on the interval [a, b], defines a functional. By choosing
different functions F(x, y, z), we obtain different functionals. For
example, if
F(x,y,2) = VI + 2%,
J[»] is the length of the curve y = )(x), as in the first example, while if
F(x, y, z) = 22,

J[»] reduces to the case considered in the fourth example. In what
follows, we shall be concerned mainly with functionals of the form (1).

Particular instances of problems involving the concept of a functional
were considered more than three hundred years ago, and in fact, the first
important results in this area are due to Euler (1707-1783). Nevertheless,
up to now, the “calculus of functionals’ still does not have methods of a
generality comparable to the methods of classical analysis (i.e., the ordinary
“calculus of functions’). The most developed branch of the ‘““calculus of
functionals” is concerned with finding the maxima and minima of functionals,
and is called the “calculus of variations.” Actually, it would be more
appropriate to call this subject the “calculus of variations in the narrow
sense,” since the significance of the concept of the variation of a functional
is by no means confined to its applications to the problem of determining the
extrema of functionals.

We now indicate some typical examples of variational problems, by which
we mean problems involving the determination of maxima and minima of
functionals.

1. Find the shortest plane curve joining two points A and B, i.e., find the
curve y = y(x) for which the functional

[ VTF7ax

achieves its minimum. The curve in question turns out to be the straight
line segment joining A and B.

2 By [a, b] is meant the closed interval a < x < b.
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2. Let A and B be two fixed points. Then the time it takes a particle to
slide under the influence of gravity along some path joining 4 and B
depends on the choice of the path (curve), and hence is a functional.
The curve such that the particle takes the least time to go from 4 to B
is called the brachistochrone. The brachistochrone problem was posed
by John Bernoulli in 1696, and played an important part in the develop-
ment of the calculus of variations. The problem was solved by John
Bernoulli, James Bernoulli, Newton, and L’Hospital. The brachisto-
chrone turns out to be a cycloid, lying in the vertical plane and passing
through 4 and B (cf. p. 26).

3. The following variational problem, called the isoperimetric problem,
was solved by Euler: Among all closed curves of a given length I, find the
curve enclosing the greatest area. The required curve turns out to be
a circle.

All of the above problems involve functionals which can be written in
the form

f 'F (x, », ") dx.

Such functionals have a “localization property” consisting of the fact that
if we divide the curve y = y(x) into parts and calculate the value of the
functional for each part, the sum of the values of the functional for the
separate parts equals the value of the functional for the whole curve. It is
just these functionals which are usually considered in the calculus of variations.
As an example of a “nonlocal functional,” consider the expression

f: xVT + y2dx
[viTrma

which gives the abscissa of the center of mass of a curve y = y(x), a < x < b,
made out of some homogeneous material.

An important factor in the development of the calculus of variations was
the investigation of a number of mechanical and physical problems, e.g.,
the brachistochrone problem mentioned above. In turn, the methods of the
calculus of variations are widely applied in various physical problems. It
should be emphasized that the application of the calculus of variations to
physics does not consist merely in the solution of individual, albeit very
important problems. The so-called ‘“variational principles,” to be discussed
in Chapters 4 and 7, are essentially a manifestation of very general physical
laws, which are valid in diverse branches of physics, ranging from classical
mechanics to the theory of elementary particles.

To understand the basic meaning of the problems and methods of the
calculus of variations, it is very important to see how they are related to
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in general, the functional will not be continuous if we use the norm intro-
duced in the space %,° even though it is continuous in the norm of the space
2,. Since we want to be able to use ordinary analytic methods, e.g., passage
to the limit, then, given a functional, it is reasonable to choose a function
space such that the functional is continuous.

Remark 3. So far, we have talked about linear spaces and functionals
defined on them. However, in many variational problems, we have to deal
with functionals defined on sets of functions which do not form linear spaces.
In fact, the set of functions (or curves) satisfying the constraints of a given
variational problem, called the admissible functions (or admissible curves),
is in general not a linear space. For example, the admissible curves for the
‘“simplest” variational problem (see Sec. 4) are the smooth plane curves
passing through two fixed points, and the sum of two such curves does not
pass through the two points. Nevertheless, the concept of a normed linear
space and the related concepts of the distance between functions, continuity
of functionals, etc., play an important role in the calculus of variations. A
similar situation is encountered in elementary analysis, where, in dealing
with functions of n variables, it is convenient to use the concept of an
n-dimensional Euclidean space &,, even though the domain of definition of
a function may not be a linear subspace of &,.

3. The Variation of a Functional. A Necessary Condition
for an Extremum

3.1. In this section, we introduce the concept of the wvariation (or
differential) of a functional, analogous to the concept of the differential of a
function of n variables. The concept will then be used to find extrema of
functionals. First, we give some preliminary facts and definitions.

DEFINITION. Given a normed linear space X, let each element he X
be assigned a number ¢[h), i.e., let p[h] be a functional defined on Z. Then
@[h] is said to be a (continuous) linear functional if

1. olah] = ag[h] for any h € # and any real number o;

2. glhy + hs] = o[h] + olho] for any hy, hy e R

3. ¢[h] is continuous (for all h € R).

Example 1. If we associate with each function h(x) € €(a, b) its value at
a fixed point x, in [a, b}, i.e., if we define the functional ¢[h] by the formula
CP[h] = h(xo)’
then ¢[h] is a linear functional on €(a, b).
5 Arc length is a typical example of such a functional. For every curve, we can find

another curve arbitrarily close to the first in the sense of the norm of the space ¢, whose
length differs from that of the first curve by a factor of 10, say.
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Example 2. The integral
b
olh] = f h(x) dx

defines a linear functional on €(a, b).
Example 3. The integral
b
olh] = [ a(0h(x) dx,

where x(x) is a fixed function in ¥(a, b), defines a linear functional on %(a, b).

Example 4. More generally, the integral
b
olh] = L [eo(x)A(x) + o1 ()A'(x) + - -+ + aa(x)A™(x)] dx, (6)

where the a;(x) are fixed functions in %(a, b), defines a linear functional
on Z,(a, b).

Suppose the linear functional (6) vanishes for all #(x) belonging to some
class. Then what can be said about the functions «(x)? Some typical
results in this direction are given by the following lemmas:

LemMA 1. If a(x) is continuous in [a, b], and if
[ " w()h(x) dx = 0

for every function h(x) € €(a, b) such that h(a) = h(b) = 0, then «(x) = 0
for all x in [a, b].

Proof. Suppose the function «(x) is nonzero, say positive, at some
point in [a,b]. Then «(x) is also positive in some interval [x;, x,]
contained in [a, b]. If we set

h(x) = (x — x1)(x2 — X)

for x in [xy, x,] and A(x) = 0 otherwise, then A(x) obviously satisfies
the conditions of the lemma. However,

[ * a(Oh(x) dx = [ atox — x)(xa = M dx > 0,

since the integrand is positive (except at x; and x,). This contradiction
proves the lemma.

Remark. The lemma still holds if we replace €(a, b) by Z2,(a, b). To
see this, we use the same proof with

h(x) = [(x — x))(x2 — x)]**?

for x in [x;, x,] and A(x) = O otherwise.
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LEMMA 2. If a(x) is continuous in [a, b], and if

[ ? (oK (x) dx = 0

for every function h(x)e D,(a, b) such that h(a) = h(b) = 0, then
a(x) = c for all x in [a, b], where ¢ is a constant.

Proof. Let c be the constant defined by the condition

[ty = clax = o,
and let

hex) = [ [®) — e,

so that A(x) automatically belongs to Z,(aq, b) and satisfies the con-
ditions A(a) = h(b) = 0. Then on the one hand,

[ " o) = cJh'(x) dx = [ * (X (x) dx — clh(b) — ha)] = O,
while on the other hand,
f’ [o) — el () dx = | " (%) — o] dx.

It follows that a(x) — ¢ = 0, i.e., a(x) = ¢, for all x in [a, b].
The next lemma will be needed in Chapter 8:

LemMA 3. If a(x) is continuous in [a, b, and if

[ * w(OH(x) dx = 0

for every function h(x)e Dj(a, b) such that h(a) = h(b) = 0 and
h'(a) = h'(b) = 0, then a(x) = ¢o + ¢,x for all x in [a, b), where coand ¢,
are constants.

Proof. Let ¢, and ¢, be defined by the conditions
b
[ 1) = ¢ — exxlax =0,

b T (7)
[ax [ 1®) - co - citlaE = 0,
and let

W) = [ a2 [T ~ ¢ — cutl d,

so that h(x) automatically belongs to Z,(a, b) and satisfies the conditions
h(a) = h(b) = 0, W'(a) = h'(b) = 0. Then on the one hand,

fb [e(x) — ¢y — 1 x]0"(x) dx

fb a(X)M"(x) dx — colh'(B) — W' (@)] — ¢, Jb xh"(x) dx
= —c,[bH(b) — ah'(a)] — c1[h(b) — h(a)] = O,
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while on the other hand,
fb [dx) — ¢ — e x]h"(x) dx = fb [(x) — co — €1x]?dx = 0.

It follows that «(x) — ¢ — ¢;x = 0, i.e., a(x) = ¢, + c,x, for all x in
[a, B].

LemMa 4. If «(x) and B(X) are continuous in [a, b, and if

b
[ ) + B ) dx = 0 ®)

for every function h(x) € 2,(a, b) such that h(a) = h(b) = 0, then B(x)
is differentiable, and B'(x) = a(x) for all x in [a, b].

Proof. Setting

AR = [ a) dE,

and integrating by parts, we find that
f’ 2(h(x) dx = — f” AR (x) dx,
i.e., (8) can be rewritten as
f" [— A(x) + B (x) dx = 0.

But, according to Lemma 2, this implies that
B(x) — A(x) = const,
and hence by the definition of A(x),
P (x) = a(x),

for all x in [a, b), as asserted. We emphasize that the differentiability
of the function (x) was not assumed in advance.

3.2. We now introduce the concept of the variation (or differential) of a
functional. Let J[y] be a functional defined on some normed linear space,
and let

AJp] =Jly + h] = Ty

be its increment, corresponding to the increment # = h(x) of the “independent
variable” y = y(x). If y is fixed, AJ[h] is a functional of A, in general a
nonlinear functional. Suppose that

AJ[R] = olh] + €|l

where @[h] is a linear functional and e — 0 as || — 0. Then the functional
J[y] is said to be differentiable, and the principal linear part of the increment
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AJ[h], i.e., the linear functional ¢[h] which differs from AJ[A] by an infinitesi-
mal of order higher than 1 relative to ||4|, is called the variation (or differ-
ential) of J[y] and is denoted by 8J[A].6

THEOREM 1. The differential of a differentiable functional is unique.

Proof. First, we note that if ¢[#] is a linear functional and if

olh]
a0

as k| — 0, then ¢[h] = 0, i.e., ¢[h] = O for all h. In fact, suppose
@lho] # O for some hy # 0. Then, setting

b

h ¢lho]
hy == A=
n o]

we see that ||h,| — 0 as n— oo, but
- ha) . nolho]
lim olha] _ lim O =A#0,
new [l aww nlhol

contrary to hypothesis.
Now, suppose the differential of the functional J[y] is not uniquely
defined, so that

AJ[h] = o1[h] + & ]|A],
AJ[h] = @o[h] + o)A,

where ¢, [h] and ¢,[#] are linear functionals, and ¢,, e — 0 as |h| — 0.
This implies

¢1[h] — cPz[h] = 52"}’“
and hence ¢,[#] — ¢5[A] is an infinitesimal of order higher than 1 relative

to ||h||. But since ¢,[h] — ¢4[h] is a linear functional, it follows from the
first part of the proof that ¢,[h] — ¢,[/#] vanishes identically, as asserted.

Next, we use the concept of the variation (or) differential of a functional
to establish a necessary condition for a functional to have an extremum.
We begin by recalling the corresponding concepts from analysis. Let
F(xy, ..., x,) be a differentiable function of n variables. Then F(x,,..., x,)
is said to have a (relative) extremum at the point (%, ..., X,) if

AF = F(xy,...,Xxp) — F(®y, ..., %)

has the same sign for all points (x, . . ., x,) belonging to some neighborhood
of (%4, ..., X,), where the extremum F(X,,..., £,) is a minimum if AF > 0
and a maximum if AF < 0.

Analogously, we say that the functional J[y] has a (relative) extremum
for y = p if J[y] — J[J] does not change its sign in some neighborhood of

§ Strictly speaking, of course, the increment and the variation of J[y], are functionals
of two arguments y and A, and to emphasize this fact, we might write AJ[y; h] =
3J[y; k] + e|h|.
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the curve y = j(x). Subsequently, we shall be concerned with functionals
defined on some set of continuously differentiable functions, and the functions
themselves can be regarded either as elements of the space € or elements
of the space &,. Corresponding to these two possibilities, we can define
two kinds of extrema: We shall say that the functional J[y] has a weak
extremum for y = y if there exists an € > 0 such that J[y] — J[y] has the
same sign for all y in the domain of definition of the functional which satisfy
the condition |y — J||, < ¢, where | ||; denotes the norm in the space Z,.
On the other hand, we shall say that the functional J[y] has a strong extremum
for y = j if there exists an € > 0 such that J[y] — J[§] has the same sign
for all y in the domain of definition of the functional which satisfy the
condition |y — J|, < &, where | |, denotes the norm in the spack €.
It is clear that every strong extremum is simultaneously a weak extremum,
since if |y — J|l; <&, then ||y — |0 < &, a fortiori, and hence, if J[J] is
an extremum with respect to all y such that |y — J|o < &, then J[J] is
certainly an extremum with respect to all y such that |y — j||; < e. How-
ever, the converse is not true in general, i.e., a weak extremum may not be a
strong extremum. As a rule, finding a weak extremum is simpler than
finding a strong extremum. The reason for this is that the functionals
usually considered in the calculus of variations are continuous in the norm
of the space &, (as noted at the end of the previous section), and this con-
tinuity can be exploited in the'theory of weak extrema. In general, however,
our functionals will not be continuous in the norm of the space €.

THEOREM 2. A necessary condition for the differentiable functional
JIy] to have an extremum for y = y is that its variation vanish for y = j,
i.e., that

3J[h] =0

for y = y and all admissible h.

Proof. To be explicit, suppose J[y] has a minimum for y = j.
According to the definition of the variation 8J[h], we have

AJTH] = 3JTH) + |l ©
where e — 0 as |h| — 0. Thus, for sufficiently small ||4|, the sign of
AJ[h] will be the same as the sign of 8J[#]. Now, suppose that
3J[ho] # O for some admissible 4,. Then for any o« > 0, no matter
how small, we have

SJ[—oahy] = —8J[who].

Hence, (9) can be made to have either sign for arbitrarily small |4|.
But this is impossible, since by hypothesis J[y] has a minimum for y = ,
i.e.,

AJ[hl = J[p + h] = J[p] = 0

for all sufficiently small ||A4||. This contradiction proves the theorem.
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Remark. In elementary analysis, it is proved that for a function to have
a minimum, it is necessary not only that its first differential vanish (df = 0),
but also that its second differential be nonnegative. Consideration of the
analogous problem for functionals will be postponed until Chapter 5.

4. The Simplest Variational Problem. Euler’s Equation

4.1. We begin our study of concrete variational problems by considering
what might be called the “simplest” variational problem, which can be
formulated as follows: Let F(x, y, z) be a function with continuous first and
second (partial) derivatives with respect to all its arguments. Then, among
all functions y(x) which are continuously differentiable for a < x < b and
satisfy the boundary conditions

find the function for which the functional

I = [ P 3,5 dx an

has a weak extremum. In other words, the simplest variational problem
consists of finding a weak extremum of a functional of the form (11), where
the class of admissible curves (see p. 8) consists of all smooth curves joining
two points. The first two examples on pp. 2, 3, involving the brachistochrone
and the shortest distance between two points, are variational problems of
just this type. To apply the necessary condition for an extremum (found in
Sec. 3.2) to the problem just formulated, we have to be able to calculate the
variation of a functional of the type (11). We now derive the appropriate
formula for this variation.
Suppose we give y(x) an increment h(x), where, in order for the function

¥(x) + h(x)
to continue to satisfy the boundary conditions, we must have
h(a) = h(b) = 0.
Then, since the corresponding increment of the functional (11) equals
AT =J[y + h] —Jy] = f:F(x,y + h )y + h)dx — f:F(x,y,y’) dx
= [Py + by + ) = Fix, 3, ) dx,

it follows by using Taylor’s theorem that

b
AJ = fa [Fy(xa s y')h + Fy.(x, Y, y')h’] dx +---, (12)
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where the subscripts denote partial derivatives with respect to the corres-
ponding arguments, and the dots denote terms of order higher than 1 relative
tohand #. Theintegral in the right-hand side of (12) represents the principal
linear part of the increment AJ, and hence the variation of J[y] is

b
oJ = L [F,(x,y, ¥)h + F,(x,y, y)h'] dx.

According to Theorem 2 of Sec. 3.2, a necessary condition for J[y] to have
an extremum for y = y(x) is that

5= "(Fh + F i) dx = 0 (13)

for all admissible 4. But according to Lemma 4 of Sec. 3.1, (13) implies
that
d

Fy—a

F, =0, (14)

a result known as Euler’s equation.” Thus, we have proved

THEOREM 1. Let J[y] be a functional of the form

fb F(x,y,¥) dx,

defined on the set of functions y(x) which have continuous first derivatives
in [a, b] and satisfy the boundary conditions y(a) = A, y(b) = B. Then
a necessary condition for J[y] to have an extremum for a given function
¥(x) is that y(x) satisfy Euler’s equation®

d

F!’_d_x

F, =0.

The integral curves of Euler’s equation are called extremals. Since
Euler’s equation is a second-order differential equation, its solution will in
general depend on two arbitrary constants, which are determined from the
boundary conditions y(a) = 4, y(b) = B. The problem usually considered
in the theory of differential equations is that of finding a solution which is
defined in the neighborhood of some point and satisfies given initial con-
ditions (Cauchy’s problem). However, in solving Euler’s equation, we are
looking for a solution which is defined over all of some fixed region and
satisfies given boundary conditions. Therefore, the question of whether
or not a certain variational problem has a solution does not just reduce to the

7 We emphasize that the existence of the derivative (d/dx)F,. is not assumed in
advance, but follows from the very same lemma.

8 This condition is necessary for a weak extremum. Since every strong extremum is
simultaneously a weak extremum, any necessary condition for a weak extremum is
also a necessary condition for a strong extremum.
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usual existence theorems for differential equations. In this regard, we now
state a theorem due to Bernstein,® concerning the existence and uniqueness of
solutions “in the large” of an equation of the form

y' = F(x, ). (15

THEOREM 2 (Bernstein). If the functions F, F, and F,. are continuous
at every finite point (x, y) for any finite y', and if a constant k > 0 and
Sfunctions

a=ax) 20, PL=px)y)=0

(which are bounded in every finite region of the plane) can be found such
that

F(x,,9) >k, |F(x,3,))| < oy’ + B,

then one and only one integral curve of equation (15) passes through any
two points (a, A) and (b, B) with different abscissas (a # b).

Equation (13) gives a necessary condition for an extremum, but in general,
one which is not sufficient. The question of sufficient conditions for an
extremum will be considered in Chapter 5. In many cases, however,
Euler’s equation by itself is enough to give a complete solution of the prob-
lem. Infact, the existence of an extremum is often clear from the physical or
geometric meaning of the problem, e.g., in the brachistochrone problem,
the problem concerning the shortest distance between two points, etc. If in
such a case there exists only one extremal satisfying the boundary conditions
of the problem, this extremal must perforce be the curve for which the
extremum is achieved.

For a functional of the form

Jb F(x, y, y") dx

Euler’s equation is in general a second-order differential equation, but it
may turn out that the curve for which the functional has its extremum is
not twice differentiable. For example, consider the functional

I = [ yex -y,
where
W=1)=0, y1)=1

The minimum of J[y] equals zero and is achieved for the function

- yx) = 0 for —1<x<0,
Y= =% for 0<xgl,

9 S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. Ecole Norm.
Sup.,29,431-485(1912).
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which has no second derivative for x = 0. Nevertheless, y(x) satisfies
the appropriate Euler equation. In fact, since in this case

F(xs Y, y’) = y2(2x - y')2’
it follows that all the functions

F = 2Qx — YR, Fy=—20x —¥), S F,
vanish identically for —1 < x < 1. Thus, despite the fact that Euler’s
equation is of the second order and y“(x) does not exist everywhere in
[—1, 1], substitution of y(x) into Euler’s equation converts it into an identity.
We now give conditions guaranteeing that a solution of Euler’s equation
has a second derivative:

THEOREM 3. Suppose y = y(x) has a continuous first derivative and
satisfies Euler’s equation

d
T dx

Then, if the function F(x, y, y') has continuous first and second derivatives
with respect to all its arguments, y(x) has a continuous second derivative
at all points (x, y) where

Fyylx, y(x), y'(x)] # 0.
Proof. Consider the difference

F, F, = 0.

AF, = Fu(x + Ax,y + Ay, Y + Ay') — Fu(x, 3, ))
= AxFI/I + AyFll’ll + Ay'Fy’y’,

where the overbar indicates that the corresponding derivatives are evalu-
ated along certain intermediate curves. We divide this difference by
Ax, and consider the limit of the resulting expression

s

A ’
Fy,I + Ax _y

Ax Eyy

Fy'y +
asAx—0. (This limit exists, since F,. has a derivative with respect to
x, which, according to Euler’s equation, equals F,.) Since, by hypoth-
esis, the second derivatives of F(x, y,z) are continuous, then, as
Ax — 0, F,., converges to F, ., i.e., to the value of 92F/dy’ ox at the point
x. It follows from the existence of y* and the continuity of the second
derivative F,., that the second term (Ay/Ax)F,. also has a limit as
Ax— 0. But then the third term also has a limit (since the limit of the
sum of the three terms exists), i.e., the limit

. Ay S
Jim A5 Fow
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exists. AsAx— 0, F,.,. converges to F,,- # 0, and hence

. Ay "
Jim x5 = Y'®)

’

exists. Finally, from the equation

d
e F, —F, =0,
we can find an expression for y”, from which it is clear that y” is

continuous wherever F,.,. # 0. This proves the theorem.

Remark. Here it is assumed that the extremals are smooth.'° 1In Sec. 15
we shall consider the case where the solution of a variational problem may
only be piecewise smooth, i.e., may have “corners’ at certain points.

4.2. Euler’s equation (14) plays a fundamental role in the calculus of
variations, and is in general a second-order differential equation. We now
indicate some special cases where Euler’s equation can be reduced to a first-
order differential equation, or where its solution can be obtained entirely
in terms of quadratures (i.e., by evaluating integrals).

Case 1. Suppose the integrand does not depend on y, i.e., let the functional
under consideration have the form

b
f F(x, y') dx,
where F does not contain y explicitly. In this case, Euler’s equation becomes
d
o F, =0,
which obviously has the first integral
F, =C, (16)

where C is a constant. This is a first-order differential equation which
does not contain y. Solving (16) for y’, we obtain an equation of the form

Y =/ C),
from which y can be found by a quadrature.

Case 2. If the integrand does not depend on x, i.e., if

b ’
I = | o,y dx,
then

d ? "
Fy_EcFV’=Fy_Fy’yy — Fyy ) 17

10 We say that the function y(x) is smooth in an interval [a, b] if it is continuous in
[a, b), and has a continuous derivative in [a, b]. We say that y(x) is piecewise smooth in
[a, b] if it is continuous everywhere in [a, 4], and has a continuous derivative in [a, b)
except possibly at a finite number of points.
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Multiplying (17) by y’, we obtain
’ ’ r " d ’
Ey —Fy’yyz_Fy'y’yy =E(F_yFy')°

Thus, in this case, Euler’s equation has the first integral
F—-yF,=C,
where C is a constant.
Case 3. If F does not depend on y’, Euler’s equation takes the form
Fy(x,y) =0,
and hence is not a differential equation, but a ‘“finite” equation, whose
solution consists of one or more curves y = y(x).

Case 4. In a variety of problems, one encounters functionals of the form

fb f(x, MWVT + y2dx,

representing the integral of a function f(x, y) with respect to the arc length
s(ds= V1 + y2dx). In this case, Euler's equation can be transformed
into

oF d (OF\ _ —s d y

T yooo_ Ly y

”

VT + )7 + y'?)%2
__ 1 VIV A
= Vis [fy Y =15 y,z] =0,

ie.,
”

— [ y =
f;/ f:y fl +y12 0'

Example 1. Suppose that
VT
I = [ dx, sy =0, J2) =1
1 X
The integrand does not contain y, and hence Euler’s equation has the form
F,, = C (cf. Case 1). Thus,
yl

— e = C,

VT + y2
so that

¥l — C2x2) = C2x?

or

, Cx

Y VTS o
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from which it follows that

Cx dx 1 ——
—jvrﬁ§;=EVL—mﬂ+q

or

1
U—Qﬁ+ﬁ=@'

Thus, the solution is a circle with its center on the y-axis. From the
conditions y(1) = 0, ¥(2) = 1, we find that
C =

so that the final solution is
(y—22+x2=35,

Example 2. Among all the curves joining two given points (x,, y,) and
(X1, ¥1), find the one which generates the surface of minimum area when rotated
about the x-axis. As we know, the area of the surface of revolution generated
by rotating the curve y = y(x) about the x-axis is

2 le yVI1 + y'2dx.
z0

Since the integrand does not depend explicitly on x, Euler’s equation has the
first integral

F—-yF,=C
(cf. Case 2), i.e.,
VI F 52 Y c
+y? - =
AR, pray
or
y=CVI+y?
so that
, y»r-C
y = cz
Separating variables, we obtain
dx = C—d_y:
\/yz —C?
i.e.,
32 _ (2
x4+ C; =Cln y+‘/+c
so that

y=Cmmx2q- (18)
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Thus, the required curve is a catenary passing through the two given
points. The surface generated by rotation of the catenary is called a catenoid.
The values of the arbitrary constants C and C; are determined by the
conditions

Y(xo) = Yo, ¥(x1) = y1.

It can be shown that the following three cases are possible, depending on
the positions of the points (xo, o) and (xy, y,):

1. If a single curve of the form (18) can be drawn through the points
(x0, ¥o) and (xy, y;), this curve is the solution of the problem [see
Figure 2(a)].

2. If two extremals can be drawn through the points (xo, ¥o) and (x, y,),
one of the curves actually corresponds to the surface of revolution
of minimum area, and the other does not.

3. If there is no curve of the form (18) passing through the points (xq, y,)
and (x,, »,), there is no surface in the class of smooth surfaces of revo-
Jution which achieves the minimum area. In fact, if the location of the

V4 B V4
| | =4
| : 4
! I |
Xo xnoX Xo XX
() (b)
FIGURE 2

two points is such that the distance between them is sufficiently large
compared to their distances from the x-axis, then the area of the surface
consisting of two circles of radius y, and y;, plus the segment of the
x-axis joining them [see Figure 2(b)] will be less than the area of any
surface of revolution generated by a smooth curve passing through the
points. Thus, in this case the surface of revolution generated by the
polygonal line Ax,x,B has the minimum area, and there is no surface
of minimum area in the class of surfaces generated by rotation about the
x-axis of smooth curves passing through the given points. (This case,
corresponding to a “broken extremal,” will be discussed further in
Sec. 15.)

Example 3. For the functional

T = [ @ - e, (19
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Euler’s equation reduces to a finite equation (see Case 3), whose solution
is the straight line y = x. In fact, the integral (19) vanishes along this line.

5. The Case of Several Variables

So far, we have considered functionals depending on functions of one
variable, i.e., on curves. In many problems, however, one encounters
functionals depending on functions of several independent variables, i.e., on
surfaces. Such multidimensional problems will be considered in detail in
Chapter 7. For the time being, we merely give an idea of how the formula-
tion and solution of the simplest variational problem discussed above carries
over to the case of functionals depending on surfaces.

To keep the notation simple, we confine ourselves to the case of two
independent variables, but all our considerations remain the same when there
are n independent variables. Thus, let F(x, y, z, p, q) be a function with
continuous first and second (partial) derivatives with respect to all its argu-
ments, and consider a functional of the form

J[z] = f fR F(x, , 2, z,, z,) dx dy, (20)

where R is some closed region and =z, z, are the partial derivatives of
z = z(x,y). Suppose we are looking for a function z(x, y) such that

1. z(x, y) and its first and second derivatives are continuous in R;

2. z(x, y) takes given values on the boundary I' of R;

3. The functional (20) has an extremum for z = z(x, y).
Since the proof of Theorem 2 of Sec. 3.2 does not depend on the form of
the functional J, then, just as in the case of one variable, a necessary condition
for the functional (20) to have an extremum is that its variation (i.e., the
principal linear part of its increment) vanish. However, to find Euler’s

equation for the functional (20), we need the following lemma, which is
analogous to Lemma 1 of Sec. 3.1 (see also the remark on p. 9):

LeMMA. If a(x, y) is a fixed function which is continuous in a closed

region R, and if the integral

[ ], e htx, ) dx ay 0)

vanishes for every function h(x, y) which has continuous first and second
derivatives in R and equals zero on the boundary T" of R, then a(x,y) = 0
everywhere in R.

Proof. Suppose the function o(x,y) is nonzero, say positive, at
some point in R. Then a(x, y) is also positive in some circle

(x = x> + (¥ —yo)? < € (22)
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6. A Simple Variable End Point Problem

There are, of course, many other kinds of variational problems besides
the “simplest” variational problem considered so far, and such problems
will be studied in Chapters 2 and 3. However, this is a suitable place for
acquainting the reader with one of these problems, i.e., the variable end
point problem, a particular case of which can be stated as follows: Among all
curves whose end points lie on two given vertical lines x = a and x = b,
find the curve for which the functional

10 = [ F(x, 3, y) d 26)

has an extremum.*®
We begin by calculating the variation 3J of the functional (26). As
before, 8J means the principal linear part of the increment

b
AJ = ULy + K = JD) = [ [FGy + by + ) = F(x,p, )] dx.
Using Taylor’s theorem to expand the integrand, we obtain
A = [ Eh+ Foliyde + -,

where the dots denote terms of order higher than 1 relative to 4 and 4’, and
hence

5= | " (Fh + Fyh) dx.

Here, unlike the fixed end point problem, 4(x) need no longer vanish at the
points a and b, so that integration by parts now gives!*

= (Fy -4 Fy,) h(x) dx + Fyh(x)|222
b d

- [ (Fy - Fy.) ) dx + Fylany HB) — Fylene h(a).

We first consider functions A(x) such that #(a) = A(b) = 0. Then, as in
the simplest variational problem, the condition 8J = 0 implies that

_4
dx

@7

F, F, =0. (28)
Therefore, in order for the curve y = y(x) to be a solution of the variable
end point problem, y must be an extremal, i.e., a solution of Euler’s equation.

13 The more general case where the end points lie on two given curves y = ¢(x) and
y = Y(x) is treated in Sec. 14.
14 As usual, f(x)|ZZ2 stands for f(b) — f(a).
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But if y is an extremal, the integral in the expression (27) for 3J vanishes,
and then the condition 8J = 0 takes the form

F.|,op W(b) — F, .0 h(a) = 0,
from which it follows that
Fy'lz:a = 0, Fy"::b = Oy (29)

since h(x) is arbitrary. Thus, to solve the variable end point problem, we
must first find a general integral of Euler’s equation (28), and then use the
conditions (29), sometimes called the natural boundary conditions, to determine
the values of the arbitrary constants.

Besides the case of fixed end points and the case of variable end points,
we can also consider the mixed case, where one end is fixed and the other is
variable. For example, suppose we are looking for an extremum of the
functional (26) with respect to the class of curves joining a given point A4
(with abscissa @) and an arbitrary point of the line x = 4. In this case, the
conditions (29) reduce to the single condition

Fy'l::b = 0:

and y(a) = A serves as the second boundary condition.

Example. Starting from the point P = (a, A), a heavy particle slides
down a curve in the vertical plane. Find the curve such that the particle
reaches the vertical line x = b (#a) in the shortest time. (This is a variant
of the brachistochrone problem, p. 3.)

For simplicity, we assume that the original point coincides with the origin
of coordinates. Since the velocity of motion along the curve equals

_ds s dx
U—E—\/1+y 7

we have

1T L 2 T L 2
_Vi+y dx=\/1+y

dt —=
v V2gy

dx,
so that the transit time 7T is given by the equation

1T 1 2
r- [V,
V2gy
The general solution of the corresponding Euler equation consists of a

family of cycloids

x =r0 — sin0) + ¢, y = r(1 — cos 0).
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Since the curve must pass through the origin, we must have ¢ = 0. To
determine r, we use the second condition
yl
F, = ———— = 0
Y V2gy VT

ie., y' = 0 for x = b, which means that the tangent to the curve at its right
end point must be horizontal. It follows that r = b/x, and hence the
required curve is given by the equations

for x = b,

b . b
x=E(0—sm6), y=;:(l—cos6).

7. The Variational Derivative

In Sec. 3.2 we introduced the concept of the differential of a functional.
We now introduce the concept of the variational (or functional) derivative,
which plays the same role for functionals as the concept of the partial
derivative plays for functions of n variables. We begin by considering
functionals of the type

I = [ Fo ) dy, ey =4, ) =B, (30)

corresponding to the simplest variational problem. Our approach is to
first go from the variational problem to an n-dimensional problem, and then
pass to the limit n — oco.

Thus, we divide the interval [a, ] into n + 1 equal subintervals by
introducing the points

Xo =G, X1,...y X, Xns1 = b, (X141 — x; = Ax),

and we replace the smooth function y(x) by the polygonal line with vertices

(XO’ J’o), (xla }’1), e vy (xm J’n), (xn+1, yn+l)’
where y; = y(x;).'®* Then (30) can be approximated by the sum

Ty = 2 F (v 2T ax, (31)
i=0

which is a function of n variables. (Recall that y, = 4 and y,,, = B are
fixed.)
Next, we calculate the partial derivatives

I 1y
Oy

and we consider what happens to these derivatives as the number of points
of subdivision increases without limit. Observing that each variable y,

15 This is the method of finite differences (cf. Secs. 1, 40).
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CHAPTER 2

THE LINEAR PROGRAMMING
MODEL

2.1 HISTORY

The basic problem of linear programming, determining the optimal value of a linear
function subject to linear constraints, arises in a wide variety of situations, but the
theory that we will develop is of recent origin.

In 1939 the Russian mathematician L. V. Kantorovich published a monograph
entitled Mathematical Methods in the Organization and Planning of Production [2].
Kantorovich recognized that a broad class of production problems led to the same
mathematical problem and that this problem was susceptible to solution by numerical
methods. However, Kantorovich’s work went unrecognized.

In 1941 Frank Hitchcock [3] formulated the transportation problem, and in 1945
George Stigler [1] considered the problem referred to in Section 1.2 of determining
an adequate diet for an individual at minimal cost. Through these problems and
others, especially problems related to the World War II effort, it became clear that
a feasible method for solving linear programming problems was needed. Then in
1951 George Dantzig [4] developed the simplex method. This technique is the basis
of the next chapter. John von Neumann recognized the importance of the concept of
duality, the mathematical thread uniting linear programming and game theory, and
the first published proof of the Duality Theorem is that of Gale, Kuhn, and Tucker
[5].

Since the late 1940s, many other computational techniques and variations have
been devised, usually for specific types of problems or for use with certain types
of computing hardware. The theory has been applied extensively in industry. On
the one hand, management has been forced to define explicitly its desired objectives
and given constraints. This has brought about a much greater understanding of the
decision-making process. On the other hand, the actual techniques of linear program-
ming have been successfully applied in the petroleum industry, the food processing
industry, the iron and steel industry, and many more.

Theoretical developments in linear programming have attracted the attention of
both theoreticians and the practitioners in the field (along with the readers of the New
York Times). Some comments on these events are included in Appendix C on theory
and efficiency in linear programming

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough.
Copyright (© 2008 John Wiley & Sons, Inc.
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2.2 THE BLENDING MODEL

The diet problem described in Section 1.2 is an example of a general type of linear
programming problem that involves blending or combining various ingredients. The
cost and composition or characteristics of the various ingredients are known, and the
problem is to determine how much of each of the ingredients to blend together so
that the total cost of the mixture i1s minimized while the composition of the mixture
satisfies specified requirements. In the diet problem, foods were combined to form a
diet minimizing costs and meeting basic nutritional requirements.

The construction of the mathematical model for problems of this type follows
quickly once the usually more difficult task of defining the characteristics and cost
of the ingredients and required composition of the blend has been accomplished.
Assuming that all this information is at hand, the amounts of each of the ingredients
to blend together must be decided. Thus, variables are assigned to represent these
amounts. The cost function, the function to be optimized, can then be constructed by
considering the cost of each of the ingredients and assuming that the total cost is the
sum of the individual costs. The system of constraints, that is, the set of restrictions
of the variables, follows by considering the requirements specified for the final blend.

Example 2.2.1. To feed her stock a farmer can purchase two kinds of feed. The
farmer has determined that the herd requires 60, 84, and 72 units of the nutritional
elements A, B, and C, respectively, per day. The contents and cost of a pound of each
of the two feeds are given in the following table.

Nutritional Elements (units/lb)

A B C Cost (cents/lb)
Feed 1 3 7 3 10
Feed 2 2 2 6 4

Obviously, the farmer could use only one feed to meet the daily nutritional re-
quirements. For example, it can easily be seen that 24 1b of the first feed would
provide an adequate diet at a daily cost of $2.40. However, the farmer wants to
determine the least expensive way of providing an adequate diet by combining the
two feeds. To do this, the farmer should consider all possible diets that satisfy the
specified requirements and then select from this set the diet of minimal cost.

To translate this into a mathematical problem, let x be the number of pounds of
Feed 1 and y the number of pounds of Feed 2 to be used in the daily diet. Then by
definition, x and y must be nonnegative. Moreover, a diet consisting of x 1b of Feed 1
and y Ib of Feed 2 would contain 3x 4 2y units of nutritional element A. Since 60
units of element A are required daily, we must have 3x + 2y > 60. We are assuming
that providing more than the minimal requirements of any of the nutritional elements
will have no harmful effects, and so any diet providing at least 60 units of element A
will satisfy this requirement. Thus the inequality and not an equality.

To provide insight into the nature of linear programming, this particular problem
will be solved geometrically. The set of diets satisfying the above requirements can
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be illustrated graphically. All the points (x,y) in the first quadrant satisfying the
inequality are shown in Figure 2.1.
The other two nutritional requirements demand that

7x+2y > 84 and 3x+ 6y > 72

The corresponding regions in the first quadrant are sketched in Figure 2.2.

We must consider all feasible diets, that is, all diets that satisfy all three require-
ments. They are given graphically by the shaded region in Figure 2.3.

The cost in cents of a diet of x b of Feed 1 and y 1b of Feed 2 is 10x+4y. Thus
we must determine the minimum of the function f(x,y) = 10x+ 4y, while the x and
y are restricted to the shaded region in Figure 2.3.

Consider the graphs of the family of lines determined by the equation 10x+4y =
¢, where ¢ is constant. In Figure 2.4, some of these lines are graphed for various
values of ¢. Note that all the lines have the same slope and that the lines move to the
left as ¢ decreases.

Figure 2.2
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Figure 2.3
y
¢ =200
45t
¢ =120
251
c=40
50
. Ly
10 20 30
Figure 2.4

Each of the parallel lines consists of points that give the same value for the cost
function 10x +4y. Thus we seek that line farthest to the left that still intersects the
shaded region of Figure 2.3. The line through point (6,21) is that line, as illustrated
in Figure 2.5. Thus the cost of a minimal diet is 10-6+4-21 = 144 cents, and this
diet consists of 6 Ib of Feed 1 and 2 1b of Feed 2.

This analysis can be extended. As the value of ¢ in the family of lines 10x+4y = ¢
decreases and the lines slide down and to the left, from the geometry it follows that
the line we seek will intersect the set of feasible solutions at a corner point (or vertex)
of the set of feasible solutions. In this example we can therefore conclude that a
minimal-cost diet, if it exists, must be attained at either point (0,42), (6,21), (18,3),
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Figure 2.5

or (24,0). Thus, if we have the corner points at hand, evaluating the cost function at
each of these points and comparing values will yield the desired optimal diet:

corner points | (0,42)  (6,21) (18,3) (24,0
10x+4y | 168 144 192 240
L

Our above result is confirmed; the minimal-cost diet is to use daily 6 Ib of Feed 1
and 21 1b of Feed 2 at a cost of 144 cents.

Suppose now that the price of Feed 1 increases from 10 cents/Ib to 14 cents/lb,
with all other data unchanged. Then the corner points of the set of feasible solutions
is as above, and an evaluation of the new cost function at these points will yield the
revised optimal solution.

corner points | (0,42)  (6,21) (18,3) (24,0)
14x+4y | 168 168 264 336
i) TT

Now the optimal diet is not unique. The minimal-cost line 14x + 4y = 168 passes
through the two corner points (0,42) and (6,21), and since any feasible point on this
line delivers a diet of 168 cents/lb, the set of optimal feasible diets consists of the
points on the line segment between the corner points (0,42) and (6,21), as displayed
in Figure 2.6.

We have in the solution to the above problem a function with a unique minimum
value (certainly there can be only one minimum value) but with multiple optimal
solution points. And in the example, with only two variables, the geometry justifies
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Figure 2.6

the result. The lines in the family {14x+4y =c: c aconstant} and the boundary
line 7x+ 2y = 84 are parallel, with common slope— %, and when ¢ decreases, the line
with a minimum value for ¢ that intersects the set of feasible solutions will lie on the
segment of the boundary corresponding to this constraining line.

The use of slopes can be extended. Consider the original cost function 10x +
4y. The slope of the associated family of lines {10x+4y = ¢ : ¢ a constant} is —%,
and the optimal solution point to the problem, (6,21), is at the intersection of the
boundary lines 7x + 2y = 84 (with slope— %) and 3x+ 2y = 60 (with slope— %). Thus
from the geometry, the slope —% of the function to be minimized must be between
these two slopes. Indeed, —% < —% < —%.

In fact, we can say that if the cost function is ¢;x + ¢py, where ¢ and ¢, are posi-
tive numbers, the minimum cost would be attained at the point (6,21) if —1 < — a<
—%, that is, % < % < %, and the solution point would be unique if the inequalities
are strict.

Thus, for example, if the cost ¢y of Feed 2 is fixed at 4 cents/lb but the cost
¢y of Feed 1 is variable, the farmer should continue to use the (6,21) diet as long as
% < % < %, thatis, as long as 6 < ¢; < 14, with a minimum daily cost of 6¢; +21-4 =
6c| + 84 cents.

Example 2.2.2. A landscaper has on hand two grass seed blends. Blend I contains
60% bluegrass seed and 10% fescue and costs 80 cents/lb; Blend II contains 20%
bluegrass seed and 50% fescue and costs 60 cents/Ib. (Each also contains other types
of seeds and inert materials.) The field about to be sowed requires a composition seed
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consisting of at least 30% bluegrass and 26% fescue. What is the least expensive
combination of the two blends that meets these requirements?

To formulate a mathematical model for a problem involving percentages, ambi-
guities can arise. To avoid these, we can determine the optimal way to produce a
fixed amount of the final product.

For example, let us determine the combination that minimizes costs and produces
100 Ib of the required composition seed. Defining x as the number of pounds of
Blend I used in this composition and y as the number of pounds of Blend II, the 30%
bluegrass requirement translates into the inequality

0.60x +0.20y > 30

as the 100 Ib of the final composition must contain at least 30 Ib of bluegrass. The
fescue requirement yields the inequality

0.10x+0.50y > 26

These inequalities simplify to 3x+y > 150 and x+ 5y > 260. The region in the
first quadrant satisfying the inequalities is graphed in Figure 2.7.

Since 100 1b of the composition is to be produced, x and y must also satisfy the
equation x4y = 100 (see Figure 2.8).

The cost in dollars of x Ib of Blend I and y Ib of Blend 1 is ¢(x,y) = 0.8x+ 0.6y,
and we seek the minimum of this linear function on the set of points represented by
the heavy line in Figure 2.8. From the geometric argument of the previous example,
it follows that the line in the family of parallel lines {(x,y) : 0.8x 4 0.6y = ¢}, where
c is a constant, with minimal ¢ and intersecting this set must intersect the set at either
(25,75) or (60,40). Evaluating,

¢(25,75) = $65 and ¢(60,40) = $72

Thus, to produce 100 Ib of the composition at minimum cost, 25 Ib of Blend I and 75
Ib of Blend 1I should be used, and so the minimal-cost prescription for making any
amount of the composition seed is to use 25% Blend I and 75% Blend 1L

Figure 2.7
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Figure 2.8

Example 2.2.3 (Continuation of Example 2.2.2), The operation of the landscaper of
the above example has expanded. Now there are two fields to be maintained, Field X
(the original field) and Field Y, with Field Y requiring a seed mixture that is at least
15% bluegrass and 35% fescue; and there is an additional grass seed blend to work
with, Blend III, with a composition of 25% bluegrass and 15% fescue and a cost of
35 cents/lb. The relevant data are summarized in the following table.

Bluegrass  Fescue  Cost (cents/lb)

Blend 1 60% 10% 80
Composition  Blend Il 20% 50% 60
Blend 111 25% 15% 35

Field X > 30% > 26%

Requirements Field Y > 15% > 35%

Suppose the landscaper has an order for 100 lbs of seed for Field X and 160
Ibs of seed for Field Y. To determine the minimum cost to meet these demands, the
following model is formulated. Let x;, x3, x3 be the number of pounds of Blends I,
I1, and I1I, respectively, used for Field X, and let y;, ys, y3 be the number of pounds
of each used for Field Y. The problem:

To minimize the function
(80x( + 60x; + 35x3) + (80y; + 60y, + 35y3)
subject to
X1+ x2+x3 =100 yi+y2+y3 =160 2.2.1)
.6x1 +.2x7 +.25x3 > 30 .6y1 + .2y2 4+ .25y3 > .15(160) = 24
Axy + 5%+ .15x3 > 26 Ay1 + .5y2 4 .15y3 > .35(160) = 56
X1,%2,x3 > 0 yi,y2,33 2 0

Unlike the optimization problems of Examples 2.2.1 and 2.2.2, each with only
two variables, this problem, with six variables, cannot be solved graphically. The
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problems are essentially the same, with linear functions to be optimized subject to
linear constraints. But any such problem with more than two variables is intractable
to a graphical approach. The goal of Chapter 3 is to develop an efficient method of
solving the general problem, regardless of size.

While we cannot complete problem (2.2.1) at this time, some further comments
on the problem are in order. The reader may have already noted that (2.2.1) can be
simplified. Meeting the demands for Field X and meeting the demands for Field Y
are independent problems; the x’s and the y’s in (2.2.1) are not related in the family of
constraints. We could solve each of these problems separately and then combine the
solutions to resolve the two-field problem. (Of course, graphical solution techniques
would remain out of reach for the two three-variable problems.)

On the other hand, further restrictions could easily eliminate this simplification.
Suppose, for example, that only a limited amount of one of the blends is available
— perhaps only 125 Ibs of the new Blend III is on hand and can be used at this
time. Then the constraint x3 4+ y3 < 125 would need to be added to (2.2.1), and the
optimization problems for the two fields are no longer independent.

Another variation could be that, because of shipping restrictions, the producer
of the seed can deliver Blends I and II only in a single drum containing a premixed
combination of the two blends, with the customers specifying the ratio of Blend I to
Blend 1II to be used in preparing their orders. In the landscaper model, this means
that the ratios of Blend I to Blend II used in each of the fields are the same, that is,
% = ){—; or x1y; = x2y1. However, adding the simple equality x;y, = x2y; to (2.2.1)
changes the optimization problem dramatically. The problem is no longer a linear
programming problem, as x;y, = x»y, is not a linear constraint. The problem is in the
domain of nonlinear programming, a topic not considered in this linear programming
text.

Problem Set 2.2

Problems 1-5 refer to Example 2.2.1.

1. A salesperson offers the farmer a new feed for her stock. One pound of this feed
contains 2, 4, and 4 units of the nutritional elements A, B, and C, respectively,
and costs 7 cents. By considering a blend that consists of equal parts of Feeds 1
and 2, show that the use of this new feed cannot reduce the minimal cost of an
adequate diet.

2. The farmer has determined that as long as the ratio of the cost of Feed 1 to the
cost of Feed 2 is between % and —%, an adequate diet of minimal cost can be
achieved by using 18 Ib of Feed 1 and 3 1b of Feed 2. Explain.

3. What should the ratio of the costs of the feeds be to warrant the use of a diet
consisting solely of Feed 1?7 When should the farmer use only Feed 2 for her
stock?

4. After reviewing his mother’s mathematical formulation of the feed problem, the
farmer’s son claims that in general the constraining inequalities should be equal-
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ities. He reasons that money must be wasted if some of the nutritional elements
are fed to the stock at a level above the minimal requirements. Is this true?

5. After some study, the farmer has decided that 40 units of nutritional element D
are also critical for the daily feeding of his stock. One pound of Feeds 1 and
2 contains 4 and 2 units of element D, respectively. How does this change the
analysis of the original problem?

6. Products X and Y are to be blended to produce a mixture that is at least 30% A
and 30% B. Product X is 50% A and 40% B and costs $10/gal; Product Y is 20%
A and 10% B and costs $2/gal. To formulate a model to be used to determine a
minimal-cost blend, we let x and y equal the number of gallons of X and Y used,
respectively, and write the following mathematical problems:

(a) Our first attempt.

Minimize 10x + 2y
subject to
Sx+2y> 3
Ax + 1y > 3
x,y>0

Note that x = 0, y = 3 satisfies the constraints. So should we use only
Product Y? Explain.

(b) We try again. Our final product is to be at least 30% A and 30% B and
contain x4y gal, so we want to

Minimize 10x+ 2y
subject to

Sx 4+ 2y > 3(x+y)
Ax + .1y > 3(x+y)
x,y>0

But does x = 0, y = 0 satisfy the constraints? Explain.
(c) Formulate a correct model.

For Problems 7-10, formulate mathematical models and then solve the prob-
lems.

7. (a) A poultry producer’s stock requires at least 124 units of nutritional element

A and 60 units of nutritional element B daily. Two feeds are available for
use. One pound of Feed 1 costs 16 cents and contains 10 units of A and 3
units of B. One pound of Feed 2 costs 14 cents and contains 4 units of A
and 5 units of B. Determine for the producer the least expensive adequate
feeding diet.

(b) For what range on the ratio of the costs of Feed 1 to Feed 2 would the
optimal diet be the above diet?

(c) For what values of the ratio of the costs of Feed 1 to Feed 2 would the
optimal diet for the problem of part (a) not be unique?



CHAPTER 3

THE SIMPLEX METHOD

3.1 THE GENERAL PROBLEM

In the previous chapter, all examples led to one basic mathematical problem: the
optimization of a linear function subject to a system of linear constraints. In this
chapter we will develop a technique for solving this basic problem.

One minor complication in studying the problem is that the optimization prob-
lem can take various forms. For example, we have seen both maximization and
minimization problems and constraint sets that have consisted of equalities and in-
equalities in both directions. However, this difficulty is easily resolved because all
linear programming problems can be transformed into equivalent problems that are
in what we call standard form.

Definition 3.1.1. The standard form of the linear programming problem is to deter-
mine a solution of a set of equations

ayxy + apxy + ... + ax, = b (3.1.1)
anxi + anxs + ... + ayxn = by

Am1X1 + X2 + ...+ QX = by,

with
x;20,j=1,...,n

that minimizes the function
z=cx1t+caxp+ -+ Xy — 20

(The —zp term allows for the inclusion of a constant in the expression for the
function to be optimized. In an application such a constant could represent, for
example, fixed costs or guaranteed benefits. We precede the constant with a negative
sign for future convenience; zg can be positive, negative, or zero.)

It is this standard form of the linear programming problem, a minimization prob-
lem involving only equalities, that we will solve. Thus our first task is to show that
any linear programming problem can be formulated as a problem in standard form,
where the number of equalities, m, and the number of variables, n, are determined
by the problem.

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough.
Copyright (©) 2008 John Wiley & Sons, Inc.
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Consider first a linear programming problem with a system of constraints that
contains inequalities. For example, suppose a particular diet problem reduces to the
mathematical problem of minimizing 3x) + 2x; +4x3 subject to the constraints

2500
90

30x; + 100x; + 85x3
6x1 + 2x + 3x3
x1,%2,%3 > 0

<
2

Such a problem could result from seeking minimal-cost diet that places an upper
bound on calorie intake and a lower bound on protein intake. We will show that this
problem is equivalent to the following problem derived from the original problem by
the addition of two new nonnegative variables, x4 and xs.

Minimize 3x; + 2x; + 4x3

subject to
30x1 + 100x2 + 85x3 + x4 = 2500
6x1 + 2x + 3x3 —x5= 90

X{1,X2,%3,%4,%5 > 0

Notice that if (x],x3,x3,x},x%) is a solution to the second constraint set, then,
since xj and x5 are restricted to nonnegative values, 30x} 4 100x3 + 85x3 = 2500 —
x;, < 2500 and 6x7 + 2x5 + 3x3 = 90 + x5+ > 90. Therefore (x},x3,x3) is a so-
lution to the first constraint set. Similarly, if (x},x3,x%) is a solution to the first
constraint set, there exist x; and x3 [let x} = 2500 — (30x] 4 100x3 4 85x3) and
x% = 6x7 +2x5 + 3x3 — 90] that are nonnegative and such that (x],x3,x3,x3,x%) is
a solution to the second constraint set. Thus solutions of the two constraint sets cor-
respond, with corresponding solutions having the same first three coordinates. At
the same time, the form to be minimized, 3x| + 2x; + 4x3, depends only on the first
three coordinates. Hence the minimal value of the linear function for both problems
will be the same, and points where this minimum is achieved for one problem will
correspond to points with this same property for the other problem.

Clearly, this technique generalizes. Given any problem with a system of con-
straints containing inequalities, by adding additional nonnegative variables, an equiv-
alent problem can be formulated with a constraint system consisting only of equal-
ities. The number of variables added would equal the number of inequalities in the
system of constraints. The variables added are called slack variables. In fact, they
usually can be interpreted as measuring the slack or surplus of the items or require-
ments of the problem. For example, in the preceding diet problem, suppose the first
restriction comes from consideration of the calorie intake and the second from the
protein intake. Then, for a fixed diet, the slack variable x4 measures the number of
calories below the maximum calorie requirement, and x5 measures the number of
units of protein above the minimum protein requirement for that diet.

Second, suppose a linear programming problem seeks to maximize the linear
function ¢1x; + cpxp + --- + ¢yx,. But the problem of maximizing this function is
equivalent to the problem of minimizing its negative: —cix; —cxp — -+ — CpXy.
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Thus a maximization problem can be easily formulated as a minimization problem
by multiplying the function to be optimized by (—1).

The last restriction on the standard form of the linear programming problem is
that all the variables be nonnegative. For most problems this restriction comes nat-
urally from the physical interpretation of the variables. In all the examples we have
considered, the variables could assume only nonnegative values. However, for some
complicated production systems involving various processes and options, it could be
that some commodity that is input for some process is output for another, and it is not
clear whether this commodity will be input or output in the optimal operation of the
system. Thus we may wish to formulate the problem with a variable not restricted in
sign. (Problems with unrestricted variables also appear when discussing duality, as
we will see in Chapter 4.)

Suppose that x; is a variable unrestricted in sign for a linear optimization prob-
lem. However, any number can be written as the difference of two (not unique)
nonnegative numbers. (For example, 7=7—~0=8—-1,-7=0-7=1-28.) Hence
we can introduce into the problem two nonnegative variables, say x| and x/, and
replace x| everywhere in the problem with the difference x| —x]. This will give
an equivalent problem with the unrestricted variable replaced by two nonnegative
variables.

As a result of these methods, for any linear programming problem, an equivalent
problem can be constructed that is in standard form.

Example 3.1.1. The problem of maximizing 3x; — 2x2 — x3 4+ x4 — 87 subject to

4x1 — x + x4 < 6
—Tx1 + 8xp + x3 > 7
X1+ x + 4x4 = 12

x1,x2,x3 > 0, x4 unrestricted
is equivalent to

Minimize —3xy + 2xy +x3 — (xﬁ —XZ) +87

subject to
4x; — xo + xy— X +xs = 6
—Tx1 + 8x3 + x3 —x6 = 7
X1+ x + 4x, — 4x) =12

1"
.x1,.x2,X3,x:‘_,X4,XS7X6 > 0

In a linear programming problem, the function to be optimized is called the 0b-
Jective function. Any point (x1,x2,...,X,) with nonnegative coordinates that satisfies
the system of constraints is called a feasible solution to the problem. For a particu-
lar problem, a feasible solution can be interpreted as a way of operating the system
under study so that all of the requirements are fulfilled, that is, as a feasible way of
operation.

Thus our basic problem is to determine, from among the set of all feasible so-
lutions, a point that minimizes the objective function. Moreover, to be able to han-
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dle involved real-life problems, we need a solution algorithm easily programmed
for computer use. Existence theorems derived from, say, the theory of continuous
functions on compact sets or the theory of linear functions on convex sets, although
mathematically quite attractive, do not provide an efficient means for actually finding
a desired solution.

The method that will be developed in this chapter for solving the basic linear pro-
gramming problem is called the simplex method. 1t is credited to George Dantzig [4],
and this method and its various modifications remain among the primary means used
today to solve linear optimization problems. One additional feature of this method
that is useful for practical application and also very attractive mathematically is that
the method can handle exceptional cases. For example, the method can determine if a
problem has, in fact, any feasible solutions and, if so, whether the objective function
actually assumes a minimum value.

The basic step in the simplex method is derived from the pivot operation used to
solve linear equations. In the next section we pause briefly from our consideration
of the standard linear programming problem to consider linear equations.

Problem Set 3.1

1. (a) InExample3.1.1,x; =4,x = 12,x3 =0, x, =21, x] =22, x5 =3, xs = 61
is a solution to the second constraint set. Find the corresponding solution to
the first constraint set.

(b) Conversely, x; = 1,xp =3, x3 =5, x4 = 2 is a solution to the first constraint
set. Find a corresponding solution to the second. In this case, is your answer
unique?

2. Explain why the following constraint sets are not equivalent.

Set A Set B
x4+ < 6 x1+ xpx+x3= 6
x1 + 2x <10 x1 + 2x; +x3 =10
X1,X2 Z 0 X1,X2,X3 Z 0

Hint. x; =3 and x; = 3 satisfy the inequalities of Set A. Can you find an x3 such
that (3,3, x3) satisfies the equalities of Set B?

This shows that when introducing slack variables, the same variable cannot be
used for different inequalities.

3. Put the following problems into standard form.

(a) Maximize 3x; —2x;

subject to

Sx1 +2xp —3x3 + x4 < 7
3xy — 4x3 < 6

X1 + x3 — x4 > 11

X1,%2,%3,%4 > 0
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(b)

(©

(d)

(e

®

(2

(h)

Minimize x; + x3 + x4
subject to
X1+ x 6
xp+ x3— x4 <1
S5x;1 — 6xp + Txz3 — 8x4 > 2
x1 > 0,x <0,x3,x4 unrestricted

IN IV

Minimize x; +x3 — x4 +48

subject to
—3x;1 + xp —x3 + 2x4 = =50
X1 — X3 + x4 < 100
2x3 —x3 — x4 > —150

X1,%2,%3,%4 > 0

Maximize 6x; — 2x, +9x3 + 300
subject to
2x; — 6x; — x3 < 100
x1 + x4+ 9x3 <200
0<x; <50,xp > —60,x3>5

Minimize 6x| + xp

subject to

—5x1 + 8xp < 80
X1+ 2x > 4

x1 <10,x, >0

Maximize x| + 2x; + 4x3
subject to

|4x; +3x — Tx3| <x1+x2+x3
X1,Xx2,x3 >0

Maximize x| + 6x2 + 12x3

subject to

—Xx1 — X2 + x4 > maximum of 7x; + 2x; and Sxy +x3 +x4
X1,X2,X3,%x4 > 0

—X1 —Xx2 +2x3 + x5

subject to

x1 4+ Txp + 16x3 < dxq4 + x5
x3 + 12x4 > x1 + 6xp

O9xs < xp + 3x4
X1,X2,X3,X4,X5 > 0

4. Determine all feasible solutions to the linear programming problem of Prob-
lem 3(a) for which
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(@) x1=x=x=0
(b) X2 :0,)63 =6
(C) X3 =0

. Many times the amount of slack or surplus of a commaodity enters into the initial

formulation of the problem; it is a factor in the function to be optimized. For
example, in a production problem, there could be a cost associated with the stor-
age of the surplus production of a commodity. For another example, formulate
the mathematical model for the following.

Two warehouses supply two retail outlets with 100-1b bags of lime. Warehouse
A has 1000 bags, and Warehouse B has 2000 bags. Both outlets need 1200 bags.
The transportation costs in cents per bag are given in the following table.

From Outlet 1  Outlet 2

Warehouse A 5 4
Warehouse B 12 9

However, there is a storage charge of 2 cents/bag for all bags left at Warehouse
A and 8 cents/bag for those left at Warehouse B. Determine a shipping schedule
that minimizes the total cost.

. In the text it was suggested that when putting a linear programming problem

with unrestricted variables into standard form, each unrestricted variable is to be
replaced by a pair of nonnegative variables. Actually, this method is inefficient
if the problem has more than one unrestricted variable; we need introduce only
one additional variable to handle all the unrestricted variables. For example, if a
problem has unrestricted variables x; and x;, show that replacing x| with x’1 — X0
and x, with x5, —xo where x|, x} and x( are new nonnegative variables leads to
an equivalent problem.

7. Show that the following problems are equivalent.

Problem A: Minimize x; + 2xp — 3x3 +4x4
subject to
3x; — 2xp + S5x3 — 6x4 = 20
x1 + 7xp — 6x3 + 9x4 = 30
x1 > 0,x7,x3,x4 unrestricted

Problem B: Minimize x; + 2x, — 3x} +4x), — 3xo
subject to
3xp — 2%y + 5x5 — 6x) + 3x0 =20
x1 + Tx, — 6 + 9, — 10x0 = 30
X1,X5,X5,X4,%0 > 0
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8. Using the technique suggested in Problem 6, determine a linear programming
problem in standard form with only eight variables and equivalent to the linear
programming problem of Problem 3(b).

3.2 LINEAR EQUATIONS AND BASIC FEASIBLE
SOLUTIONS

The pivot operation used in solving linear equations consists of replacing a system of
equations with an equivalent system in which a selected variable is eliminated from
all but one of the equations. The operation revolves around what is called the pivot
term. The pivot term can be the term in any one of the equations that contains the
selected variable with a nonzero coefficient. In the first step of the pivot operation,
the equation containing the pivot term is divided by the coefficient in that term, thus
producing an equation in which the selected variable has coefficient 1. Multiples of
this equation are added to the remaining equations in such a way that the selected
variable is eliminated from these remaining equations.

It is easy to show that the solution set of the system of equations resulting from
the pivot operation is identical to the solution set of the original system, that is,
that the systems are equivalent (Problem 9). In general, repeated use of this pivot
operation can lead to a system of equations whose solution set is obvious.

Example 3.2.1. Solve

X1+ 46+ 2x3= 6
3xp + l4x; + 8x3 = 16
4x; + 21xy; + 10x3 = 28

We arbitrarily select x| as the first variable to be eliminated from two of the equations
and the 1x; term of the first equation as the pivot term. Notice that we could have
also selected the 3x| term of the second equation or the 4x; term of the third equation
for the pivot term. However, the arithmetic associated with the selection of the 1x;
term is less involved because of the unit coefficient. The pivot operation at this term
consists of dividing the first equation by 1, subtracting three times the first equation
from the second, and subtracting four times the first equation from the third. The
resulting equivalent system is

x1+4x +2x3= 6
2xp + 2x3 = =2
S5xp + 2x3 = 4

Continuing, we arbitrarily select x; as the next variable to be eliminated from two
of the equations. Since we are striving to simplify the system, the next pivot term
should not be the 4x, term of the first equation; pivoting here would reinstate in
the last two equations the x; variable. Pivoting at the x; term of either of the other
two equations, however, will isolate the x; variable to that pivoting equation without
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destroying the isolated status of the x| variable. Using the 2x; term of the second
equation as the pivot term (i.e., we divide the second equation by 2, then subtract
four times the result from the first equation and five times the result from the third
equation), we obtain

X1 —ZX3:10
x4+ x3=-—1
—3X3: 9

At this stage, one might solve the third equation for x3 and use this value and the
first two equations to compute the associated values for x; and x;. Actually, that
operation is essentially equivalent to the pivot operation with the —3x3 term of the
third equation as pivot term. Pivoting at this term gives

X1 = 4
X2 = 2
X3 = -3

and this system of equations is equivalent to the original system. However, the so-
lution set for the system obviously consists only of the point (4,2, —3), so we have
proven that this point is the unique solution to the original problem.

As we have seen in this example, repeated use of the pivot operation led to a
system of three equations with three unknowns in a special form, where each variable
appeared in one and only one equation and in that equation had coefficient 1. This
form, called the canonical form, is crucial to the simplex method. We now define it,
along with the associated term basic variable.

Definition 3.2.1. A system of m equations and » unknowns, with m < n, is in canon-
ical form with a distinguished set of m basic variables if each basic variable has
coefficient 1 in one equation and 0 in the others, and each equation has exactly one
basic variable with coefficient 1.

Given a linear programming problem in standard form, one way of simplifying
the problem would be to replace the set of constraints with an equivalent system of
equations in canonical form. Indeed, this step is necessary before the simplex algo-
rithm can be initiated on the linear programming problem. To apply the algorithm,
the system of constraints must be in canonical form and the associated basic solution
must be feasible. We define the terms basic solution and basic feasible solution in
the following example.

Example 3.2.2. Consider the linear programming problem in standard form of

Minimizing x; — x3 + 2x3 — 5x4 = f(x1,%2,%3,%4) (3.2.1)
subject to
X1+ x+2x4+ x4=6
30+ x3 4+ 8x4 =3
X1,%2,x3,x4 > 0
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The system of constraints consists of two equations in four unknowns. Pivoting at
the 3x; term of the second equation gives the equivalent system

X1 +3p-3y=S5 (3.2.2)
X2+%X3+§X4=1
This system is in canonical form with basic variables x| and x;. One particular
solution to this system of equations is obvious: set the nonbasic variables x3 and x4
equal to 0, and set x; equal to the constant term 5 and x> equal to the constant term
1. This solution point is called a basic feasible solution.

Given a system of equations in canonical form with a specified set of basic vari-
ables, the associated basic solution is that solution to the system with the values of
the basic variables given by the constant terms in the equations and the values of the
nonbasic variables equal to zero.

In a linear programming problem we are interested in solutions to the system of
constraints with nonnegative coordinates. Those basic solutions with this property
we call basic feasible solutions. These will prove to be the critical points when using
the simplex method to determine the optimal value of the objective function.

The point (5, 1,0,0) is not the only basic feasible solution for the problem in our
example. Returning to the constraints of (3.2.1), if we pivot at the 8x4 term of the
second equation instead of the 3x; term (or if we pivot in (3.2.2) at the %x4 term of
the second equation), we get

%xz -+ %X3 + x4 =

R [

Here the constraint set is represented by a system of equations in canonical form with
basic variables x; and x4, and the associated basic solution (%,0,0, %) is another
basic feasible solution.

Pivoting at the %xz term of the first equation in (3.2.3) yields the equivalent sys-
tem

%xl + x2 + 3x3 9
—%xl — x3+x3=-3

This system is in canonical form with basic variables x, and x4, but the associated
basic solution (0,9,0,—3) is not feasible. The value of x4 is negative. Obviously,
randomly selecting the variables to serve as basic variables can lead to a system of
equations with some negative constant terms and thus an associated basic solution
that is not feasible. As we will see, the simplex method provides a systematic way to
resolve the problem of starting with and maintaining feasibility.

We return now to the original linear programming problem of (3.2.1), but with
the system of constraints replaced by the equivalent system of (3.2.2), a system in
canonical form with a basic feasible solution. In order to apply the simplex method to
the problem, one final step involving the objective function is necessary. The expres-
sion for the objective function needs to be coordinated with the canonical form of the
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system of the constraints. In particular, the expression for the objective function must
be in terms of only the nonbasic variables. This step can be considered an extension
of the pivot operation used to put the system of constraints into canonical form, and
is easily accomplished here using the system of constraints. We demonstrate.

The objective function of the example is

fx1,x2,x3,%4) = x1 — X2 +2x3 — 5x4

and the system of constraints in canonical form with basic variables x; and x;, from
(3.2.2),1is

X1 +%X3— x4 =5

X2 + %X3 +

W|ooitn

X4=1

From these equations, it is obvious that the value of the objective function f at
any point (x1,x3,x3,x4) satisfying the constraints can be given by

X1 —x2+2x3 —5x4 = [5 - %X3 + §X4] — [1 - %)C3 — %)m] +2x3 — Sx4

2 2
=3x3—5x+4

Thus on this system of constraints, the problem of minimizing f is equivalent to the
problem of minimizing the function %x3 — %x4 + 4. With this new function our goal
of expressing the function to be optimized in terms of only the nonbasic variables is
attained.

Through these operations we have replaced the linear programming problem of
(3.2.1) with the following equivalent linear programming problem.

Minimize %x — %x4 +4
subject to
X1 + %x3 — %X4 =5

X2+%X3+%X4:1
X1,X2,X3,X4 > 0

This problem is said to be in canonical form with basic variables x; and x;.

Definition 3.2.2. The standard linear programming problem is in carnonical form
with a distinguished set of basic variables if:
(a) The system of constraints is in canonical form with this distinguished set of
basic variables.
(b) The associated basic solution is feasible.
(c) The objective function is expressed in terms of only the nonbasic variables.

If the first two conditions of this definition are satisfied for a linear programming
problem, the system of constraints can be used, as in the above example, to eliminate
the basic variables from the objective function. While organizing and maintaining a
problem in canonical form, we will abuse the language somewhat and always speak
of one fixed objective function. Certainly in the above example the function x; —
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X2 + 2x3 — 5x4 does not equal the function %X3 — %x4 + 4. However, the problems
of optimizing these functions on the given constraint set are equivalent, that is, the
functions have the same minimum value, and the sets of feasible solutions on which
this common optimal value is attained are the same. It is this equivalency that we
have in mind when we say, for example, that the objective function is now given by
%X3 — %X4 +4,

The question of feasibility of a basic solution can be stated geometrically using
the column vectors associated with the coefficient matrix of the system of equations.

We demonstrate.

Example 3.2.3. The system of constraints for the linear programming problem of
(3.2.1) can be expressed in vector form as follows:

e o<l

Thus the system of two equations and four variables is equivalent to the problem of

6} as a linear combination of the vectors [(1)] R [1} s [2} , and

expressing the vector [3 3l 01

1 . . . .
{8]' Moreover, for our purposes, we are restricted to solutions with nonnegative

coordinates.

Suppose now we wish to determine geometrically if x| and x; can serve as basic
variables for a basic feasible solution. If so, the nonbasic variables x3 and x4 will
equal zero, and the resulting vector equation reduces to

1 1 6]
x| [0} +x2 [3} = 3| x1,x2 >0

Using the notation

m_ [1] 4@ _ [1] _[6
A A{O]’A =13 ,andbA[:;]

these vectors in R? are sketched in Figure 3.1.

Now the set of points of the form x;A(") for x; > 0 is the line ray emanating
from the origin in R? in the direction of A"}, and similarly for the points x,A(?)
with x, > 0. The set of points of the form xlA<1> +x2A(2), x1 and x; > 0, can be
determined using the usual rule for addition of vectors. This region (the convex cone
of A1) and A@) is illustrated in Figure 3.2. Since b lies in this region, a solution to
the system of equations with x; and x, nonnegative and x3 and x4 equal to O must
exist. This solution is the point (5,1,0,0) found previously.

1
8
3.3 we see that b cannot be expressed as a sum of the form sz(z) +x4A ) with x7 and
x4 > 0. Thus x; and x4 cannot serve as basic variables for a basic feasible solution.

To extend these ideas, let ACG) = [ﬂ and AW = [ } . From the graph in Figure



68 CHAPTER 3. THE SIMPLEX METHOD

b

Figure 3.1

Figure 3.2

(Recall, the associated basic solution is (0,9,0, —3).) Furthermore, it can be seen that
any other pair of variables can serve as basic variables for a basic feasible solution.
Note also that b is a multiple of AB) alone. Thus in any basic feasible solution with
x3 as a basic variable, only the x3 coordinate will be nonzero. Indeed, pivoting at
the 1x3 term in the second equation in the constraints of (3.2.1) yields the equivalent
system

x1 — 5x3 — 15x4 =0
3 +x3+ 8x4 =3

This system is in canonical form with basic variables x; and x3, and the associated
basic (feasible) solution is (0,0,3,0), with the basic variable x; equal to zero. A basic
solution with some basic variables equal to zero is said to be degenerate. As we will
see later when developing the simplex method, theoretical complications arise from
the possibility of degeneracy.

The reader may be somewhat puzzled by our earlier remark that, when deter-
mining the minimum of the objective function of a linear programming problem, the
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Figure 3.3

basic feasible solutions are the critical points to be considered. Why, when trying to
minimize a function, should we wish to restrict our attention to only those feasible
solutions of the constraint set that are basic and therefore have at least n —m zero
coordinates? For example, in a diet problem with five nutritional requirements and
15 foods from which to choose, is it possible to find a minimal-cost diet that uses at
most only 5 of the foods? As we will show in this chapter, the answer to this question
is “yes.” In fact, we will show by an algebraic argument that if the objective func-
tion does have a minimum value, that value is assumed by at least one basic feasible
solution.

Actually, the role played by the basic feasible solutions in the resolution of a
two-variable problem is apparent from the geometry of such a problem. Consider,
for example, the solution procedure used to solve the blending problem developed in
Example 2.2.1 on page 10. The problem there was to determine a blend of two feeds
that minimized costs and met three nutritional requirements. Letting x; denote the
amount of Feed 1 and x; the amount of Feed 2 in a diet, the associated mathematical
problem was to

Minimize 10x; + 4x;
subject to

3x; + 2x, > 60

Tx1 + 2xy > 84

3x; + 6xp > 72
xi1,x >0

Putting this into standard form gives the following:
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Minimize 10x; + 4x» (3.2.4)
subject to

3x; + 2x2 — x3 = 60

Txy + 2xp — X4 = 84

3x; + 6x2 — x5 =172

X1,X2,X3,X4,X5 > 0

The slack variables x3, x4, and x5 measure the surplus amounts of the nutritional
elements A, B, and C in a given diet. Now the geometric argument based on Fig-
ure 2.5 on page 13 showed that if the linear function had a minimal value, the func-
tion would assume that value at a corner or vertex of the region shaded in Figure 2.3.
The four vertices of the shaded region in Figure 2.3 are the points (0,42), (6,21),
(18,3), and (24,0). They occur on the boundaries of the regions defined by the orig-
inal three inequalities, that is, when some of the inequalities are actually equalities
and the corresponding slack variables therefore equal zero. In fact, the solutions to
the constraint set in standard form corresponding to these four points are:

(0,42) <> (0,42,24,0, 180)
(6,21) < (6,21,0,0,72)
(18,3) < (18,3,0,48,0)
(24,0) < (24,0,12,84,0)

Note that each of the four points in the right column has two coordinates at zero
level. These four points are basic feasible solutions to the constraint set in standard
form. Therefore, if the objective function is bounded below, the minimal value must
occur at a basic feasible solution.

This geometrical analysis extends to the general problem, yielding another proof
that for a linear programming problem, if the set of optimal solution points is not
empty, the set of basic feasible solutions provides the foundation for this set. How-
ever, we do not use these ideas in the algebraic development which follows, and so
we will postpone discussion of the geometry of the general problem until Section
3.9.

Problem Set 3.2
1. Solve the following using the pivot operation.
(a) 3xp — 3x3 =15

|
=

X1+ x4+ x3=
3 + 560 +3x3= 4

®d) 3x +2x% —Txz=1
X1 — Sx —6x3 = —4
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©) x1 4+ 2x —2x4 =5
—3x +x3+4x4 =2
2. A system of equations is said to be redundant if one of the equations in the
system is a linear combination of the other equations. Show by using the pivot

operation that the following system is redundant. Is this system equivalent to a
system of equations in canonical form?

x1+ x—3x3= 7
=2x1 + x2 + Sx3 2
3x — x3 =16

i

3. A system of equations is said to be inconsistent if the system has no solution.
Show by using the pivot operation that the following systems are inconsistent.
Is either of these systems equivalent to a system in canonical form?

@ x1+2x =3

X1 +2x =4
(b) x1 4+ x —3x3= 7
=2x1+ x2+ 5= 2
3)C2— X3=15

4. (a) Solve the following system of equations by finding an equivalent system in
canonical form with basic variables x; and x;.

2x1 +xp — 2x3 = 17
X1 - X3 = 4

(b) Is this system equivalent to a system in canonical form with basic variables
x1 and x3?
(c) Interpret these results geometrically.

5. Suppose a system of equations contains the following terms:

ax1 +bxy
cx) +dx

where a, b, ¢, and d are constants, a # 0.

The system is then replaced with an equivalent system by pivoting at the ax;
term. Show that these four terms become

b
X1+ —x2
a

Ox) + (d—ﬁ)xz
a

The expression d — bc/a provides a way of remembering the effect of the pivot
operation on any term not in the row or column of the pivot term.
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6. For the linear programming problem of

Minimizing 5x; +2x; +3x3 + x4

subject to
X1 +xp —2x3 +3x4 =2
—2x1 + x3 =2

X1,X2,%3,%4 > 0

(a) Show geometrically that there can be only two basic feasible solutions to
the problem.

(b) Compute these two basic feasible solutions.

(c) Show that the objective function is bounded below.

(d) Assume that the minimal value of the objective function is attained at a basic
feasible solution and determine this minimal value.

7. Following the outline in Problem 6, complete the problem of Example 3.2.3.

8. (a) Put the constraint set from the standard form of the blending problem con-
sidered in this section (the problem of (3.2.4)) into canonical form with
basic variables x|, xo, and x5. The associated basic feasible solution is
(6,21,0,0,72).

(b) The objective function for this problem is 10x; +4x;. By eliminating the
x1 and x; variables by using the equations found in part (a), this function
can be expressed in terms of only x3 and x4. Verify that the form reduces to
144 4 x5 + x4.

(c) Since we are considering only feasible solutions to the constraint set, using
part(b), give another proof that the minimal value of the objective function
is 144.

9. Prove that the system of equations resulting from a given system by applying
the pivot operation is equivalent to (has the same solution set as) the original
system.

10. Prove that although there may be different ways of driving a system of equations
into canonical form with a specified set of basic variables, there is a unique basic
solution associated with this specified set of basic variables.

11. True or false: A system of equations is equivalent to a system of equations in
canonical form if and only if the original system has at least one solution.

12. Construct a linear programming problem with four variables and three equations
for which there exist degenerate feasible solutions with exactly two nonzero
coordinates.

3.3 INTRODUCTION TO THE SIMPLEX METHOD

In this section the simplex method for solving linear programming problems will be
introduced. The basic ideas behind the technique will be demonstrated by means
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of a specific example. The goal of this section is to develop motivation and under-
standing; the theorems related to the simplex method will be proven in subsequent
sections of this chapter.

Let us consider the following problem in standard form:

Minimize —4x; +x, +x3+7x4+3x5 =2 331
subject to
—6x1 +x3 —2x4 +2x5 =6

3 +x —x3+8x4+ x5=9
X1,X2,X3,X4,X5 > 0

The simplex method can begin only with the problem in canonical form. To put
the problem into canonical form, we could first arbitrarily select two variables to
be basic variables and then, by pivoting, attempt to put the system of constraints
into canonical form with these variables as basic variables, with the hope that the
associated basic solution would be feasible. Or, because here we have a problem
with only two constraints, we could determine, using elementary vector geometry, a
pair of variables that would serve as basic variables for a feasible solution.

In general, however, finding an initial basic feasible solution to a problem can
be a major difficulty. This problem will be solved in Section 3.6. For now, assume
that we know that for the problem at hand, the variables x; and x3 can serve as basic
variables for a feasible solution. Pivoting at the 1x3 term of the first equation will put
the system of constraints into canonical form. This gives

—6x +x3 — 2x4 + 2x5 = 6 3.3.2)
—3x1 + x + 6x4 + 3x5 = 15

The associated basic solution, (0,15,6,0,0), is feasible, as promised. Now these
two equations can be used to eliminate the basic variables x, and x3 from the expres-
sion for the objective function z, given by

—4x1+x3+x3+Tx4+3x5 =2 3.3.3)

In fact, simply subtracting the two equations in (3.3.2) from the equation in
(3.3.3) gives
5x1+0x) +0x3 +3x4 —2x5 =z —21

Hence the objective function can be given by the form
Sx14+3x4 —2x5+21 =z

Thus the problem in canonical form with basic variables x; and x3 is to

Minimize z with (3.34
—6x1 +x3 —2x4+2x5= 6
—=3x1 + x2 + 6x4 + 3x5 = 15

S5x; + 3x4 — 2x5 = —21+2z
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The objective function has the value 21 at the associated basic feasible solution
(0,15,6,0,0). Now the key idea behind the simplex method is to move to another
basic feasible solution that gives a smaller value for z by replacing exactly one basic
variable from the present set. As we will see, the mechanics for this replacement will
be provided by the pivot operation. However, what variable from the set of nonbasic
variables x1, x4, and x5 to insert into the basis, and what basic variable, x; or x3, to
replace in order to reduce the value of z are not obvious.

These questions are answered first by considering the objective function z =
5x1 4 3x4 — 2xs +21. In this expression for z, the x5 variable has a negative coef-
ficient. Thus a feasible solution to the constraint set with x; and x4 still equal to zero,
but with x5 greater than zero, will give a smaller value for z. This suggests that we
move xs into the set of basic variables and attempt to make x5 as large as possible.

But what basic variable, x; or x3, should we replace? To answer this question,
consider the constraint set with the conditions imposed by this situation, that the
nonbasic variables x| and x4 equal zero. From (3.3.4) we have

x3+2x5= 6
x5 + 3x5 = 15
Solving for x3 and x| gives
x3 = 6 — 2x5 3.3.5)
Xy = 15 — 3X5

Clearly, x5 cannot be arbitrarily large. To have a solution to the constraint set with
x1 = x4 = 0, xo and x3 must satisfy these equations and would possibly become neg-
ative. In fact, since x, and x3 must be nonnegative, x5 is restricted by the inequalities

0<6—-2xs and 0<15—3xs

that is, x5 <3 = g andxs < 5= 1~35— Since x5 must satisfy both these inequalities, the
maximum possible value for x5 is 3. Letting xs = 3 and using (3.3.5) to calculate x3
and x;, we have the feasible solution x; = x4 =0, x5 = 3, x3 =0, and x, = 6. The
value of z at this point is 15, six less than the value at the first basic feasible solution.
At the point {0,6,0,0,3), x» == 6 and x3 = 0. Thus x3, being at zero level, is the
variable that should be replaced in the basis, giving x; and x5 as the basic variables
for this second solution point. (Note also that at (0,6,0,0,3), x; and x5 are the two
variables assuming positive values.)

In fact, by letting x5 equal the minimum of 3 and 5, we are guaranteed that x3
will assume the value 0, because the minimum value 3 is the bound coming from
the x3 equation in (3.3.5). To determine the variable to extract from the basis, then,
we need only determine the basic variable of that equation in the modified constraint
set (3.3.5) that leads to the minimal bound. And each of these bounds of 3 = % and
5= % is the ratio of the constant term in the equation to the coefficient of the x5
variable. This suggests a simple procedure for determining the variable to extract
from the basis, a procedure that will be spelled out in detail in the next section.

The simplex method is the continuation of this process. To proceed, however, the
problem must be in canonical form with basic variables x5 and xs. To do this, we
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use the pivot operation. With the system of constraints expressed as in (3.3.4), the
first equation contains the basic variable x3, which is to be replaced with the variable
xs5. Hence pivoting at the 2xs term of this equation will put the system of constraints
into canonical form with basic variables x, and xs. Moreover, the effect of this pivot
operation on the third equation in (3.3.4) would be to eliminate the variable x5 from
that equation also. Then the objective function z would be expressed in terms of only
the variables xj, x3, and x4. Thus the effect of the pivot operation at the 2x5 term of
the first equation in (3.3.4) applied to all three equations would be to transform the
entire problem into the desired canonical form. Pivoting here gives

—3x i - xu+xs= 3 (3.3.6)
6x; + xp — %xg + Oxy = 6
—X1 + x34+ x4 = —15+z

Now we proceed exactly as before. The variable x; has a negative coefficient
in the expression for the objective function and so should be inserted into the basis.
Letting x3 = x4 = 0, the constraint set of (3.3.6) becomes

—3x1+x5=3 x5 =34 3x;

6x1+x,=6 or xp =6—6x; (3.3.7)

Since x; and x5 must be nonnegative, we have

0<3+3x or —1<x
0<6—-6x; x1 <1

The first inequality places no upper bound on x1, so the upper limit for x; is deter-
mined solely by the second inequality, the inequality resulting from the x, equation
in (3.3.7). Thus x; should replace x; in the basis. Letting x; = 1 gives the basic
feasible solution (1,0,0,0,6), and the value of the objective function at this point is
14.

One lingering question that we have so far avoided is the following: When do
we know that the minimal value of the objective function has been achieved and the
process can terminate? Our example will now provide the answer to this question.

We have seen that a reduced value for z can be determined by using x; and x5 as
basic variables instead of x, and x5. Accordingly, we put the system into canonical
form with these as basic variables by pivoting at the 6x; term of the second equation
in (3.3.6). This gives

%x2~ %X3+%X4+X5= 6
X1 + %)Q — %X3 + %X4 = 1
%xz + %X3 + %X4 =—-144z

The objective function is given by z = %xg + %x3 + %x4 +14. In contrast to the two
previous situations, here the coefficients of the nonbasic variables are all positive.
This means in fact that the value of the objective function at any feasible solution to
the constraint set must be at least 14, since all the coordinates of a feasible solution
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are nonnegative. Thus our process is terminated. The minimal value of the objective
function can be no less than 14, and this value is attained at the point (1,0,0,0,6).

To summarize, the simplex method begins with the problem in canonical form.
We move from one basic feasible solution to another by replacing exactly one basic
variable at each step, with the new basic feasible solution providing a reduced value
of the objective function (except possibly when there is degeneracy, a complication
to be discussed later). Consideration of the coefficients of the objective function tells
us if the minimal value has been achieved and, if not, what variable to insert into the
basis. Consideration of the modified constraint set tells us what variable to extract
from the basis. And one simple pivot operation at each step keeps the entire system
in proper form.

In the next section, we will make precise the simplex method for the general
problem and will consider the case where the objective function is not bounded be-
low. (See also Problem 3.) In Section 3.6 a method based on the simplex method for
determining an initial basic feasible solution will be discussed.

Problem Set 3.3
1. Consider the system of equations
Xy + 2x3 = 8 (3.3.8)
b +3xs = 6
x3 + 6x4 = 18

The system is in canonical form with basic variables x;, x2, and x3, and the
associated basic solution is feasible.

(a) Express the set of solutions to the system in terms of x4, that is, solve for
X1, X2, and x3 in terms of x4.

(b) Determine the set of values for the parameter x4 for which the corresponding
solutions to the system are feasible.

(c) Letxy be the largest value in this set. What variable assumes the value zero?

(d) Suppose we wish to express the system in canonical form with x4 in the
basis, and such that the associated basic solution is feasible. From (c), what
variable should be extracted from the basis and become the nonbasic vari-
able? Thus, at what term in (3.3.8) should we pivot?

(e) Show that pivoting here has the desired effect.

(f) For each equation in (3.3.8), compute the ratio of the constant term to the
coefficient of x4. Relate these values to the choice of pivoting term in (d).

2. Consider the problem of

Minimizing x; + x2 +4x3 + 7x4

subject to
Xt +x 4+ 5% +2x4 = 8
2x1 + x2 + 8x3 =14

X1,x2,%3,%4 > 0
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(a) The variables x; and x, can serve as basic variables for a basic feasible
solution. Show that the problem expressed with these as basic variables is
X1 +3x3 —2x4 = 6
X+ 2x3 +4dxg = 2
— x3+ 5x4 = -8+z
(b) Entering x3 into the basis will reduce the value of z. Why? Show that the
variable to be replaced is x;.
(c) Perform the pivot operation. Show that the minimal value of the objective
function is 7 and is achieved at (3,0, 1,0).
3. Use the simplex method to do the following problem. The problem is stated in

canonical form with basic variables x, and x3. Notice that at the first step in the
simplex method, either x; or x4 can enter the basis.

Minimize —x7 —2x4 + X5

subject to
X1 + x3 + 6x4 + x5 =2
=3x1 + x2 +3x4 + x5=3

X1,X%2,X3,X4,X5 > 0

4. In the following problem, the objective function does not have a minimum.
However, the problem is stated in canonical form with basic variables x; and
X7, and the simplex method can be initiated.

Minimize 4x3 — 6x4
subject to

Xy —6x3 +2x4 =6
X1 +2x3 — x4=35
X1,X2,X3,%4 > 0

(a) What occurs after the first pivot operation that makes this problem different
from our other examples?

(b) Can you prove, using the resulting equations, that the objective function is
in fact not bounded below?

3.4 THEORY OF THE SIMPLEX METHOD

In this section we develop the simplex method for a general linear programming
problem. To initiate the algorithm, the problem must be in canonical form. In Section
3.1 we showed that any linear programming problem is equivalent to a problem in
standard form, and in Section 3.6 we will show how to drive a problem in standard
form into canonical form. In fact, the technique developed in Section 3.6 will make
use of the ideas developed in this section. Thus, for the time being, we assume that
our general problem is in canonical form.
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Suppose the problem has m constraints and n variables, with the first m variables
as basic variables. The problem is then:

Minimize z where 34.1
x; + et AUmt1Xme1 o QX = by
+ X2 F o QX oo+ GopXn = b2

Xm + Gmm+1Xm+1 T+ AunXn = by
Cnt1Xm+1 ++ CpXyp = 20+2
X1,X2,...,%, >0

aij, bi, c;, and zg are constants and, since the associated basic solution is feasible,
bi > 0, 1= l,...,m.

Example 3.4.1. We wish to minimize z with

X1 + 2x3 — x4 = 10
X2 — )C3—5)C4=20
2x3 + 3x4 = 60+z2
X1,X2,%X3,%4 > 0

Here we have a problem with m = 2 constraints, n = 4 variables, and in canonical
form. The associated basic feasible solution is (10,20,0,0), and the value of the
objective function z at this point is —60. Note that in this particular problem the
coefficients ¢3 = 2 and ¢4 = 3 are nonnegative. Since x3 and x4 are restricted to be
nonnegative, the smallest value z = 2x3 + 3x4 — 60 can possibly attain is —60, the
value of the objective function at the (10,20,0,0) solution point. This suggests our
first theorem.

Theorem 3.4.1 (optimality criterion). For the linear programming problem of (3.4.1),
ifc; >0, j=m+1,...,n, then the minimal value of the objective function is —zg
and is attained at the point (b1,by,...,by,0,...,0).

Proof. For any point satisfying the set of constraints, the value of the objective func-
tion is given by z = ¢y 1Xm41 + -+ + cuXn — 20- Since any feasible solution to the
constraints has nonnegative coordinates, the smallest possible value for the sum
Cmt1Xm+1 + -+ + CnXy is zero. Thus the minimal possible value for z is —zg, and
this value is assumed at the point (b, b3, ...,by,0,...,0). O

Hence the problem is resolved if all the ¢;’s are nonnegative. Assume now that
at least one c;, say c;, is negative. Then we attempt to enter the variable x; into the
basis. In order to determine what basic variable to replace, we consider the constraint
set with all the nonbasic variables except x; equal to zero. This gives
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x| +aisxs = by X1 = b1 —aisx;s
X2 +ansxs = by X2 = by — azexs

or . 342
Xm + QmsXs = b Xim = by — Qs

Example 3.4.2. Here we wish to minimize z with

X1 + 2x3 — x4 = 10
xy) — x3 — Sxq4 = 20
2x3 — 3x4 = 6042
X1,X2,%3,%4 > 0

Except for a change in sign in c4, this is exactly the problem of Example 3.4.1. As
before, (10,20,0,0) is a feasible solution, and the value of the objective function
7 = 2x3 — 3x4 — 60 at this point is —60. However, here we could reduce the value of
zif we could find feasible solutions to the constraint set with x4 positive and x3 equal
to zero, since ¢4 = —3 is negative. Setting x3 = 0, the constraints reduce to

x1— x4=10 or x1 =104+ x4
x3—5x4 =20 xp =20+5x4

Note that if we fix x4 at any positive number and then use these two equations to
solve for x; and x», the resulting values will be positive. Thus all points in the set

{(xl,XQ,O,X4) 1x4 20,0 = 10+ x4,x3 =20+ 5x4}

are feasible solutions to the system of constraints. But the function z = 2x3 —3x4 — 60
is unbounded below on this set. This suggests our next theorem.

Theorem 3.4.2. For the linear programming problem of (3.4.1), if there is an index
s,m+1<s<n, suchthat cs <0and aj; <O0foralli=1,2,... m, then the objective
function is not bounded below.

Proof. Assume there is an index s satisfying the conditions of the theorem. Since the
coefficients a;; are all nonpositive, the m equations of (3.4.2) can be used to find a set
S of feasible solutions to the constraints with x; assuming arbitrarily large values, the
original basic variables x) to x,, positive values, and the remaining variables value
zero. But the objective function is given by the form

Z=CmXmyl + o CeXs 0 CuXy — 20,
and on S, this reduces to z = cyx; — 20. Since ¢y < 0, z is unbounded below on S. O

Assume now that ¢; < 0 and that at least one a;; > 0. Then the argument above
breaks down, because if a;; > 0, the equation x; = b; — a;,x, places a limit on how
large x; can become. In fact, for x; to remain nonnegative, we must have 0 < b; —
ajsxs, that is, x; < b;/a;; for a;; > 0. Thus our goal now is simply to replace in
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the basis one of the basic variables xi,...,x, with the variable x;,. Because of the
term c;x; in the expression for the objective function, the value of z at this new basic
feasible solution hopefully will be reduced. Our one demand on this new basis is that
the associated basic solution be feasible. Hence the equations of (3.4.2) for which
a;s > 0 restrict our choice of the variable to extract from the basis. Since we must
have x; < ab_,'i for all i with a;; > 0, the largest possible value for x; is

b.
Min{—’ aig > 0}.
djs

Suppose this minimum value is attained when i = r. Then letting x; = b —L will give
x; > 0fori=1,...,mand, in particular, x, = b, — ﬂ = 0. Since x, takes on the value
zero here, it appears that x, is the variable to be replaced in the basis. And since in
(3.4.1) the rth equation of the constraints isolates x,, the problem can be put into
canonical form with basic variables x, ..., X,—1, Xr+1, - -+, Xm> Xs DY @ single pivot
operation at the a,5x; term of the rth equation. Before formally stating and proving
these results, we give an example.

Example 3.4.3. Minimize z with

X1 4+ 2x4 — x5 = 10
X2 — X4 — SXS =20
x3 + 6x4 — 12x5 = 18
— 2x4 + 3x5 =60+z2
X1,X2,X3,X4,X5 > 0

The problem is in canonical form with basic variables x|, x>, and x3. The associated
basic feasible solution is (10,20, 18,0,0), and the value of the objective function at
this point is —60. However, ¢4 = —2 is negative, and so we attempt to reduce the
value of z by inserting x4 into the basis. Letting x5 = 0, the constraints reduce to

x1+2x4 =10 x1=10—2x4
Xp— x4=20 or x=20+ x4
x3+6x4 =18 x3=18—6x4

The second equation places no restriction on x4. However, the first requires that
xq < %) = 5 and the third that x4 < % = 3. The largest possible value for x4 with
x5 = 0 is the minimum of 3 and 5, that is, 3. Letting x4 = 3 gives x3 = 0. Thus
x4 should replace x3 in the basis and, since the third equation of the constraints
isolates x3, pivoting at the 6x4 term of this equation should keep the problem in
canonical form, but with basic variables x1, xp, and x4. In fact, pivoting here yields
the following equivalent problem:
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Minimize z with

X1 - %X3 +3xs = 4
X2 + %X3 — x5 =23
%X3 + x4 —2x5 = 3

%X3 — x5 =66+z

X1,X2,%3,X4,X5 > 0

The problem remains in canonical form, but with basic variables x;, x2, and x4.
The associated basic solution (4,23,0,3,0) is feasible, and the value of the objective
function at this point is —66. Although the optimal value of z has not yet been
attained, we have, as promised, moved to a basic feasible solution yielding a reduced
value for z while maintaining the problem in canonical form.

Theorem 3.4.3. In the problem of (3.4.1), assume that there is an index s such that
cs < 0 and that at least one a;; > 0, i = 1,...,m. Suppose

b b;
—r:Min{—lzlgigmandais>0}.

Ars djs
Then the problem can be put into canonical form with basic variables
K15 X2y oo s Xr—15Xr415- o 3 Xms Xs+
The value of the objective function at the associated basic feasible solution is

csb,

—Z0+
Ays

Proof. Consider the problem of (3.4.1) under the assumptions of the theorem. The
coefficient a,; # 0 (it is, in fact, positive), and so the term a,sx, of the rth equation
can be used as the pivot term in the pivot operation applied to the m 4+ 1 equations.
By pivoting here, the system of constraints will be expressed in canonical form with
basic variables x1, ..., X,—1, Xr+1, . .., Xm, X5. The constant terms, b} say,i=1,...,m,
on the right side of the equations, become

b b
br=bi— 37" fori=1,....mandi#£r and b =2 (3.4.3)

Ars Qrg

Clearly b} > 0. If a;; < O then, since b, > 0 and a,; >0, bf > b; > 0. If a;; >0
and i # r, by the choice of r, b;/a;; > b, /a5, and so b; > a;sb./a.s. Hence b} > 0.
Therefore the basic solution associated with these basic variables is feasible.

Now the objective function is given in (3.4.1) by the form ¢4 1X41 + - - +¢sx5+
-+ cpxy, = 20 + 2. The effect of the pivot operation on this equation will be to

eliminate the x; term from the equation, producing the equation
CrXr 4 Crp ( Xmt + -+ o X1 H o X1+ F X =20+ 2 (3.4.4)

with z§ = zo0 — csb, /ays.
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Thus the objective function is expressed in terms of only the new nonbasic vari-
ables and the value of this function at the new basic feasible solution is —zg +
csby/ays. O

Notice the result of this pivot operation applied to the system of constraints and
the objective function. The problem remains in canonical form with the original
basic variable x, replaced with the variable x;. The value of the objective function at
this new basic feasible solution is equal to the value —zg at the original basic feasible
solution plus the quantity c;b,/a,s. Since we have assumed that ¢; < 0 and a,; > 0,
¢sby/ays is less than or equal to zero, and is strictly less than zero if b, is strictly
positive. Thus, if b, > 0, the pivot operation has left the system in canonical form
at a basic feasible solution with a smaller value for the objective function. Let us
assume for the time being that this is always the case, that any basic feasible solution
to the systemn of constraints has no basic variable equal to zero. A basic solution
with some basic variables equal to zero is called a degenerate solution, so we are
assuming that all basic feasible solutions are nondegenerate.

Under this nondegeneracy hypothesis, Theorem 3.4.3 states that if at least one
of the coefficients c;, m+1 < j < n, is negative, say c,, and if at least one of the
coefficients a;;, 1 < i < m, is positive, then a specific pivot operation leaves the
problem in canonical form at a basic feasible solution that gives a reduced value
for the objective function. Now we can continue. If the new coefficients of the
objective function are all nonnegative, we are at the minimal value for the objective
function, as Theorem 3.4.1 applies. If one of these coefficients is negative and if all
of the coefficients of the associated variable are nonpositive in the constraint set, the
objective function is unbounded below, as Theorem 3.4.2 applies. Otherwise, we can
apply Theorem 3.4.3 again, driving to another basic feasible solution with an even
smaller value for the objective function. Since at each step the value of the objective
function is reduced (due to the nondegeneracy assumption), there can be no repetition
of basic feasible solutions. The different values for the objective function guarantee
that a particular basic feasible solution can appear at most once in the process (see
Problem 10 of Section 3.2). Now there are at most a finite number of basic solutions,
as there are only (") = n!/[m!(n—m)!] ways of selecting m basic variables from a
set of n variables. Thus this process must eventually terminate. Either the minimum
value of the objective function will be reached or the function will be proven to be
unbounded.

This is the simplex method, with a proof, using the nondegeneracy hypothesis,
that the process must terminate after a finite number of steps with either Theorems
3.4.1 or 3.4.2 applying. The nondegeneracy assumption is quite critical. If some ba-
sic feasible solutions were degenerate, the pivot operation of Theorem 3.4.3 applied
in arow with »; = 0 would leave the value of the objective function unchanged. After
several steps of this, we would have no assurance that basic feasible solutions would
not reappear, possibly causing the process to cycle indefinitely. In fact, examples of
cycling have been constructed (see Appendix B). Thus, from a mathematical point
of view, our proof of convergence of the process is inadequate. In Section 3.8 we
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will provide a complete proof that, for any linear programming problem, there exists
a sequence of pivot operations that will drive the problem to completion.

From a practical point of view, however, a pleasant phenomenon occurs. The
cliché “whatever can go wrong will go wrong” does not seem to apply. Although
degeneracy occurs quite frequently in linear programming applications, very rarely
will cycling occur. Simple rules such as those described below usually are sufficient
to prevent cycling. The rules are certainly adequate to prevent cycling in the exam-
ples of this text (except, of course, for the example of Appendix B). Moreover, more
precise rules for the selection of the pivoting term can be given that will guarantee
that cycling does not occur (see Section 3.8).

We now summarize the steps of the simplex method, starting with the problem in
canonical form.

1. If all ¢; > O, the minimum value of the objective function has been achieved

(Theorem 3.4.1).

2. If there exists an s such that ¢; < 0 and a;; < 0 for all i, the objective function

is not bounded below (Theorem 3.4.2).

3. Otherwise, pivot (Theorem 3.4.3). To determine the pivot term:

(a) Pivot in any column with a negative c; term. If there are several negative
c;’s, pivoting in the column with the smallest ¢; may reduce the total
number of steps necessary to complete the problem. Assume that we
pivot in column s.

(b) To determine the row of the pivot term, find that row, say row r, such that

b, . b
— :Mm{—_’ :a,-s>0}

Ays Qis

Notice that here only those ratios b;/a;; with a;; > 0 are considered. If
the minimum of these ratios is attained in several rows, a simple rule such
as choosing the row with the smallest index can be used to determine the
pivoting row.
4. After pivoting, the problem remains in canonical form at a different basic
feasible solution. Now return to step 1.

If the problem contains degenerate basic feasible solutions, proceed as above.
These steps should still be adequate to drive the problem to completion.

Problem Set 3.4
1. Complete the problem of Example 3.4.3.

2. Solve the following using the ideas developed in this section.
(a) Minimize x3 + x4 subject to
X1 — X4 = 5
xp + 2x3 — 3x4 = 10
X1,%2,%3,%4 > 0
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(b) Minimize x3 subject to the constraints of part (a).
(c) Minimize x3 — x4 subject to the constraints of part (a).
(d) Minimize x3 — x4 subject to
X1 — X4 = 5
X2 + 2x3 =10
X1,X2,X3,X4 Z 0
(e) Minimize —x3 + x4 subject to the constraints of part (d).
(f) Minimize —x3 + x4 subject to
X1 + x3—x34= 0
X2 + 2x3 =10
X1,%2,%3,%4 > 0

(g) Minimize —x3 — x4 subject to the constraints of part (f).

. Calculate the coefficient ¢} in (3.4.4) on page 81. Can the variable removed from

the basis at one step of the pivot operation return to the basis on the next step?

. Using the form for the objective function given in (3.4.1) on page 78 and the

coordinates of the new basic feasible solution given in (3.4.3) on page 81, by
direct calculation show that the value of the objective function at the new basic
feasible solution is as stated in Theorem 3.4.3.

. Using (3.4.3) on page 81, determine when the pivot operation will go from a

nondegenerate basic feasible solution to a degenerate basic feasible solution.

. Suppose a problem is in canonical form and the associated basic feasible solution

is degenerate, and x| is a basic variable with the value zero. The pivot operation
is performed with the x; variable extracted from the basis. Describe the new
basic feasible solution.

. In Chapter 2 we saw linear programming problems with multiple optimal so-

lution points. We do, however, have a uniqueness condition for problems in
canonical form. Show that if a problem is driven to the canonical form in (3.4.1)
and ¢; > 0 for m+ 1 < j < n, then the minimal value —z¢ of the objective func-
tion is attained only at the point (by,...,b,,0,...,0).

. Extend the formulas in the proof of Theorem 3.4.3 expressing the results of the

pivot operation at the a,; term. Show that for any j # s,

Qjsly
* L LS rj .
a;; = ajj P i#r

ar;
Ars

* CsQrj

cj=cj——

Ars

. Consider the linear programming problem of (3.4.1). Suppose that the value of

the function
! / ! /
T = Cp1Xm+1 X — 20
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equals the value of the objective function
= Cm1 Xmy1 + -+ CnXp—20
in all solutions to the system of constraints of (3.4.1). Prove that
Z=z0and ¢} =c;forall jm+1<j<n

Conclusion. Given a linear programming problem in canonical form with a spec-
ified set of basic variables, the coefficients in the expression for the objective
function are unique.

3.5 THE SIMPLEX TABLEAU AND EXAMPLES

At each step of the simplex method, it is crucial to know only the basic variables and
the values of the coefficients in the system of equations. To facilitate computation
of a solution, at each step all we need do is record this information. This suggests a
notation similar to the detached coefficient notation used for solving linear equations.
We illustrate with the example of Section 3.3 [see equation (3.3.1)]. The problem,
expressed in canonical form with basic variables x; and x3, was, as in (3.3.4), to
minimize z with

—b6x 4+ x3 — 2x4 + 2x5 = 6
—3x1 4+ x2 + 6x4 + 3x5 = 15
5x1 + 3x4 — 2x5 = 2142z

X1,X2,X3,X4,X5 Z 0

This information is recorded in tableau form in Table 3.1.

The initial line of x’s in the array simply labels the columns of the tableau with
the variables of the problem. The first column identifies the basic variables. The
first two rows correspond to the system of constraints, with the constant terms given
in the last column. The last row corresponds to the equation defining the objective
function, with the constant term on the right side of that equation in the last column
and the z term suppressed from the tableau because it remains fixed throughout the
simplex method.

We now apply the simplex method. As noted in Section 3.3, the —2 in the x;5
column of the last row indicates that we should pivot in that column. To determine
the pivoting row, we compare the ratios b;/a;s for a;; > 0, as in Theorem 3.4.3, and

Table 3.1

X] X2 X3 X4 X5
x3| -6 0 1 =2 2 6
xy | =3 1 0 6 3 15
5.0 0 3 -=-2]-=21
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Table 3.2
X1 X2 X3 X4 X5
ml -6 0o 1 2 (2) 6
x| -3 1 0 6 3] 15
5 0 0 -2 | -21
x| =3 0 Io—1 1 3
nl (e 1 -3 9 o] &
-1 0 1 1 0| —15
Table 3.3
xs | 0§ =1 1o 6
|1 & = 3 0 1
o 1 2 3 ol -4

find the row in which the minimum is attained. In this case g is less than 13—5 and,
therefore, we should pivot at the 2 in the first row, replacing the basic variable x3
with the variable xs. The tableau representing the result of this pivot operation can
be constructed from the present tableau by dividing the first row by 2 and then adding
multiples of this row to the remaining rows in such a way as to generate zeros in the
x5 column. We illustrate in Table 3.2, placing this new tableau directly below the
original tableau.

The second tableau represents the problem as stated in (3.3.6) on page 75. The
associated basic feasible solution is (0,6,0,0,3), and the value of the objective func-
tion at this point is the negative of the constant in the lower right-hand corner of the
tableau, —(—15) = 15.

Pivoting now at the 6 in the x| column of the second row gives the tableau of Table
3.3. Since all the constants in the last row, excluding the —14, are nonnegative, the
minimum value of the objective function has been attained. This value, —(—14) =
14, is attained at the basic feasible solution (1,0,0,0,6), as can be read from the final
tableau.

Hereafter the steps of the simplex method for any example will be recorded using
this tableau notation. We emphasize that if at any time you are confused or bewil-
dered by a statement based on the tableau presentation of a problem, simply translate
the information in the tableau back into a clearly stated problem with the system of
constraints and the objective function defined as usual, that is, “attach back” the vari-
ables. The tableau remains just a notation for a linear programming problem and the
associated equations.
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Table 3.4

X1 X X3 X4 X5  Xg
x| 3 2 0 1 0 0]60
s | -1 (D 0 1 o0]10
x| 2 -2 0 1|50
2 -3 -3 0 ol o
| (5) 0o -8 1 -2 040
»m| -1 1 4 0 1 0]10
x| 0 0 13 0 2 1|70
5 0 9 0 3 0]30
X1 1 o -¢ L1 -2 o3
X 0 o2 b3 o018
x| 0 0 13 0 2 1|70
o o0 1 1 1 0]70

Example 3.5.1. Maximize 2x; + 3x; 4+ 3x3 subject to

3x1 4+ 2x < 60
—x1 + x2 +4x3 <10
2x; — 2x + 5x3 < 50
Xx1,x,x3 >0

Introducing three slack variables and putting the problem into standard form gives
the following:

Minimize —2x; — 3x3 — 3x3

subject to

3x; + 2xp + x4 = 60
—x1 + x2 + 4x3 + x5 =10
2x; — 2xp + 5x3 + x¢ = 50

X1,X2,X3,X4,X5,X6 > 0

The system of constraints for this problem is in canonical form with basic variables
x4, x5, and xg, the associated basic solution, (0,0,0,60,10,50), is feasible, and the
objective function is written in terms of the nonbasic variables. Thus the simplex
method can be initiated. Table 3.4 gives the resulting tableaux.

Note that the first pivot could have been made in either the first, second, or third
column. From the last tableau we see that, for the problem as stated in standard
form, the minimal value of the objective function is —70, and this value is attained at
the point (8,18,0,0,0,70). Since the original problem was a maximization problem
with no slack variables, the optimal value for the original objective function is 70
and is attained at the point (8,18,0).
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Table 3.5

X1 X X3 X4 X5
x4 1 1 =2 1 0| 7
s| -3 () 2 o 1]3
0 -2 -1 0 0| 0
u| (4 0 -4 1 -1 4
x| -3 1 2 0 1| 3
—6 0 3 0 2|6
x1 1 0 -1 5 =3l 1
X 0 1 -1 3 il e

3 1
0 o -3 3 IRV

Example 3.5.2. Maximize 2x; + x3 subject to

X1+ xp — 2x3 <7
=3x1 +x2 +2x3 £ 3
X1,%2,%3 > 0

The standard form of the problem is

Minimize —2x; — x3

subject to
X1+ x3 — 2x3 + x4 =1
—3x1 + x2 + 2x3 + x5 =73

X1,X2,X3,X4,%5 >0

This problem is in canonical form with basic variables x4 and xs, and the steps of
the simplex algorithm are displayed in Table 3.5. The three negative entries in the
third column of the previous tableau indicate that the objective function is unbounded

below.

Example 3.5.3. Finally, we consider the problem of

The system of constraints, as given, is in canonical form with basic variables x7, x;,
and xs, and the associated basic solution, (0, 10,0,0,60,0,20), is feasible. However,

Minimizing —4x; + xp + 30x3 — 11x4 — 2x5 + 3x4

subject to
—2xy + 6x3 + 2x4 — 3x¢ + x7 =20
—4dx1 +x3 + Tx3 + x4 - X6 =10

—5x3 + 3x4 + x5 — x¢ = 60
X1,X2,X3,X4,X5,%6,%7 2> 0
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Table 3.6

X1 X x3 X4 X5 Xg x7
| 2 0 6 2 0 -3 1] 20
x| —4 1 7 () o -1 o] 10
x5 0O 0 -5 3 1 -1 0] 60

0O 0 13 -6 0 2 0110
w| (6) =2 -8 0o 0o -1 1| 0
xy | —4 1 7 1 o0 -1 0] 10
x| 12 -3 —26 0 1 2 0] 30

24 6 5 0 0 -4 0170
x1 R o o -t 1| o
x4 0o -3 3 1 0 -3 3| 10
x5 0 1 10 o 1 (4) 2| 30

0 -2 23 0 0 -8 4170
x L o—% -7 0 5% 0 5| 3
S I e A A )
w| 0 4 3 o ) 1 3| B

0O 0 3 0 2 0 0] 230

the expression for the objective function contains the basic variables x; and x5. By
subtracting the second equation and adding twice the third equation to the equation

—dx1+x3+30x3 — 11x4 —2x5+3x =2

we have
13x3 —6x4 +2x = 110+ 2

Using this expression to define the objective function, the problem is in canonical
form with basic variables x7, x2, and x5, and the simplex method can be initiated. The
corresponding tableaux are given in Table 3.6. As can be seen, the minimal value of
the objective function is —230 and is attained at the point (3,0,0,%,0,£,0). Note
the presence of degeneracy in the second and third steps.

Problem Set 3.5

1. Each of the following tableaux corresponds to a linear programming problem
in canonical form with three equality constraints, an objective function to be
minimized, seven nonnegative variables xy, ..., x7, and with variables x5, x3,x]
serving as basic variables. For each, either (i) the solution of the problem can
be determined from the given tableau or (ii) one or more iterations of the sim-
plex algorithm are necessary to complete the problem. If (i), state the complete
resolution of the problem:; if (ii), determine all valid pivot points for the tableau.
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(a)

Xj X2 X3 X4 X5 X6 X7
X5 0o 5 0 3 1 -1 8 39
X3 0 o6 1 -1 0 0 -6 10
X1 1 9 0 8§ 0 -3 4 88
0O 6 0 —4 0 2 3| —T5+z
(b)
X1 X2 X3 X4 X5 X6 X7
X5 0 5 0 =3 1 -1 8 39
X3 0 6 1 1 0 -1 -6 10
X1 1 9 0 -8 0 -3 4 88
0 6 0 4 0 2 0| -75+z
©
X1 %) X3 X4 X5 X6 X7
xs| 0 5 0 -3 1 -1 8 3
X3 0 6 1 1 0 0 -6 2
X1 1 9 0 -8 0 -3 4 0
0 -6 0 0 0 0 3| =754z
(d)
X1 X2 X3 X4 X5 X6 X7
xs| 0 5 0 -3 1 -1 8 3
x3 0 6 1 1 0 0 -6 2
X 1 9 0 -8 0 -3 4 1
0 -6 0 o 0 -2 31 ~T5+z2
(e)
X1 X2 X3 X4 X5 X6 X7
xs| 0 5 0 -3 1 1 8| 60
X3 0 6 1 -1 0 0 -6 30
Xy 1 9 0 -8 0 -3 7 50
0 -6 0 0 0 -2 =-3|-75+z
®
X1 X2 X3 X4 X5 Xg X7
X5 o -5 0 -3 1 -1 8 39
x| 0 -6 1 -1 0 0 -6 0
X1 1 9 0 -8 0 =3 4 88
0 6 0 0 0 2 3| -75+z

2. For each of the following, put the problem into canonical form, set up the initial
tableau, and solve by hand using the simplex method. At most, two pivots should
be required for each. Along the way, objective functions requiring some initial
adjustments and unbounded objective functions should be encountered.



3.5. THE SIMPLEX TABLEAU AND EXAMPLES

91

()

(b)

(©

()

(e

®

Minimize 2x; +4xy —4x3 + Tx4
subject to

8x; —2x + x3 — x4 < 50
3x1 + 5x2 + 2x4 < 150
X1 — X2 + 2x3 — 4dx4 < 100
X1,%2,%3,%4 > 0

Maximize x1 + 2x2 — x3
subject to

xy + 4x3 < 36
S5x1 — 4xp + 2x3 < 60
3x1 — 20 + x3 <24
Xx1,%2,x3 >0

Minimize —5x1 +4x2 + x3
subject to
X1+ x —3x3 <8
2% — 2x3 <7
—x1 — 2% +4x3 <6
X1,X2,%3 >0

Maximize 9x; + 2x3 — x5

subject to

X1 — 3x — 4xy + 2x¢ = 60
2x7 — x4 — x5 + 4xg = -20
Xy + x3 + 3xs = 10

X1,X2,X3,X4,X5,%6 > 0

Maximize x) + 12x2 +9x3
subject to

3x1 + 2x — 6x3 < 20
2x1 + 6x3 + 3x3 < 30
6x1 + 2x3 < 16
Xx1,%2,x3 >0

Minimize x3 — x4
subject to
X1 —3x4 + x5=1
X2 + 6x4 — 5x5 =6
x3 — 3x4 +2x5 =5
X1,X2,X3,X4,%5 > 0
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For the remaining problems, the use of the software LLP Assistant, as described in
Appendix D, is strongly encouraged. The program facilitates considerably the im-
plementation of the simplex method. The user needs to enter a valid initial tableau
and appropriate pivots points, and needs to recognize a final tableau and interpret the
results, but the machine completes the arithmetic of each pivot step.

3. Solve. Maximize x4 — x5
subject to
X1 + x4 — 2x5 =1
X3 + x =6
x3 + 2x4 — 3x5s =4
X1,%2,X3,X4,X5 > 0
Note that in this example a variable removed from the basis in one step of the
pivot operation eventually returns to the basis. Compare with Problem 3 of
Section 3.4.
4. Solve. Maximize 10x3 + 3x4
subject to
X1 + 10x3 + 2x4 = 20
xp — x34+ x4 =12
X1,X2,%3,X4 2 0
(If in your first iteration you put x3 into the basis, you will have an example

of a variable inserted into the basis in one step of the simplex algorithm being
removed from the basis in the very next step.)

5. Consider the problem of Example 3.5.3. The minimum value of the objective
function is —230 and is attained at (%,0,0, %,0, %,O). However, this optimal
value is attained at other solution points to the system of constraints.

(a) The previous tableau for the solution to this problem suggests that optimal
basic feasible solutions exist with either x; or x7 in the basis. Why?

(b) Use the previous tableau to determine an optimal basic feasible solution
with x7 in the basis.

(¢) Find an optimal solution with x; in the basis.

6. For each of the following, determine two distinct basic feasible solutions at
which the optimal value of the objective function is attained.
(a) Maximize 4x| + 12x; + 8x3
subject to
3x1 + 2xp — 6x3 < 20
3x1 + 6xp + 4x3 < 30
x1,%2,x3 >0
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(b) Minimize x; — 3x; — 6x3

subject to
21— x+ x3+ x4 < 60
3x1 + 4xy + 2x3 — 2x4 < 150

x1,X2,%3,%4 > 0
7. Consider the problem of Example 3.5.2.

(a) Show that any point of the form (,0,¢), for ¢ > 0, is a feasible solution.
(b) Using this, show that the objective function is unbounded.

8. Compute the solution to Problem 11 of Section 2.3.
9. Compute the solution to Problem 7 of Section 2.6.

10. Compute the solution to Problem 5 of Section 2.6

3.6 ARTIFICIAL VARIABLES

As we have seen, many linear programming problems can be put into canonical form
with little or no effort. For example, the addition of slack variables with positive
coefficients can provide the basic variables necessary for the initial basic feasible
solution. On the other hand, the system of constraints for many other problems con-
tains no obvious basic feasible solutions. Problems of this type occur, for example,
in production models involving output requirements and therefore (>) inequalities in
the constraint set, such as we saw in Example 2.3.4 on page 24, or in transportation
problems involving fixed demands and therefore equalities in the constraint set, such
as in Example 2.4.1 on page 34. In fact, in any application of linear programming to
a real-world problem, it would be rare to find the original formulation of the problem
in canonical form.

What must be developed is a technique for determining an initial basic feasible
solution for an arbitrary system of equations. This technique must also be capable of
handling problems having no feasible solution. Such a problem could arise, for ex-
ample, in a model containing an error in formulation or in a complicated production
model where it is not obvious that the various output requirements can be met with
the limited resources available. In this section we will introduce such a technique; in
the next section we will discuss some of the complications that can occur.

The basic idea behind the method used to find an initial basic feasible solution
is simple. We introduce into the problem a sufficient number of variables, called
artificial variables, to put the system of constraints into canonical form with these
variables as the basic variables. Then we apply the simplex method, not to the objec-
tive function of the original problem, but to a new function defined in such a way that
its minimal value is attained at a feasible solution to the original problem. Thus the
method of the previous three sections applied to this new function drives the original
problem to a basic feasible solution.

Consider the standard linear programming problem of (3.1.1) of finding a non-
negative solution to the system
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ayx; + apxa + ...+ ax, = by (3.6.1)
aixi + apxy + ... + ayx, = by

Am1X1 + QX2 + ...+ ApXn = by,

that minimizes the function z = ¢1x; +c2x2 + ...+ ¢,x,. By multiplication of an equa-
tion by (—1) if necessary, we may assume that all the constant terms b;, i = 1,...,m,
are nonnegative. Now introduce into the system of constraints 7 new variables, X, 1,
..+, Xnt+m, called artificial variables, one to each equation. The resulting system is

aixy + apxy + ... + aXy + Xpt1 = b (3.6.2)

anxy + anxy + ... + ¥ + Xni2 = by

Am1X1 + Amax2 + ... + AmunXn + Xpan = bp,
Note that this system is in canonical form with basic variables x,+1, ..., Xutn, and
that the associated basic solution is feasible, since we have assumed that the b;’s are
nonnegative.

Now consider the problem of determining the minimal value of the function
W = Xpi1 +Xp42 + -+ Xtm on the set of all nonnegative solutions to the system
of equations in (3.6.2). Since all variables are nonnegative, w can never be nega-
tive. The function w would assume the value zero at any feasible solution to (3.6.2)
in which all the artificial variables are at zero level. Thus the simplex method ap-
plied to this function should replace the artificial variables as basic variables with
the variables from the original problem and will hopefully drive the system in (3.6.2)
into canonical form with basic variables from the original set x;, j = 1,...,n. The
value of w at the associated basic feasible solution would be zero, its minimal value,
and the simplex method could then be initiated on the original problem as stated in
(3.6.1). Furthermore, if the system of constraints in (3.6.1) does have at least one
feasible solution, the system in (3.6.2) must have feasible solutions in which all the
artificial variables equal zero. In this case the minimal value of w would be, in fact,
zero. Thus, when applying the simplex method to the function w, if we reach a step
at which we can pivot no more but the associated value of w is greater than zero, we
can conclude that the original problem has no feasible solutions.

Before we present examples, some remarks of a technical nature are in order.
First, before the simplex method can be applied to the function w = x,4.1 + Xp40 +
-+ + Xptm, the problem must be in canonical form. The system of constraints in
(3.6.2) is in canonical form with the artificial variables as basic variables and the
associated basic solution is feasible, but the function w is not expressed in terms of
only the nonbasic variables. To rectify this, we subtract from the equation defining
w each constraining equation containing an artificial variable. (In the general prob-
lem above, artificial variables have been introduced into every constraint. However,
this need not always be the case. In some instances, some of the original problem
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variables may be used in the initial basic variable set. An example will be seen in
Example 3.6.2 shortly.)

Second, if the pivot operations dictated by the problem of minimizing w are also
simultaneously performed on the equation c{x| +cax2 + - - - 4+ ¢,x, = z which defines
the original objective function, this function will be expressed in terms of nonbasic
variables at each step. Thus, if an initial basic feasible solution is found for the
original problem, the simplex method can be initiated immediately on z. Therefore
we incorporate this z equation into the notation and operations of the problem of
minimizing w.

In the sum, the first step in solving the general problem of (3.6.1) is to consider
the problem of minimizing w with

appxy + anxy + ...+ apXp + Xt = b 3.6.3)
axx1 + axnx; + ...+ ayxg + Xpt2 = by
AniX1 + aGmXs + ... + A, + Xpgn = by

cix1 + ¢x3 + ...+ Cuxy =2z

dixy + doxy + ... + dyx, = wp+w

where d; = —(aij+azj+---+am;) and wo = — (b1 + by + -+ bp).
Example 3.6.1. Consider the problem to

Minimize 2x; — 3x3 +x3 + X4 3.64)
subject to

X —2x — 3x3 — 2x4 = 3

X1 — X +2x3 4+ x4 =
X1,X2,X3,%4 >0

i

Introducing artificial variables xs and xg, we now instead consider the problem of
minimizing w where

X1 — 2x2 — 3x3 — 2x4 + X5 =3 3.6.5)
X — X2+ 2x3 + x4 + xg = 11
2x1 — 3x + x3+ x4 =7z

X5 + X6 =W
X1,X2,X3,X4,X5,X6 > 0
Subtracting the first two equations from the w equation gives the system
X1 — 2xp — 3x3 — 2x4 + x5 =3
X1 — X2+ 2x3 4+ x4 + x = 11

2x1 — 3x + x3+ x4 4
—2x1 +3x0 + x3+ x4 = —14+w
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Table 3.7
X1 X2 X3 X4 | X5  Xg

x| 1 -2 -3 —2,1 0] 3

| 1 -1 2 1,0 1| 1

2 =3 1 1 : 0 0

2 3 1 110 ~14

Table 3.8
X1 X x3 X4; X5 Xg

x| (1) 2 -3 —23 1 0| 3
x| 1 -1 2 1, 0 1] n
2 3 1 1, 0 0] o
2 3 1 1, 0 0| -14
X 1 -2 -3 -2, 1 0 3
| 0 1 (5) 3, -1 1 8
o 1 7 -2 0| -6
0 -1 -5 -3 } 2 0| -8
T T S N
wm| 0 4 1 33 3 $
o 5 0 41 4|
0 0 0 01 1 1 0

This information can be recorded in tableau form by simply augmenting the no-
tation of the previous section (see Table 3.7). The last row corresponds to the w
equation, with the w suppressed from the notation. Now the simplex method is ini-
tiated, with the entries in the last row determining the pivoting column at each step.
The second to last row, the z row, is operated on at each pivot operation but is other-
wise ignored for the time being. Table 3.8 gives the resulting tableaux.

Thus the minimal value of w is 0, and one point at which this value is attained is
(35—9,0, %,O, 0,0). Since this point is a solution to the system of constraints in (3.6.5)
and has as its last two coordinates zero, (% ,0, %,0) is a basic feasible solution to the
system in (3.6.4), and the data for the tableau corresponding to the original problem
expressed in canonical form with basic variables x; and x3 are contained in the last
tableau. In fact, translating these data back into equation form gives the following
system, equivalent to (3.6.4).

7 1 39
X1 — §X2 — '5—X4 = 5
%X2+X3 + %X4=%
2 4 __ 86
— gxz + §X4 = 3 +z
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Table 3.9

X1 X2 X3 X4
Wt 3 o0 1| %
mlo (H 1 3] ¢

0 3 o 4|-%
x| 1 0 7 4| 19
X2 0 1 5 3 8

0 0 2 2| 14

The second stage of the problem, the application of the simplex process to the
problem of minimizing z, can be initiated immediately (Table 3.9). The minimal
value of z is 14 and is attained at the point (19,8,0,0).

The above computational procedure can be streamlined somewhat. First, there is
no need to make a formal break in the tableau notation when passing from the first
stage of a linear programming problem, the minimization of the w function, to the
second stage, the minimization of the z function. Once a basic feasible solution to
the original problem has been found, the w row of the augmented tableau notation
can be dropped and the problem continued directly using the z row.

Second, once an artificial variable 1s extracted from the basis, there is no need to
reenter it in any future step. To see this, consider the above example after the first
pivot operation. The data of the first two rows of the second tableau of Table 3.8
correspond to the following two equations:

X1 — 2x0 — 3x3 — 2x4 + X5 =3 (3.6.6)
Xy + 5x3 +3x4 — x5 + x6 = 8

Setting xs, the artificial variable removed from the basis in the first iteration, equal
to zero yields the system of equations

X1 — 2XQ — 3X3 — 2)C4 =3 (3.6.7)
x3 + S5x3 4+ 3x4 + x4 =8

a system equivalent to the constraints of (3.6.5) with x5 = 0, that is, the system of
equations
x1 — 2x3 — 3x3 — 2x4 = 3 (3.6.8)
X1 — X+ 2x3+ x4+ x5 =11

Now the constraints of the original problem (3.6.4) have feasible solutions if and only
if (3.6.8) has feasible solutions with x4 = 0 if and only if (3.6.7) has feasible solutions
with xg = 0. Thus, if (3.6.4) has feasible solutions, the simplex algorithm applied the
problem of minimizing the function “w” = xg subject to the constraints of (3.6.7)
would drive this modified w function to zero using only the variables of (3.6.7).
(Notice that to apply the algorithm to the function “w” = xg subject to the constraints

of (3.6.7), the basic variables of (3.6.7), x; and xg, would first need to be extracted
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from the expression for the objective function. Thus the second equation of (3.6.7)
would be subtracted from this expression; the resulting form is exactly that of the
bottom row of the second tableau of Table 3.8, with x5 set equal to zero.) Hence the
artificial variable x5 need never return to the basis after the first iteration. As a result,
in applying the simplex algorithm, it is never necessary to use the information in the
artificial variable columns of the tableau, and so these data need not be calculated at
each pivot step.

Example 3.6.2. Minimize x| + x> +x3 = z subject to

—x1+ 2%+ x3<1
—Xi + 2x3 > 4

X1 — x+2x3=4
Xx1,x2,x3 >0

Adding two slack variables, the problem in standard form becomes

Minimize x; +x +x3 =2

subject to

—x1 + 2x + x3+ x4

—X1 + 2x3 — X5 =
X1 — X2 + 2x3 =

|
N

X1,%2,X3,X4,%5 > 0

Note that the x4 variable can serve as a basic variable. Thus it is sufficient to add only
two artificial variables, say x¢ and x7, to the problem and at the first stage minimize
the function w = xg + x7. The problem is then

—Xx1 + 2x% + x3 4+ x4 =1
—X1 + 2x3 — X5 + Xg =4
Xy — X3+ 2x3 +x7=4
X1+ x4+ x3 =2z

X6 +Xx7 =W

Subtracting the second and third equations from the w equation gives the equation
Xy —4x3 + x5 = —8 +w. Now the expression for w does not contain the initial basic
variables x4, xg, and x7, and the simplex method can be initiated. The resuiting
tableaux are given in Table 3.10. The minimal value for the function w = xg + x7
is ‘31, and this value is attained at the point (%,0, %,0,0, %,O). Therefore we can
conclude that the original problem has no feasible solution.

Problem Set 3.6

Note: Again the use of the LP Assistant software is strongly recommended. The
program provides easy designation of artificial variables and automatically computes
the relevant w-function data into the working tableau.
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Table 3.10

X1 x) X3 X4 X5 I X6 X7
o -1o2 () 1 010 i
X6 -1 0 2 0 -1 1 0 4
X7 I -1 2 0 0,0 1| 4
11 1 o0 o0, 0
0 1 -4 0 1, -8
x| -1 2 1 1 0, 1
x| 1 -4 0 -2 -1, 2
o 3) -5 o -2 o0, 2
2 —1 0 -1 0, -1
-4 9 0 4 1! —4
x3 0 3 1oy 0 3
P :
x1 -3 0 -3 0! Z
o 3 0 3 0! ~3
o 3 0 § 1 ~%

1. Using the technique described in this section, find solutions with nonnegative
coordinates to the following systems of equations.
@ xi—x =1
2x1 +xp —x3 =3

b)) x1+x

2xy +xp —x3 =3
2. Solve the following.

(a) Minimize 2x| +2x; — 5x3
subject to
3x) + 2x —4x3 =7
Xy — x4+ 3x3 =2
x1,%2,%3 > 0

(b) Minimize x; — 3x3
subject to
x1+2x — x3<6
X1 — X +3x3=3
Xx1,x,x3 >0
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(¢) Minimize x; +x3 — X4
subject to
dry + x2 a3+ 4= 8
x1 — 3xp +x3 +2x4 = 16
X1,%2,%3,%4 > 0

(d) Maximize 3x; —x;
subject to
x1 —x < 3
2x1 < x2
xi +x > 12
X1,x >0

(e) Maximize x| +2xp 4+ 3x3 +4xy
subject to
X1 4+ x3 —4dxg = 2
x— x3+3x =9
X1+ x — 2x3 — 3xq4 =21
X1,%2,%3,%4 >0

(f) Minimize SX1 - 2x2 — X3 — 6JC4

subject to
xt+ xp—x34+ x4 =12
—2x1 + 3x + 2x4 = 42

x1,%2,%3,%4 > 0

(g) Minimize 3x; —x2 + 2x3 + S5x4 4 6x5

subject to
12x1 ~ 3xy + 5x3 — 2x4 + 4x5 = 100
8x; — 2xp — 4x3 + S5x5 = 150

X1,X%2,X3,%4,%5 > 0

3. Using a combination of birdseed mixtures A, B, and C, a blend of minimum
cost which is at least 20% thistle and 30% corn is desired. Given the data which
follow, determine the percentages of each of the mixtures in the final blend.

% Thistle % Corn  Cost (cents/lb)

A 25 40 57
B 0 30 13
C 10 15 20

4. Consider the tableaux for the first stage of the problem discussed in Example
3.6.1. The very last row, the w row after the second pivot step in Table 3.8,
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pivot step to determine both the exiting and entering variables, when there is more
than one eligible variable, use the variable with the smallest index.

Although these procedures solve the cycling problem in theory, cycling in prac-
tice is another question. Various factors influencing cycling can be involved in a
computer implementation of the simplex algorithm, such as roundoff errors, special
pivoting rules, data scaling, and built-in perturbation techniques; and in fact, some
linear programming problems have caused cycling in some programmed versions of
the algorithm (see, e.g., [10]). However, the issue of cycling in practice is just part
of the broader question of the efficiency of a given solution algorithm being imple-
mented on a particular computer system to resolve the specific class of problems
under consideration.

Problem Set 3.8

1. Prove Lemma 3.8.1.

2. Prove Lemma 3.8.2. Hint. Consider the effect or noneffect of these pivot opera-
tions on the b; column and the c; row.

3. Prove Corollary 3.8.1. Note that Theorem 3.8.1 applies only to a problem pre-
sented in canonical form.

4. True or false: Suppose the simplex method is applied to a linear programming
problem presented in canonical form and that, at each step, there is at most
one term that could serve as a pivot term. Then for this problem, cycling is
impossible.

5. True or false: Given a linear programming problem with n =m+ 1 and presented
in canonical form, at most one step in the simplex method is necessary to drive
the process to termination.

6. Using Lemma 3.8.2, solve the linear programming problem of:

(a) Example 3.5.1, but with the constant terms 60, 10, and 50 replaced with
ZET0S.
(b) Example 3.5.2, but with the constant terms 7 and 3 replaced with zeros.

7. True or false: Given a linear programming problem with all the constant terms
of the system of constraints equal to zero, either the objective function is un-
bounded or it attains its optimal value at the point zero.

3.9 LINEAR PROGRAMMING AND CONVEXITY

In Section 2.2 we considered a linear programming problem involving only two vari-
ables. We were able to graph the set of feasible solutions to the set of constraints
(Figure 2.3) and, by a geometric argument, show that the optimal value of the linear
objective function must be attained at a corner or vertex to this solution set. This
result generalizes, as suggested at the end of Section 3.2. In this section we will
first define the concept of convexity and show that the solution set to a system of
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Figure 3.4

equations and inequalities is convex. Then we will define the concept of a vertex of
a convex set and relate the basic feasible solutions of a system of constraints to the
vertices of the solution set to this system. The corollary of the previous section will
then give directly the generalization of the above result.

Only the concept of convexity will be used later in the book, and then not until
Section 8.3 and Chapter 10. We present these ideas here primarily to initiate an
appreciation of some of the geometry underlying the linear programming problem.

For two points P and Q in R”, the line segment between P and Q is that set of
points in R” of the form tP+ (1 —¢)Q for 0 < < 1 (see Problem 1). A subset S of
R” is said to be convex if, for any two points of §, the line segment between these
two points is also in §.

Example 3.9.1. Of the six subsets of R? shown in Figure 3.4, each of the three on
the left is convex, while none of the three on the right is convex.

Example 3.9.2. Let S = {(x1,x2) € R? : x; +x2 > 2}. Then § is convex, a fact
obvious from a graph of S. To prove this algebraically using only our definitions, take
any two points P = (py, p2) and Q = (g1,42) in S. Then p; +p> > 2 and g1 +¢2 > 2.
Take any point

tP+(1—1)Q=(tps + (1 —t)q1,tp2+ (1 —1)g2), with0 <r <1
on the line segment between P and Q. We have

tpr+(L=t)q1 +tpa + (1 —t)ga = t(p1 + p2) + (1 =) (g1 +g2)
>2t4+2(1—t)
=2

using the fact that r and 1 —¢ are nonnegative. Thus tP+ (1 —£)Q is in S, and we
have an algebraic proof that § is convex.

The set of feasible solutions to a linear programming problem is convex, since
it is the intersection of a collection of hyperplanes and half-spaces. We state these
results in the following, leaving the proofs of the theorems for the reader.

Definition 3.9.1. A subset of R" of the form
X ={(x1,...,%n) ra1x; +apx2+ - + apx, = b}

for constants a;,ay,...,a, and b is called a Ayperplane.
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A subset of the form
X ={(x1,...,%) ra1x1 + apxp + -+ - + anx, < b}
for constants ay,az,...,a, and b is called a half-space.
Theorem 3.9.1. A half-space is convex.
Theorem 3.9.2. The intersection of two convex sets is convex.

Corollary 3.9.1. The set of feasible solutions to a linear programming problem is
convex.

Intuitively, the corners or vertices of a convex set are those points of the set that
do not lie on the interior of a line segment contained in the set. This suggests the
following.

Definition 3.9.2. A point P of a convex set S is a vertex of S if P is not the midpoint
of a line segment connecting two other points of S.

Example 3.9.3. For the three convex figures of Example 3.9.1, the line segment has
two vertices (the two end points), the triangle has three (the three corners), and the
home plate has five.

Theorem 3.9.3. Let S be the set of feasible solutions to the system of constraints of
a linear programming problem in a standard form. Then any basic feasible solution
to the problem is a vertex of S.

Proof. Let X be a basic feasible solution, and suppose the first m variables are the
basic variables, with n the total number of variables. Assume X = (P+ Q)/2, where
P={(pi,...,ps) and Q = (q1,...,4n) are in S. Then

X =(x1,...,%,0,...,0)

1
= §(P1+41,---7Pm+f1mapm+l +51m+17-~-,Pn+Qn)~

Since all the coordinates of P and Q are nonnegative,
pj=q;=0for j=m+1,....n

But there is only one basic feasible solution, X, with all these coordinates equal to
zero (see Problem 10 of Section 3.2). Thus P = Q = X. Hence X isa vertex of S. [

Corollary 3.9.2. If the objective function of a linear programming problem has a
finite optimal value, this value is assumed by at least one vertex of the set of feasible
solutions to the system of constraints.

Proof. This follows directly from Theorem 3.9.3 and Corollary 3.8.1. (I
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In the simplex algorithm we move from basic feasible solution to basic feasible
solution by replacing at each step one variable in the basis. From Theorem 3.9.3,
we see that we are simply moving from vertex to vertex in the convex set of fea-
sible solutions to the system of constraints. In fact, since at each step exactly one
basic variable is replaced, we are actually moving between adjacent vertices. See
Problem 10 for a development of these ideas.

By using the corollary of the previous section in the proof of the above corollary,
we have made use of the central theorems of this chapter, theorems that have been
proved algebraically. In fact, the above result can also be proved independently using
only the theory of convex sets. (See, for example, Problem 11.) This suggests an
alternative, theoretically sound approach to the linear optimization problem. First,
compute all the basic feasible solutions to the problem; second, compare the value of
the objective function at each of these points. As long as we know that the function
has an optimal value, it must be the optimal value in this set. However, this technique
is far from practical; if the constraint system has m equations and » unknowns, there
could be up to (") basic feasible solutions, where

is the binomial coefficient. For example,

15 20
<5) = 3003 and <10> = 184,756
Problem Set 3.9

1. Suppose P and Q are points in R”. Show geometrically that the set tP+ (1 —
HE=0+t{P—Q),0<r<1,is the line segment connecting P and Q.

. Prove Theorem 3.9.1. (Hint. Use Example 3.9.2 as a model.)

. Prove Theorem 3.9.2.

. Prove Corollary 3.9.1.

. Theorems 3.9.1 and 3.9.2 imply immediately that a hyperplane is convex. Why?

AN U & W N

. True or false:

(a) The union of two convex sets is convex.
(b) The complement of a convex set is convex.

7. True or false: A point P is a vertex of a convex set § if and only if P is not the
interior point of any line segment in S. (An interior point of a line segment L is
any point of L other than the two end points.)

8. Prove that if P and Q are vertices of a convex set Sand X = P++¢(Q—P) is a
point of S, then 0 <7 < 1.

9. Consider the general linear programming problem (3.4.1) on page 78. Suppose
P=(b1,...,bn,0,...,0) and Q = (0,53,...,b},,b}, ,0) are distinct basic

mUm+1



CHAPTER 4

DUALITY

4.1 INTRODUCTION TO DUALITY

Frequently in mathematics there exist relationships between concepts, systems, or
problems that are not immediately apparent but, once understood, reap many divi-
dends. For example, consider in calculus the relationship between the integral and
the derivative expressed in the Fundamental Theorem of Calculus, or in linear al-
gebra, the relationship between linear transformations and matrices. Relationships
such as these not only can be used for practical or computational purposes, but also
can provide a unified and coherent theory, so that insights and techniques from one
system can contribute to the understanding and usefulness of another.

In this chapter we will develop one such unifying notion, the concept of dual-
ity. For any linear programming problem, the associated dual linear programming
problem will be defined. In Section 4.3 it will be shown that in certain optimization
situations, the dual problem arises quite naturally; and in Sections 4.4 and 4.5 im-
portant theoretical results relating the two problems will be developed. In particular,
in Section 4.4 the fundamental Duality Theorem will be proved.

The concept of duality plays an important role in the remainder of the text. In
Section 5.1, we will expand upon the ideas in Sections 4.3 and 4.4 to yield a sensi-
tivity analysis procedure useful in a variety of applications. In Section 5.6 the Dual
Simplex Algorithm will be developed, and in Section 7.2 the Transportation Problem
Algorithm, a primal-dual algorithm, will be developed. Later, in Chapter 9, when we
consider two-person zero-sum games, we will see that the problem of solving such
a game is equivalent to solving a linear programming problem and its dual problem,
and that the question of the existence of a solution to these games is answered using
the Duality Theorem.

We conclude this section with an example that should provide some motivation
for the definitions to follow in Section 4.2.

Example 4.1.1. To obtain favorable bulk rates, a soft ice cream producer negotiates
6-month contracts in early summer with distant wholesalers for the weekly purchase
of fixed quantities of cream, skim milk, and chocolate syrup. However, in the fall,
when the demand for soft ice cream decreases, the producer will be left with a surplus
of these three quantities. In particular, suppose that in the fall there is weekly 100
gal of cream unused in the production of the ice cream, 300 gal of skim milk, and 60
Ib of chocolate syrup.

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough.
Copyright (© 2008 John Wiley & Sons, Inc.
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To utilize this surplus, the producer bottles and delivers cases of whole and
chocolate milk to a local school. A case of whole milk uses 1 gal of cream and
2 gal of skim milk and yields a net gain of $3 (selling price less bottling and delivery
costs); a case of chocolate milk uses 0.4 gal of cream, 2.5 gal of skim milk, and 0.6
Ib of chocolate syrup and yields a gain of $4. Hoping to maximize the net gain at-
tainable with this surplus, the producer formulates the following linear programming
problem, with x; the number of cases of whole milk and x; the number of cases of
chocolate milk to be produced each week.

Maximize 3x; + 4x; 4.1.1)
subject to
x1 + 0.4x; < 100
2x1 + 2.5x < 300
0.6x; < 60
x1,x2 > 0

However, before this problem is solved and contracts are signed with the local
school, the producer is contacted by the manager of the town dairy. The dairy also
supplies milk to the local school system and, in fact, strives to be the sole such
supplier. This would increase the dairy’s presence in the town and would also allow
the dairy some freedom in negotiating prices for the school contract. To accomplish
this, the manager of the dairy offers to simply buy from the ice cream producer his
surplus milk and syrup, which the dairy would then use in its own bottling plant.

The offer intrigues the ice cream producer. It would allow him to focus his com-
pany on the making and selling of ice cream and, if the dairy’s offer is financially
sound, to continue the economical bulk rate contracts with the distant wholesalers.
But what prices for the surplus ingredients are financially sound to the producer?

To attempt to answer this question, the dairy manager notes that the only value
to the producer that the surplus milk and syrup have is in bottling and selling cases
of whole milk and chocolate milk. In particular, suppose the manager offers the
producer y; dollars for each gallon of surplus cream, y, dollars for each gallon of
skim, and y3 dollars for each pound of chocolate syrup. Then, since the bottling
and delivery of a case of whole milk requires 1 gal of cream and 2 gal of skim milk
and yields a gain of $3, the dairy manager realizes that to be competitive, y; and
¥y, must be set so that y; + 2y, > 3. Similarly, consideration of the input and gain
associated with a case of chocolate milk yields the inequality 0.4y; +2.5y, 4+ 0.6y3 >
4. Of course, the dairy manager also wants to keep her total costs down and so, in
determining these prices, she is led to the following linear programming problem:

Minimize 100y; + 300y; 4 60y3 4.1.2)
subject to
yi+ 2y >3

0.4y1 + 2.5y; + 0.6y3 > 4
y1,¥2,¥3 2 0
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The linear programming problem (4.1.2) is the dual of the problem (4.1.1). We
have been led to these problems by considering the disposal of surplus goods from
two different but related perspectives. Other examples in which the dual arises quite
naturally will be discussed in Section 4.3. For the time being, let us note some
relationships between the two problems (4.1.1) and (4.1.2). (As we will see, these
relationships constitute the definition of the dual linear programming problem.)

1. Problem (4.1.2) is a minimization problem with (>) constraints; (4.1.1) is a
maximization problem with (<) constraints.

2. The number of nonnegative variables in (4.1.2) equals the number of con-
straints in (4.1.1). (A price was to be set using (4.1.2) for each limited re-
source in (4.1.1).)

3. The number of constraints in (4.1.2) equals the number of nonnegative vari-
ables in (4.1.1). (The y1,y7,y3 had to compare favorably with each of the two
processes of (4.1.1).)

4. (a) The coefficients of the objective function of (4.1.2) are the constant terms

of the constraints of (4.1.1).

(b) The constant terms of the constraints of (4.1.2) are the coefficients of the
objective function of (4.1.1).

(c) The coefficients of the constraints of (4.1.2) are the coefficients of the
constraints of (4.1.1), with the rows and columns interchanged (trans-
posed).

Problem Set 4.1

The following problems refer to the example of this section.

1. Solve (4.1.1) graphically. What is the maximum the ice cream producer can earn
each week with his surplus?

2. (a) Solve (4.1.2) using the simplex algorithm.
(b) How much should the dairy manager offer the producer for each gallon of
cream? Each gallon of skim? Each pound of syrup?
(c) What is the total amount the dairy manager would be paying the producer
each week? Would he accept the offer?

4.2 DEFINITION OF THE DUAL PROBLEM

The definition of the dual problem will initially be given in terms of a linear pro-
gramming problem expressed in a special form, called the max form of the problem.
Problems in another special form, a min form, are equally useful. We first define
these terms.

Definition 4.2.1. A linear programming problem stated in the following form is said
to be in max form:
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Maximize z = ¢y x| +cpx2 + -+ CpXy 4.2.1)
subject to

anx; + apxy + ... + apxn < by

ayxy + apxy + ... + ayx, < b

amx1 + amaxy + ... + AGupXn < b

X1,X0,...,%, = 0
Thus the max form of a linear programming problem, called simply the max problem,
is a maximization problem with nonnegative variables and a system of constraints

consisting of only (<) inequalities. Note that there are no restrictions on the signs of
the coefficients a;;, constant terms b;, and coefficients c;.

Definition 4.2.2. A linear programming problem stated in the following form is said
to be in min form:

Minimize z = ¢jx1 + X2 + - - +CnXp “4.2.2)
subject to

anxy + apxs + ...+ apx, = by

azxy + anxy + ... + awxy > by

AmiX1 + @aX> + ...+ GunXn > b,
X13X250 o5 Xpn 2 0

The min problem is a minimization problem with nonnegative variables and a system
of constraints consisting of only (>) inequalities. Again, no restrictions have been
placed on the signs of the a;;, b;, and ¢;.

We now define the dual to the max problem (4.2.1). Then we will build on this
definition to extend the definition of duality to an arbitrary linear programming prob-
lem. As we will see, both the max problem and the min problem (4.2.2) will play
equal roles in the summarizing definitions.

Definition 4.2.3. The dual of the max problem (4.2.1) is the following linear pro-
gramming problem:

Minimize v = byy; + byy2 + - + bpym “4.2.3)
subject to

anyr +auny: + ... + amym = €1

apy) +any: + ... + amym = ¢

amyr + amy2 + ... + GunYm 2 Cn

Y1,¥Y25++43¥n 20



4.2. DEFINITION OF THE DUAL PROBLEM 125

Thus the dual to the max problem (4.2.1) with m (<) constraints and » nonneg-
ative variables is a minimization problem with m nonnegative variables and n (>)
constraints. For each i, 1 <i < m, variable y; of the dual corresponds to the ith con-
straint of the max problem. The coefficients of y; in the ith column of the constraints
of (4.2.3) are the coefficients of the ith constraint in (4.2.1). Reciprocally, for each j,
1 < j < n, the jih constraint in the dual corresponds to the jth variable x; in (4.2.1);
the coefficients of the variables in the jth constraint in the dual are the coefficients
of x; in the constraints of (4.2.1). Note also the interchange between the constant
terms of the constraints and the coefficients of the objective functions for the two
problems. (Compare the above with the list of relationships given at the end of the
example of the previous section.)

Example 4.2.1. The linear programming problem of

Maximizing 6x; + xp + 4x3 “4.2.4)
subject to
3x1 + 76 + x3 <15
x1 — 2xp + 3x3 <20
x1,x2,x3 >0

has as its dual the problem of

Minimizing 15y; + 20y, (4.2.5)
subject to
3y1+ »>6
Ty1 —2y2 2 1
yi+3n >4
yi,y220

Matrix notation can be used to express any linear programming problem and, in
particular, the max problem and its dual problem, succinctly. Using (4.2.1), we will
define the coefficient matrix A and column vectors b, ¢, and X as follows:

all arn ain bl C1 X1

any ann oo A2p bz (8] X2
A= , b= , = , X =

aml Ay ... Qg by, Cn Xn

Let A’ denote the transpose of matrix A, and let ¢ - X denote the dot or scalar product
of the vectors ¢ and X. Then

al [29]] R /e |
At app ap ...

Aln n  --- Amp



126 CHAPTER 4. DUALITY

and
c-X=cixi+exm+ - Fexa=cX=Xc=X ¢

The max problem of (4.2.1) is simply to maximize z = ¢- X subject to AX <
b,X > 0, where AX < b means that each component of the column vector AX is
less than or equal to the corresponding component of the vector b, and X > 0 is
defined similarly, with O in this case being the n-dimensional zero vector. Let Y be
the m-dimensional column vector (y1,y2,...,ym)". Then the problem of (4.2.3) is to
minimize v = b-Y subject to A’Y > ¢,Y > 0.

In summary, we have the following:

Max problem: Maximize z =c-X subjectto AX <b,X >0

Dual problem: Minimize v=»5"Y subjectto A’Y >¢,Y >0 (4.2.6)

To extend the definition of duality to an arbitrary problem, first note that any
linear programming problem is equivalent to a problem stated in max form. For ex-
ample, we have already seen how a minimization problem can be transformed into
an equivalent maximization problem and unrestricted variables replaced by variables
restricted in sign. A constraint involving an equality can be replaced by two inequal-
ities in opposite directions. For example, the set of points (x1,x2) € R? such that
3x1 +2xp = 5 equals the set of (x;,x3) such that 3x; + 2x; > 5 and 3x; +2x; < 5.
Finally, the direction of an inequality can be changed by multiplication by (—1).

With this, the dual to any linear programming problem can be constructed. To
determine this dual, first express the given problem as an equivalent linear program-
ming problem in max form and then use the above definition.

As an application, let us determine the dual to the min problem of (4.2.3), the
dual of (4.2.1). The problem as stated is to minimize b-Y subject to A’Y > ¢, Y > 0.
Letting —M denote the matrix found by multiplying all the entries of a matrix M by
(—1), the problem of (4.2.3) is equivalent to the problem of

Maximizing (—b)-Y subject to (—A")Y < —¢, ¥ >0
But this problem is in max form, and its dual is, using (4.2.6), to
Minimize (—c)-X subject to (—A")'X > —b, X >0

Using the fact that for any matrix M, (M")' = M, this problem is equivalent to the
problem of

Maximizing c- X subjectto AX < b, X >0

Note that this is precisely the problem of (4.2.1). We have proven that the dual of the
min problem is a max problem and that for any linear programming problem, the dual
of the dual is the original problem. Hence, repeated application of this operation of
constructing the dual problem to a given problem does not lead to a chain of distinct
problems but, instead, cycles after two steps, resulting in exactly two problems, each
the dual of the other. ‘
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Example 4.2.2. The linear programming problem of

Minimizing 12x; 4+ 9x, —2x3

subject to

8 +3x +5x3 > 6
X1 — 3x; > —4

X1,Xx2,x3 > 0

is in min form, and thus, from the above, we can write immediately that its dual is to

Maximize 6y —4y>

subject to
8y1 + y2 < 12
3y < 9
S5y1 =3y < =2
yi, 5220

We consider now the steps involved in the construction of the dual of a problem
first, having an equality constraint, and second, having an unrestricted variable.

Example 4.2.3. To determine the dual of the problem of

Maximizing 6x; + x; + 4x3 “4.2.7)
subject to
3x1 +7x + x3 <15
x1 — 2xp + 3x3 = 20
Xp,%2,%3 2 0

notice that this is the problem of Example 4.2.1 with the second constraint changed
to an equality. We replace the equality constraint by two inequalities and multiply
the resulting (>) inequality by (—1) to find the equivalent problem in max form of

Maximizing 6x; +x7 + 4x3 4.2.8)
subject to

31+ 70+ x3< 15

x1 —2x +3x < 20
—x1 + 2% — 3x3 < =20
x1,x2,x3 >0

Using variables yy, y2, y3, the dual to (4.2.8) is to

Minimize 15y + 20y, — 20y3 “4.2.9)
subject to
v+ y2— y326
Tyr — 2y2 + 2y3 > 1
yi+ 3y —3y3>24
Y1,¥2,¥3 20
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which can be rewritten as

Minimize 15y; +20(yz —y3) (4.2.10)
subject to
3y + (2—y3) =6
Ty1 —2(y2—y3) > 1
y1+302-y3) >4
y1,¥2,¥3 2 0

which is equivalent to
Minimize 15y + 20y, “4.2.11)
subject to
i+ yw>6
Ty —2ya 21
y1 + 3y > 4
y1 > 0, y4 unrestricted

Note that (4.2.11), the dual to (4.2.7), is almost (4.2.5), the dual to (4.2.4). The
difference is that in (4.2.11), the variable y4 corresponding to the equality constraint
in (4.2.7) is unrestricted. Clearly, the algebra above generalizes. When defining a
dual, any variable in the dual corresponding to an equality constraint in the original
problem is unrestricted in sign.

Example 4.2.4. To determine the dual of (4.2.11), a problem in min form except for
an unrestricted variable, we first replace the unrestricted variable with the difference
of two nonnegative variables (4.2.10), simplify to a problem in min form (4.2.9),
write the dual (4.2.8), and replace the last two inequalities with the equivalent equal-
ity. This yields (4.2.7), the dual to (4.2.11); and the constraint in the dual generated
by the unrestricted variable y4 in the original problem is an equality. Again, we
can generalize. Constraints in a dual corresponding to unrestricted variables in the
original problem are equality constraints.

Combining these observations, we summarize the construction of the dual to an
arbitrary linear programming problem. First, express the problem, using nonnegative
and unrestricted variables, as either a maximization problem with (<) and equality
constraints or a minimization problem with (>) and equality constraints. The dual
can then be immediately formulated.

The dual to a maximization problem is a minimization problem with (>) and
equality constraints, and the dual to a minimization problem is a maximization prob-
lem with (<) and equality constraints. In both cases, unrestricted variables in the
original problem generate equality constraints in the associated dual; and recipro-
cally, equality constraints in the original generate unrestricted variables in the dual
problem. Table 4.1 summarizes the relationships.
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Table 4.1
Max Problem «— dual —  Min Problem

ith (<) inequality

ith ( =) constraint

Jjth nonnegative variable

Jjth unrestricted variable

Objective function coefficients

Constant terms of constraints

Coefficient matrix of
constraints A

ith nonnegative variable

ith unrestricted variable

Jjth (>) inequality

Jjth (=) constraint

Constant terms of constraints

Objective function coefficients

Coefficient matrix of
constraints A’

Example 4.2.5. The linear programming problem of

Minimizing x; — 2x» 4 3x3

subject to
4xy + S5x0 —

6x3 = 7

8x1 — 9 + 10x3 < 11
x1,x2 > 0, x3 unrestricted

is equivalent to the problem of

Minimizing x; — 2x7 + 3x3

subject to
dx; + 5xp — 6x3 = 7
—8x1 + 9xp — 10x3 > —11

x1,x2 2> 0, x3 unrestricted

and therefore has as its dual the problem of

Maximizing 7y; — 11y,

subject to
4y — 8y
Syt +

—6y; — 10y,

<
<

Il

1
-2
3

y1 unrestricted, y; > 0

Example 4.2.6. The linear programming problem of

Maximizing 12x; + 2xp

subject to

8x1 — xp < 21
xp —6xp > 13
3X1 - 4)C2 = —-11

x1 unrestricted, x; > 0
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is equivalent to the problem of

Maximizing 12x; 4 2x;

subject to
8)(1 -
—x1 + 6xa
3X1 — 4)62

A A

21
-13
—11

x1 unrestricted, x; > 0

and therefore has as its dual the problem of

Minimizing 21y; — 13y — 11y3

subject to

81 — y2 + 3y =12
—y1 +6y2 —4y3 > 2
y1,¥2 2> 0, y3 unrestricted

Problem Set 4.2

1. Determine the dual of each of the following linear programming problems.

(a)

(b)

(©

Maximize 20x; + 30x;

subject to

Sx;p — 4xy < 100

—x; + 120 < 90
x < 500

x,% >0

Minimize 4x; — 3x

subject to

6x1 + 11xy > —30

2x1 — Txo < 50
x < 80

x1,x3 >0

Maximize —x; + 2x;
subject to

5x1 + x <60
3x1 — 8 > 10

x1 + 7xp = 20

x1,x >0
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(d) Minimize 6x; + 12x7 — 18x3
subject to
x1 — 3x + 6x3 =30
2x; + 8xp — 16x3 = 70
x1,x2 > 0, x3 unrestricted

(e) Maximize x; — 7xp + 3x3

subject to
2xp + 523 =20
le — 3X3 =40
xp + 4x3 > 60

x1,x3 > 0, xp unrestricted

() Minimize 2y; — 3y, +4y3
subject to
8y1 —y3 =50
6y2 + y3 < 60
yi,220, =15 <y3 <0
2. (a) Determine the dual to the problem of
Maximizing x| — 2x;
subject to
x> 1
X1 S 2
Xx1,x >0
(b) Rewrite your answer to part (a) as an equivalent maximization problem.
(c) Compare your response in part (b) to the original problem of part (a). Ob-
servation?
(d) Show that the following problem is also its own dual.
Maximizing x; — 2x3 — 3x3

subject to

X2+ 2x3 > 1
X1 + 3x3 <2
2x1 — 3)@ =3

Xx1,X2 > 0, x3 unrestricted
3. Consider the linear programming problem of Example 4.2.1 of this section.

(a) Show that the objective function of the dual problem is bounded below.

(b) Solve the dual problem graphically.

(c) Solve the maximization problem using the simplex method. Note that the
optimal values of the objective functions are equal.

(d) Compare the bottom two entries in the slack variable columns of the last
simplex tableau of part (c) with the point in part (b) that yielded the minimal
value.
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fruit, using two prices: one for a bushel of choice produce and the other
for regular produce. Considering that the student must convince the grower
that it is to his advantage to let her supervise the harvest, how should she set
these three costs?

5. Consider Problem 11 of Section 2.3.

(a) Formulate the associated linear programming problem.

(b) Determine the dual problem.

(c) Suppose the manager of the electronics firm wants to assess the value of a
unit of material and a unit of labor in the production and sale of the circuits.
To do this, she lets $y; and Sy, denote these two values. The circuit for a
radio requires 2 units of material and 1 unit of labor and sells for $8. The
manager reasons, therefore, that 2 units of material plus 1 unit of labor must
be worth at least $8, but could be worth more if these units can be used
in the production of other types of circuits that are more profitable. Thus
she sets 2y; +y2 > 8. The manager continues in this manner. Compare
the resulting problem with the problem determined in part (b). (Note that
the Duality Theorem guarantees that the optimal values for the problems of
parts (a) and (b) are equal.)

4.4 THE DUALITY THEOREM

In this section we prove the celebrated Duality Theorem. It is generally accepted
that John von Neumann was the first mathematician to recognize the significance of
the duality principle in this setting and endeavor to develop a proof of the Duality
Theorem.

We start with the max problem of (4.2.1), the problem of maximizing z = ¢- X
subject to AX < b, X > 0. The dual to this problem is to minimize v = b -Y subject
to AY > ¢, Y > 0. We will show first that the set of possible values for the objective
function z of the max problem lies to the left of the set of possible values for the
function v. Then, with this result, we will prove the Duality Theorem using the
simplex method and, in particular, Theorem 3.8.1.

Theorem 4.4.1. Suppose Xy is a feasible solution to the problem of maximizing
c-X subject to AX < b, X >0 and Yy is a feasible solution to the dual problem of
minimizing b-Y subject to AY > ¢, Y > 0. Then

c-Xo<b-Yy

Proof. Since Xy is a feasible solution to the max problem with constraints AX <
b, where A is an m X n matrix, the m x 1 vector u = b — AXy > 0. In fact, the m
components of u are the slack in the m inequalities of AXy < b. Similarly, ¥y a
feasible solution to the dual implies that A’Yy > ¢, and so the column vector v =
A'Yy — ¢ of slack in this set of n inequalities also has nonnegative components. Using
these vectors, we can write

AXg=b—u and A'Yy=c+v
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Now since the product ¥j A  Xo is areal number, we have Y/AX, = (Y{AXo) =
"

1xm mxn px1

X{A'Yp, and so
Y{AXo = YL(AXo) = Y{ (b — u) equals X{AYy = X (A'Yy) = Xb(c +v)

that is,
Yéb — Yéu = X(t)c —|—X6v

Thus, since u,v, Xy, Yy > 0,

b-Yy—cXo=u-Yo+v-Xo>0 4
>0 >0

We state the first corollary below for future reference in Section 4.5. The two
subsequent corollaries are for immediate use in this section.

Corollary 4.4.1. If X, is a feasible solution to the problem of maximizing c-X subject
to AX < b, X > 0and Yy is a feasible solution to the problem of minimizing A'Y > c,
Y >0, then

b-Yo—c-Xo=(b—AXo) Yo+ (AYp— ) Xo

Proof. This is the equality statement of the last line of the above proof. N

Corollary 4.4.2. If Xo and Yy are feasible solutions to the max and min problems,
respectively, and if ¢- Xy = b Yy, then the optimal values of the objective functions
z and v equal this common value; that is, maximum z = ¢- Xy = b- Yy = minimum v
and Xy and Yy are optimal solution points for their respective problems.

Proof. Suppose X; is any feasible solution to the max problem. Then, from the
theorem, ¢- X < b Yy, so ¢-X; < ¢-Xp. Thus the maximum value of the function
z=c-X is ¢ Xp. Similarly for the dual problem. O

Corollary 4.4.3. Ifthe objective function z of the max problem is not bounded above,
the min problem has no feasible solutions. Similarly, if the objective function v of the
min problem is not bounded below, the max problem has no feasible solutions.

The proof of Corollary 4.4.3 is left to the reader (Problem 1). The converse to this
corollary is false. Examples can be constructed for which neither the max problem
nor its dual, the min problem, have feasible solutions (see Problem 2).

Theorem 4.4.2 (Duality Theorem). Suppose either the problem of
Maximizing z = c- X subject to AX < b, X >0
or the problem of

Minimizing v=">b-Y subject to A'Y > ¢, ¥ >0
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has a finite optimal solution. Then so does the other problem, and the optimal values
of the objective functions are equal, that is,

Max z = Minv

Proof. Assume first that the max problem has a finite optimal solution. Thus we
assume the existence of an Xy such that AXy < b, Xy > 0 and, for any other X with
AX <bh, X >0,wehavec-X <c-Xj.

Now the solution to the min problem will be found by applying the simplex
method to the max problem. To do this, we first write the max problem in standard
form by adding m slack variables x;, n+1 < j < n+m, and multiply the objective
function by —1. This gives the problem of

Minimizing —cix; —coxp — -+ — CpXy = —2Z 441
subject to

anx) + apxe + ...+ @pXn + Xntd = by

azixy + aypxy + ... + domx, + Xpi2 =b

amiX1 + amaX2 + ... + GunXn + Xpyn = by

x20,1<j<n+m

We now assume in our proof that the constants b;, 1 < i < m, are nonnegative. If this
is the case, the above problem is in canonical form with basic variables x,,1 1, X442,
..+, Xn4m, Since the associated basic solution is feasible, and the simplex method can
be initiated directly commencing with the second stage.

(Recall that in Section 4.2 when the max and min problems were defined, no
restrictions were placed on the constants. Thus, with this assumption, our proof
loses some generality. The extension of the proof to the general case is developed in
Problem 8.)

From Theorem 3.8.1, we know that there is a finite sequence of pivot operations
driving the problem of (4.4.1) to the optimal value of the objective function. The
initial tableaux for such a sequence would have a form such as

X1 X2 PN Xn Xn+1 e Xn+m
Xn+1 a an Aln 1 0 b1
Xp+2 ary ap ... ary, 0 1 .. by
Xntm | Gml  Gm2 ... Gwn 0 ... 1 by,
~-Cc] =€y ... —cCp 0 0 0 0

and the final tableau would assume the form

X1 X2 ... Xn  Xpxl .- Xngm

rnoorh ... rp. 8] Sm c-Xp
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Since our concern will be with only the bottom row of this last tableau, we have
used the symbols r;, 1 < j < nand s;, 1 <i < m to denote the numbers appearing
in these positions and have left the other positions of the tableau blank. Since this
tableau represents the final step of the simplex process in the problem of (4.4.1), we
have r; > 0and s; > 0 for 1 < j <n, 1 <i<m, and the minimum of —zis —c- Xp.

Let Yy be the column vector (s1,s7,...,5,)". We will show that

(@) >0
(b) A'Yy >¢
(C) b'Yo ZC'X()

As has already been mentioned, ¥y > 0. To show (b) and (c), consider the equa-

tion represented by the bottom row of the final tableau:

FIXL+ A Fadn 1001+ F SXnm = ¢ Xo+ (—2)

This equation represents the result of all the pivot operations on the initial equation
for the objective function

—C1X] —CoXp =+ — CpXp = 0+ (—2)

And, at each pivot step, some linear combination of the original constraining equa-
tions was added to this equation for the objective function. Thus there exist m con-
stants, #;, 1 <i < m, such that when the (m + 1) equations

h(anxy + apx + ... 4+ apXs + X1 = by)
tz(a21x1 + apxy + ... + ayx, + Xn42 = bz)
tm(@mx1 + amaxy + ... + dppXn + Xptn = bm)

(—c1x1 — cxp — ... —  cCpXp = —z)

are added together, the result is the equation
FIXLF s X+ $1 X1 o SmXngm = ¢ Xo +(—2)

Comparing the coefficients of the slack variables, we see thats; =¢; for 1 <i<m.
Using this result and comparing the coefficients of x;, we have

spajy +s2a21 + -+ Spam1 —cy =r; >0

and so
s1a1y +$2a21 + -+ S = €1

Similarly, comparing the coefficients of x; for any j, 1 < j <n, we have
s1a1j+ 82025+ + Smlmj —Cj =71 2 0

and so .
S1a1j+ 52025+ + Smmj 2 €
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Thus
AYy > ¢

To show (c), consider the constant terms in the above equations. We must have
sib1+ 820+ + by =c-Xp

that is,
b-Yy=c-Xp

Since Yy > 0 and A'Y; > ¢, the point Yy is a feasible solution to the min problem.
The value of the objective function v at ¥y, b - Yy, is equal to the value of the objective
function z at Xy. Thus, from Corollary 4.4.2, the minimal value of v is b - Yy, so the
optimal values of both problems are equal.

Finally, suppose that we know initially that it is the min problem that has the finite
optimal solution. But in Section 4.2 it was shown that this problem is equivalent to
a problem expressed in max form. Thus we can apply what we have already proved
to this equivalent problem and conclude that the dual to the min problem, the max
problem, has the same optimal solution. O

Corollary 4.4.4. If both the max and min problems have feasible solutions, then both
objective functions have optimal solutions and Max z = Minv.

Proof. Since both problems have feasible solutions, it follows from Theorem 4.4.1
that the objective function z is bounded above and the objective function v is bounded
below. From Corollary 3.8.1, both objective functions attain their optimal values and,
from the Duality Theorem, these optimal values must be equal. O

In summary, we have shown that there are exactly four different categories into
which solutions to the max and min problems can fall.

1. Both problems have feasible solutions. Then the sets of possible values for
the objective functions z and v relate on the real line as follows:

z=c¢X | v=bvY
!

optimal value for both

2. The objective function z is unbounded above and the min problem has no
feasible solutions.

3. The objective function v is unbounded below and the max problem has no
feasible solutions.

4. Both problems have no feasible solutions.

The following example demonstrates an important application of the duality the-
orem.
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Example 4.4.1. Suppose we apply the simplex algorithm to the problem of

Maximizing —5x; + 18x2 + 6x3 — x4 “4.4.2)
subject to
2x1 — x3+3x <20

Xy — 2x3 — x4 < 30
—3x) + 6xp + 3x3 + 4dxg <24
X1,X2,X3,X4 ZO

and the resulting final tableau suggests a maximum value of 112 for the objective
function attained at the point (10,9,0,0) (and an optimal solution point of (2,0,3)
for the dual). We can now easily check the accuracy of our calculations.

First, is the point (10,9,0,0) a feasible solution to (4.4.2), and is the value of
the objective function at this point 1127 (It might be hoped that this part of the test
procedure is already standard practice.)

Second, consider the dual to (4.4.2)

Minimize 20y + 30y, + 24y;3

subject to

2y —3y3 2 -5
y2 + 6y3 > 18

-y1 =2y +3y3 2 6

3yi — y2+4y3 > —1

Y1,¥2,¥3 20

Now we determine whether the point (2,0,3) is a feasible solution to this problem
and whether the value of the associated objective function at (2,0,3) is also 112.

The answers to the above questions are all positive, as the reader may confirm.
Corollary 4.4.2 guarantees then that we have calculated accurately and that our pro-
posed optimal value and solution points are correct. The Duality Theorem guarantees
that this test procedure is always available.

From the proof of the Duality Theorem, we know that when the simplex algo-
rithm is applied to a maximization problem with (<) constraints, the entries in the
bottom row of the final tableau in the slack variable columns give the optimal solu-
tion point to the corresponding dual minimization problem. (We had already seen an
example of this in the tableau solution of the maximization problem of (4.3.2), the
dual problem constructed in Example 4.3.1.) The following example exploits this
result.



144 CHAPTER 4. DUALITY

Example 4.4.2. Consider the linear programming problem of

Minimizing 20x; 4 15x; + 54x3

subject to

x; — 2xp + 6x3 > 30
X4+ 2x3> 6

2x; —3x3 > =5

Xy — X2 > 18

x1,x2,x3 > 0

To solve this problem using the simplex method, we would first add 4 slack variables,
then 3 artificial variables (the slack variable in the third constraint could serve as a
basic variable), and use the full two stages of the algorithm on the resulting problem
of 4 constraints and 10 variables. However, the dual to this problem is to

Maximize 30y; + 6y; — Sy3 + 18ys

subject to
¥ +2y3 +y4 <20
21+ »n -y <15
6y1 + 2y, — 3y3 < 54

Y1,¥2,¥3,Y4 > 0

Applying the simplex algorithm to this dual problem is somewhat easier. Adding
three slack variables and solving, we have the tableaux of Table 4.3. The maximum
value of the objective function 30y + 6y, — Sy3 + 18y, is 522, and therefore the min-
imum value of the objective function of the original problem also is 522. Moreover,
from the bottom row of the final tableau, we see that the point (18,0,3) is an optimal
solution point to the original problem. (Of course, the application of the simplex
algorithm to the dual of the minimization problem is facilitated here by the fact that
the coefficients in the original objective function, 20, 15, and 54, are all nonnegative.
If this had not been the case, computing the solution to the dual with the simplex
algorithm would also have required the use of artificial variables.)

These observations suggest a general question. If we solve any linear program-
ming problem with a finite optimal solution using the simplex algorithm, can we
always find in the final tableau an optimal solution point to the dual? We address this
issue in the following examples, considering first the resolution of a minimization
problem.

Example 4.4.3. Consider the problem of Example 4.3.1 of

Minimizing 10x; 4 4x;
subject to

3x1 + 2x, > 60

Tx1 + 2xp > 84

3x1 + 6xp > 72

x1,x >0
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Table 4.3
Y1 Y2 3 Y4 Ys e 7
¥s 10 2 1 1 0 20
vo | -2 1 0 -1 0 1 0 15
wl (6 2 3 0o 0o 0o 1] 54
-30 -6 5 —-18 0 0 0] O
s 0o -5 3 (O 1 o L] n
Y6 0 2 -1 -1 0 1 1] 33
i 1 -1 o 0o o t| 9
0 4 —10 —-18 0 0 5|27
¥4 0 -1 3 1 1 0 =L on
6 0 3 3 0 1 1 Lo
I 1 @ 4 0 0 0o 1| 9
0 -2 35 0 18 0 2468
Y4 10 2 1 1 0 0] 20
yo | -4 0 i 0 1 -3 | 8
) 1 -3 0 0o o L} 27
6 0 32 0 18 0 3|52
Table 4.4
X| X2 X3 X4 X5 ; X6 X7 Xxg
s 10 1 0 o 60
x| 7 0 -1 0 1 0| 84
xg 0 0 -1'" 0 0 1 72
0w 4 0 0 0! 0 0 0 0
-13 —10 1 1 0 0 0] 216
x| 0 0o -2 3 1, % -3 | m
X1 1 o + -3 o,-1 i o0 6
x 0 1 - 3 o' 7 -3 21
o 0 1 1 0 -1 -l —144

Subtracting three slack variables, adding three artificial variables, and then using the
simplex algorithm yields the initial and final tableaux of Table 4.4.

We know from Example 4.3.1 that the optimal solution point for the correspond-
ing dual maximization problem is y; = 1, yo = 1, y3 = 0. Note that these values
are precisely the numbers in the bottom row of the final tableau in the slack variable
columns for the first, second, and third constraints, respectively.
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This is always the case when starting with a minimization problem with (>) con-
straints: a solution point to the dual is given in the bottom row of the final tableau
in the slack variable columns. A proof of this fact is called for in Problem 11. The
proof essentially duplicates the proof in the Duality Theorem, with some minor ad-
justments (here, for example, s; = —t;, 1 < j <m).

These results can be generalized. In a final tableau presenting the optimal value
and an optimal solution point for a linear programming problem, the values of the
variables in an optimal solution point to the dual for those variables that correspond
to inequalities in the original problem are found in the bottom row of the final tableau
in the associated slack variable columns.

Example 4.4.4. The dual to the problem of

Maximizing 3x; +x2 — x3
subject to
X1+ xp 4+ 5x3 + x4 <200
—X + 2x3 > 20
2xy3 — x3 + 5x4 > 50
X1,%2,%3,%x4 > 0
is the problem of

Minimizing 200y; —20y; — 50y3

subject to

yi+ »n > 3
i ~-2y3 > 1
S5y=2n 4+ y3 =2 -1
i -5y > 0
Y1,¥2,¥3 20

The initial and final tableau resolution of the maximization problem is in Table 4.5.

The dual variables y;, y2, and y3 correspond to the first, second, and third in-
equalities, with slack variables x5, x¢, and x7, respectively, of the original problem.
Thus an optimal solution point to the dual is y; = 1, y, = 3, y3 = 0. This is easy to
verify. Note that the point (1,3,0) satisfies the dual constraints and has the required
optimal value of 140 at the objective function.

The last two examples in this section contain equality constraints in the original
problem and thus unrestricted variables in the dual.

Example 4.4.5. The problem of

Maximizing 3x1 + 5x; 4+ 9x3
subject to

4x; + 12x3 + 15x3 = 900
—x1 + 2x + 3x3 = 120
x1,x2,x3 >0
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Table 4.5
X1 X2 X3 X4 X5 X6 X7 l X8 X9
x| 1 1 5 1 1 0 L0 200
x| -1 0 2 0 0 -1 Lo 20
x| 0 2 -1 0 0 -1, 0 1] 50
3 -1 1 0 0o 0 0, 0 0
1 =2 -1 -5 0 1 1, 0 -70
x| 8 o o -3 2 4 1 -5 1] 20
x3 | —3 10 0 -3 0! 3 10
x| § 1 0 1 1 3 0' -3 150
1 0 11 301 -3 0] 140
Table 4.6
X1 X2 X3 | X4 X5
x| 4 12 15,1 0| 900
x| -1 2 3,0 120
3 -5 =9, 0 0 0
-3 —-14 ~18 0 0| —1020
S I
x3 A A 2 I
1 01 3 -3 560

with the dual problem of

Minimizing 900y; + 120y,
subject to
4y1 — y2 23
12y; + 2y, > 5
15y; +3y2 > 9
V1, yp unrestricted

has a maximum value of 560 and an optimal solution point of (%,0, %), as seen
in what we’ll refer to as the reduced tableaux resolution of the problem in Table 4.6,
where only the first and last tableaux are displayed. The unrestricted variables y; and
y2 of the dual correspond to the two equalities in the constraints of the maximization
problem, and to initiate the simplex algorithm for this problem, artificial variables
needed to be introduced. As the reader may have guessed, these artificial variable
columns provide the data for the optimal solution point of the dual. Indeed, the
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required value for the dual objective function of 560 is attained at the point (%, —%),
a feasible solution point to the dual, as the reader may confirm.

In general, when solving a maximization problem containing equality constraints,
the coordinates of the unrestricted dual variables at an optimal solution point to the
dual are in the bottom row of the final tableau resolution of the maximization problem
in the corresponding artificial variable columns. Problem 12 addresses the proof of
this statement.

However, when solving a minimization problem containing equality constraints,
a sign change adjustment is necessary when determining an optimal solution point to
the dual. The value of each unrestricted variable in the optimal solution point to the
dual is the negative of the entry in the bottom row of the associated artificial variable
column. (Why this difference, one might ask? But note that the situations are not
identical. For example, our algorithm has been designed for minimization problems;
for such a problem, the coefficients of the objective function are entered directly
into the initial tableau. To adapt the algorithm to a maximization problem, the cor-
responding minimization problem is considered, which necessitates an initial sign
change in the objective function coefficients when entered into the initial tableau.)

Example 4.4.6. The reduced tableaux resolution for the problem of

Minimizing z = 16x; +32x; + 12x3
subject to
X1+ 5%+ x3>2
dxy + 4xy - 2x3 =1
x1,%2,%3 > 0

is in Table 4.7. We have Min z = 14 attained at (0, 3, 7). The dual problem is to

Table 4.7
X1 X3 X3 X4 l X5 X6
5| 1 5 1 -1, 1 o] 2
| 4 4 —2 0o, 0 1 1
6 32 12 0, 0 0| 0
-5 -9 1 1, 0 0| -3
n|-F 0 1 =33 %] 0
n| 3 1 7' 7 m| W
16 0 0 81-8 2|-l4
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Maximize v =2y +y»
subject to
yi+4y <16
5y1 + 4y, <32
yi— 2 <12
y1 > 0, yp unrestricted

From the final tableau, the point y; = 8 (using the slack variable x4 column) and
y2 = —(2) = -2 (using the artificial variable x¢ column) is an optimal solution point
of the dual, as the reader may easily verify.

Problem Set 4.4
1. Prove Corollary 4.4.3.

2. Show that both the following linear programming problem and its dual do not
have any feasible solutions.

Maximize x;

subject to

X1 — X2 S 1
—x1 +x <=2
x1,x2 >0

3. Consider the linear programming problem of

Maximizing 4x; + 10x; — 3x3+ 2x4
subject to
3x; — 2x + Tx3 + x4 <26
X +6xp — x3 + 5x4 <30
—4dx; + 8xy — 2x3 — x4 < 10
X1,%2,%3,%x4 > 0

(a) Show that (%, ?,O, 0) is a feasible solution to this problem. Compute the
value of the objective function at this point.

(b) Write out the dual problem. Show that (%, %,O) is a feasible solution to
this problem. What is the value of the objective function of the dual at this
point?

(c) Using Corollary 4.4.2, what can you conclude?

4. Verify that (0, 5% , 8%, %) is an optimal solution point to the problem of
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Minimizing 7x; + 11xy — 3x3 — x4

subject to

2x1 + 2x) — x3 — 3x4 >

—X1 4+ 5% —2x3 + x4 > 12
x1 — 4xp + 3x3 + S5x4 >

X1,X%2,X3,%4 > 0

and (3%,27 1 %) is an optimal solution point to the dual.

5. Verify that (0,3, 2% ,0, 1%) is an optimal solution point to the problem of

Maximizing 3x| + 2x2 4+ 5x3 — 2x4 + x5
subject to

dxy + x3 — x3+2x4 +4x5 < 6
3x1 +3x + 2x3 — x4 — x5 <12
X —2xp +5x3 — x4+ x5< 6

X1,X2,X3,X4,%5 > 0

and that (%, L, %) is an optimal solution point to the dual.

6. Consider the problem of

Minimizing z = 13x; + 15x3 + 12x3 + 8x4
subject to

4x; + 8xp — Sx3 + 3x4 = 32

3x] — 2xp + 6x3 — x4 > 3
X1,X2,%x3,%4 > 0

(a) Determine which of the following points are feasible solutions to this min
problem: (9,0,2,2), (4,1,—1,1), and (5,1,1,3).

(b) Evaluate the function z at those points in part (a) that are feasible solutions
to the problem.

(c) Write out the dual to the min problem.

(d) Determine which of the following points are feasible solutions to this dual
problem: (—1,1), (0,2), and (1,3).

(e) Evaluate the dual objective function at those points in part (d) that are fea-
sible solutions to the problem.

(f) Using the information above, and only this information, what can you say
about the minimum value of z?

7. Solve the following by applying the simplex algorithm to the dual:
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8.

10.

Minimize 8x; + 13x; + 20x3
subject to

31 +2%0 + x3> 2

x1— x4+ 23> 4

2x3 + 2x3 > —1

—2x1 + 3x3 > 0

4x, - x3> =2
Xx1,%2,x3 >0

Generalization of the proof of the Duality Theorem. Suppose some of the con-
stant terms b; in (4.4.1) are negative. By rearranging the constraining equations
if necessary, assume that b; < 0 for 1 <i<kand b; > 0fork+1 <i<m. Then,
to apply the simplex method to (4.4.1), the first k equations must be multiplied
by (—1), resulting in all nonnegative terms in the right column. However, now
an initial basic feasible solution may not be apparent; if not, artificial variables
must be introduced and the simplex method initiated at stage one. Thus the
initial tableau would look something like the following:

X1 Xn  Xn+l Xntk Xn+k+1 Xntm | Art. Vars.
—ai] ... —Alp -1 ... 0 0 0 1 0 —bl
—ag ... —Gp 0 .0 —1 o0 ... 0 0 ... 1] —b
Ay1,1 - Qk1n 0 0 1 0 0 0 bk—H
Gmi . Gua 0 .. 0 0 .. 1|0 ... 0| by
-1 ... —¢, 0 ... 0 o ... 0 0

Since we have assumed that the problem of (4.4.1) has feasible solutions, the
simplex method initiated on the above tableau will first drive the artificial vari-
ables from the basis and then drive to the optimal value of the objective function.
Let r}, 5;, and £; be defined as in the proof of the Duality Theorem for 1 < j <n
and 1 < i <m. Show that the proof given there can be extended to this case, with
the only difference being that here s; = —¢; for 1 <i <k.

. Show that the 7;’s as defined in the proof of the Duality Theorem measure the

slack in the constraints of the dual problem at the ¥y = (s1,52,...,5,)" solution
point.

The simplex algorithm has been used to resolve the following problems, and the
corresponding initial and final tableaux are given (with the w row omitted). For
each, construct the dual, determine an optimal solution point to the dual using
the data from the tableaux, and verify that your solution point is feasible and
optimal.
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(a) Minimize 100x; + 150x,

subject to
2x1 + x > 13
6x; —9xp < 2
Tx;1 — 8xp > 5
Xi,x >0
X1 X2 A3 X4 X5 I X6 X7
x| 2 1 -1 0 10 13
w|l 6 -9 0 1 L0 2
x| 7 -8 0 0 -1, 0 1 5
100 150 0 0 0, 0 0 0
s 0 0 -3 oz 1, 3 1| 5
x 1 0 -3 L0 | 3 o
x2 0 1 -3 - 0! 3 0 I
o o0 75 B o01-75 0| -#P
(b) Maximize 3x; —4x; + 5x3
subject to
dx) — xp +6x3< 9
X1+ 2x — x3 =54
X1,%2,x3 2> 0
X1 X2 X3 X4 ; X5
x| 4 -1 6 1. 0 9
xs| 12 -1 0, 1| 54
-3 4 -5 0, 0| 0
wl 10 g 5 s
x 0 I : 3 23
o o B Pi-P) 68

(¢) Minimize —2x; + 5x + 9x3

subject to
2% + 5x3 > 1
3 — x— x3<6

2x1 —4xo + x3 =3
xi,%2,%3 > 0
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(d)

(e

X X3 X3 X4 X5 i Xg X7
x| 0 2 5 -1 0. 1 1
x| 3 -1 =1 0 1, 0 ol 6
x| 2 —4 1 0 L0 1] 3
2 5 9 0 0, 0 0| o
%3 0 1 —§ -5, § wW|T
% L0 -5 &, 1 i3
| 10 0 -5 F' ot w1
0 0 0§ 41 4]
Minimize 10x; +20x> + 15x3 + 21x4 + S5x5
subject to
Tx1 — 10x; + 8x3 — Sx4 + 3x5 = 730
3%+ xp +4x3 — 204 — x5 =350
X1,X2,X3,X4,%5 > 0
X1 X3 X3 X4 X5 I X6 x7
x| 7 -10 5 3, 1 0 730
x| 3 1 4 2 ~1, 0 1 350
0 20 15 21 5, 0 0 0
x| 1 =12 0 -9 5 : J 30
a0 o1 o403 I 65
§ 0 3 151 3 -3 -1275
Maximize 10x; — 12xp + 11x3
subject to
6x; — Txp + 8x3 = 90
—Xx1 + 3x3 > 42
x1,x2,x3 >0
X1 X3 X3 X4 ; X5 X6
x| 6 -7 8 0, 1 0] 9%
x| -1 0 3 -1, 0 1| 42
10 12 -1 0, 0 0] 0
x| -3 0 1 -5 0 114
m|-% 1 0 Ry A%
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11. (a) Consider the linear programming problem of
Minimizing cix; +coxa + -+ cpXy
subject to
aix) + apxy + ... + ainxn > b
ayxy + anxs + ... + awx, > by

AmiX1 + X2 + ...+ GunXn 2 by,

X1,X2,--,Xn >0
Assume that b; > 0, 1 <i < m, and that the problem has a finite optimal
solution. To find this solution, suppose the simplex method is used, first
adding m slack variables to the problem (each with coefficient (—1)) and
then m artificial variables. Let sy, s, ...,s, denote the m entries in the bot-
tom row of the final tableau in the m slack variable columns. Show that
(51,52,-..,8,) is an optimal solution point to the dual, modeling your proof
on the proof of the Duality Theorem.

(b) Show that the above result also follows from Problem 8.

12. Consider the linear programming problem of

Maximizing c1x; +caxo + -+ cpxy
subject to

anxi + ...+ amxa < b
apxt + ...+ apxn < by
Ay 11X + oo+ Gy1nXn = b
aAmiXt + ... +  dppXn = by

X1,X2,..,%, 20

Assume that b; > 0 for 1 <i < m. Suppose k slack variables and m — k artificial
variables are added to the problem and the simplex algorithm is applied, driving
to a finite optimal solution. Denote by s;, 1 <i < m, the entries in the bottom
row (the z row) of the final tableau in the slack variable (1 < i < k) and artificial
variable (k+ 1 <i < m) columns. Show that (s,s$2,...,8x) is an optimal solution
point to the dual.

4.5 THE COMPLEMENTARY SLACKNESS THEOREM

In this section we discuss the Complementary Slackness Theorem. The theorem
relates optimal solution points of a linear programming problem and its dual. The
theorem will not be needed in any further theoretical developments in the text. How-
ever, the relationships prescribed by the theorem are certainly interesting and useful,
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and will be referred to occasionally in the problem sets and in the development of
the transportation problem algorithm in Chapter 7. Those readers who continue their
studies in linear programming at a more advanced level may well encounter comple-
mentary slackness again.

In Example 4.4.1 of the previous section, it was verified that the point (10,9,0,0)
is an optimal solution point to the problem of

Maximizing f(x1,x2,%3,x4) = —5x; + 18x2 + 6x3 — x4 “4.5.D
subject to
2x1 — x3 + 3x4 <20

X2 — 2x3 — x4 < 30
—3x; +6xp + 3x3 +4xq4 <24
X1,X2,X3,X4 ZO

and the point (2,0,3) is an optimal solution point to the dual,

Minimize g(yi1,y2,v3) = 20y; + 30y 4+ 24y3 4.5.2)

subject to

2y, —3y3
y2 + 6y3

—y1 — 2y2 + 3y3

3y1— y2 +4ys

Yi,¥2,y3 20

(AVARAVARAVARLVS
Lo

Since (10,9,0,0) is an optimal solution to (4.5.1), it certainly satisfies the constraints
of (4.5.1). In fact, evaluating the three constraints at this point, we find slack of 0,
21, and O at the first, second, and third inequalities, respectively. Now the three
dual variables y;,y2,y3 of (4.5.2) correspond to these three constraints; and note that
where there is positive slack in the constraints of (4.5.1) at the point (10,9,0,0), the
value of the corresponding dual variable at the optimal solution point (2,0,3) is 0.

Conversely, evaluating the four constraints of (4.5.2) at (2,0, 3) yields slack of 0,
0, 1, and 19. Again, for each inequality at which the slack is positive, the value of
the corresponding dual variable at the optimal solution point (10,9,0,0) is 0.

These results are guaranteed by the Complementary Slackness Theorem. More-
over, the converse is also true. In terms of (4.5.1) and (4.5.2), this means that if X*
and Y* are feasible solutions to (4.5.1) and (4.5.2), respectively, and satisfy the com-
plementary slackness conditions described, they are optimal solution points to their
respective problems.

The statement and proof of the general theorem follow.

Theorem 4.5.1 (Complementary Slackness Theorem). Suppose X* = (x},...,x;) is
a feasible solution to the problem of

Maximizing c- X subject to AX <b,X >0 (4.5.3)
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and Y* = (¥3,...,yy,) is a feasible solution to the dual problem of
Minimizing b-Y subject to A'Y > ¢,Y >0 (4.5.4)

Then X* and Y* are optimal solution points to their respective problems if and only
if, for each i, 1 <i < m, either

(slack in the ith constraint of (4.5.3) evaluated at X*) = b; — Zaijx; =0
J

or

=

~x
|
=

and, for each j, 1 < j <n, either

(slack in the jth constraint of (4.5.4) evaluated at Y*) = Za,-jy,-* —¢;=0

i

or

x;‘- =0
Proof. Corollary 4.4.1 says it all, essentially. Since X* is a feasible solution to the
max problem (4.5.3) and Y~ is a feasible solution to the min problem (4.5.4), from
the corollary we have

b-Y*—c-X*=(h—AX")-Y*+(A'Y* —c) - X*

If X* and Y* satisfy the complementary slackness hypothesis, then for each i, with

1 <i < n, the product
y? (bl — Zjaijx;) =0

that is, each mulitiplication in the dot product (b —AX")-Y* equals 0, and so (b —
AX")-Y* = 0. Similarly, from complementary slackness, (A’Y* —¢}-X* = 0. Thus
b-Y* =c-X*, and so, from Corollary 4.4.2, X* and Y* are optimal solution points
for their respective problems.
Conversely, if X* and Y™ are optimal solution points for their respective problems,
we have
0=b-Y" —c-X*"=(b—AX")-Y*+(A'Y" —¢)-X*

But each dot product on the right side of the equation consists of a sum of prod-
ucts of nonnegative numbers, and so each dot product is nonnegative. Hence both
(b—AX*) - Y*=0and (A'Y* —c) - X* = 0, that is, the points X* and Y* satisfy the
complementary slackness conditions. O
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Example 4.5.1. The problem of

Minimizing 12x; + 5x2 + 10x3 4.5.5)
subject to
X1 — x +2x3> 10

=3x1 + x4+ 4x3 > -9

—x1 4+ 2x% +3x3 > 1

2x1 — 3x > -2

Tx1 — xp — 5x3 > 34
x1,%2,x3 >0

has (7,0,3) as an optimal solution point. To determine an optimal solution point to
the dual,

Maximize 10y; — 9y, +y3 — 2y4 + 34ys 4.5.6)
subject to
Y1 —3y2 — y3+2ysa+Tys <12
v+ y2+2y3 =3y — ys< 5
2y1 + 4y2 + 3y3 — 5y5 <10

Y1:Y2,¥3,¥4,¥5 = 0
we can use complementary slackness. Evaluating the inequalities of (4.5.5) at the
point (7,0,3), we find positive slack in the first, third, and fourth constraints (and
zero slack in the other two). Thus any optimal solution Y* = (y},y3,¥3,,y3) to
(4.5.6) must have y; =y} =y} = 0. And the first and third components of (7,0,3)
positive implies that Y* must yield zero slack in the first and third constraints of
(4.5.6). Hence Y* = (0,y3,0,0,y%) and

=3y5 + Tys = 12

4.5.7
4yy — 5y; = 10 ( )

The (unique) solution to (4.5.7) is y; = 10, y; = 6, and so Y* = (0,10,0,0,6) is an
(and the only) optimal solution point to (4.5.6). (In fact, the existence of this feasible

solution to (4.5.6) satisfying complementary slackness now certifies the optimality
of (7,0,3).)

Example 4.5.2. Suppose it is claimed that the point (3,0,1,0) is an optimal solution
to the problem of
Maximizing 9x1 4 3x; 4+ S5x3 +22x4 4.5.8)
subject to
2x1 — X2+ 2x3 + 6x4 < 8
Sx1 +3x + x5+ 2x4 < 16
dx1 + xp — x3 + 3x4 < 12
X1,X2,%3,%4 > 0
We can use complementary slackness to attempt to ratify the claim. First, we verify
that (3,0, 1,0) is a feasible solution to (4.5.8), noting that the point yields zero slack



158 CHAPTER 4. DUALITY

in the first two constraints of (4.5.8) and positive slack in the third. Now consider the
dual.

Minimize 8y; + 16y, + 12y3 “4.5.9)
subject to

2y1 +5y2 +4y3 > 9

1 +3+ y32> 3

i+ y2— y32> 5

6y1 + 2y2 + 3y3 > 22

y1,¥2,¥3 =0

If (4.5.8) has a finite optimal solution, so does (4.5.9), and any optimal solution
point Y* = (y7,y3,y;) must satisfy the complementary slackness conditions with
(3,0,1,0). Thus, y§ =0, and

27+ 55 =9
21+ ¥ =35

yielding Y* = (2, 1,0). But this point is not a feasible solution to (4.5.9), as the reader
may verify. Hence (3,0, 1,0) cannot be an optimal solution to (4.5.8).

Problem Set 4.5

1. Consider the linear programming problem of

Maximizing x + 2x,

subject to

2x1 + x <3
X1+ 2x <3

x1,x >0

(a) Determine the dual problem.

(b) Show that X* = (1,1) and Y* = (0, 1) are optimal solutions for the original
and dual problems, respectively, by using the Complementary Slackness
Theorem.

(c) Note that at these solution points, both y] and the slack in the corresponding
first constraint of the max problem are zero.

2. Consider the linear programming problem of

Maximizing 2x{ + 2x;

subject to

X1 + x34+x <1
X3+ x3 —x4 <1

x| +x2 + 2x3 <3

X1,%2,%3,%4 = 0
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(a) Determine the dual problem.

(b) Show that X* = (1,1,0,0) and Y* = (1,1, 1) are feasible solutions to the
original and dual problems, respectively.

(c) Show that for this pair of solutions, for each j, x;‘- > (O implies that the slack
in the corresponding dual constraint is zero.

(d) Show that Y* is not an optimal solution to the dual.

(e) Does this contradict the Complementary Slackness Theorem?

3. Prove or disprove each of the following, using complementary slackness.

(2) (1,1,0,0) is an optimal solution point to the maximization problem of Prob-
lem 2.
(b) (0,4,0,2) is an optimal solution point to (4.5.8) on page 157.
(¢) (3,0,1,0,5) is an optimal solution point to the problem of
Maximizing S5x + 16xp —4x3 — x4 + 7xs
subject to
8x1 — 2x7 + 3x3 — 2x5 < 18
2x1 +4x — Txz3 +3x4 + x5 < 4
x1+3x + x3— x4+ 2x5 <14
X1,%2,%3,X4,%5 > 0
(d) (1,0,1,0) is an optimal solution point to the problem of
Minimizing 5x; 4 8x» + 4x3 + 2x4
subject to
X1 +2x —x3 +x4 >0
2x1 + 3% +x3 — x4 >3
X1,%2,%3,%4 > 0
(e) (0,3,12) is an optimal solution point to the problem of
Minimizing 2y, — 5y2 — 3y3
subject to
=3y —6y2+2y3> 6
yi+3y2+ y3 > 20
4y1 + Ty2 — 3y3 > —15
y1,¥2,y3 20
(f) (0,3,0,0,4) is an optimal solution point to the problem of

Maximizing 5x1 + 4x2 + 8x3 +9x4 + 15x5
subject to

X1+ x4+ 2x3 4+ x4+ 2x5 <
x1 —2x — x3+ 2x4 + 3x5 <
X1,X2,X3,X4,%5 > 0

11
6



Solutions to Selected Problems

Problem Set 2.2

5. There is no change in the optimal solution; all the points of the shaded region in
Figure 2.3 satisfy the inequality 4x+ 2y > 40.
7. (a) See Example 5.1.1 on page 161.
(b) There is no change in the optimal diet if % < the ratio of the cost of Feed 1
to Feed 2 < %

11. Let x; denote the amount in pounds of Mineral i used in the production of 100 1b
of paint. The problem:

Minimize 4x; + 7.5x2 + 3x3
subject to

0.06x; + 0.07x3 > 5

0.05x; + 0.08x; > 3
0.30x; + 0.30x2 + 0.25x3 > 26
0.20x; + 0.10xy + 0.16x3 < 15
X1 + Xy + x3 = 100

x1,%2,%x3 >0

Problem Set 2.3
1. See Example 8.1.1 on page 299.

3. (a) The function to be maximized does not accurately measure profit when less
than 2000 1b of aluminum is used.
(b) The function to be maximized does not accurately measure profit when less
than 1500 1b of aluminum is used.
(c) The first constraint forces the use of at least 1500 1b of aluminum.

5. Replace the function f in (2.3.1) with

f(x1 ,X2,X3,X4) = 690x| -+ 545xp + 1020x3 + 785x4
—3(35x) +45x; + 70x3 — 2100)
—2(55x) +42x; + 90x4 — 1800)

6. Let xg > 0 denote the amount in pounds of Raw Material A purchased and mod-
ify the problem of (2.3.2) as follows. Replace the function g with

gl{x1,x2,%3,%4,x5,x¢) = 30xs5 + 690x1 + 545x + 1020x3 + 785x4 + 4x¢

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough.
Copyright (©) 2008 John Wiley & Sons, Inc.
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and the second constraint with

160x; 4 100x3 4+ 200x3 + 75x4 < 8000 + x¢

9. The maximum profit is $54, attained by making 108 dozen muffins and no
brownies.

12. See Example 4.3.2 on page 134.
13. See Problem 4 of Section 4.3 on page 137.

17. Let C, T, B, P, and K denote the number of acres planted of corn, tomatoes,
beans, peas, and carrots, respectively; U the number of acres of unused land;
L the hours of labor employed; and M the amount of money borrowed. The
problem:

Maximize (60 —20)C + 8007 + 1458+ 185P 4+ 250K —7.25L —9U —0.03M

subject to
C+ T+ B+ P+ K+ U = 100
5C + 120T + 25B + 35P + 40K + 2U =1L

20C + 200T + 55B + 40P + 75K + 9U + 3.25L < 3000+ M
0 < L<3600,0 <M < 12000
C,T,B,P,K,U >0

Problem Set 2.4
2. (a) See Example 4.3.3 on page 135.

3. Let x;; denote the number of cases shipped from Plant i to Outlet j and x;5 the
number of surplus cases at Plant i, 1 <i < 3,1 < j<35. The problem:

Minimize  6.2x, +5.1x13+10.1x14+ 8x5
+6.5x21 +10.5x70 +4.3x23 + 11.3x24 + 6.5x25
+6.3x31+  9x32 + 10.8x34

—120x16 — 110x26 — 114x34
subject to
S0 x1;=4000 (x;2 =0)
%1 x2; = 2000
3% X35 =3000 (x33 =2x35 =0)
S x5 = 1000,1200,3000,400,2200  (j = 1,2,3,4,5, respectively)
xi;=>0

Problem Set 2.5

1. Equalities would force each D; to be at least 1000.
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4. Formonth i (i = 1, Aug.; i = 2, Sept.; i = 3, Oct.), let

R;(V;) = number of refrigerators (ovens) bought
S;(W;) = number of refrigerators (ovens) sold

T;(X;) = number of refrigerators (ovens) stored

The problem:

Minimize 90S5| + 1108, + 10555 + 200W; + 250W, + 240W;
—(60R1 +65R; + 68R3 + 150V + 175V, + 200V3)
—7(T1 + T+ X +X2)

subject to

25+R=S1+T1 Vi=W+X;
Ni+R,=5+1 Xi+Vo=W+X;
T +R3 = S3 Xo+Vs=Ws
N+X; <45, +X, <45

0<R; <65 0<V; <35
0<§;, <100 0<W <55

Ri7Si,Ti,‘li,u/j,Xi > 0

Problem Set 3.1

1. (a) X] = 4,x2 = 12,X3 = 0,)(4 =-1
(b) Any point (x;,x2,x3,x),X,,xs,x) of the form (1,3,5,24+ 1, 4,3,15) where

A>0
3. (a) Minimize —3x, +2x,
subject to
Sx1 + 2xp — 3x3 + x4 + x5 = 7
3xy, — 4x3 + xg = 6
X1 + X3 — X4 —x7 =11
X1,...,x7 20
(b) Minimize —x} + x5 —x§ +x) —x]
subject to
X1 + Xlz — X5 =6
N A T
5x; + 6x5 + Txy — Tx§ — 8x) + 8x) —x7=2

/ ! (A N
xl7x27x3>xgax47x47x57x67x7 = 0
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(d) Minimize —6x; + 2x) — 2xj — 9x3 — 300

subject to
2x; — 6xh +6x) — X3+ x4 = 100
x1+ xh — x5+ 9x3 + X5 = 200
x| + X¢ = 50
X, — — X7 = —60
X3 —xg= 5

/ !
XI,XZ,X’ s X3,X4,X5,X6,X7,X8 > 0

4. (a) {(0,0,2,0):1 > 11}
() {(5,0,6,0)}

() 0
Problem Set 3.2
1. (a) (1,2,-3)

(b) Arbitrarily selecting x| and x to use as basic variables, two pivot steps yield
the following equivalent system:

11 13
ntpB= 7

47 . 3

2 BT T

Thus the solution set is

72,83 U2 2): 1R}

—
~
|
Sl
+
—(&

2. The system is equivalent to various systems of equations in canonical form. For
example, an equivalent system with basic variables x| and x3 is the system

X1 —8x2 = —41
—3x+x3=—16
4. (a)
=9
x1—x3=4
(b) No

(¢) b=(17,4)" can be expressed as a linear combination of A1) = (2,1)" and
A® = (1,0, but not as a linear combination of A(") and A®) = (=2, —1)

6. (b) (0,6,2,0) and (0,0,2,2)
(d) The minimum value of the objective function is 8, attained at (0,0,2,2)
7. Min f = £ attained at(%,0,0, 3)



SOLUTIONS TO SELECTED PROBLEMS 447

Problem Set 3.3

1. (@) x1 =8—2x4,xp =6—3x4,x3 = 18 —6x4
(b) 0<x <2
(©) x2
(d) We should extract x; from the basis; therefore, pivot at the 3x4 term of the
second equation. Pivoting here yields:

(e) Xy — %xz =4
%XQ + x4 =2
— 2xp + x3 =6

The associated basic solution, (4,0,6,2), is feasible.
(f) The minimum of %, g, and % is g, attained with the data from the second

equation.

4. Pivoting at the 2x4 term of the first constraint yields the equivalent problem of
minimizing z with

%XZ— 3x3 +x4= 3
x| + %xz — X3 = 8
3x; — 14x;3 =184z
X1,%2,%3,%4 > 0

The expression for z suggests putting x3 into the basis, but there is no positive x3
coefficient in the constraints. In fact, from this representation of the constraints,
we see that the set of feasible solutions contains the set

{(8 +x3,0,x3,3+3x3) : x3 > 0}

What happens to z on this set?

Problem Set 3.4

1. Minz = —67% attained at (0, 9—37,0, %,

2. (a) Minz =0 attained at (5,10,0,0).
(b) Minz = 0 attained at (5,10,0,0).
(c) Unbounded objective function.
(d) Unbounded objective function.
(e) Minz = —5 attained at (5,0,5,0)
(f) Minz = 0 attained at (0, 10,0,0). One pivot necessary.
(g) Unbounded objective function. No pivots necessary.

[SNIPN

)

0 pivots necessary.
0 pivots necessary.

Z Z

5. When the Min{b;/a;s : a;s > 0} is attained in more than one row.

Problem Set 3.5
2. (a) Minz = —200 attained at (0,0,50,0)
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(c) Unbounded objective function
(d) Maxz = 90 attained at (250,10,0,40,0,0)
3. See Example D.1 on page 427.
5. (a) In the final tableau, ¢; = 0 and at least one a}, > 0. Thus x; can be inserted
into the basis. Similarly for x7.
(b) (0,0,0,25,0,15,15)
(c) (10,30,0,20,0,0,0)
8. Maximum income is $7020, attained by producing 240 radios, 85 televisions,
and 0 stereos.

Problem Set 3.6
1. (a) Applying the simplex algorithm to the problem of

Minimizing w = x4 + x5

subject to
X] — X2 + X4 =1
2x1 + xp — X3 + x5 =3

X1,X2,X3,X4,%5 > 0

generates the solution point (‘3‘, ;,O) to the original system.

2. (a) Minz =3 attained at (0, 229, )
(b) Minz = —=2 6 attained at (0, 251 , 152) (Only one artificial variable required.)

(c) No fea51ble solutions.

4. The row corresponds to the expression for the function w = x5 + x¢ in terms of
the nonbasic variables for that tableau, namely, x, x4, x5, and xg.

6. Follows from the definition of w and from Problem 9 of Section 3.4 on page 84.

8. Minimal cost is $1950 attained by using Process 2 for % hr and Process 3 for %

hr.
Problem Set 3.7
3. (a) Minz= 50 attained at (50,0, O 0) No redundant equations.
(¢) Minz = —3 2 attained at (0, 0,1 3 3) One redundant equation.

(d) Maxz = —6 attained at (0, 1,2,0). No redundant equations.

4. True. If any artificial variables remained in the basis, they would be at zero level.
The elimination of these variables from the basis would lead to a degenerate

solution to the original system.

Problem Set 3.8

6. (a) Changing the constant-term column entries to O in the tableaux of Table 3.4,
we have Max z = 0 attained at (0,0,0).
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(b) From the modified tableaux of Table 3.5, the objective function is unbounded.

Problem Set 4.1

1. Maximum gain is $475, attained at (25, 100).
2. (a) Minimum cost is $475, attained at (0, 3 i).

RN
Problem Set 4.2
1. () Minimize 100y, +90y; 4+ 500y3
subject to
Sy - » > 20
—4y; + 12y, 4+ y3 > 30
y1,Y2,¥3 2 0
(b) Maximize —30y; — 50y; — 80y3
subject to
6y1 — 2 < 4
Ily; + 7y2 —y3 < =3
y1,52,¥3 2 0

(¢) Minimize 60y; — 10y + 20y3
subject to
Sy1 =3y + y3 > —1
yi+8n +73> 2
vi,y2 > 0, y3 unrestricted

() Maximize 50x; — 70xp — 15x3
subject to
4x <1
2x2 >1
x| — X2 +x3>4
x1 unrestricted, xo,x3 > 0,

3. (b) Minb-Y is 411, attained at (7, 2

(¢) Maxc-X is 411, attained at (2

)‘ 45
?aoaf)-

Problem Set 4.5

3. (a) (1,1,0,0) optimal; complementary slackness generates (2,2,0), a feasible
solution to the dual.

(b) (0,4,0,2) optimal; complementary slackness generates (3,2,0), a feasible
solution to the dual.



CHAPTER 5

Transportation Model
and Its Variants

Chapter Guide. The transportation model is a special class of linear programs that
deals with shipping a commodity from sources (e.g., factories) to destinations (e.g.,
warehouses). The objective is to determine the shipping schedule that minimizes the
total shipping cost while satisfying supply and demand limits. The application of the
transportation model can be extended to other areas of operation, including inventory
control, employment scheduling, and personnel assignment.

As you study the material in this chapter, keep in mind that the steps of the trans-
portation algorithm are precisely those of the simplex method. Another point is that
the transportation algorithm was developed in the early days of OR to enhance hand
computations. Now, with the tremendous power of the computer, such shortcuts may
not be warranted and, indeed, are never used in commercial codes in the strict manner
presented in this chapter. Nevertheless, the presentation shows that the special trans-
portation tableau is useful in modeling a class of problems in a concise manner (as op-
posed to the familiar LP model with explicit objective function and constraints). In
particular, the transportation tableau format simplifies the solution of the problem by
Excel Solver. The representation also provides interesting ideas about how the basic
theory of linear programming is exploited to produce shortcuts in computations.

You will find TORA’s tutorial module helpful in understanding the details of the
transportation algorithm. The module allows you to make the decisions regarding the
logic of the computations with immediate feedback.

This chapter includes a summary of 1 real-life application, 12 solved examples, 1
Solver model, 4 AMPL models, 46 end-of-section problems, and 5 cases. The cases are in
Appendix E on the CD.The AMPL/Excel/Solver/TORA programs are in folder ch5Files.

Real-life Application—Scheduling Appointments at Australian Trade Events

The Australian Tourist Commission (ATC) organizes trade events around the world to
provide a forum for Australian sellers to meet international buyers of tourism prod-
ucts, including accommodation, tours, and transport. During these events, sellers are

193
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Sources Destinations
SRS

a

Units of a
supply 2

FIGURE 5.1
Representation of the transportation model with nodes and arcs

stationed in booths and are visited by buyers according to scheduled appointments. Be-
cause of the limited number of time slots available in each event and the fact that the
number of buyers and sellers can be quite large (one such event held in Melbourne in
1997 attracted 620 sellers and 700 buyers), ATC attempts to schedule the seller-buyer
appointments in advance of the event in a manner that maximizes preferences. The
model has resulted in greater satisfaction for both the buyers and sellers. Case 3 in
Chapter 24 on the CD provides the details of the study.

5.1 DEFINITION OF THE TRANSPORTATION MODEL

The general problem is represented by the network in Figure 5.1. There are m
sources and n destinations, each represented by a node. The arcs represent the
routes linking the sources and the destinations. Arc (i, j) joining source i to destina-
tion j carries two pieces of information: the transportation cost per unit, ¢;;, and the
amount shipped, x;;. The amount of supply at source i is a; and the amount of de-
mand at destination j is b;. The objective of the model is to determine the unknowns
x;; that will minimize the total transportation cost while satisfying all the supply and
demand restrictions.

Example 5.1-1

MG Auto has three plants in Los Angeles, Detroit, and New Orleans, and two major distribution
centers in Denver and Miami. The capacities of the three plants during the next guarter are 1000,
1500, and 1200 cars. The quarterly demands at the two distribution centers are 2300 and 1400
cars. The mileage chart between the plants and the distribution centers is given in Table 5.1.

The trucking company in charge of transporting the cars charges 8 cents per mile per cat.
The transportation costs per car on the different routes, rounded to the closest dollar, are given

'~ in Table 5.2.
The LP model of the problem is given as

Minimize zZ = SOXH + 215x12 + 1OOX21 + 108122 + 102)’.’31 + GSX32
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TABLE 5.1 Mileage Chart

Denver Miami
Los Angeles 1000 2690
Detroit 1250 1350
New Orleans 1275 850

TABLE 5.2 Transportation Cost per Car

Denver (1) Miami (2)
Los Angeles (1) $80 $215
Detroit (2) $100 $108
New Orleans (3) $102 $68

subject to
Xy + xqpp = 1000 (Los Angeles)
Xy + xp = 1500 (Detroit)
+ X3+ x3 = 1200 (New Oreleans)
X + x5 + X3) = 2300 (Denver)
xpp + Xy + x33 = 1400 (Miami)

x,-j-:—'-O,i= 1,2,3,j= 1,2

These constraints are all equations because the total supply from the three sources (= 1000 +
1500 + 1200 = 3700 cars) equals the tota] demand at the two destinations (= 2300 + 1400 =
3700 cars). ‘

The LP model can be solved by the simplex method. However, with the special structure of
the constraints we can solve the problem more conveniently using the transportation tableau
shown in Table 5.3.

TABLE 5.3 MG Transportation Model

Denver Miami
Los Angeles | 80 T 215
Xy X1z
Detroit 100 108
X3i X2z
New Orleans 102 68
X3t X3z |

Demand 2300 1400

Supply
1000

1500

LR R T

e R
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1000

Los Angeles

1500
Detroit

FIGURE 5.2 1200
Optimal solution of MG Auto model New Orleans

The optimal solution in Figure 5.2 (obtained by TORA!) calls for shipping 1000 cars from
Los Angeles to Denver, 1300 from Detroit to Denver, 200 from Detroit to Miami, and 1200 from
New Orleans to Miami. The associated minimum transportation cost is computed as 1000 x $80 +
1300 X $100 + 200 X $108 + 1200 X $68 = $313,200.

Balancing the Transportation Model. The transportation algorithm is based on the
assumption that the model is balanced, meaning that the total demand equals the total
supply. If the model is unbalanced, we can always add a dummy source or a dummy
destination to restore balance.

Example 5.1-2

In the MG model, suppose that the Detroit plant capacity is 1300 cars (instead of 1500). The total
supply (= 3500 cars) is less than the total demand (= 3700 cars), meaning that part of the de-
mand at Denver and Miami will not be satisfied.

Because the demand exceeds the supply, a dumnmy source (plant) with a capacity of 200 cars
(= 3700 — 3500) is added to balance the transportation model. The unit transportation costs
from the dummy plant to the two destinations are zero because the plant does not exist.

Table 5.4 gives the balanced model together with its optimum solution. The solution shows
that the dummy plant ships 200 cars to Miami, which means that Miami will be 200 cars short of
satisfying its demand of 1400 cars.

We can make sure that a specific destination does not experience shortage by assigning a
very high unit transportation cost from the dummy source to that destination. For example, a
penalty of $1000 in the dummy-Miami cell will prevent shortage at Miami. Of course, we cannot
use this “trick” with all the destinations, because shortage must occur somewhere in the system.

The case where the supply exceeds the demand can be demonstrated by assuming that the
demand at Denver is 1900 cars only. In this case, we need to add a dummy distribution center to
“receive” the surplus supply. Again, the unit transportation costs to the dummy distribution cen-
ter are zero, unless we require a factory to “ship out” completely. In this case, we must assign a
high unit transportation cost from the designated factory to the dummy destination.

"To use TORA, from ;Main Menu; select ‘Trinsportation Model . From the SOLVE/MODIFY' menu, select
Solve. = Finalsolution’ to obtain a summary of the optimum solution. A detailed description of the itera-
tive solution of the transportation model is given in Section 5.3.3.
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TABLE 5.4 MG Model with Dummy Plant

Denver Miami Supply

80 215
Los Angeles
1000 1000
100 108
Detroit
1300 1300
102 68
New Qrleans
1200 1200
Dummy Plant
0 200

Demand 2300 1400

TABLE 5.5 MG Model with Dummy Destinaticn

Denver Miami Dummy
R 215 [
Los Angeles
1000 1000
100 108
Detroit
900 200 1500
102 68
New Orleans
1200 1200
Demand 1900 1400 400

Table 5.5 gives the new model and its optimal solution (obtained by TORA). The solution
shows that the Detroit plant will have a surplus of 400 cars.

PROBLEM SET 5.1A2

1. True or False?

(a) To balance a transportation model, it may be necessary to add both a dummy source
and a dummy destination.

(b) The amounts shipped to a dummy destination represent surplus at the shipping
source.

(c) The amounts shipped from a dummy source represent shortages at the receiving
destinations.

’In this set, you may use TORA to find the optimum solution. AMPL and Solver models for the transporta-
tion problem will be introduced at the end of Section 3.3.2.
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2. n each of the following cases, determine whether a dummy source or a dummy destina-
tion must be added to balance the model.
(a) Supply:a; = 10,ay =35, a3 =4 a, = 6

Demand: bl = 10, bg = 5, b3 = 7,b4 =9
(b) Supply:a; = 30,a;, = 44

Demand: b, = 25, b; = 30, b3 = 10

3. In Table 5.4 of Example 5.1-2, where a dummy plant is added, what does the solution
mean when the dummy plant “ships” 150 cars to Denver and 50 cars to Miami?

4. In Table 5.5 of Example 5.1-2, where a dummy destination is added, suppose that the De-
troit plant must ship out all its production. How can this restriction be implemented in
the model?

5. In Example 5.1-2, suppose that for the case where the demand exceeds the supply
(Table 5.4), a penalty is levied at the rate of $200 and $300 for each undelivered car at
Denver and Miami, respectively. Additionally, no deliveries are made from the Los
Angeles plant to the Miami distribution center. Set up the model, and determine the
optimal shipping schedule for the problem.

6. Three electric power plants with capacities of 25,40, and 30 million kWh supply electrici-
ty to three cities. The maximum demands at the three cities are estimated at 30,35, and 25
million kWh. The price per million kWh at the three cities is given in Table 5.6.

During the month of August, there is a 20% increase in demand at each of the three
cities, which can be met by purchasing electricity from another network at a premium
rate of $1000 per million kWh. The aetwork is not linked to city 3, however. The utility
company wishes to determine the most economical plan for the distribution and pur-
chase of additional energy.

(a) Formulate the problem as a transportation model.
(b) Determine an optimal distribution plan for the utility company.
(¢) Determine the cost of the additional power purchased by each of the three cities.

7. Solve Problem 6, assuming that there is 2 10% power transmission loss through the net-
work.

8. Three refineries with daily capacities of 6,5, and 8 million gallons, respectively, supply
three distribution areas with daily demands of 4,8, and 7 million gallons, respectively.
Gasoline is transported to the three distribution areas through a network of pipelines.
The transportation cost is 10 cents per 1000 gallons per pipeline mile. Table 5.7 gives the
mileage between the refineries and the distribution areas. Refinery 1 is not connected to
distribution area 3.

(a) Construct the associated transportation model.
(b) Determine the optimum shipping schedule in the network.

TABLE 5.6 Price/Million kWh for Problem 6

City
1 2 3

] $600 $700 $400
Plant 2 $320 $300 $350
3 $500 $480 $450
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TABLE 5.7 Mileage Chart for Problem 8

Distribution area
1 2 3

1 120 180 —
Refinery 2 300 100 80
3 200 250 120

*9. In Problem 8, suppose that the capacity of refinery 3 is 6 million gallons only and that
distribution area 1 must receive all its demand. Additionally, any shortages at areas 2 and
3 will incur a penalty of 5 cents per gallon.

(a) Formulate the problem as a transportation model.
(b) Determine the optimum shipping schedule.

10. In Problem 8, suppose that the daily demand at area 3 drops to 4 million gallons. Surplus
production at refineries 1 and 2 is diverted to other distribution areas by truck. The trans-
portation cost per 100 gallons is $1.50 from refinery 1 and $2.20 from refinery 2. Refinery
3 can divert its surplus production to other chemical processes within the plant.

(a) Formulate the problem as a transportation model.
{(b) Determine the optimum shipping schedule.

11. Three orchards supply crates of oranges to four retailers. The daily demand amounts at
the four retailers are 150, 150,400, and 100 crates, respectively. Supplies at the three or-
chards are dictated by available regular labor and are estimated at 150, 200, and 250
crates daily. However, both orchards 1 and 2 have indicated that they could supply more
crates, if necessary, by using overtime labor. Orchard 3 does not offer this option. The
transportation costs per crate from the orchards to the retailers are given in Table 5.8.
(a) Formulate the problem as a transportation model.

(b) Solve the problem.
(¢) How many crates should orchards 1 and 2 supply using overtime labor?

12. Cars are shipped from three distribution centers to five dealers. The shipping cost is
based on the mileage between the sources and the destinations, and is independent of
whether the truck makes the trip with partial or full loads. Table 5.9 summarizes the
mileage between the distribution centers and the dealers together with the monthly sup-
ply and demand figures given in number of cars. A full truckload includes 18 cars. The
transportation cost per truck mile is $25.

(a) Formulate the associated transportation model.

(b} Determine the optimal shipping schedule.

TABLE 5.8 Transportation Cost/Crate for Problem 11

Retatiler
1 2 3 4

1 $1 32 $3 $2
Orchard 2 $2 34 L3 32
3 $1 $3 35 $3
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TABLE 5.9 Mileage Chart and Supply and Demand for Problem 12

Dealer
1 2 3 4 5 Supply

1 100 150 200 140 35 400
Center 2 50 70 60 65 80 200
3 40 90 100 150 130 150

Demand 100 200 150 160 140

13. MG Auto, of Example 5.1-1, produces four car models: M1, M2, M3, and M4.The Detroit .

plant produces models M1, M2, and M4. Models M1 and M2 are also produced in New
Orleans. The Los Angeles plant manufactures models M3 and M4. The capacities of the
various plants and the demands at the distribution centers are given in Table 5.10.

The mileage chart is the same as given in Example 5.1-1, and the transportation rate
remains at 8 cents per car mile for all models. Additionally, it is possible to satisfy a per-
centage of the demand for some models from the supply of others according to the speci-
fications in Table 5.11.

(a) Formulate the corresponding transportation model.

(b) Determine the optimum shipping schedule.

(Hint: Add four new destinations corresponding to the new combinations [M1, M2}, [M3,
M4}, [M1, M2], and [M2, M4). The demands at the new destinations are determined from
the given percentages.)

TABLE 5.10 Capacities and Demands for Problem 13

Model

M1 M2 M3 M4 Totals

Plant
Los Angeles — — 700 300 1000
Detroit 500 600 — 400 1500
New Orleans 800 400 — — 1200
Distribution center
Denver 700 500 500 600 2300
Miami 600 500 200 100 1400

TABLE 5.11 Interchangeable Models in Problem 13

Distribution center  Percentage of demand  Interchangeable models

Denver 10 M1, M2
20 M3, M4
Miami 10 M1, M2

5 M2, M4

5.2
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NONTRADITIONAL TRANSPORTATION MODELS

The application of the transportation model is not limited to fransporting commeodities
between geographical sources and destinations. This section presents iwo applications
in the areas of production-inventory control and tool sharpening service.

Example 5.2-1 (Production-Inventory Control)

Boralis manufactures backpacks for serious hikers. The demand for its product occurs during
March to June of each year. Boralis estimates the demand for the four months to be 100, 200,
180, and 300 units, respectively. The company uses part-time labor to manufacture the backpacks
and, accordingly, its production capacity varies monthly. It is estimated that Boralis can produce
50, 180, 280, and 270 units in March through June. Because the production capacity and demand
for the different months do not match, a current month’s demand may be satisfied in one of
three ways.

1. Current month’s production.
2. Surplus production in an earlier month.
3. Surplus production in a later month (backordering).

In the first case, the production cost per backpack is $40. The second case incurs an addi-
tional holding cost of $.50 per backpack per month. In the third case, an additional penalty cost
of $2.00 per backpack is incurred for each month delay. Boralis wishes to determine the optimal
production schedule for the four months.

The situation can be modeled as a transportation model by recognizing the following paral-
lels between the elements of the production-inventory problem and the transportation model:

Transportation Production-inventory

1. Source { 1. Production period i

2. Destination j 2.Demand period §

3. Supply amount at source i 3. Production capacity of period i

4.Demand at destination j 4, Demand for period j

5. Unit transportation cost from source { 5. Unit cost {production + inveatory + penalty) in period i
to destination j for period |

The resulting transportation model is given in Table 5.12,

TABLE 5.12 Transportation Model for Example 5.2-1

1 2 3 4 Capacity

$40.00 $40.50 $41.00 $41.50 50
$42.00 $40.00 $40.50 $41.00 180
$44.00 $42.00 $40.00 $40.50 280
$46.00 $44.00 $42.00 $40.00 270

Demand 100 200 180 300 -

EEQE IS Iy NI
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Supply 50 180 280 270
y
Supply period G‘D
e /
’ /
so] 50,7 130| 70,7 180f 30% 270
s s
/ V4 o Y
Demand period 4
Demand 100 200 180 300

FIGURE 5.3
Optimal solution of the production-inventory model

The unit “transportation” cost from period i to period j is computed as

Production cost ini, i = |
¢, = 4 Production cost ini + holding cost fromitoj,i <J
Production cost in i + penaty cost from i to i

For example,
¢;; = $40.00
Coa = $40.00 + ($.50 + $.50) = $41.00
s = $40.00 + ($2.00 + $2.00 + $2.00) = $46.00

mmarized in Figure 5.3. The dashed lines indicate back-ordering,

The optimal solution is su
solid lines show production in a

the dotted lines indicate production for a future period, and the
period for itself. The total cost is $31,455.

Example 5.2-2 (Too! Sharpening)

Arkansas Pacific operates a medium-sized saw mill. The mill prepares different types of wood
that range from soft pine to hard oak according to a weekly schedule. Depending on the type of
wood being milled, the demand for sharp blades varies from day to day according to the follow-

ing 1-week (7-day) data:

Day Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Demand (blades) 24 12 14 20 18 14 22

[ ]
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The mill can satisfy the daily demand in the following manner:

1. Buy new blades at the cost of $12 a blade.
2. Use an overnight sharpening service at the cost of $6 a blade.
3. Use a slow 2-day sharpening service at the cost of $3 a blade.

The situation can be represented as a transportation model with eight sources and seven
destinations. The destinations represent the 7 days of the week. The sources of the model are
defined as follows: Source 1 corresponds to buying new blades, which, in the extreme case, can
provide sufficient supply to cover the demand for all 7 days (=24 + 12 + 14 + 20 + 18 +
14 + 22 = 124). Sources 2 to 8 correspond to the 7 days of the week. The amount of supply for
each of these sources equals the number of used blades at the end of the associated day. For ex-
ample, source 2 (i.e., Monday} will have a supply of used blades equal to the demand for Mon-
day. The unit “transportation cost” for the model is $12, $6, or $3, depending on whether the blade
is supplied from new blades, overnight sharpening, or 2-day sharpening. Notice that the overnight
service means that used blades sent at the end of day ¢ will be available for use at the start of day
i + 1 or day { + 2, because the slow 2-day service will not be available until the starf of day
i + 3. The “disposal” column is a dummy destination needed to balance the model. The com-
plete model and its solution are given in Table 5.13.

TABLE 5.13 Tool Sharpening Problem Expressed as a Transportation Model

I-New

3-Tue.

5-Thu.

6-Fri.

7-Sat.

8-Sun.

2-Mon.

4-Wed.

1 2 3 4 5 6 7 8
Mon. Tue. Wed. Thu. Fri. Sat. Sun. Disposal
$12 $12 $12 $12 $12 $12 $12 $0
24 2 98 124

$6 36 $3 $3 $3 $3 $0

$6 36 $3 $3 $3 $0

6 $6 $3 $3 $0

14

36 30
20
$0
4 18
30
14
$0
22 22

24 12 14 20 18 14 22 24
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The problem has alternative optima at a cost of $840 (file toraEx5.2-2.txt). The following table

summarizes one such solution.

Number of sharp blades (Target day)

Perio\:l New Overnight 2-day Disposal
Mon. 24 (Mon.) 10(Tue.) + 8(Wed.) 6 (Thu.) 0
Tues. 2 {Tue.) 6 (Wed.) 6 (¥ri.) 0
Wed. 0 14 (Thu.) 0 0
Thu. 0 12 (Fri) 8 (Sun.) 0
Fri. 0 14 (Sat.) 0 4
Sat. 0 14 (Sun.) 0 0
Sun. 0 0 0 22

Remarks. The model in Table 5.13 1s suitable only for the first week of operation because it
does not take into account the rotational nature of the days of the week, in the sense that this
week’s days can act as sources for next week’s demand. One way to handle this situation is to as-
sume that the very first week of operation starts with all new blades for cach day. From then on,
we use a model consisting of exactly 7 sources and 7 destinations corresponding to the days of
the week. The new model will be similar to Table 5.13 less source “New” and destination “Dis-
posal” Also, only diagonal cells will be blocked (unit cost = M). The remaining cells will have a
unit cost of either $3.00 or $6.00. For example, the unit cost for cell (Sat., Mon.) is $6.00 and that
for cells (Sat., Tue.), (Sat., Wed.), (Sat., Thu.), and (Sat., Fri.) 1s $3.00. The table below gives the
solution costing $372. As expected, the optimum solution wiil always use the 2-day service only.
The problem has alternative optima (see file toraEx5.2-2a.txt).

Weeki+ 1

Week i Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total
Mon. 6 18 24
Tue. 8 4 12
Wed. 12 2 14
Thu. 8 12 20
Fri. 4 14 18
Sat. 14 14
Sun. 10 12 22
Total 24 12 14 20 18 14 22

PROBLEM SET 5.2A%

1. In Example 5.2-1, suppose that the holding cost per unit is period-dependent and is given
by 40, 30, and 70 cents for periods 1,2,and 3, respectively. The penalty and production
costs remain as given in the example. Determine the optimum solution and interpret
the results.

311 this set, you may use TORA to find the optimum solution. AMPL and Solver models for the transporta-
tion problem will be introduced at the end of Section 5.3.2.
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In Example 5.2-2, suppose that the sharpening service offers 3-day service for $1 a blade
on Monday and Tuesday (days 1 and 2). Reformulate the problem, and interpret the opti-
mum solution.

In Example 5.2-2, if a blade is not used the day it is sharpened, a holding cost of 50 cents
per blade per day is incurred. Reformulate the model. and interpret the optimum sclution.

JoShop wants to assign four different categories of machines to five types of tasks, The
numbers of machines available in the four categories are 25, 30, 20, and 30. The numbers
of jobs in the five tasks are 20, 20, 30, 10, and 25. Machine category 4 cannot be assigned
to task type 4. Table 5.14 provides the unit cost (in dollars) of assigning a machine cate-
gory to a task type. The objective of the problerm is to determine the optimum number of
machines in each category to be assigned to each task type. Solve the problem and inter-
pret the solution.

The demand for a perishable item over the next four months is 400, 300, 420, and 380
tons, respectively. The supply capacities for the same months are 500, 600, 200, and 300
tons. The purchase price per ton varies from month to month and is estimated at $100,
$140, $120, and $150, respectively. Because the item is perishable, a current month’s sup-
ply must be consumed within 3 months (starting with current month). The storage cost
per ton per month is $3. The nature of the item does not allow back-ordering: Solve the
problem as a transportation model and determine the optimum defivery schedule for the
item over the next 4 months.

The demand for a special small engine over the next five quarters is 200, 150, 300, 250,
and 400 units. The manufacturer supplying the engine has different production capacities
estimated at 180, 230, 430, 300, and 300 for the five quarters. Back-ordering is not al-
lowed, but the manufacturer may use overtime to fill the immediate demand, if necessary.
The overtime capacity for each period is half the regular capacity. The production costs
per unit for the five periods are $100, $96, $116, $102, and $106, respectively. The over-
time production cost per engine is 50% higher than the regular production cost. If an en-
gine is produced now for use in later periods, an additional storage cost of $4 per engine
per period is incurred. Formulate the problem as a transportation model. Determine the
optimum number of engines to be produced during regular time and overtime of each
period.

Periodic preventive maintenance is carried out on aircraft engines, where an important
component must be replaced. The numbers of aircraft scheduled for such maintenance
over the next six months are estimated at 200, 180, 300, 198, 230, and 290, respectively. All
maintenance work is done during the first day of the month, where a used component
may be replaced with a new or an overhauled component. The overhauling of used com-
ponents may be done in a local repair facility, where they will be ready for use at the be-
ginning of next month, or they may be sent to a central repair shop, where a delay of

TABLE 5.14 Unit Costs for Problem 4

Task type
1 2 3 4 5
1 10 2 3 15 9
Machine category § 1? 12 ii 3 1451
4 20 15 13 - 8
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TABLE 5.15 Bids per Acre for Problem 8

Location
1 2 3
1 | gs20  s210  $570
ol ss10 %495
Bidder 5 | ges0 —  $240
4 | $180 s430  $710

3 months (including the month in which maintenance occurs) is expected. The repair cost
in the local shop is $120 per component. At the central facility, the cost is only $35 per
component. An overhauled component used in a later month will incur an additional
storage cost of $1.50 per unit per month. New components may be purchased at $200
each in month 1, with a 5% price increase every 2 months. Formulate the problem as a
transportation model, and determine the optimal schedule for satisfying the demand for
the component over the next six months.

8. The National Parks Service is receiving four bids for logging at three pine forests in
Arkansas. The three locations include 10,000,20,000, and 30,000 acres. A single bidder
can bid for at most 50% of the total acreage available. The bids per acre at the three loca-

tions are given in Table 5.15. Bidder 2 does not wish to bid on location 1, and bidder 3
cannot bid on location 2.

(a) Inthe present situation, we need to maximize the total bidding revenue for the
Parks Service. Show how the problem can be formulated as a transportation model.
(b) Determine the acreage that should be assigned to each of the four bidders.

THE TRANSPORTATION ALGORITHM

The transportation algorithm follows the exact steps of the simplex method (Chapter 3).
However, instead of using the regular simplex tableau, we take advantage of the spe-
cial structure of the transportation model to organize the computations in a more con-
venient form.

The special transportation algorithm was developed early on when hand compu-
tations were the norm and the shortcuts were warranted. Today, we have powerful
computer codes that can solve a transportation model of any size as a regular LP* Nev-
ertheless, the transportation algorithm, aside from its historical significance, does pro-
vide insight into the use of the theoretical primal-dual relationships (introduced in
Section 4.2) to achieve a practical end result, that of improving hand computations. The
exercise is theoretically intriguing.

The details of the algorithm are explained using the following numeric example.

41 fact, TORA handles all necessary computations in the background using the regular simplex method and
uses the transportation model format only as a screen “yeneer.”
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TABLE 5.16  SunRay Transportation Model

Mill
1 2 3 4 Supply
10 2 20 11
1
X1 Xyz X X4 15
12 7 9 20
Silo2
Xz X2z X3 Xag 25
4 14 16 18
3
X3 X3z X33 X34 10

Demand 5 15 15 15

Example 5.3-1 (SunRay Transport)

SunRay Transport Company ships truckloads of grain from three silos to four mills. The supply
(in truckloads) and the demand (also in truckloads) together with the unit transportation costs
per truckload on the different routes are summarized in the transportation model in Table 5.16.
The unit transportation costs, ¢;;, (shown in the northeast corner of each box) are in hundreds of
dollars. The model seeks the minimum-cost shipping schedule x;; between silo i and mill j
(i=1,2,3j=1,2,3,4).

Summary of the Transportation Algorithm. The steps of the transportation algorithm
are exact parallels of the simplex algorithm.

Step 1. Determine a starting basic feasible solution, and go to step 2.

Step 2. Use the optimality condition of the simplex method to determine the
entering variable from among all the nonbasic variables. If the optimality
condition is satisfied, stop. Otherwise, go to step 3.

Step 3. Use the feasibility condition of the simplex method to determine the leaving
varigble from among all the current basic variables, and find the new basic so-
lution. Return to step 2.

Determination of the Starting Solution

A general transportation model with /7 sources and n destinations has m + n constraint
equations, one for each source and each destination. However, because the transporta-
tion model is always balanced (sum of the supply = sum of the demand), one of these
equations is redundant. Thus, the model has m + n — 1 independent constraint equa-
tions, which means that the starting basic solution consists of m -+ n — 1 basic variables.
Thus, in Example 5.3-1, the starting solution has 3 + 4 — 1 = 6 basic variables.

LR LU
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The special structure of the transportation problem allows securing a nonartifi-
cial starting basic solution using one of three methods:®

1. Northwest-corner method
2. Least-cost method
3. Vogel approximation method

“The three methods differ in the “quality” of the starting basic solution they produce, in
the sense that a better starting solution yields a smaller objective value. In general,
though not always, the Vogel method yields the best starting basic solution, and the
northwest-corner method yields the worst. The tradeoff is that the northwest-corner
method involves the least amount of computations.

Northwest-Corner Method. The method starts at the northwest-corner cell (route) of
the tableau (variable x;3).

Step 1. Allocate as much as possible to the selected cell, and adjust the associated
amounts of supply and demand by subtracting the allocated amount.

Step 2. Cross out the row or column with zero supply or demand to indicate that no
further assignments can be made in that row or column. If both a row and a
column net to zero simultaneously, cross out one only, and leave a zero sup-
ply (demand) in the uncrossed-out TOW (column).

Step 3. If exactly one row or column is left uncrossed out, stop. Otherwise, move to
the cell to the right if a column has just been crossed out or below if a row has
been crossed out. Go to step 1.

Example 5.3-2

The application of the procedure to the model of Example 5.3-1 gives the starting basic solution
in Table 5.17. The arrows show the order in which the allocated amounts are generated.
The starting basic solution is

xyp = 5, %12 = 10
Xy = 5, X3 = 15, %24 = 5
xy = 10
The associated cost of the schedule is

z=5X10+10X2+5X7+15X9+5X20+10X18=$520

Least-Cost Method. The least-cost method finds a better starting solution by
concentrating on the cheapest routes. The method assigns as much as possible to the
cell with the smallest unit cost (ties are broken arbitrarily). Next, the satisfied row or
column is crossed out and the amounts of supply and demand are adjusted accordingly.

51l three methods are featured in TORA’s tutorial module. See the end of Section 5.3.3.
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TABLE 5.17 Northwest-Corner Starting Solution

1 2 3 4 Supply
10 2 20 i1
1 : H e 15
2 25
4 14
3 10
Demand 5 15 15 15

If both a row and a column are satisfied simultaneously, only one is crossed out, the
same as in the northwest-corner method. Next, look for the uncrossed-out cell with
the smallest unit cost and repeat the process until exactly one row or column is left
uncrossed out.

Example 5.3-3

The least-cost method is applied to Example 5.3-1 in the following manner:

1. Cell (1, 2) has the least unit cost in the tableau (= $2). The most that can be shipped
through (1,2) is x; = 15 truckloads, which happens to satisfy both row 1 and column 2 si-
multaneously. We arbitrarily cross out column 2 and adjust the supply in row 1 to 0.

2. Cell (3,1) has the smallest uncrossed-out unit cost (= $4). Assign x3, = 5, and cross out
column 1 because it is satisfied, and adjust the demand of row 3 to 10 — 5 = 5 truckloads.

3. Continuing in the same manner, we successively assign 15 truckloads to cell (2, 3),
0 truckloads to cell (1, 4), 5 truckloads to cell (3, 4), and 10 truckloads to cell (2, 4)
(verify!).

The resulting starting solution is summarized in Table 5.18. The arrows show the order in
which the allocations are made. The starting solution (consisting of 6 basic variables) is
X2 = 15,x14 = 0, xpn = 15, x59 = 10, x3; = 5, x34 = 5. The associated objective value is

2=15X24+0X11+15X9+10X20+5%x4+5x18 = 8%475

The quality of the least-cost starting solution is better than that of the northwest-
corner method (Example 5.3-2) because it yields a smaller value of z ($475 versus $520
in the northwest-corner method).

Vogel Approximation Method (VAM). VAM is an improved version of the least-cost
method that generally, but not always, produces better starting solutions.

Step 1. For each row (column), determine a penalty measure by subtracting the
smallest unit cost element in the row (column) from the next smallest unit
cost element in the same row (column).
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TABLE 5.18 Least-Cost Starting Solution

1 2 3 4 Supply
10 | (start) 2
1 o 15
/
12|/ 7
2 /(ht : 25
/ 4 14 16 | 18
Demand 5 15 15 15

Step 2. Identify the row or column with the largest penalty. Break ties arbitrarily.
Allocate as much as possible to the variable with the least unit cost in the se-
lected row or column. Adjust the supply and demand, and cross out the satis-
fied row or column. If a row and a column are satisfied simultaneously, only
one of the two is crossed out, and the remaining row (column) is assigned
zero supply (demand).

Step 3. (a) If exactly one row or column with zero supply or demand remains un-

crossed out, stop.

(b) If one row (column) with positive supply (demand) remains uncrossed
out, determine the basic variables in the row (column) by the least-cost
method. Stop.

(c) If all the uncrossed out rows and columns have (remaining) zero supply
and demand, determine the zero basic variables by the least-cost
method. Stop.

(d) Otherwise, go to step 1.

Example 5.3-4

VAM is applied to Example 5.3-1. Table 5.19 computes the first set of penalties.

Because row 3 has the largest penalty (= 10) and cell (3,1) has the smallest unit cost in that
row, the amount 5 is assigned to x3;. Column 1 is now satisfied and must be crossed out. Next,
new penaities are recomputed as in Table 5.20.

Table 5.20 shows that row 1 has the highest penalty (= 9). Hence, we assign the maximum
amount possible to cell (1,2), which yields x;; = 15 and simultaneously satisfies both row 1 and
column 2. We arbitrarily cross out column 2 and adjust the supply in row 1 to zero.

Continuing in the same manner, row 2 will produce the highest penalty (=11), and we as-
sign x» = 15, which crosses out column 3 and leaves 10 units in row 2. Only column 4 is left, and
it has a positive supply of 15 units. Applying the least-cost method to that column, we successively
assign Xy4 = 0, X3y = 5, and x¢ = 10 (verify!). The associated objective value for this solution is

z=1S><2+0><11+15x9+10x20+5x4+5><18=$475

This solution happens to have the same objective value as in the least-cost method.
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TABLE 5.19 Row and Column Penalties in VAM

1 2 3 4 Row penalty
10 2 20 11 10-2=8
1 15
12 7 9 20 9-7=12
2 25
4 14 16 18 14 — 4 =0
3 5 ) 10
5 15 15 15
Column penalty 10 - 4 7-2 16 -9 18— 11
=6 =5 =17 =7

TABLE 5.20 First Assignment in VAM (x5 = 5)

1 2 3 4 Row penalty
1 2 20 11 o
15
2 7 9 20 2
25
3 14 16 18 2
10
15 15
Column penalty o 5 7 7

PROBLEM SET 5.3A

1. Compare the starting solutions obtained by the northwest-comer, least-cost, and Vogel
methods for each of the following models:

*(a) (b) (©
0 2 116 1 2 6| 7 5 1 8 |12
2 1 517 0 4 2|12 2 4 0 (14
2 4 3|7 3 1 5111 3 6 71 4
5 5 10 10 10 10 9 10 11

5.3.2 Iterative Computations of the Transportation Algorithm

After determining the starting solution (using any of the three methods in Section 5.3.1),
we use the following algorithm to determine the optimum solution:

Step 1. Use the simplex optimality condition to determine the entering variable as the
current nonbasic variable that can improve the solution. If the optlmallty con-
dition is satisfied, stop. Otherwise, go to step 2.

Step 2. Determine the leaving variable using the simplex feasibiliry condition. Change
the basis, and return to step 1.
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The optimality and feasibility conditions do not involve the familiar row opera-
tions used in the simplex method. Instead, the special structure of the transportation
model allows simpler computations.

Example 5.3-5

Solve the transportation model of Example 5.3-1, starting with the northwest-corner solution.

Table 5.21 gives the northwest-corner starting solution as determined in Table 5.17, Ex-
ample 5.3-2.

The determination of the entering variable from among the current nonbasic variables
(those that are not part of the starting basic solution) is done by computing the nonbasic coeffi-
cients in the z-row, using the method of multipliers (which, as we show in Section 5.3.4,is rooted
in LP duality theory).

In the method of multipliers, we associate the multipliers &; and v; with row ¢ and column j
of the transportation tableau. For each current basic variable x;;, these multipliers are shown in
Section 5.3.4 to satisfy the following equations:

u; + v; = ¢y, foreach basic x;;

As Table 5.21 shows, the starting solution has 6 basic variables, which leads to 6 equations in 7
unknowns. To solve these equations, the method of multipliers calls for arbitrarily setting any
u; = 0, and then solving for the remaining variables as shown below.

Basic variable (i, v} Equation Solution
Xy u +v; =10 Setyy =0—v, =10
X vy, =2 wy=0—rv,=2
Xon u2+V2=7 V2=2——)u2=5
X3 u, +v3 =9 =5->v;=4
X4 u, + vy =20 uy =5-v,=15
X34 U3+V4=18 V4=15—)u3=3

To summarize, we have
up =0,up = 5,u3=3
v = 10,2, = 2,03 = 4,94 = 15
Next, we use i; and v; to evaluate the nonbasic variables by computing

w + v Gy for each nonbasic x;;

TABLE 5.21 Starting [teration

1 2 3 4 Supply
) 10 2 20 i1
5 10 15
) 12 7 9 20
5 15 5 25
4 14 16 18
L 10 10

Demand 5 15 15 i5
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The results of these evaluations are shown in the following table:

Nonbasic variable u + v — gy
X3 wmtvi—ec;=0+4-20=-16
X4 uytvy—cu=0+15-11 =4
X wtvi—cy=5+1W0-12=3
X3 u3+V1_C3l=3+1O"'4=9
X3z u3+V2_C32=3+2'_14=_9
X3 Uy +v3—cp=3+4-16=-9

The preceding information, together with the fact that u; + v; — ¢; = 0 for each basic x;;, is

actually equivalent to computing the z-row of the simplex tableau, as the following summary shows.

Basic X X12 13 X14 X2 X2 X3 X24

z 0 0 —-16 4 3 0 0 0

Because the transportation model seeks to minimize cost, the entering variable is the one hav-
ing the most positive coefficient in the z-row. Thus, x5, is the entering variable.

The preceding computations are usually done directly on the transportation tableau as
shown in Table 5.22, meaning that it is not necessary really to write the (i, v}-equations explicitly.
Instead, we start by setting u#; = 0.° Then we can compute the v-values of all the columns that
have basic variables in row 1—namely, ; and v,. Next, we compute u; based on the (i, v)-equation
of basic x5;. Now, given u,, we can compute vy and v,. Finally, we determine 5 using the basic
equation of x33. Once all the &’s and v’s have been determined, we can evaluate the nonbasic
variables by computing u; + v; — ¢;; for each nonbasic x;. These evaluations are shown in
Table 5.22 in the boxed southeast corner of each cell.

Having identified x5; as the entering variable, we need to determine the leaving variable.
Remember that if x3; enters the solution to become basic, one of the current basic variables must
leave as nonbasic (at zero level).

TABLE 5.22 Tteration 1 Calculations

v, = 10 v, =2 v; =4 vy =15 Supply
10 2 20 11
u =0 5 10 15
_16 [4]
12 7 9 20
=5 5 15 5 25
[5]
4 14 16 18
u =3 i 10 10
-9 | -9
Demand 5 15 15 15

The tutorial module of TORA is designed to demonstrate that assigning a zero initial value to any & or v
does not affect the optimization results. See TORA Moment on page 216,
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The selection of xs; as the entering variable means that we want to ship through this route
because it reduces the total shipping cost. What is the most that we can ship through the new
route? Observe in Table 5.22 that if route (3, 1) ships @ units (i.e., X33 = 8), then the maximum
value of @ is determined based on two conditions.

1. Supply limits and demand requirements remain satisfied.
2. Shipments through all routes remain nonnegative.

These two conditions determine the maximum value of 6 and the leaving variable in the fol-
lowing manner. First, construct a closed loop that starts and ends at the entering variable cell, (3,
1). The loop consists of connected horizontal and vertical segments only (no diagonals are al-
lowed).” Except for the entering variable cell, each corner of the closed loop must coincide with
a basic variable. Table 5.23 shows the loop for xa;. Exactly one loop exists for a given entering
variable.

Next, we assign the amount 6 to the entering variable cell (3, 1). For the supply and demand
limits to remain satisfied, we must alternate between subtracting and adding the amount 6 at the
successive corners of the loop as shown in Table 5.23 (it is immaterial whether the loop is traced
in a clockwise or counterclockwise direction). For 8 = 0, the new values of the variables then re-
main nonnegative if

X1 = 5_620
5—6=0
10-0=0

]

B %)

1l

X3

The corresponding maximum value of @is 5, which occurs when both x1 and xy, reach zero level.
Because only one current basic variable must leave the basic solution, we can choose cither xq;
or Xy as the leaving variable. We arbitrarily choose xyy to leave the solution.

The selection of x5, {= 5) as the entering variable and x;; as the leaving variable requires
adjusting the values of the basic variables at the corners of the closed loop as Table 5.24
shows. Because each unit shipped through route (3, 1) reduces the shipping cost by
$9 (= us + v, — ¢3), the total cost associated with the new schedule is $9 X 5 = §45 less
than in the previous schedule. Thus, the new cost is $520 — $45 = $475.

TABLE 5.23 Determination of Closed Loop for x3;

v, =10 vy =4 Supply
15
-16
------ i3 25
10
=9

Demand 5

TTORA’s tutorial module allows you to determine the cells of the closed loop interactively with immediate
feedback regarding the validity of your selections. See TORA Moment on page 216.
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TABLE 5.24 Iteration 2 Calculations

vy =1 v, = 2 v, =4 Supply
10 2 20
=0 . 15
l -16 |
9
Uy = 5 25
18
us = 3 10
Demand 15 15
TABLE 5.25 Iteration 3 Calculations (Optimal)
v =-3 v, =2 vy =4 vy =11 Supply
10 2 20 u
wm =0 5 10 15
| —13 —16
12 7 9 20
U, =5 10 15 25
| =10 I —4
4 14 16 18
Uy =7 5 5 10
l =5 | =5
Demand 5 15 15 15

215

Given the new basic solution, we repeat the computation of the multipliers # and v, as Table 5.24

shows. The entering variable is x4. The closed loop shows that x,, = 10 and that the leaving

variable is x4.

The new solution, shown in Table 5.25, costs $4 X 10 = $40 less than the preceding one,
thus yielding the new cost $475 — $40 = $435. The new u; + v; — ¢;; are now negative for aft
nonbasic x;. Thus, the solution in Table 5.25 is optimal.

The following table summarizes the optimum solution.

From silo

To mill

Number of truckloads

LW NN e

P N S I

5
10
10
15

5

=

]

Optimal cost = $435
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TORA Moment.

t ons:, and choose one of the three
methods (northwest corner least cost or Vogel) to start the transportation model iter-
ations. The iterations module offers two useful interactive features:

1. You can set any u or v to zero before generating Iteration 2 (the default is u; = 0).
Observe then that although the values of u; and v; change, the evaluation of the
nonbasic cells (= u; + v; — ¢;;) remains the same. This means that, initially, any u or
v can be set to zero (in fact, any value) without affecting the optimality calculations.

2. You can test your understanding of the selection of the closed loop by clicking (in
any order) the corner cells that comprise the path. If your selection is correct, the
cell will change color (green for entering variable, red for leaving variable, and
gray otherwise).

Solver Moment.

Entering the transportation model into Excel spreadsheet is straightforward. Figure 5.4
provides the Excel Solver template for Example 5.3-1 (file solverEx5.3-1.xls), together
with all the formulas and the definition of range names.

In the input section, data include unit cost matrix (cells B4:E6), source names
(cells A4:A06), destination names (cells B3:E3), supply (cells F4:F6), and demand (cells
B7:ET7). In the output section, cells B11:E13 provide the optimal solution in matrix
form. The total cost formula is given in target cell A10.

AMPL Moment.

Figure 5.5 provides the AMPL model for the transportation model of Example 5.3-1
(file amplEx5.3-1a.txt). The names used in the model are self-explanatory. Both the
constraints and the objective function follow the format of the LP model presented in
Example 5.1-1.

The model uses the sets sNodes and dNodes to conveniently allow the use of the
alphanumeric set members {s1, s2, S3} and {D1, D2, D3, D4} which are entered
in the data section. All the input data are then entered in terms of these set members as
shown in Figure 5.5.

Although the alphanumeric code for set members is more readable, generating
them for large problems may not be convenient. File amplEx5.3-1b shows how the
same sets can be defined as {1..m) and {1..n}, where m and n represent the number
of sources and the number of destinations. By simply assigning numeric values for m
and n, the sets are automatically defined for any size model.

The data of the transportation model can be retrieved from a spreadsheet (file
TM.xls) using the AMPL table statement. File amplEx3.5-1c.txt provides the details.
To study this model, you will need to review the material in Section A.5.5.

EET
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1=} EAE Bk :
Solver Transportation Model {Example 5.3-1) .
Input data: | ! I Range name| Celis B
Unit Cost Matrix D7 D2 | D3 | D4 Supply totalCost __ [A10 ;
St | 10 2 2§ 11 | 15 | unitCost o
52 12 |7 9 2 25 __|supply Ao N
~ 53 4 M 16 1 18 | 10 T T demand MEZZE B
! D'é'maﬁd.______ﬁﬂ 15 1 15 1 14 1 B rowSum F11F13 ~ _;‘i
Optimum solution: | !3 i colsum _ |B13E1d|
Totaleost | i i ] e shipment  |B11:€13 N )
R D D2 DI | D4 rowSum|
51 _j_» 1] 5 0 _10 15 | cen Fortnula Copy to
52 0 10 15 8 | 25 B1g [-83 | C10:E10
s3 5 0 0 5 10 Alt [=as | | A12:A13
colSum 5 A5 18 15 F11_|=SUN(SB11:8E11) F12F13 |
o N 1 i B14 |=SURBS11BS13) | | ClaE1s
| | || A10 [=SUMPRODUCT(unACost,shipment J
- : !
shvoar L NS

) Ty
colSum = demand
=|rowSum = supply
#37{ shipment »>=0

FIGURE 5.4

Excel Solver solution of the transportation model of Example 5.3-1 (File solverEx5.3-1.xls)

PROBLEM SET 5.3B

1. Consider the transportation models in Table 5.26.

(a) Use the northwest-corner method to find the starting solution.
(b) Develop the iterations that lead to the optimum solution.

() TORA Experiment. Use TORA’s Iterations module to compare the effect of using
the northwest-corner rule, least-cost method, and Vogel method on the number of

iterations leading to the optimum solution.

(d) Solver Experiment. Solve the problem by modifying file solverEx5.3-1.xls.
(&) AMPL Experiment. Solve the problem by modifying file amplEx5.3-1b.txt.
2. In the transportation problem in Table 5.27, the total demand exceeds the total supply.

Suppose that the penalty costs per unit of unsatisfie

d demand are $5, $3, and $2 for

destinations 1,2, and 3, respectively. Use the least-cost starting solution and compute

the iterations leading to the optimum solution.
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F-—-- Transporation model (Example 5.3-1}-----
set sNodes;
set diNodes;
param c{sNodes,dNodes};
param supply{sNodes};
param demand{dNodes} ;
var x{sNodes,dNodes}>=0;
minimize z:sum (i in sNodes,j in dNodeslte{i,jl*x[i,31:
subject to
source {i in sNodes}:sum{] in dNodes}x[i,j]=supply[i]:
dest {j in dNodes}:sum{i in sNodes}x[i,j]=demand(ijl;
data;
set sNodes:=81 52 S3;
set dNodes:=D1 D2 D3 D4;
param c:
D1 D2 D3 D4 :=
81 10 2 20 11
s2 12 7 9 20
53 4 14 16 18;
param supply:= S§1 15 §2 25 S3 10;
param demand:=D1 5 D2 15 D3 15 D4 15;
solve;display z., Xi

FIGURE 5.5
AMPL model of the transportation model of Exampie 5.3-1 (File amplEx5.3-1a.txt)

TABLE 5.26 Transportation Models for Problem 1

® (i) (iit)
$0 §2 $1, 6 s10 $4 2| 8 — $3 85 4
$2 %1 5519 $2 83 ¥4 5 $7 %4 89 7
2 $4  $3( 5 $1  $2 S0 6 $1 38 %6 | 19
5 5 10 7 6 6 5 6 19

TABLE 5.27 Data for Problem 2 {

$5 51 §7 1 10
$6 $4 $6 | 80
$3 $2 $5 1 15
75 20 50

3. In Problem 2, suppose that there are no penalty costs, but that the demand at destination
3 must be satisfied completely.
(a) Find the optimal solution.
(b) Solver Experiment. Solve the problem by modifying file solverEx5.3-1.xls.
(¢) AMPL Experiment. Solve the problem by modifying file amplEx5.3b-1.txt.
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TABLE 5.28 Data for Problem 4

51 $2 $1 1 20
$3  $4  $5 | 40
$2  §3 83| 30

30 20 20

TABLE 5.29 Data for Problem 6

10 10
20 20 | 40

10 20 20

In the unbalanced transportation problem in Table 5.28, if a unit from a source is not
shipped out (to any of the destinations), a storage cost is incurred at the rate of $5, $4,
and $3 per unit for sources 1, 2, and 3, respectively. Additionally, all the supply at
source 2 must be shipped out completely to make room for a new product. Use
Vogel’s starting solution and determine all the iterations leading to the optimum ship-
ping schedule.

In a3 X 3 transportation problem, let x;; be the amount shipped from source ; to desti-
nation j and let ¢;; be the corresponding transportation cost per unit. The amouats of sup-
ply at sources 1,2, and 3 are 15, 30, and 85 units, respectively, and the demands at
destinations 1,2, and 3 are 20, 30, and 80 units, respectively. Assume that the starting
northwest-corner solution is optimal and that the associated values of the multipliers are
givenasuy = —2,u; = 3,u3 = 5,9 = 2,v; = 5,and v; = 10.

(a) Find the associated optimal cost.

(b) Determine the smallest value of ¢;; for each nonbasic variable that will maintain the
optimality of the northwest-corner solution.

6. The transportation problem in Table 5.29 gives the indicated degenerate basic solution

(i.e., at least one of the basic variables is zero). Suppose that the multipliers associated
with this solution are i; = 1,u; = —1,v; = 2, v, = 2, and v; = 5 and that the unit cost
for all (basic and nonbasic) zero x;; variables is given by

C,}=l+]8,_00<6<00

(a) If the given solution is optimal, determine the associated optimal value of the objec-
tive function.

(b) Determine the value of 8 that will guarantee the optimality of the given solution.
(Hint: Locate the zero basic variable.) -

Consider the problem

m n

Minimize z = E zc,-jx‘-j
i=1j=1

e et et
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TABLE 5.30 Data for Problem 7

$1 $1 215
36 $5 $1 | 6

2 7 1

subject to

Ex,-j = Cll',l: = 1,2, .o, m

m
Sx;=bi,j=12....n
i=1

X = 0,‘alli and j

1t may appear logical to assume that the optimum solution will require the first (second)
set of inequalities to be replaced with equations if $a; = Zb;(Za; = 2b;). The coun-
terexample in Table 5.30 shows that this assumption is not correct.

Show that the application of the suggested procedure yields the solution xy; = 2,
X1 = 3, xpn = 4,and x5 = 2, with z = $27, which is worse than the feasible solution

Xy = 2,x12 = 7, and xp3 = 6, with z = §15.

Simplex Method Explanation of the Method of Multipliers

The relationship between the method of multipliers and the simplex method can be ex-
plained based on the primal-dual relationships (Section 4.2). From the special structure
of the LP representing the transportation model (see Example 5.1-1 for an illustra-
tion), the associated dual problem can be written as

et

1 n
Maximize z = Dau; + ,bjv;
j=1

i=1
subject to
u; + v = gy, all i and j
u; and v; unrestricted
where

a; = Supply amount at source i

b; = Demand amount at destination j

¢;; = Unit transportation cost from source i to destination j

u; = Dual variable of the constraint associated with source {

v; = Dual variable of the constraint associated with destination j

5.4
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From Formula 2, Section 4.2.4, the objective-function coefficients (reduced
costs) of the variable x; equal the difference between the left- and right-hand sides
of the corresponding dual constraint—that is, u; + v; — ¢;. However, we know that
this quantity must equal zero for each basic variable, which then produces the fol-
lowing result:

u; + v; = ¢, for each basic variable x;;.

There are m + n — 1 such equations whose solution (after assuming an arbitrary
value u; = 0) yields the multipliers &; and v;. Once these multipliers are computed, the
entering variable is determined from all the nonbasic variables as the one having the
largest positive u; + v; — ¢

The assignment of an arbitrary value to one of the dual variables (i.e., u; = 0)
may appear inconsistent with the way the dual variables are computed using Method 2
in Section 4.2.3. Namely, for a given basic solution (and, hence, inverse), the dual values
must be unique. Problem 2, Set 5.3c, addresses this point.

PROBLEM SET 5.3C

1. Write the dual problem for the LP of the transportation problem in Example 5.3-5
{Table 5.21). Compute the associated optimum dual objective value using the optimal
dual values given in Table 5.25, and show that it equals the optimal cost given in the
example.

2. In the transportation model, one of the dual variables assumes an arbitrary value. This
means that for the same basic solution, the values of the associated dual variables are not
unique. The result appears to contradict the theory of linear programming, where the
dual values are determined as the product of the vector of the objective coefficients for
the basic variables and the associated inverse basic matrix (see Method 2, Section 4.2.3).
Show that for the transportation model, although the inverse basis is unique, the vector
of basic objective coefficients need not be so. Specifically, show that if ¢;; is changed to
¢;; + k for all { and j, where k is a constant, then the optimal values of x;; will remain the
same. Hence, the use of an arbitrary value for a dual variable is implicitly equivalent to
assuming that a specific constant & is added to ali ¢;;.

THE ASSIGNMENT MODEL

“The best person for the job” is an apt description of the assignment model. The situa-
tion can be illustrated by the assignment of workers with varying degrees of skill to
jobs. A job that happens to match a worker’s skill costs less than one in which the op-
erator is not as skillful. The objective of the model is to determine the minimum-cost
assignment of workers to jobs. -

The general assignment model with n workers and n jobs is represented in
Table 5.31.

The element c; represents the cost of assigning worker i to job j (i,j =
1,2,..., n). There is no loss of generality in assuming that the number of workers always



222 Chapter5 Transportation Model and Its Variants

TABLE 531 Assignment Model

Jobs
1 2 . n
1 i Ciz . Cyy 1
2 € Cn - Can 1
Worker
n Cnt Cn2 Chn 1
1 1 1

equals the number of jobs, because we can always add fictitious workers or fictitious
jobs to satisfy this assumption.

The assignment model is actually a special case of the transportation model in
which the workers represent the sources, and the jobs represent the destinations. The
supply (demand) amount at each source (destination) exactly equals 1. The cost of
“transporting” worker i to job j is ¢;;. In effect, the assignment model can be solved di-
rectly as a regular transportation model. Nevertheless, the fact that all the supply and
demand amounts equal 1 has led to the development of a simple solution algorithm
called the Hungarian method. Although the new solution method appears totally un-
related to the transportation model, the algorithm is actually rooted in the simplex
method, just as the transportation model is.

5.4.1 The Hungarian Method?®

We will use two examples to present the mechanics of the new algorithm. The next sec-
tion provides a simplex-based explanation of the procedure.

Example 5.4-1

Joe Klyne’s three children, John, Karen, and Terri, want to earn some money to take care of per-
sonal expenses during a school trip to the local zoo. Mr. Klyne has chosen three chores for his
children: mowing the lawn, painting the garage door, and washing the family cars. To avoid antic-
ipated sibling competition, he asks them to submit {secret) bids for what they feel is fair pay for
each of the three chores. The understanding is that all three children will abide by their father’s
decision as to who gets which chore. Table 5.32 surnmarizes the bids received. Based on this in-
formation, how should Mr. Klyne assign the chores?
The assignment problem wiil be solved by the Hungarian method.

Step 1. For the original cost matrix, identify each row’s minimum, and subtract it from all the
_entries of the row. '

8As with the transportation model, the classical Hungarian method, designed primarily for hand computa-
tions, is something of the past and is presented here purely for historical reasons. Today, the need for such
computational shortcuts is not warranted as the problem can be solved as a regular LP using highly efficient
computer codes.
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TABLE 5.32 Klyne's Assignment Problem

Mow Paint Wash

John $15 $10 $9
Karen $£9 $1s $10
Terri $10 12 $8

Step 2. For the matrix resulting from step 1, identify each column’s minimum, and subtract it
from all the entries of the column.

Step 3. Identify the optimal solution as the feasible assignment associated with the zero ele-
ments of the matrix obtained in step 2.

Let p; and g; be the minimum costs associated with row { and column j as defined in steps 1
and 2, respectively. The row minimums of step 1 are computed from the original cost matrix as
shown in Table 5.33.

Next, subtract the row minimum from each respective row to obtain the reduced matrix
Table 5.34.

The application of step 2 yields the column minimums in Table 5.34. Subtracting these val-
ues from the respective columns, we get the reduced matrix in Table 5.35.

TABLE 5.33 Step 1 of the Hungarian Method

Mow Paint Wasl: Row minimum
John =9
Karen P2 =9
Terri p1=28

TABLE 5.34 Step 2 of the Hungarian Method

Mow Paint Wash
John 6 1 0
Karen 0 6 1
Terri 2 4 0
Column minimum q =0 g =1 ;=10

TABLE 5.35 Step 3 of the Hungarian Method

Mow Paint Wash

John 6 1] 0
Karen 0 5 1
Terri 2 3 1]
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The cells with underscored zero entries provide the optimum solution. This means that John
gets to paint the garage door, Karen gets to mow the lawn, and Terri gets to wash the family
cars. The total cost to Mr. Klyne is 9 + 10 + 8 = $27. This amount also will always equal
(p+prp)t@tatra)=0+ 9+ 8)}+(0 + 1 +0) = 8§27 (A justification of this
result is given in the next section.)

The given steps of the Hungarian method work well in the preceding example be-
cause the zero entries in the final matrix happen to produce a feasible assignment (in the
sense that each child is assigned a distinct chore). In some cases, the zeros created by steps 1
and 2 may not yield a feasible solution directly, and further steps are needed to find the
optimal (feasible) assignment. The following example demonstrates this situation.

Example 5.4-2

Suppose that the situation discussed in Example 5.4-1 is extended to four children and four
chores. Table 5.36 summarizes the cost elements of the preblem.

The application of steps 1 and 2 to the matrix in Table 5.36 (using py =L, pp =7,
p=4p=5q=04=04= 3, and g4 = 0) yields the reduced matrix in Table 5.37
(verify!).

The locations of the zero entries do not allow assigning unique chores to all the children.
For example, if we assign child 1 to chore 1, then column 1 will be eliminated, and chiid 3 will
not have a zero entry in the remaining three columns. This obstacle can be accounted for by
adding the following step to the procedure outlined in Example 5.4-1:

Step 2a. If no feasible assignment (with all zero entries) can be secured from steps 1 and 2,
(i) Draw the minimum number of horizontal and vertical lines in the last reduced
matrix that will cover all the zero entries.

TABLE 5.36 Assignment Model

Chore
1 2 3 4
1] st s4 %6 $3
ol s §7 s00 99
Childs | ¢4 g5 $11 7
12 $7 8 85

TABLE 5.37 Reduced Assignment Matrix

Chore
1 p 3 4
1 0 3 2 2
a2 2 0 0 2
Chiid 3 0 1 4 3
4 3 2 0 0
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TABLE 5.38 Application of Step 2a

Chore

TABLE 5.39 Optimal Assignment

Chore
1 2 3 4
1 [1] 2 1 1
oy 2 3 0 0 2
Child 3 0 0 3 5
4 4 2 0 0

(i) Select the smallest uncovered entry, subtract it from every uncovered entry,
then add it to every entry at the intersection of two lines.
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(iti) If no feasible assignment can be found among the resulting zero entries, repeat

step 2a. Otherwise, go to step 3 to determine the optimal assignment.

The application of step 2a to the last matrix produces the shaded cells in Table 5.38. The smallest
unshaded eniry (shown in italics) equals 1. This entry is added to the bold intersection cells and

subtracted from the remaining shaded cells to produce the matrix in Table 5.39.

The optimum solution {shown by the underscored zeros) calls for assigning child 1 to chore
1, child 2 to chore 3, child 3 to chore 2, and child 4 to chore 4. The associated optimal cost is
1+ 10+ 5+ 5= $21. The same cost is also determined by summing the p;’s, the g;’s, and the
entry that was subtracted after the shaded cells were determined—that is, (1 + 7 + 4 + 5) +

(0+0+3+0)+ (1) = $21.

AMPL Moment.

File amplEx5.4-2.txt provides the AMPL model for the assignment model. The model
is very stmilar to that of the transportation model.

PROBLEM SET 5.4A

1. Solve the assignment models in Table 5.40.
(a) Solve by the Hungarian method.

(b) TORA Experiment. Express the problem as an LP and solve it with TORA.
(¢) TORA Experiment. Use TORA to solve the problem as a transportation model.
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*5,

TABLE 5.40 Data for Problem 1
(i) (i)

$3 $8 $2 $10 $3 $3 5o $2 $3 37
$8 §7 $2 $9 $7 $6 $1 $5 f6 36
$6 $4 52 87 $5 $9 $4 §7 $10 $3
$8 54 $2 $3 $5 $2 $5 $4 $2 $1
$9 $10 36 $9 310 39 36 52 $4 $5

(d) Solver Experiment. Modify Excel file solverEx5.3-1.xls to solve the problem.
(e) AMPL Experiment. Modify amplEx5.3-1b.txt to solve the problem.
JoShop needs to assign 4 jobs to 4 workers. The cost of performing a job is a function of
the skills of the workers. Table 5.41 summarizes the cost of the assignments. Worker 1
cannot do job 3 and worker 3 cannot do job 4. Determine the optimal assignment using
the Hungarian method.
In the JoShop model of Problem 2, suppose that an additional (fifth) worker becomes
available for performing the four jobs at the respective costs of $60, $45,$30,and $80.1s
it economical to replace one of the current four workers with the new one?
In the model of Problem 2, suppose that JoShop has just received a fifth job and that the
respective costs of performing it by the four current workers are $20, $10, $20, and $80.
Should the new job take priority over any of the four jobs JoShop already has?
A business executive must make the four round trips listed in Table 5.42 between the
head office in Dallas and a branch office in Atlanta.

The price of a round-trip ticket from Dallas is $400. A discount of 23 % is granted if
the dates of arrival and departure of a ticket span a weekend (Saturday and Sunday). If
the stay in Atlanta lasts more than 21 days, the discount is increased to 30%. A one-way

TABLE 5.41 Data for Problem 2

Job
1 2 3 4
1 $50 $50 — $20
Worker 2 $70 $40 $20 $30
3 $90 $30 $s0 —
4 $70 $20 $60 $70

TABLE 5.42 Data for Problem 5

Departure date from Dallas Return date to Dallas

Monday, June 3 Friday, June 7
Monday, June 10 Wednesday, June 12
Monday, June 17 Friday, June 21

Tuesday, June 25 Friday, June 28
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ticket between Dallas and Atlanta (either direction) costs $250. How should the execu-
tive purchase the tickets?

*6. Figure 5.6 gives a schematic layout of a machine shop with its existing work centers des-
ignated by squares 1, 2, 3, and 4. Four new work centers, I, II, III, and IV, are to be added
to the shop at the locations designated by circles a, b, ¢, and 4. The objective is to assign
the new centers to the proposed locations to minimize the total materials handling traf-
fic between the existing centers and the proposed ones. Table 5.43 summarizes the
frequency of trips between the new centers and the old ones. Materials handling equip-
ment travels along the rectangular aisles intersecting at the locations of the centers.
For example, the one-way travel distance (in meters) between center 1 and location b
is30 + 20 = 50 m.
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FIGURE 5.6
Machine shop layout for Problem 6, Set 5.4a

TABLE 5.43 Data for Problem 6

New center
1 I I v

1 10 2 "4 3
Existing 2 7 1 9 5
center 3 0 3 6 2

4 11 4 0 7
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5.4.2

7. In the Industrial Engineering Department at the University of Arkansas, INEG 4904 is a
capstone design course intended to allow teams of students to apply the knowledge and
skills learned in the undergraduate curriculum to a practical problem. The members of
each team select a project manager, identify an appropriate scope for their project, write
and present a proposal, perform necessary tasks for meeting the project objectives, and
write and present a final report. The course instructor identifies potential projects and
provides appropriate information sheets for each, including contact at the SponSsoring Or-
ganization, project summary, and potential skills needed to complete the project. Each
design team is required to submit a report justifying the selection of team members and
the team manager. The report also provides a ranking for each project in order of prefer-
ence, including justification regarding proper matching of the team’s skills with the pro-
ject objectives. In a specific semester, the following projects were identified: Boeing F-15,
Boeing F-18, Boeing Simulation, Cargil, Cobb-Vantress, ConAgra, Cooper, DaySpring
(layout), DaySpring (material handling), I.B. Hunt, Raytheon, Tyson South, Tyson East,
Wal-Mart, and Yellow Transportation. The projects for Boeing and Raytheon require us.
citizenship of all team members. Of the eleven design teams available for this semestet,
four do not meet this requirement.

Devise a procedure for assigning projects to teams and justify the arguments you use
to reach a decision.

Simplex Explanation of the Hungarian Method

The assignment problem in which n workers are assigned to n jobs can be represented
as an LP model in the following manner: Let ¢;; be the cost of assigning worker i to job
j,and define

{1, if worker i is assigned to job j
xlj = .
0, otherwise

Then the LP model is given as

H n
Minimize z = , > X

i=1j=1

subject to

n
Exij = l,i = 1,2,...,.”1
i=1

n
Ex,-}-= 1,j=12,...,n
=

.X[']':O()rl

The optimal solution of the preceding LP model remains unchanged if a constant
is added to or subtracted from any row or column of the cost matrix (c;;). To prove this
point, let p; and g; be constants subtracted from row i and column j. Thus, the cost ele-
ment ¢;; is changed to

LA _— —_—
Cij =Cij — Pi T 4

5.5
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Now
Z Ecl'jxij = ZZ(CU - P Qj)xij = 2 Zcijxr'j - ZP:‘( E_xij) - Z_%‘(E_xu)
i i tJ : i 1 L
= LEZCijxij - Zpi(l) - Ej:fb‘(l)

= > >¢jx; — constant
i

Because the new objective function differs from the original one by a constant, the op-
timum values of x; must be the same in both cases. The development thus shows that
steps 1 and 2 of the Hungarian method, which call for subtracting p; from row i and
then subtracting g; from column j, produce an equivalent assignment model. In this re-
gard, if a feasible solution can be found among the zero entries of the cost matrix cre-
ated by steps 1 and 2, then it must be optimum because the cost in the modified matrix
cannot be less than zero.

If the created zero entries cannot yield a feasible solution (as Example 5.4-2
demonstrates), then step 2a (dealing with the covering of the zero entries) must be ap-
plied. The validity of this procedure is again rooted in the simplex method of linear
programming and can be explained by duality theory (Chapter 4) and the complemen-
tary slackness theorem (Chapter 7). We will not present the details of the proof here
because they are somewhat involved.

The reason (py + po+ - + p,) + (g + g + -~ + g,) gives the optimal
objective value is that it represents the dual objective function of the assignment
model. This result can be seen through comparison with the dual objective function of
the transportation mode] given in Section 5.3.4. [See Bazaraa and Associates (1990, pp.
499-508) for the details.]

THE TRANSSHIPMENT MODEL

The transshipment model recognizes that it may be cheaper to ship through intermedi-
ate or transient nodes before reaching the final destination. This concept is more gen-
eral than that of the regular transportation model, where direct shipments only are
allowed between a source and a destination.

This section shows how a transshipment model can be converted to (and solved
as) a regular transportation model using the idea of a buffer.

Example 5.5-1

Two automobile plants, P1 and P2, are linked to three dealers, D1, D2, and D3, by way of two
transit centers, 71 and 72, according to the network shown in Figure 5.7. The supply amounts at
plants P1 and P2 are 1000 and 1200 cars, and the demand amounts at dealers D1, D2, and D3,
are 800, 900, and 500 cars. The shipping costs per car (in hundreds of dollars) between pairs of
nodes are shown on the connecting links (or arcs} of the network.

Transshipment occurs in the network in Figure 5.7 because the entire supply amount of
2200 (= 1000 + 1200) cars at nodes P1 and P2 could conceivably pass through any node of the
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Appendix C

Partial Answers to Selected Problems

Set 4.4a

1. (b) No,because point E is feasible and the dual simplex must stay infeasible until
optimum is reached.
4. (c) Add the artificial constraint x; = M. Problem has no feasible solution.

Set 4.53

4. Let Q be the weekly feed in 1b (= 5200, 9600, 15000, 20000, 26000, 32000, 380600,
42000, for weeks 1, 2, ..., and 8). Optimum solution: Limestone = .028Q,
corn = .649Q, and soybean meal = .323Q. Cost = .81221Q.

Set 4.5b

1. (a) Additional constraint is redundant.

Set 4.5¢
2. (a) New dual values = (%, 0,0, 0). Current solution remains optimal.

(c) New dual values = (—%, 14—1, 0, 0). z — 1255, + 2.75s, = 13.5. New solution:

Xy = 2,.}\1'2 = 2,X3 = 4,2 = 14.
Set 4.5d

L (1 + 3y, +y3) —3=0.Fory, =1,y, = 2,and y; = 0, p = 42.86%.
3. (a) Reduced cost for fire engines = 3y; + 2y, + 4y; — 5 = 2 > 0. Fire engines
are not profitable.

CHAPTER 5

Set 5.1a

4. Assign a very high cost, M, to the route from Detroit to dummy destination.
6. (aand b) Use M = 10,000. Solution is shown in bold. Total cost = $49,710.

1 3 Supply
600 700 400
Plant 1
25 25
320 300 350
Plant 2
23 17 40
500 480 450
Plant 3
25 5 30
1000 1000 M
Excess
Plant 4 13 13
Demand 36 42 30

(c) City 1 excess cost = $13,000.

ot i ] s mmee L b L
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9. Solution (in million gallons) is shown in bold. Area 2 will be 2 million gallons
short. Total cost = $304,000.

Al A2 A3 Supply
12 18 M
Refinery 1
4 2 6
30 10 8
Refinery 2
4 1 5
20 25 12
Refinery 3
6 6
M 50 50
Dummy
2 2
Demand 4 8 7

Set 5.2a

2. Total cost = $804. Problem has alternative optima.

Sharpening service

Day New QOvernight 2-day J-day Disposal
Monday 24 0 6 18 ¢
Tuesday 12 12 0 0 U]
Wednesday 2 14 0 0 G
Thursday 0 0 20 0 0
Friday 0 14 0 0 4
Saturday 0 2 0 0 12
Sunday 0 0 0 0 22

5. Total cost = $190,040. Problem has alternative optima.

Period Capacity Produced amount Delivery

1 500 500 400 for (period) 1 and 100 for 2
2 600 600 200 for 2,220 for 3, and 180 for 4
3 200 200 200 for 3

4 300 200 200 for 4

Set 5.3a
1. (a) Northwest: cost = $42. Least-cost: cost = $37. Vogel: cost = $37.

Set 5.3b

5. (a) Cost = $1475.
(b) cz = 3,13 = 8,03 =13,¢c5y = 7.
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