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VI.3:CALCULUS OF VARIATIONS AND LINEAR PROGRAMMING 
 

Total marks:150  (Theory: 75, Internal Assessment: 25+ Practical: 50) 

5 Periods (4 lectures +1 students’ presentation),  

Practicals(4 periods per week per student) 

 

(1st&2nd Week) 
Functionals, Some simple variational problems, The variation of a functional, A necessary 
condition for an extremum, The simplest variational problem, Euler’s equation, A simple 
variable end point problem. 
[1]: Chapter 1 (Sections 1, 3, 4 and 6). 
 
(3rd&4th Week) 
Introduction to linear programming problem, Graphical method of solution, Basic feasible 
solutions, Linear programming and Convexity. 
[2]: Chapter 2 (Section 2.2), Chapter 3 (Sections 3.1, 3.2 and 3.9). 
 
(5th& 6th Week) 
Introduction to the simplex method, Theory of the simplex method, Optimality and 
Unboundedness. 
[2]: Chapter 3 (Sections 3.3 and 3.4).  
 
(7th& 8th Week) 
The simplex tableau and examples, Artificial variables. 
[2]: Chapter 3 (Sections 3.5 and 3.6).  
 
(9th&10th Week) 
Introduction to duality, Formulation of the dual problem, Primal‐dual relationship, The 
duality theorem, The complementary slackness theorem. 
[2]: Chapter 4 (Sections 4.1, 4.2, 4.4 and 4.5).  
 
(11th&12th Week) 
Transportation problem and its mathematical formulation, Northwest‐corner method, 
Least-cost method and Vogel approximation method for determination of starting basic 
solution, Algorithm for solving transportation problem, Assignment problem and its 
mathematical formulation, Hungarian method for solving assignment problem. 
[3]: Chapter 5 (Sections 5.1, 5.3 and 5.4) 
 
 
 
 
 
 



Page 48 of 91 

 

 

 

PRACTICAL/LAB WORK TO BE PERFORMED ON A COMPUTER: 

(MODELLING OF THE FOLLOWING PROBLEMS USING EXCEL 

SOLVER/LINGO/MATHEMATICA, ETC.) 
 

(i) Formulating and solving linear programming models on a spreadsheet using excel solver. 

 [2]: Appendix E and Chapter 3 (Examples 3.10.1 and 3.10.2). 

 [4]: Chapter 3 (Section 3.5 with Exercises 3.5-2 to 3.5-5) 

 

(ii) Finding solution by solving its dual using excel solver and giving an interpretation of the  

dual. 

 [2]: Chapter 4 (Examples 4.3.1 and 4.4.2) 

 

(iii) Using the excel solver table to find allowable range for each objective function coefficient,  

 and the allowable range for each right-hand side. 

 [4]: Chapter 6 (Exercises 6.8-1 to 6.8-5). 

 

(iv) Formulating and solving transportation and assignment models on a spreadsheet using 

solver. 

 [4]: Chapter 8 (CASE 8.1: Shipping Wood to Market, CASE 8.3: Project Pickings). 

 

From the Metric space paper, exercises similar to those given below:  

1. Calculate d(x,y) for the following metrics 

 

(i) X=R,   d(x,y)=Ix-yI,                (ii) X=R3
, d(x,y)= (∑(xi-yi)

2)1/2 

 

x:   0, 1, π, e                               x: (0,1,-1), (1,2,π), (2,-3,5) 

y:    1, 2, ½, √2                            y: (1, 2, .5), ( e,2,4), (-2,-3,5) 

 

(iii) X=C[0,1],  d(f,g)= sup If(x)-g(x)I 

 

f(x): x2 , sin x, tan x 

g(x): x , IxI, cos x    

 

2. Draw open balls of the above metrics with centre and radius of your choice. 

3. Find the fixed points for the following functions 

f(x)=x2   , g(x)= sin x, h(x)= cos x  in X=[-1, 1], 

f(x,y)= (sin x, cos y), g(x,y) = (x2  , y2 ) in X= { (x,y): x2+y2≤1}, 



Page 49 of 91 

 

under the Euclidean metrics on R and R2 respectively. 

4. Determine the compactness and connectedness by drawing sets in R2. 
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From [1]: Chapter 1:  

 

Section 1: Examples of functionals from page 1 to first paragraph of page 3. 

Section 3: Pages 9 –11, except Lemma 3. Page 13, Theorem 2 (statement only). 

Section 4: Subsection 4.1 up to Theorem 1 (with proof), subsection 4.2 including all four cases 

of the Euler’s equation and examples (pages 18-22). 

Section 6: Example on brachistochrone problem, page 26. 

 

From [2]: Chapters 2, 3 and 4:  

 

Section 2.2: Examples 2.2.1, 2.2.2 and problem set 2.2 (pages 17-18), 1 to 5. 

Section 3.1: Example 3.1.1 and problem set 3.1 (pages 60-61), 1, 2, 3[(a) to (e)]. 

Section 3.2: Examples 3.2.1, 3.2.2 and problem set 3.2 (pages 70-71), 1, 2, 3, 4[(a), (b)], also no 

geometric representations. 

Section 3.3: Complete and problem set 3.3 (pages 76-77), 1 to 4. 

Section 3.4: Complete with Theorem 3.4.3 (statement only), and problem set 3.4 (pages 83-84), 1, 2. 

Section 3.5: Examples 3.5.1, 3.5.2 and problem set 3.5 (pages 89-90), 2[(b) to (f)], 6(a). 

Section 3.6: Examples 3.6.1, 3.6.2 and problem set 3.6 (pages 98-100), 2[(a) to (d)]. 

Section 3.9 and Section 4.1: Complete, except problem sets. 

Section 4.2: Complete with problem set 4.2 (pages 130-131), 1. 

Section 4.4: Theorem 4.4.1, Corollary 4.4.1, 4.4.2, 4.4.3, Theorem 4.4.2(statement only), 

Corollary 4.4.4. Simple problems based on the duality theorem. 

Section 4.5: Theorem 4.5.1 (statement only), Examples 4.5.1, 4.5.2 and problem set 4.5 (page 158), 1, 2. 

 

From [3]: Chapter 5: Sections 5.1, 5.3 and 5.4 complete with emphasis on methods and problems. 
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1 
ELEMENTS 

OF THE THEORY 

I. Fu nct iona ls .  Some S i m p l e  Var iat iona l  Pro b l e m s  

Variable quantities called functionals play an important role in  many 
problems arising in analysis, mechanics, geometry, etc. By a functional, we 
mean a correspondence which assigns a definite (real) number to each function 
(or curve) belonging to some class. Thus, one might say that a functional is 
a kind of function, where the independent variable is itself a function (or 
curve). The following are examples of functionals: 

1 .  Consider the set of all rectifiable plane curves. 1 A definite number is 
associated with each such curve, namely, its length. Thus, the length 
of a curve is a functional defined on the set of rectifiable curves. 

2. Suppose that each rectifiable plane curve is regarded as being made 
out of some homogeneous material. Then if we associate with each 
such curve the ordinate of its center of mass, we again obtain a 
functional. 

3. Consider all possible paths joining two given points A and B in the 
plane. Suppose that a particle can move along any of these paths, 
and let the particle have a definite velocity v(x, y) at the point (x, y) . 
Then we obtain a functional by associating with each path the time the 
particle takes to traverse the path. 

1 In analysis, the length of a curve is defined as the limiting length of a polygonal line 
inscribed in the curve (i.e . ,  with vertices lying on the curve) as the maximum length of 
the chords forming the polygonal line goes to zero. If  this limit exists and is finite, the 
curve is said to be rectifiable. 
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4. Let y(x) be an arbitrary continuously differentiable function, defined 
on the interval [a, b].2 Then the formula 

J[y] = J: y'2(X) dx 

defines a functional on the set of all such functions y(x). 
5. As a more general example, let F(x, y, z) be a continuous function of 

three variables .  Then the expression 

J[y] = J: F[x, y(x), y'(x)] dx, (1) 

where y(x) ranges over the set of all continuously differentiable functions 
defined on the interval [a, b], defines a functional. By choosing 
different functions F(x, y, z), we obtain different functionals. For 
example, if 

F(x, y, z) = v'f"'+'Z2, 
J[y] is the length of the curve y = y(x), as in the first example, while if 

F(x, y, z) = Z2, 
J [y] reduces to the case considered in the fourth example. In what 
follows, we shall be concerned mainly with functionals of the form ( 1 ) .  

Particular instances of problems involving the concept of a functional 
were considered more than three hundred years ago, and in fact, the first 
important results in this area are due to Euler ( 1 707-1 783). Nevertheless, 
up to now, the " calculus of functionals" still does not have methods of a 
generality comparable to the methods of classical analysis (Le. , the ordinary 
" calculus of functions"). The most developed branch of the " calculus of 
functionals" is concerned with finding the maxima and minima of functionals, 
and is called the " calculus of variations ."  Actually, it would be more 
appropriate to call this subject the " calculus of variations in the narrow 
sense," since the significance of the concept of the variation of a functional 
is by no means confined to its applications to the problem of determining the 
extrema of functionals. 

We now indicate some typical examples of variational problems, by which 
we mean problems involving the determination of maxima and minima of 
functionals. 

1 .  Find the shortest plane curve joining two points A and B, i.e. ,  find the 
curve y = y(x) for which the functional 

f V I + y'2 dx 

achieves its minimum. The curve in question turns out to be the straight 
line segment joining A and B. 

2 By [a, h] is meant the closed interval a :!O; x :!O; h. 
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2. Let A and B be two fixed points. Then the time it takes a particle to 
slide under the influence of gravity along some path joining A and B 
depends on the choice of the path (curve), and hence is a functional. 
The curve such that the particle takes the least time to go from A to B 
is called the brachistochrone. The brachistochrone problem was posed 
by John Bernoulli in 1 696, and played an important part in the develop­
ment of the calculus of variations. The problem was solved by John 
Bernoulli, James Bernoulli, Newton, and L'Hospital. The brachisto­
chrone turns out to be a cycloid, lying in the vertical plane and passing 
through A and B (cf. p. 26). 

3. The following variational problem, called the isoperimetric problem, 
was solved by Euler : Among all closed curves of a given length I, find the 
curve enclosing the greatest area. The required curve turns out to be 
a circle. 

All of the above problems involve functionals which can be written in 
the form 1: F(x, y, y') dx. 

Such functionals have a " localization property " consisting of the fact that 
if we divide the curve y = y(x) into parts and calculate the value of the 
functional for each part, the sum of the values of the functional for the 
separate parts equals the value of the functional for the whole curve. It is 
just these functionals which are usually considered in the calculus of variations. 
As an example of a " nonlocal functional," consider the expression 

f xvI + y'2 dx 
b 

' 

fa vI + y'2 dx 

which gives the abscissa of the center of mass of a curve y = y(x), a � x � b, 
made out of some homogeneous material . 

An important factor in the development of the calculus of variations was 
the investigation of a number of mechanical and physical problems, e .g . , 
the brachistochrone problem mentioned above. In turn, the methods of the 
calculus of variations are widely applied in various physical problems. It 
should be emphasized that the application of the calculus of variations to 
physics does not consist merely in the solution of individual, albeit very 
important problems. The so-called " variational principles," to be discussed 
in Chapters 4 and 7, are essentially a manifestation of very general physical 
laws, which are valid in diverse branches of physics, ranging from classical 
mechanics to the theory of elementary particles. 

To understand the basic meaning of the problems and methods of the 
calculus of variations, it is very important to see how they are related to 
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in general, the functional will not be continuous if we use the norm intro­
duced in the space '(/,5 even though it is continuous in the norm of the space 
£01, Since we want to be able to use ordinary analytic methods, e.g. , passage 
to the limit, then, given a functional, it is reasonable to choose a function 
space such that the functional is continuous. 

Remark 3. So far, we have talked about linear spaces and functionals 
defined on them. However, in many variational problems, we have to deal 
with functionals defined on sets of functions which do not form linear spaces. 
In fact, the set of functions (or curves) satisfying the constraints of a given 
variational problem, called the admissible functions (or admissible curves), 
is in general not a linear space. For example, the admissible curves for the 
"simplest " variational problem (see Sec. 4) are the smooth plane curves 
passing through two fixed points, and the sum of two such curves does not 
pass through the two points. Nevertheless, the concept of a normed linear 
space and the related concepts of the distance between functions, continuity 
of functionals, etc . ,  play an important role in the calculus of variations. A 
similar situation is encountered in elementary analysis, where, in dealing 
with functions of n variables, it is convenient to use the concept of an 
n-dimensional Euclidean space � n, even though the domain of definition of 
a function may not be a linear subspace of � n' 

3. The Var iat i o n  of a F u n ct i o n al . A Necessary Con d it ion 
fo r an Ext re m u m  

3.1. I n  this section, we introduce the concept of the variation (or 
differential) of a functional, analogous to the concept of the differential of a 
function of n variables. The concept will then be used to find extrema of 
functionals. First, we give some preliminary facts and definitions. 

DEFINITION. Given a normed linear space fJi, let each element h EfJi 
be assigned a number cp [h] ,  i.e. ,  let cp [h] be afunctional defined on fJi. Then 
cp [h] is said to be a (continuous) linear functional if 

l . rp[lXh] = IXcp [h] for any h EfJi and any real number IX; 
2. CP[h1 + h2] = cp [ht l  + cp[h2] for any h1 ' h2 E fJi ; 
3. cp[h] is continuous (for all h EfJi). 

Example 1. If we associate with each function h(x) E '(/(a, b) its value at 
a fixed point Xo in [a, b], i .e . ,  if we define the functional cp[h] by the formula 

cp [h] = h(xo) , 
then cp [h] is a linear functional on '(/(a, b). 

5 Arc length is a typical example of such a funct ional. For every curve, we can find 
another curve arbitrarily close to the first in the sense of the norm of the space Vi', whose 
length differs from that of the first curve by a factor of 10, say. 
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Example 2. The integral 

<p [h] = s: h(x) dx 

defines a linear functional on �(a, b) . 

Example 3. The integral 

<p [h] = s: oc(x)h(x) dx, 

where oc(x) is a fixed function in �(a, b), defines a linear functional on �(a, b). 
Example 4. More generally, the integral 

<p [h] = s: [oco(x)h(x) + ocI(x)h'(x) + . . .  + ocn(x)h<n)(x)] dx, (6) 

where the OCj(x) are fixed functions in �(a, b), defines a linear functional 
on !!fin(a, b). 

Suppose the linear functional (6) vanishes for all h(x) belonging to some 
c.lass. Then what can be said about the functions OCj(x)? Some typical 
results in this direction are given by the following lemmas : 

LEMMA 1 .  If oc(x) is continuous in [a, b], and if 

s: oc(x)h(x) dx = 0 

for every function h(x) E �(a, b) such that h(a) = h(b) = 0, then oc(x) = 0 
for all x in [a, b] . 

Proof Suppose the function oc(x) is nonzero, say positive, at some 
point in [a, b] . Then oc(x) is also positive in some interval [Xl > X2] 
contained in [a, b] . If we set 

h(x) = (x - XI)(X2 - x) 
for x in [Xl > x2] and h(x) = 0 otherwise, then h(x) obviously satisfies 
the conditions of the lemma. However, 

fo iX' oc(x)h(x) dx = oc(x)(x - XI)(X2 - x) dx > 0, 
a Xl 

since the integrand is positive (except at Xl and X2). This contradiction 
proves the lemma. 

Remark. The lemma still holds if we replace �(a, b) by !!fin(a, b). To 
see this, we use the same proof with 

h(x) = [(x - XI)(X2 - x)]n + I 

for x in [Xl> X2] and h(x) = 0 otherwise. 
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LEMMA 2. If ot(x) is continuous in [a, b], and if 

s: ot(x)h'(x) dx = ° 

CHAP. 1 

for every function h(x) E �l(a, b) such that h(a) = h(b) = 0, then 
ot(x) = c for all x in [a, b], where c is a constant. 

Proof. Let c be the constant defined by the condition 

s: [ot(x) - c] dx = 0, 

and let 

h(x) = r [ot(�) - c] d�, 

so that h(x) automatically belongs to �l(a, b) and satisfies the con­
ditions h(a) = h(b) = 0. Then on the one hand, 

s: [ot(x) - c]h'(x) dx = s: ot(x)h'(x) dx - c[h(b) - h(a)] = 0, 

while on the other hand, 

s: [ot(x) - c]h'(x) dx = s: [ot(x) - C]2 dx. 

It follows that ot(x) - c = 0, i .e . ,  ot(x) = c, for all x in [a, b]. 
The next lemma will be needed in Chapter 8 :  

LEMMA 3 .  If ot(x) is continuous in [a, b], and if 

s: ot(x)h"(x) dx = ° 

for every function h(x) E �2(a, b) such that h(a) = h(b) = ° and 
h'(a) = h'(b) = 0, then ot(x) = Co + clx for all x in [a, b], where Co and Cl 
are constants. 

Proof. Let Co and Cl be defined by the conditions 

s: [ot(x) - Co - CIX] dx = 0, 

s: dx r [ot(�) - Co - Cl�] d� = 0, 

and let 

h(x) = r d� f [ot(t) - Co - CIt ]  dt, 

(7) 

so that h(x) automatically belongs to �2(a, b) and satisfies the conditions 
h(a) = h(b) = 0, h'(a) = h'(b) = 0. Then on the one hand, 

s: [ot(x) - Co - clx]h"(x) dx 

= s: ot(x)h"(x) dx - co [h'(b) - h'(a)] - Cl s: xh"(x) dx = - cl [bh'(b) - ah'(a)] - cl [h(b) - h(a)] = 0, 
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while on the other hand, 

I: [cx.(x) - Co - clx]h"(x) dx = I: [IX(X) - Co - CIX]2 dx = O. 

It follows that cx.(x) - Co - C1x = 0, i .e . ,  cx.(x) = Co + CIX, for all x in 
[a, b]. 

LEMMA 4. If cx.(x) and �(x) are continuous in [a, b], and if 

I: [cx.(x)h(x) + �(x)h'(x)] dx = 0 (8) 

for every function hex) E !!}l(a, b) such that h(a) = h(b) = 0, then �(x) 
is differentiable, and W(x) = cx.(x) for all x in [a, b] . 

Proof. Setting 

A(x) = J: cx.(�) d�, 

and integrating by parts, we find that 

I: lX(x)h(x) dx = - I: A(x)h'(x) dx, 

i .e. , (8) can be rewritten as 

I: [ - A(x) + �(x)]h'(x) dx = o. 

But, according to Lemma 2, this implies that 

�(x) - A(x) = const, 

and hence by the definition of A(x), 

W(x) = cx.(x), 
for all x in [a, b], as asserted. We emphasize that the differentiability 
of the function �(x) was not assumed in advance. 

3.2. We now introduce the concept of the variation (or differential) of a 
functional. Let J[y] be a functional defined on some normed linear space, 
and let 

dJ[h] = J[y + h] - J[y] 
be its increment, corresponding to the increment h = hex) of the " independent 
variable " y = y(x). If y is fixed, M[h] is a functional of h, in general a 
nonlinear functional. Suppose that 

dJ[h] = cp[h] + e: llhll, 
where cp[h] is a linear functional and e: � 0 as Ilhll � O. Then the functional 
J[y] is said to be differentiable, and the principal l inear part of the increment 
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LVlh], i .e . ,  the linear functional cp [h] which differs from �J[h] by an infinitesi­
mal of order higher than 1 relative to I I  h I I , is called the variation (or differ­
ential) of J[y] and is denoted by �J[h] .6 

THEOREM 1 .  The differential of a differentiable functional is unique. 
Proof First, we note that if cp [h] is a linear functional and if 

cp [h] 

w- 0 

as I I h ll- 0, then cp [h] == 0, i .e . ,  cp [h] = 0 for all h. In fact, suppose 
cp [ho] =F 0 for some ho =F O. Then, setting 

ho cp[ho] 
hn = n' A = 

I I ho ll ' 

we see that I Ihn ll- 0 as n - 00 ,  but 

lim 
cp [hn] = lim 

ncp [ho] = A =F 0 
n _oo I Ihn ll n -oo n llho ll ' 

contrary to hypothesis. 
Now, suppose the differential of the functional J[y] is not uniquely 

defined, so that 
�J [h] = CP1 [h] + Etllh ll, 
�J [h] = CP2[h] + E2 11h ll, 

where CP1 [h] and CP2[h] are linear functionals, and El> E2 - 0 as I I h ll- O. 
This implies 

CP1 [h] - CP2[h] = E2 11h ll - E1 11h ll, 

and hence CP1 [h] - CP2[h] is an infinitesimal of order higher than 1 relative 
to I Ih ll. But sincecp1 [h] - CP2[h] is a linear functional, it follows from the 
first part of the proof that CP1 [h] - CP2[h] vanishes identically, as asserted. 

Next, we use the concept of the variation (or) differential of a functional 
to establish a necessary condition for a functional to have an extremum. 
We begin by recalling the corresponding concepts from analysis. Let 
F(xl> . . .  , xn) be a differentiable function of n variables. Then F(xl> . . .  , xn) 
is said to have a (relative) extremum at the point (Xl> . . .  , Xn) if 

�F = F(Xl> . . . , Xn) - F(X1' . . .  , xn) 

has the same sign for all points (Xl> . . .  , xn) belonging to some neighborhood 
of (Xl> . . .  , xn), where the extremum F(X1 ' . . .  , Xn) is a minimum if �F � 0 
and a maximum if �F ..; O. 

Analogously, we say that the functional J [y] has a (relative) extremum 
for y = y if J [y] - J[y] does not change its sign in some neighborhood of 

6 Strictly speaking, of course, the increment and the variation of J[y], are functionals 
of two arguments y and h, and to emphasize this fact, we might write �J[y; h] = 

aJ[y; hJ + e:llhll. 
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the curve y = Y(x) . Subsequently, we shall be concerned with functionals 
defined on some set of continuously differentiable functions, and the functions 
themselves can be regarded either as elements of the space rtf or elements 
of the space !!21. Corresponding to these two possibilities, we can define 
two kinds of extrema: We shall say that the functional J [y] has a weak 
extremum for y = y if there exists an E > 0 such that J [y] - J [y] has the 
same sign for all y in the domain of definition of the functional which satisfy 
the condition I l y - Yl 1 1 < E, where II 11 1 denotes the norm in the space !!21 . 
On the other hand, we shall say that the functional J[y] has a strong extremum 
for y = y if there exists an- E > 0 such that J [y] - J [y] has the same sign 
for all y in the domain of definition of the functional which satisfy the 
condition I l y - Yll o < E, where I I 11 0 denotes the norm in the space rtf. 
It is clear that every strong extremum is simultaneously a weak extremum, 
since if I l y - Yl 1 1 < E, then I I Y - Yll o < E, a fortiori, and hence, if J[y] is 
an extremum with respect to all y such that I I Y - Yll o < E, then J [y] is 
certainly an extremum with respect to all y such that I I y - Yl 1 1 < E. How­
ever, the converse is not true in general, i .e . , a weak extremum may not be a 
strong extremum. As a rule, finding a weak extremum is simpler than 
finding a strong extremum. The reason for this is that. the functionals 
usually considered in the calculus of variations are continuous in the norm 
of the space !!21 (as noted at the end of the previous section), and this con­
tinuity can be exploited in the'theory of weak extrema. In general, however, 
our functionals will not be continuous in the norm of the space rtf. 

THEOREM 2. A necessary condition for the differentiable functional 
J [y] to have an extremum for y = y is that its v,ariation vanish for y = y, 
i.e. , that 

U [h] = 0 

for y = y and all admissible h. 

Proof To be explicit, suppose J[y] has a mIDlmum for y = y. 
According to the definition of the variation 8J [h] ,  we have 

�J [h] = 8J[h] + Ell h l l , (9) 

where E -+ 0 as I l h l l-+ O. Thus, for sufficiently small I l h l l , the sign of 
�J[h] will be the same as the sign of 8J[h] .  Now, suppose that 
8J [ho] # 0 for some admissible ho• Then for any IX > 0, no matter 
how small, we have 

8J[ - ocho] = - 8J [ocho] . 
Hence, (9) can be made to have either sign for arbitrarily small I l h l l . 
But this is impossible, since by hypothesis J[y] has a minimum for y = y, 
i .e . ,  

�J [h] = J [y + h] - J [y] � 0 

for all sufficiently small I l h l l . This contradiction proves the theorem. 
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Remark. In elementary analysis, it is proved that for a function to have 
a minimum, it is necessary not only that its first differential vanish (df = 0), 
but also that its second differential be nonnegative. Consideration of the 
analogous problem for functionals will be postponed until Chapter 5. 

4. The S i m p l est Variat ional Pro b l e m .  E u l e r's  Eq uat ion 

4.1. We begin our study of concrete variational problems by considering 
what might be called the "simplest " variational problem, which can be 
formulated as follows: Let F(x, y, z) be a function with continuous first and 
second (partial ) derivatives with respect to all its arguments. Then, among 
all functions y(x) which are continuously differentiable for a ::::;; x ::::;; b and 
satisfy the boundary conditions 

y(a) = A, y(b) = B, (10) 

find the function for which the functional 

J [y] = I: F(x, y, y') dx (11) 

has a weak extremum. In other words, the simplest variational problem 
consists of finding a weak extremum of a functional of the form ( I I) ,  where 
the class of admissible curves (see p. 8) consists of all smooth curves joining 
two points. The first two examples on pp. 2, 3 ,  involving the brachistochrone 
and the shortest distance between two points, are variational problems of 
just this type. To apply the necessary condition for an extremum (found in 
Sec. 3 .2) to the problem just formulated, we have to be able to calculate the 
variation of a functional of the type ( I I ) .  We now derive the appropriate 
formula for this variation. 

Suppose we give y(x) an increment h(x), where, in order for the function 

y(x) + h(x) 
to continue to satisfy the boundary conditions, we must have 

h(a) = h(b) = O. 

Then, since the corresponding increment of the functional ( I I ) equals 

!1J = J[y + h] - J[y] = I: F(x, y + h, y' + h') dx - I: F(x, y, y') dx 

= f: [F(x, y + h, y' + h') - F(x, y, y ')] dx, 

it follows by using Taylor's theorem that 

!1J = I: [Fix, y, y')h + Fy.(x, y, y')h'] dx + .. " ( 1 2) 
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where the subscripts denote partial derivatives with respect to the corres­
ponding arguments, and the dots denote terms of order higher than 1 relative 
to h and h'. The integral in the right-hand side of ( 1 2) represents the principal 
linear part of the increment 6.J, and hence the variation of J[y] is 

8J = s: [FlI(x, y, y')h + FlI.(x, y, y')h ' ]  dx. 

According to Theorem 2 of Sec. 3 .2 ,  a necessary condition for J [y] to have 
an extremum for y = y(x) is that 

( 1 3) 

for all admissible h. But according to Lemma 4 of Sec. 3 . 1 ,  ( 1 3) implies 
that 

a result known as Euler's equation. 7  Thus, we have proved 

THEOREM 1 .  Let J[y] be a functional of the form 

s: F(x, y, y') dx, 

( 1 4) 

defined on the set of functions y(x) which have continuous first derivatives 
in [a, b] and satisfy the boundary conditions y(a) = A, y(b) = B. Then 
a necessary condition for J[y] to have an extremum for a given function 
y(x) is that y(x) satisfy Euler's equationB 

d Fli - dx Fli ' = O. 

The integral curves of Euler's equation are called extremals. Since 
Euler's equation is a second-order differential equation, its solution will in 
general depend on two arbitrary constants, which are determined from the 
boundary conditions y(a) = A, y(b) = B. The problem usually considered 
in the theory of differential equations is that of finding a solution which is 
defined in the neighborhood of some point and satisfies given initial con­
ditions (Cauchy's problem). However, in solving Euler's equation, we are 
looking for a solution which is defined over all of some fixed region and 
satisfies given boundary conditions. Therefore, the question of whether 
or not a certain variational problem has a solution does not just reduce to the 

7 We emphasize that the existence of the derivative (dldx)Fv' is not assumed in 
advance, but follows from the very same lemma. 

8 This condition is necessary for a weak extremum. Since every strong extremum is  
simultaneously a weak extremum, any necessary condition for a weak extremum is 
also a necessary condition for a strong extremum. 
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usual existence theorems for differential equations. In this regard, we now 
state a theorem due to Bernstein,9 concerning the existence and uniqueness of 
solutions "in the large " of an equation of the form 

y" = F(x, y, y'). ( 1 5) 

THEOREM 2 (Bernstein). If the functions F, FII and FII, are continuous 
at every finite point (x, y) for any finite y' , and if a constant k > ° and 
functions 

IX = IX(X, y) � 0, � = �(x, y) � ° 

(which are bounded in every finite region of the plane) can be found such 
that 

FII(x, y, y') > k, IF(x, y, y')1 � lXy'2 + � , 

then one and only one integral curve of equation ( 1 5) passes through any 
two points (a, A) and (b, B) with different abscissas (a =F b). 

Equation ( 1 3) gives a necessary condition for an extremum, but in general, 
one which is not sufficient. The question of sufficient conditions for an 
extremum will be considered in Chapter 5. In many cases, however, 
Euler's equation by itself is enough to give a complete solution of the prob­
lem. In fact, the existence of an extremum is often clear from the physical or 
geometric meaning of the problem, e.g. , in the brachistochrone problem, 
the problem concerning the shortest distance between two points, etc. If in 
such a case there exists only one extremal satisfying the boundary conditions 
of the problem, this extremal must perforce be the curve for which the 
extremum is achieved. 

For a functional of the form 

s: F(x, y, y') dx 

Euler's equation is in general a second-order differential equation, but it 
may turn out that the curve for which the functional has its extremum is 
not twice differentiable. For example, consider the functional 

where 
y( - I ) = O, y( l )  = 1 .  

The minimum of J [y] equals zero and is achieved for the function 

{o for y = y(x) = x2 for 
- 1 � x � 0, 

° < x � 1 , 

9 S. N. Bernstein, Sur /es equations du ca/cu/ des variations, Ann. Sci. Ecole Norm. 
Sup. ,  29, 431-485 (1912). 
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which has no second derivative for x = O. Nevertheless, y(x) satisfies 
the appropriate Euler equation.  In fact, since in this case 

F(x, y, y') = y2(2x _ y')2 , 

it follows that all the functions 

vanish identically for - 1 :s;; x :s;; 1 .  Thus, despite the fact that Euler's 
equation is of the second order and y"(x) does not exist everywhere in 
[- 1 , 1 ] , substitution of y(x) into Euler's equation converts it into an identity. 

We now give conditions guaranteeing that a solution of Euler's equation 
has a second derivative : 

THEOREM 3. Suppose y = y(x) has a continuous first derivative and 
satisfies Euler's equation 

d Fy - dx Fy' = O. 

Then, if the function F(x, y, y') has continuous first and second derivatives 
with respect to all its arguments, y(x) has a continuous second derivative 
at all points (x, y) where 

Fy'y ' [x, y(x), y'(x)] # O. 

Proof. Consider the difference 

6.Fy' = FlAx + 6.x, y + 6.y, y' + 6.y') - Fy-(x, y, y') 
= 6.xFY'r + 6.yFy'y + tly'Fy'Y" 

where the overbar indicates that the corresponding derivatives are evalu­
ated along certain intermediate curves. We divide this difference by 
6.x, and consider the limit of the resulting expression 

- 6.y - 6.y' -FY 'r + 6.x Fy'Y + 6.x Fy'Y '  

as 6.x -+ O. (This limit exists, since FlI, has a derivative with respect to 
x, which, according to Euler's equation, equals Fy.) Since, by hypoth­
esis, the second derivatives of F(x, y, z) are continuous, then, as 
6.x -+ 0, F" 'r converges to FY 'r, i .e . ,  to the value of 02 F /oy' ox at the point 
x. It follows from the existence of y' and the continuity of the second 
derivative FY 'lI that the second term (6.y/6.x)Fy' Y  also has a limit as 
6.x -+ O. But then the third term also has a limit (since the limit of the 
sum of the three terms exists), i .e . ,  the limit 

1. 6.y'-
1m -;r- Fy' Y '  6r- 0  uX 
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exists. As �x � 0, Fy'y ' converges to Fy'Y '  #- 0, and hence 

� '  
lim ....l.- = y"(x) ax�o �x 

exists. Finally, from the equation 

d 
dx Fy' - Fy = 0, 

CHAP. 1 

we can find an expression for yO , from which it is clear that y" is 
continuous wherever Fy'y ' #- 0. This proves the theorem. 

Remark. Here it is assumed that the extrema Is are smooth. lO In Sec. 1 5  
we shall consider the case where the solution of a variational problem may 
only be piecewise smooth, i .e . ,  may have " corners " at certain points. 

4.2. Euler's equation ( 1 4) plays a fundamental role in the calculus of 
variations, and is in general a second-order differential equation. We now 
indicate some special cases where Euler's equation can be reduced to a first­
order differential equation, or where its solution can be obtained entirely 
in terms of quadratures (i.e . ,  by evaluating integrals). 

Case 1. Suppose the integrand does not depend on y, i .e . ,  let the functional 
under consideration have the form 

1: F(x, y') dx, 

where F does not contain y explicitly. In this case, Euler's equation becomes 

d 
dx Fy' = 0, 

which obviously has the first integral 

Fy' = C, ( 16) 

where C is a constant. This is a first-order differential equation which 
does not contain y. Solving ( 1 6) for y' , we obtain an equation of the form 

y' = f(x, C), 
from which y can be found by a quadrature. 

Case 2. If the integrand does not depend on x, i .e . ,  if 

J[y] = 1: F(y, y') dx, 
then 

( 1 7) 

10 We say that the function y(x) is smooth in an interval [a, h] if it is continuous in 
[a, h], and has a continuous derivative in [a, h]. We say that y(x) is piecewise smooth in 
[a, h] if it is continuous everywhere in [a, h], and has a continuous derivative in [a, h] 
except possibly at a finite number of points. 
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Multiplying ( 1 7) by y', we obtain 

F. ,  F. '2 F. , ,, d (F 'F. ) IIY - ]I'lIY - ]I'Y' Y Y = dx - Y y" 

Thus, in this case, Euler's equation has the first integral 

F - y'F]I' = C, 
where C is a constant. 

Case 3. ifF does not depend on y', Euler's equation takes the form 

Fix, y) = 0, 
and hence is not a differential equation, but a "finite " equation, whose 
solution consists of one or more curves y = y(x) . 

Case 4. In a variety of problems, one encounters functionals of the form 

I: f(x, y)V I + y'2 dx, 

representing the integral of a function f(x, y) with respect to the arc length 
s (ds = V 1 + y'2 dx). In this case, Euler's equation can be transformed 
into 

:; - fx (:�) = fix, y)VI + y'2 - fx [f(X,Y) V I 
y� y'2] 

i .e . ,  

_ rv� _ I' 
y' 

- j' 
y'2 -f y" 

- J y Y J r VI + y'2 ]I VI + y'2 ( l  + y'2)3/2 
1 [ 

" 
] = VI + y'2 fll -fry' -f 1 � y '2 = 0, 

fy - fry' -f 1 {y'2 = 0. 

Example 1. Suppose that 

J[y] = r V� dx, y( l )  = 0, y(2) = 1 .  

The integrand does not contain y, and hence Euler's equation has the form 
FII, = C (cf. Case 1 ) .  Thus, 

so that 

or 

y' --==== - C 
xV I + y'2 - , 
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from which it follows that 

or 

CHAP. 1 

Thus, the solution is a circle with its center on the y-axis. From the 
conditions y(l) = 0, y(2) = I, we find that 

so that the final solution is 

I 
C =  

VS' 

(y - 2)2 + x2 = 5 .  

Example 2.  Among all the curves joining two given points (xo, Yo) and 
(Xl > Yl),jind the one which generates the surface ofminimum area when rotated 
about the x-axis. As we know, the area of the surface of revolution generated 
by rotating the curve y = y(x) about the x-axis is 

21t (Xl y� dx. Jxo 
Since the integrand does not depend explicitly on x, Euler's equation has the 
first integral 

(cf. Case 2), i .e . ,  

or 

so that 

F - y'Fy' = C 

yv I + y'2 _ Y 
y'2 

= C vi + y'2 

y = C v l + y'2, 

, Jy2 - C2 
Y = 

C2 ' 

Separating variables, we obtain 

i .e . ,  

so that 

dx = 
C dy , vy2 _ C2 

h
x + C1 y = C cos --- . 

C 
( 1 8) 
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Thus, the required curve is a catenary passing through the two given 
points. The surface generated by rotation of the catenary is called a catenoid. 
The values of the arbitrary constants C and Cl are determined by the 
conditions 

It can be shown that the following three cases are possible, depending on 
the positions of the points (xo , Yo) and (Xl ' Yl): 

1 .  If a single curve of the form (18) can be drawn through the points 
(xo, Yo) and (Xl> Yl), this curve is the solution of the problem [see 
Figure 2(a) ] .  

2. If two extremals can be drawn through the points (xo , Yo) and (Xl> Yl) ,  
one of the curves actually corresponds to the surface of revolution 
of minimum area, and the other does not. 

3 .  If there is no curve of the form ( 1 8) passing through the points (xo, Yo) 
and (Xl ' Yl), there is no surface in the class of smooth surfaces of revo­
lution which achieves the minimum area. In fact, if the location of the 

Y B 

� I I 
I I 
I I 

Y 

Xl X 

(0) 
FIGURE 2 

B 

X 
(b) 

two points is such that the distance between them is sufficiently large 
compared to their distances from the x-axis, then the area of the surface 
consisting of two circles of radius Yo and Yl , plus the segment of the 
x-axis joining them [see Figure 2(b)] will be less than the area of any 
surface of revolution generated by a smooth curve passing through the 
points. Thus, in this case the surface of revolution generated by the 
polygonal line AXOXIB has the minimum area, and there is no surface 
of minimum area in the class of surfaces generated by rotation about the 
x-axis of smooth curves passing through the given points. (This case, 
corresponding to a " broken extremal," will be discussed further in 
Sec. 1 5 .) 

Example 3. For the functional 

J [y] = s: (x - y)2 dx, ( 1 9) 
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Euler's equation reduces to a finite equation (see Case 3), whose solution 
is the straight line y = x. In fact, the integral ( 1 9) vanishes along this line. 

5. The Case of Several Varia bles 

So far, we have considered functionals depending on functions of one 
variable, i .e . ,  on curves. In many problems, however, one encounters 
functionals depending on functions of several independent variables, i .e . ,  on 
surfaces. Such multidimensional problems will be considered in detail in 
Chapter 7. For the time being, we merely give an idea of how the formula­
tion and solution of the simplest variational problem discussed above carries 
over to the case of functionals depending on surfaces. 

To keep the notation simple, we confine ourselves to the case of two 
independent variables, but all our considerations remain the same when there 
are n independent variables. Thus, let F(x, y, z, p, q) be a function with 
continuous first and second (partial) derivatives with respect to all its argu­
ments, and consider a functional of the form 

J[z] = f fR F(x, y, z, zx, Zll) dx dy, (20) 

where R is some closed region and zx, Zy are the partial derivatives of 
Z = z(x, y). Suppose we are looking for a function z(x, y) such that 

1. z(x, y) and its first and second derivatives are continuous in R ;  

2 .  z(x, y) takes given values on the boundary r of R ;  

3 .  The functional (20) has an extremum for z = z(x, y) . 

Since the proof of Theorem 2 of Sec. 3 .2 does not depend on the form of 
the functional J, then, just as in the case of one variable, a necessary condition 
for the functional (20) to have an extremum is that its variation (i.e . ,  the 
principal linear part of its increment) vanish. However, to find Euler's 
equation for the functional (20), we need the following lemma, which is 
analogous to Lemma 1 of Sec. 3 . 1 (see also the remark on p. 9): 

LEMMA. If IX(X, y) is a fixed function which is continuous in a closed 
region R, and if the integral 

f fR cx(x, y)h(x, y) dx dy (2 1)  

vanishes for every function h(x, y) which has continuous first and second 
derivatives in R and equals zero on the boundary r of R, then IX(X, y) = 0 
everywhere in R. 

Proof. Suppose the function IX(X, y) is nonzero, say positive, at 
some point in R.  Then IX(X, y) is also positive in some circle 

(x - XO)2 + (y - YO)2 � &2 (22) 
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6. A S i m p l e  Var iab le  E n d  Po i nt Pro b l e m  

There are, of  course, many other kinds of  variational problems besides 
the " simplest " variational problem considered so far, and such problems 
will be studied in Chapters 2 and 3 .  However, this is a suitable place for 
acquainting the reader with one of these problems, i .e . ,  the variable end 
point problem, a particular case of which can be stated as follows : Among all 
curves whose end points lie on two given vertical lines x = a and x = b, 
find the curve for which the functional 

J [y] = 1: F(x, y, y') dx (26) 

has an extremum. 13 
We begin by calculating the variation '8J of the functional (26) . As 

before, '8J means the principal linear part of the increment 

6.J = J [y + h] - J [y] = 1: [F(x, y + h, y' + h') - F(x, y, y')] dx. 

Using Taylor's theorem to expand the integrand, we obtain 

6.J = 1: (Fyh + Fy,h') dx + . . " 

where the dots denote terms of order higher than 1 relative to h and h' ,  and 
hence 

'8J = I: (Fyh + Fy,h') dx. 

Here, unlike the fixed end point problem, h(x) need no longer vanish at the 
points a and b, so that integration by parts now gives 14 

'8J = 1: (Fy - ix Fy.) h(x) dx + Fy,h(x) I ; : !  

.r: (Fy - ix Fy.) h(x) dx + FY' lx � b  h(b) - FY' lx � a h(a). 
(27) 

We first consider functions h(x) such that h(a) = h(b) = O. Then, as in 
the simplest variational problem, the condition '8J = 0 implies that 

d Fy - dx Fy' = O. (28) 

Therefore, in order for the curve y = y(x) to be a solution of the variable 
end point problem, y must be an extremal, i .e . ,  a solution of Euler's equation. 

13  The more general case where the end points l ie  on two given curves y = <p(x) and 
y = <jJ(x) is treated in Sec. 1 4. 14 As usual, f(x) I �:= stands for f(b) - f(a). 
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But if y is an extremal, the integral in the expression (27) for '8J vanishes, 
and then the condition '8J = 0 takes the form 

from which it follows that 

(29) 

since h(x) is arbitrary. Thus, to solve the variable end point problem, we 
must first find a general integral of Euler's equation (28), and then use the 
conditions (29), sometimes called the natural boundary conditions, to determine 
the values of the arbitrary constants. 

Besides the case of fixed end points and the case of variable end points, 
we can also consider the mixed case, where one end is fixed and the other is 
variable. For example, suppose we are looking for an extremum of the 
functional (26) with respect to the class of curves joining a given point A 
(with abscissa a) and an arbitrary point of the line x = b. In this case, the 
conditions (29) reduce to the single condition 

and y(a) = A serves as the second boundary condition. 

Example. Starting from the point P = (a, A), a heavy particle slides 
down a curve in the vertical plane. Find the curve such that the particle 
reaches the vertical line x = b ( # a) in the shortest time. (This is a variant 
of the brachistochrone problem, p. 3 . )  

For simplicity, we assume that the original point coincides with the origin 
of coordinates. Since the velocity of motion along the curve equals 

we have 

ds . /--, dx v = dt = v I + Y 2 dt ' 

vI  + y'2 vI  + y'2 dt = dx = dx, v v2gy 

so that the transit time T is given by the equation 

T = J v1""+"j2 dx. 
v2gy 

The general solution of the corresponding Euler equation consists of a 
family of cycloids 

x = r(6 - sin 6) + c, y = r( I - cos 6). 
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Since the curve must pass through the origin, we must have c = O. To 
determine r, we use the second condition 

Y' F - ---:::=-�== = 0 y
' - V2gy vI + y'2 

for x = b, 

i.e. , Y' = 0 for x = b, which means that the tangent to the curve at its right 
end point must be horizontal. It follows that r = biTt, and hence the 
required curve is given by the equations 

x = � (6 - sin 6), 
1t 

b 
Y = - ( 1  - cos 6). 

Tt 

7. Th e Variat iona l  Derivative 

In Sec. 3 .2 we introduced the concept of the differential of a functional. 
We now introduce the concept of the variational (or functional) derivative, 
which plays the same role for functionals as the concept of the partial 
derivative plays for functions of n variables. We begin by considering 
functionals of the type 

J[y] = f F(x, y, y') dx, y(a) = A, y(b) = B, (30) 

corresponding to the simplest variational problem. Our approach is to 
first go from the variational problem to an n-dimensional problem, and then 
pass to the limit n --+ 00 .  

Thus, we divide the interval [a, b] into n + 1 equal subintervals by 
introducing the points 

Xo = a, X1 o " "  xn, Xn + 1  = b, (XI + 1  - XI = �x), 
and we replace the smooth function y(x) by the polygonal line with vertices 

(xo, Yo), (Xl , Y1), . . .  , (xn, Yn), (Xn + 1 , Yn + 1), 
where YI = Y(XI) . 15 Then (30) can be approximated by the sum 

J(y1o " · , Yn) == i F (Xh Yh YI +�- YI) �X' (3 1 )  
1 = 0 X 

which is a function of n variables. (Recall that Yo = A and Yn + 1 = B are 
fixed.) 

Next, we calculate the partial derivatives 

OJ(y1 o . . . , Yn) 
°Yk 

' 

and we consider what happens to these derivatives as the number of points 
of subdivision increases without limit. Observing that each variable Yk 

15 This is the method of finite differences (cr. Secs. 1 ,  40). 
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CHAPTER 2 

THE LINEAR PROGRAMMING 

MODEL 

2.1 HISTORY 

The basic problem of linear programming, determining the optimal value of a linear 
function subject to linear constraints, arises in a wide variety of situations, but the 
theory that we will develop is of recent origin. 

In 1939 the Russian mathematician L. V. Kantorovich published a monograph 
entitled Mathematical Methods in the Organization and Planning of Production [2]. 
Kantorovich recognized that a broad class of production problems led to the same 
mathematical problem and that this problem was susceptible to solution by numerical 
methods. However, Kantorovich's work went unrecognized. 

In 1941 Frank Hitchcock [3] formulated the transportation problem, and in 1945 
George Stigler [1] considered the problem referred to in Section 1.2 of determining 
an adequate diet for an individual at minimal cost. Through these problems and 
others, especially problems related to the World War II effort, it became clear that 
a feasible method for solving linear programming problems was needed. Then in 
1951 George Dantzig [4] developed the simplex method. This technique is the basis 
of the next chapter. John von Neumann recognized the importance of the concept of 
duality, the mathematical thread uniting linear programming and game theory, and 
the first published proof of the Duality Theorem is that of Gale, Kuhn, and Tucker 
[5]. 

Since the late 1940s, many other computational techniques and variations have 
been devised, usually for specific types of problems or for use with certain types 
of computing hardware. The theory has been applied extensively in industry. On 
the one hand, management has been forced to define explicitly its desired objectives 
and given constraints. This has brought about a much greater understanding of the 
decision-making process. On the other hand, the actual techniques of linear program-
ming have been successfully applied in the petroleum industry, the food processing 
industry, the iron and steel industry, and many more. 

Theoretical developments in linear programming have attracted the attention of 
both theoreticians and the practitioners in the field (along with the readers of the New 
York Times). Some comments on these events are included in Appendix C on theory 
and efficiency in linear programming 
An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, inc. 
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2.2 THE BLENDING MODEL 

The diet problem described in Section 1.2 is an example of a general type of linear 
programming problem that involves blending or combining various ingredients. The 
cost and composition or characteristics of the various ingredients are known, and the 
problem is to determine how much of each of the ingredients to blend together so 
that the total cost of the mixture is minimized while the composition of the mixture 
satisfies specified requirements. In the diet problem, foods were combined to form a 
diet minimizing costs and meeting basic nutritional requirements. 

The construction of the mathematical model for problems of this type follows 
quickly once the usually more difficult task of defining the characteristics and cost 
of the ingredients and required composition of the blend has been accomplished. 
Assuming that all this information is at hand, the amounts of each of the ingredients 
to blend together must be decided. Thus, variables are assigned to represent these 
amounts. The cost function, the function to be optimized, can then be constructed by 
considering the cost of each of the ingredients and assuming that the total cost is the 
sum of the individual costs. The system of constraints, that is, the set of restrictions 
of the variables, follows by considering the requirements specified for the final blend. 

Example 2.2.1. To feed her stock a farmer can purchase two kinds of feed. The 
farmer has determined that the herd requires 60, 84, and 72 units of the nutritional 
elements A, B, and C, respectively, per day. The contents and cost of a pound of each 
of the two feeds are given in the following table. 

Nutritional Elements (units/lb) 
A B C Cost (cents/lb) 

Feed! 3 7 3 10 
Feed 2 2 2 6 4 

Obviously, the farmer could use only one feed to meet the daily nutritional re-
quirements. For example, it can easily be seen that 24 lb of the first feed would 
provide an adequate diet at a daily cost of $2.40. However, the farmer wants to 
determine the least expensive way of providing an adequate diet by combining the 
two feeds. To do this, the farmer should consider all possible diets that satisfy the 
specified requirements and then select from this set the diet of minimal cost. 

To translate this into a mathematical problem, let x be the number of pounds of 
Feed 1 and y the number of pounds of Feed 2 to be used in the daily diet. Then by 
definition, x and y must be nonnegative. Moreover, a diet consisting of x lb of Feed 1 
and y lb of Feed 2 would contain 3x + 2y units of nutritional element A. Since 60 
units of element A are required daily, we must have 3x + 2y> 60. We are assuming 
that providing more than the minimal requirements of any of the nutritional elements 
will have no harmful effects, and so any diet providing at least 60 units of element A 
will satisfy this requirement. Thus the inequality and not an equality. 

To provide insight into the nature of linear programming, this particular problem 
will be solved geometrically. The set of diets satisfying the above requirements can 
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be illustrated graphically. All the points (x,y) in the first quadrant satisfying the 
inequality are shown in Figure 2.1. 

The other two nutritional requirements demand that 

7x + 2y > 84 and 3x + 6y > 72 

The corresponding regions in the first quadrant are sketched in Figure 2.2. 
We must consider all feasible diets, that is, all diets that satisfy all three require-

ments. They are given graphically by the shaded region in Figure 2.3. 
The cost in cents of a diet of x lb of Feed 1 and y lb of Feed 2 i s 1 Ox + Ay. Thus 

we must determine the minimum of the function /(x,y) = 10x + 4y, while the x and 
y are restricted to the shaded region in Figure 2.3. 

Consider the graphs of the family of lines determined by the equation lOx + 4y = 
c, where c is constant. In Figure 2.4, some of these lines are graphed for various 
values of c. Note that all the lines have the same slope and that the lines move to the 
left as c decreases. 

Figure 2.2 
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Figure 2.3 

c = 200 

c = 120 

c = 40 

10 20 30 

Figure 2.4 

Each of the parallel lines consists of points that give the same value for the cost 
function 10x + 4j. Thus we seek that line farthest to the left that still intersects the 
shaded region of Figure 2.3. The line through point (6,21) is that line, as illustrated 
in Figure 2.5. Thus the cost of a minimal diet is 10-6 + 4-21 = 144 cents, and this 
diet consists of 6 lb of Feed 1 and 2 lb of Feed 2. 

This analysis can be extended. As the value of c in the family of lines 10x+4j = c 
decreases and the lines slide down and to the left, from the geometry it follows that 
the line we seek will intersect the set of feasible solutions at a corner point (or vertex) 
of the set of feasible solutions. In this example we can therefore conclude that a 
minimal-cost diet, if it exists, must be attained at either point (0,42), (6,21), (18,3), 
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Figure 2.5 

or (24,0). Thus, if we have the comer points at hand, evaluating the cost function at 
each of these points and comparing values will yield the desired optimal diet: 

corner points (0,42) (6,21) (18,3) (24,0) 
10;t + 4;y 168 144 192 240 

it 

Our above result is confirmed; the minimal-cost diet is to use daily 6 lb of Feed 1 
and 21 lb of Feed 2 at a cost of 144 cents. 

Suppose now that the price of Feed 1 increases from 10 cents/lb to 14 cents/lb, 
with all other data unchanged. Then the comer points of the set of feasible solutions 
is as above, and an evaluation of the new cost function at these points will yield the 
revised optimal solution. 

corner points (0,42) (6,21) (18,3) (24,0) 
Ux + 4y 168 168 264 336 

f fr 

Now the optimal diet is not unique. The minimal-cost line 14x + 4 j = 168 passes 
through the two corner points (0,42) and (6,21), and since any feasible point on this 
line delivers a diet of 168 cents/lb, the set of optimal feasible diets consists of the 
points on the line segment between the comer points (0,42) and (6,21), as displayed 
in Figure 2.6. 

We have in the solution to the above problem a function with a unique minimum 
value (certainly there can be only one minimum value) but with multiple optimal 
solution points. And in the example, with only two variables, the geometry justifies 
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Figure 2.6 

the result. The lines in the family {14x + 4}> — c : c a constant} and the boundary 
line Ix + 2y = 84 are parallel, with common slope— | , and when c decreases, the line 
with a minimum value for c that intersects the set of feasible solutions will lie on the 
segment of the boundary corresponding to this constraining line. 

The use of slopes can be extended. Consider the original cost function 10x + 
Ay. The slope of the associated family of lines {10x + 4y = c : c a constant} is — | , 
and the optimal solution point to the problem, (6,21), is at the intersection of the 
boundary lines Ix + 2y = 84 (with slope— | ) and 3x + 2y — 60 (with slope— | ) . Thus 
from the geometry, the slope — | of the function to be minimized must be between 
these two slopes. Indeed, —| < — | < —|. 

In fact, we can say that if the cost function is c\x + C2y, where c\ and C2 are posi-
tive numbers, the minimum cost would be attained at the point (6,21 ) if — \<— ^r < 
— | , that is, I < ^r < \, and the solution point would be unique if the inequalities 
are strict. 

Thus, for example, if the cost C2 of Feed 2 is fixed at 4 cents/lb but the cost 
c\ of Feed 1 is variable, the farmer should continue to use the (6,21) diet as long as 
| < ^ < \, that is, as long as 6 < c\ < 14, with a minimum daily cost of 6c\ +21 -4 — 
6ci +84 cents. 

Example 2.2.2. A landscaper has on hand two grass seed blends. Blend I contains 
60% bluegrass seed and 10% fescue and costs 80 cents/lb; Blend II contains 20% 
bluegrass seed and 50% fescue and costs 60 cents/lb. (Each also contains other types 
of seeds and inert materials.) The field about to be sowed requires a composition seed 
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consisting of at least 30% bluegrass and 26% fescue. What is the least expensive 
combination of the two blends that meets these requirements? 

To formulate a mathematical model for a problem involving percentages, ambi-
guities can arise. To avoid these, we can determine the optimal way to produce a 
fixed amount of the final product. 

For example, let us determine the combination that minimizes costs and produces 
100 lb of the required composition seed. Defining x as the number of pounds of 
Blend I used in this composition and y as the number of pounds of Blend II, the 30% 
bluegrass requirement translates into the inequality 

0.60x + 0.20;y>30 

as the 100 lb of the final composition must contain at least 30 lb of bluegrass. The 
fescue requirement yields the inequality 

0.10x + 0.50y>26 

These inequalities simplify to 3x + y > 150 andx + 5y > 260. The region in the 
first quadrant satisfying the inequalities is graphed in Figure 2.7. 

Since 100 lb of the composition is to be produced, x and y must also satisfy the 
equation x + y = 100 (see Figure 2.8). 

The cost in dollars of x lb of Blend I and y lb of Blend II is c(x,y) = 0.8x + 0.6v, 
and we seek the minimum of this linear function on the set of points represented by 
the heavy line in Figure 2.8. From the geometric argument of the previous example, 
it follows that the line in the family of parallel lines {(x,y) : 0.8x + 0.6j = c}, where 
c is a constant, with minimal c and intersecting this set must intersect the set at either 
(25,75) or (60,40). Evaluating, 

c(25,75) = $65 and c(60,40) = $72 

Thus, to produce 100 lb of the composition at minimum cost, 25 lb of Blend I and 75 
lb of Blend II should be used, and so the minimal-cost prescription for making any 
amount of the composition seed is to use 25% Blend I and 75% Blend II. 

Figure 2.7 
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Figure 2.8 

Example 2.2.3 (Continuation of Example 2.2.2). The operation of the landscaper of 
the above example has expanded. Now there are two fields to be maintained, Field X 
(the original field) and Field Y, with Field Y requiring a seed mixture that is at least 
15% bluegrass and 35% fescue; and there is an additional grass seed blend to work 
with, Blend III, with a composition of 25% bluegrass and 15% fescue and a cost of 
35 cents/lb. The relevant data are summarized in the following table. 

Composition 

Requirements 

Blend I 
Blend II 
Blend III 

Field X 
Field Y 

Bluegrass 

60% 
20% 
25% 

>30% 
> 15% 

Fescue 

10% 
50% 
15% 

>26% 
>35% 

Cost (centsAb) 

80 
60 
35 

Suppose the landscaper has an order for 100 lbs of seed for Field X and 160 
lbs of seed for Field Y. To determine the minimum cost to meet these demands, the 
following model is formulated. Let x\, *2, *3 be the number of pounds of Blends I, 
II, and III, respectively, used for Field X, and let y\,y2, J3 be the number of pounds 
of each used for Field Y The problem: 

To minimize the function 
(80JCI + 60x2 + 35*3) + (80yi + 60y2 + 35y3) 

subject to 
x i + x 2 + x 3 = 100 yi+}'2+3'3 = 160 (2.2.1) 
.6x1 + .2x2 + -25x3 > 30 .6yx + 2y2 + .25y3 > .15(160) = 24 
.IJCI + .5x2 + .15x3 > 26 Ayi + .5y2 + A5y3 > .35(160) = 56 
*i,*2,*3>0 y\,y2,yj>0 

Unlike the optimization problems of Examples 2.2.1 and 2.2.2, each with only 
two variables, this problem, with six variables, cannot be solved graphically. The 
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problems are essentially the same, with linear functions to be optimized subject to 
linear constraints. But any such problem with more than two variables is intractable 
to a graphical approach. The goal of Chapter 3 is to develop an efficient method of 
solving the general problem, regardless of size. 

While we cannot complete problem (2.2.1) at this time, some further comments 
on the problem are in order. The reader may have already noted that (2.2.1) can be 
simplified. Meeting the demands for Field X and meeting the demands for Field Y 
are independent problems; the x's and the y's in (2.2.1) are not related in the family of 
constraints. We could solve each of these problems separately and then combine the 
solutions to resolve the two-field problem. (Of course, graphical solution techniques 
would remain out of reach for the two three-variable problems.) 

On the other hand, further restrictions could easily eliminate this simplification. 
Suppose, for example, that only a limited amount of one of the blends is available 
— perhaps only 125 lbs of the new Blend III is on hand and can be used at this 
time. Then the constraint X3 +J3 < 125 would need to be added to (2.2.1), and the 
optimization problems for the two fields are no longer independent. 

Another variation could be that, because of shipping restrictions, the producer 
of the seed can deliver Blends I and II only in a single drum containing a premixed 
combination of the two blends, with the customers specifying the ratio of Blend I to 
Blend II to be used in preparing their orders. In the landscaper model, this means 
that the ratios of Blend I to Blend II used in each of the fields are the same, that is, 
2- = 21 o r Xxy2 = xiy\. However, adding the simple equality x\yi = X2V1 to (2.2.1) 
changes the optimization problem dramatically. The problem is no longer a linear 
programming problem, as x\ V2 = xiy\ is not a linear constraint. The problem is in the 
domain of nonlinear programming, a topic not considered in this linear programming 
text. 

Problem Set 2.2 

Problems 1-5 refer to Example 2.2.1. 

1. A salesperson offers the farmer a new feed for her stock. One pound of this feed 
contains 2, 4, and 4 units of the nutritional elements A, B, and C, respectively, 
and costs 7 cents. By considering a blend that consists of equal parts of Feeds 1 
and 2, show that the use of this new feed cannot reduce the minimal cost of an 
adequate diet. 

2. The farmer has determined that as long as the ratio of the cost of Feed 1 to the 
cost of Feed 2 is between 5 and | , an adequate diet of minimal cost can be 
achieved by using 18 lb of Feed 1 and 3 lb of Feed 2. Explain. 

3. What should the ratio of the costs of the feeds be to warrant the use of a diet 
consisting solely of Feed 1 ? When should the farmer use only Feed 2 for her 
stock? 

4. After reviewing his mother's mathematical formulation of the feed problem, the 
farmer's son claims that in general the constraining inequalities should be equal-
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ities. He reasons that money must be wasted if some of the nutritional elements 
are fed to the stock at a level above the minimal requirements. Is this true? 

5. After some study, the farmer has decided that 40 units of nutritional element D 
are also critical for the daily feeding of his stock. One pound of Feeds 1 and 
2 contains 4 and 2 units of element D, respectively. How does this change the 
analysis of the original problem? 

6. Products X and Y are to be blended to produce a mixture that is at least 30% A 
and 30% B. Product X is 50% A and 40% B and costs $10/gal; Product Y is 20% 
A and 10% B and costs $2/gal. To formulate a model to be used to determine a 
minimal-cost blend, we let x and y equal the number of gallons of X and Y used, 
respectively, and write the following mathematical problems: 

(a) Our first attempt. 

Minimize lOx + 2y 
subject to 
.5x + .2y > .3 
Äx+ Ay > .3 
* , y > 0 

Note that x = 0, y = 3 satisfies the constraints. So should we use only 
Product Y? Explain. 

(b) We try again. Our final product is to be at least 30% A and 30% B and 
contain x + y gal, so we want to 

Minimize I0x + 2y 
subject to 
.5x + .2y > -3(x + y) 
Ax+ Ay > 3(x + y) 
x,y>0 

But does x = 0, y = 0 satisfy the constraints? Explain. 
(c) Formulate a correct model. 

For Problems 7-10, formulate mathematical models and then solve the prob-
lems. 

7. (a) A poultry producer's stock requires at least 124 units of nutritional element 
A and 60 units of nutritional element B daily. Two feeds are available for 
use. One pound of Feed 1 costs 16 cents and contains 10 units of A and 3 
units of B. One pound of Feed 2 costs 14 cents and contains 4 units of A 
and 5 units of B. Determine for the producer the least expensive adequate 
feeding diet. 

(b) For what range on the ratio of the costs of Feed 1 to Feed 2 would the 
optimal diet be the above diet? 

(c) For what values of the ratio of the costs of Feed 1 to Feed 2 would the 
optimal diet for the problem of part (a) not be unique? 



CHAPTER 3 

THE SIMPLEX METHOD 

3.1 THE GENERAL PROBLEM 

In the previous chapter, all examples led to one basic mathematical problem: the 
optimization of a linear function subject to a system of linear constraints. In this 
chapter we will develop a technique for solving this basic problem. 

One minor complication in studying the problem is that the optimization prob-
lem can take various forms. For example, we have seen both maximization and 
minimization problems and constraint sets that have consisted of equalities and in-
equalities in both directions. However, this difficulty is easily resolved because all 
linear programming problems can be transformed into equivalent problems that are 
in what we call standard form. 

Definition 3.1.1. The standard form of the linear programming problem is to deter-
mine a solution of a set of equations 

a\\x\ + a\iX2 + ... + a\nxn = b\ (3.1.1) 
<221*t + 022*2 + . . . + a2nXn = bi 

am\X\ -j- am2X2 ~r ■ ■ ■ ~r amnxn = t?m 

with 
Xj >0,j= l,...,n 

that minimizes the function 

Z = C\X\ + C2X2 H 1- CnXn - ZO 

(The —zo term allows for the inclusion of a constant in the expression for the 
function to be optimized. In an application such a constant could represent, for 
example, fixed costs or guaranteed benefits. We precede the constant with a negative 
sign for future convenience; zo can be positive, negative, or zero.) 

It is this standard form of the linear programming problem, a minimization prob-
lem involving only equalities, that we will solve. Thus our first task is to show that 
any linear programming problem can be formulated as a problem in standard form, 
where the number of equalities, m, and the number of variables, n, are determined 
by the problem. 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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Consider first a linear programming problem with a system of constraints that 
contains inequalities. For example, suppose a particular diet problem reduces to the 
mathematical problem of minimizing 3x\ + 2x% + 4x^ subject to the constraints 

30xi + 100x2 + 85x3 < 2500 
6xi + 2x2 + 3x3 > 90 

X],X2,X3 > 0 

Such a problem could result from seeking minimal-cost diet that places an upper 
bound on calorie intake and a lower bound on protein intake. We will show that this 
problem is equivalent to the following problem derived from the original problem by 
the addition of two new nonnegative variables, X4 and X5. 

Minimize 3xi + 2x2 + 4x3 
subject to 
30xi + 100x2 + 85x3 + x4 = 2500 

6x1 + 2x2 + 3x3 — x5 = 90 
Xl,X2,X3,X4,X5 > 0 

Notice that if (x^x^x^x^Xj) is a solution to the second constraint set, then, 
since x*A and x*5 are restricted to nonnegative values, 30xj + lOOxj + 85xj = 2500 — 
x\ < 2500 and 6x\ + 2x\ + 3x*3 = 90 +x 5 * > 90. Therefore (x*vx*2,4) is a so-
lution to the first constraint set. Similarly, if (x^x^xj*) is a solution to the first 
constraint set, there exist x\ and x\ [let x\ = 2500 - (30xj + lOOx̂  + 85x3) and 
x* = 6x, + 2xj + 3x3 - 90] that are nonnegative and such that (xj .x^x^x^Xj) is 
a solution to the second constraint set. Thus solutions of the two constraint sets cor-
respond, with corresponding solutions having the same first three coordinates. At 
the same time, the form to be minimized, 3xi + 2x2 + 4x3, depends only on the first 
three coordinates. Hence the minimal value of the linear function for both problems 
will be the same, and points where this minimum is achieved for one problem will 
correspond to points with this same property for the other problem. 

Clearly, this technique generalizes. Given any problem with a system of con-
straints containing inequalities, by adding additional nonnegative variables, an equiv-
alent problem can be formulated with a constraint system consisting only of equal-
ities. The number of variables added would equal the number of inequalities in the 
system of constraints. The variables added are called slack variables. In fact, they 
usually can be interpreted as measuring the slack or surplus of the items or require-
ments of the problem. For example, in the preceding diet problem, suppose the first 
restriction comes from consideration of the calorie intake and the second from the 
protein intake. Then, for a fixed diet, the slack variable X4 measures the number of 
calories below the maximum calorie requirement, and X5 measures the number of 
units of protein above the minimum protein requirement for that diet. 

Second, suppose a linear programming problem seeks to maximize the linear 
function cixi + C2X2 H + cnxn. But the problem of maximizing this function is 
equivalent to the problem of minimizing its negative: —cixi — C2X2 — • • • — cnxn. 
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Thus a maximization problem can be easily formulated as a minimization problem 
by multiplying the function to be optimized by (—1). 

The last restriction on the standard form of the linear programming problem is 
that all the variables be nonnegative. For most problems this restriction comes nat-
urally from the physical interpretation of the variables. In all the examples we have 
considered, the variables could assume only nonnegative values. However, for some 
complicated production systems involving various processes and options, it could be 
that some commodity that is input for some process is output for another, and it is not 
clear whether this commodity will be input or output in the optimal operation of the 
system. Thus we may wish to formulate the problem with a variable not restricted in 
sign. (Problems with unrestricted variables also appear when discussing duality, as 
we will see in Chapter 4.) 

Suppose that x\ is a variable unrestricted in sign for a linear optimization prob-
lem. However, any number can be written as the difference of two (not unique) 
nonnegative numbers. (For example, 7 = 7 — 0 = 8 — 1,-7 — 0 — 7 = 1 — 8.) Hence 
we can introduce into the problem two nonnegative variables, say x'l and x'/, and 
replace x\ everywhere in the problem with the difference x[ —x'(. This will give 
an equivalent problem with the unrestricted variable replaced by two nonnegative 
variables. 

As a result of these methods, for any linear programming problem, an equivalent 
problem can be constructed that is in standard form. 

Example 3.1.1. The problem of maximizing 3xj — 2x2 — *3 +M — 87 subject to 

4xi — x-i + X4 < 6 
—7xi + 8x2 + xj > 1 

x\ + x2 + 4x4 = 12 
xi,X2,X3 > 0, X4 unrestricted 

is equivalent to 

Minimize — 3xi + 2x2 +*3 
subject to 

4xi — X2 + X4 -
-7xj + 8x2 + X3 

X\ + X2 + 4X4 -

Xl,X2,X3,X4,X4',X5,X6 > 0 

In a linear programming problem, the function to be optimized is called the ob-
jective function. Any point (xi ,X2,... ,x„) with nonnegative coordinates that satisfies 
the system of constraints is called a. feasible solution to the problem. For a particu-
lar problem, a feasible solution can be interpreted as a way of operating the system 
under study so that all of the requirements are fulfilled, that is, as a feasible way of 
operation. 

Thus our basic problem is to determine, from among the set of all feasible so-
lutions, a point that minimizes the objective function. Moreover, to be able to han-

- ( x 4 - x 4 ' ) + 87 

- x4' + x5 

- x6 = 
- 4x4' 

= 6 
= 7 
= 12 
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die involved real-life problems, we need a solution algorithm easily programmed 
for computer use. Existence theorems derived from, say, the theory of continuous 
functions on compact sets or the theory of linear functions on convex sets, although 
mathematically quite attractive, do not provide an efficient means for actually finding 
a desired solution. 

The method that will be developed in this chapter for solving the basic linear pro-
gramming problem is called the simplex method. It is credited to George Dantzig [4], 
and this method and its various modifications remain among the primary means used 
today to solve linear optimization problems. One additional feature of this method 
that is useful for practical application and also very attractive mathematically is that 
the method can handle exceptional cases. For example, the method can determine if a 
problem has, in fact, any feasible solutions and, if so, whether the objective function 
actually assumes a minimum value. 

The basic step in the simplex method is derived from the pivot operation used to 
solve linear equations. In the next section we pause briefly from our consideration 
of the standard linear programming problem to consider linear equations. 

Problem Set 3.1 
1. (a) InExample3.1.1,xi =4,X2 = 12.X3 =0,^4 = 21,^4 = 22,^5 = 3,X6 = 61 

is a solution to the second constraint set. Find the corresponding solution to 
the first constraint set. 

(b) Conversely, x\ = 1, X2 = 3, X3 = 5, X4 = 2 is a solution to the first constraint 
set. Find a corresponding solution to the second. In this case, is your answer 
unique? 

2. Explain why the following constraint sets are not equivalent. 

Set A Set B 

Xl + X2 < 6 X\ + X2 + XT, = 6 
x\ + 2x2 £ 1 0 X] + 2x2 + X3 = 10 
Xi,X2 > 0 Xi,X2,X3 > 0 

Hint, xi = 3 and X2 = 3 satisfy the inequalities of Set A. Can you find an X3 such 
that (3,3.X3) satisfies the equalities of Set B? 

This shows that when introducing slack variables, the same variable cannot be 
used for different inequalities. 

3. Put the following problems into standard form. 

(a) Maximize 3xi — 2x2 
subject to 
5xi + 2x2 — 3x3 + X4 < 1 

3x2 — 4x3 < 6 
Xl + X3 — X4 > 11 

X],X2,X3,X4 > 0 
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(b) Minimize X2 + X3 + X4 

subject to 

X\ + X2 > 6 
x2 + X-i — X4 < 1 

5xi — 6x2 + 7x3 ~~ 8x4 > 2 

x\ > 0,X2 < 0,X3,X4 unrestricted 

(c) Minimize x 1 + X3 — X4 + 48 

subject to 

—3x] + X2 — X3 + 2x4 = —50 

X\ — X2 + X4 < 100 

2x2 — XT, — X4 > —150 

Xi,X2,X3,X4 > 0 

(d) Maximize 6x1 - 2x2 + 9x3 + 300 

subject to 

2xi — 6x2 — X3 < 100 

xi + x2 + 9x3 < 200 

0 < x i < 50,x2 > - 6 0 , x 3 > 5 

(e) Minimize 6x1+X2 

subject to 

- 5 x i + 8x2 < 80 

x\ + 2x2 > 4 

X, < 10,X2 > 0 

(f) Maximize xi + 2x2 + 4x3 

subject to 

|4xi + 3X2 — 7X31 < X\ + X2 + X3 

Xi,X2,X3 > 0 

(g) Maximize xi + 6x2 + 12x3 

subject to 

—x\ — X2 +X4 > maximum of 7xi + 2x2 and 5x2 +X3 +X4 

Xi,X2,X3,X4 > 0 

(h) - x i - x 2 + 2 x 3 + x 5 

subject to 

xi + 7x2 + 16x3 < 4x4 + xs 

X3 + 12X4 > Xi + 6x2 

9X5 < x2 + 3X4 
Xi,X2,X3,X4,X5 > 0 

4. Determine all feasible solutions to the linear programming problem of Prob-
lem 3(a) for which 
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(a) x\ = X2 = X4 = 0 
(b) x2 = 0,x3 = 6 
(C) X3 = 0 

5. Many times the amount of slack or surplus of a commodity enters into the initial 
formulation of the problem; it is a factor in the function to be optimized. For 
example, in a production problem, there could be a cost associated with the stor-
age of the surplus production of a commodity. For another example, formulate 
the mathematical model for the following. 

Two warehouses supply two retail outlets with 100-lb bags of lime. Warehouse 
A has 1000 bags, and Warehouse B has 2000 bags. Both outlets need 1200 bags. 
The transportation costs in cents per bag are given in the following table. 

From Outlet 1 Outlet 2 

Warehouse A 5 4 
Warehouse B 12 9 

However, there is a storage charge of 2 cents/bag for all bags left at Warehouse 
A and 8 cents/bag for those left at Warehouse B. Determine a shipping schedule 
that minimizes the total cost. 

6. In the text it was suggested that when putting a linear programming problem 
with unrestricted variables into standard form, each unrestricted variable is to be 
replaced by a pair of nonnegative variables. Actually, this method is inefficient 
if the problem has more than one unrestricted variable; we need introduce only 
one additional variable to handle all the unrestricted variables. For example, if a 
problem has unrestricted variables x\ and X2, show that replacing x\ with x'l — xo 
and X2 with x'2 — XQ where x\, x2 and xo are new nonnegative variables leads to 
an equivalent problem. 

7. Show that the following problems are equivalent. 

Problem A: Minimize x\ + 2x2 — 3x3 + 4x4 
subject to 
3xi — 2x2 + 5x3 — 6x4 = 20 
x\ + 7x2 — 6x3 + 9x4 = 30 

x\ > 0,X2,X3,X4 unrestricted 

Problem B: Minimize x\ + 2x2 — 3x*3 + 4x'4 — 3xo 
subject to 

3xi — 2x2 + - ^ — 6x4 + 3xo = 20 
x, + 7x2 - 6*3 + 9x4 - lOxo = 30 

X \ , X-y 5 X"), XA , XQ -^ U 
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8. Using the technique suggested in Problem 6, determine a linear programming 
problem in standard form with only eight variables and equivalent to the linear 
programming problem of Problem 3(b). 

3.2 LINEAR EQUATIONS AND BASIC FEASIBLE 

SOLUTIONS 

The pivot operation used in solving linear equations consists of replacing a system of 
equations with an equivalent system in which a selected variable is eliminated from 
all but one of the equations. The operation revolves around what is called the pivot 
term. The pivot term can be the term in any one of the equations that contains the 
selected variable with a nonzero coefficient. In the first step of the pivot operation, 
the equation containing the pivot term is divided by the coefficient in that term, thus 
producing an equation in which the selected variable has coefficient 1. Multiples of 
this equation are added to the remaining equations in such a way that the selected 
variable is eliminated from these remaining equations. 

It is easy to show that the solution set of the system of equations resulting from 
the pivot operation is identical to the solution set of the original system, that is, 
that the systems are equivalent (Problem 9). In general, repeated use of this pivot 
operation can lead to a system of equations whose solution set is obvious. 

Example 3.2.1. Solve 

x\ + 4x2 + 2x3 = 6 
3xi + 14x2 + 8x3 = 16 
4x! + 21x2 + 10x3 = 28 

We arbitrarily select x\ as the first variable to be eliminated from two of the equations 
and the lxi term of the first equation as the pivot term. Notice that we could have 
also selected the 3xi term of the second equation or the Ax\ term of the third equation 
for the pivot term. However, the arithmetic associated with the selection of the lxi 
term is less involved because of the unit coefficient. The pivot operation at this term 
consists of dividing the first equation by 1, subtracting three times the first equation 
from the second, and subtracting four times the first equation from the third. The 
resulting equivalent system is 

x\ + 4x2 + 2x3 = 6 
2x2 + 2x3 = — 2 
5x2 + 2x3 — 4 

Continuing, we arbitrarily select X2 as the next variable to be eliminated from two 
of the equations. Since we are striving to simplify the system, the next pivot term 
should not be the 4x2 term of the first equation; pivoting here would reinstate in 
the last two equations the x\ variable. Pivoting at the X2 term of either of the other 
two equations, however, will isolate the X2 variable to that pivoting equation without 
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destroying the isolated status of the x\ variable. Using the 2x2 term of the second 
equation as the pivot term (i.e., we divide the second equation by 2, then subtract 
four times the result from the first equation and five times the result from the third 
equation), we obtain 

x\ — 2x3 = 10 
X2 + X3 = — 1 

- 3x3 = 9 

At this stage, one might solve the third equation for X3 and use this value and the 
first two equations to compute the associated values for x\ and X2. Actually, that 
operation is essentially equivalent to the pivot operation with the —3x3 term of the 
third equation as pivot term. Pivoting at this term gives 

xi = 4 
X2 = 2 

X3 = —3 

and this system of equations is equivalent to the original system. However, the so-
lution set for the system obviously consists only of the point (4,2,-3), so we have 
proven that this point is the unique solution to the original problem. 

As we have seen in this example, repeated use of the pivot operation led to a 
system of three equations with three unknowns in a special form, where each variable 
appeared in one and only one equation and in that equation had coefficient 1. This 
form, called the canonical form, is crucial to the simplex method. We now define it, 
along with the associated term basic variable. 

Definition 3.2.1. A system of m equations and n unknowns, with m < n, is in canon-
ical form with a distinguished set of m basic variables if each basic variable has 
coefficient 1 in one equation and 0 in the others, and each equation has exactly one 
basic variable with coefficient 1. 

Given a linear programming problem in standard form, one way of simplifying 
the problem would be to replace the set of constraints with an equivalent system of 
equations in canonical form. Indeed, this step is necessary before the simplex algo-
rithm can be initiated on the linear programming problem. To apply the algorithm, 
the system of constraints must be in canonical form and the associated basic solution 
must be feasible. We define the terms basic solution and basic feasible solution in 
the following example. 

Example 3.2.2. Consider the linear programming problem in standard form of 

Minimizing xi —X2 + 2x3 — 5x4 = f{x\,X2-X3,X4) (3.2.1) 
subject to 
X\ + X2 + 2X3 + *4 = 6 

3x2 + X3 + 8x4 = 3 

Xi,X2,X3,X4 > 0 
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The system of constraints consists of two equations in four unknowns. Pivoting at 
the 3x2 term of the second equation gives the equivalent system 

xi + fx3 - §x4 = 5 (3.2.2) 

X2 + 3*3 + 5X4 = 1 

This system is in canonical form with basic variables xi and X2. One particular 
solution to this system of equations is obvious: set the nonbasic variables X3 and X4 
equal to 0, and set x\ equal to the constant term 5 and X2 equal to the constant term 
1. This solution point is called a basic feasible solution. 

Given a system of equations in canonical form with a specified set of basic vari-
ables, the associated basic solution is that solution to the system with the values of 
the basic variables given by the constant terms in the equations and the values of the 
nonbasic variables equal to zero. 

In a linear programming problem we are interested in solutions to the system of 
constraints with nonnegative coordinates. Those basic solutions with this property 
we call basic feasible solutions. These will prove to be the critical points when using 
the simplex method to determine the optimal value of the objective function. 

The point (5,1,0,0) is not the only basic feasible solution for the problem in our 
example. Returning to the constraints of (3.2.1), if we pivot at the 8x4 term of the 
second equation instead of the 3x2 term (or if we pivot in (3.2.2) at the 3X4 term of 
the second equation), we get 

xi + §X2 + f X3 = f (3.2.3) 
3 1 3 
gX2 + 5X3 + X4 = g 

Here the constraint set is represented by a system of equations in canonical form with 
basic variables x\ and X4, and the associated basic solution (^ ,0 ,0 , | ) is another 
basic feasible solution. 

Pivoting at the |x2 term of the first equation in (3.2.3) yields the equivalent sys-
tem 

fxi + x2 + 3x3 = 9 
-5X1 - X3 + x4 = —3 

This system is in canonical form with basic variables X2 and X4, but the associated 
basic solution (0.9,0,-3) is not feasible. The value of X4 is negative. Obviously, 
randomly selecting the variables to serve as basic variables can lead to a system of 
equations with some negative constant terms and thus an associated basic solution 
that is not feasible. As we will see, the simplex method provides a systematic way to 
resolve the problem of starting with and maintaining feasibility. 

We return now to the original linear programming problem of (3.2.1), but with 
the system of constraints replaced by the equivalent system of (3.2.2), a system in 
canonical form with a basic feasible solution. In order to apply the simplex method to 
the problem, one final step involving the objective function is necessary. The expres-
sion for the objective function needs to be coordinated with the canonical form of the 
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system of the constraints. In particular, the expression for the objective function must 
be in terms of only the nonbasic variables. This step can be considered an extension 
of the pivot operation used to put the system of constraints into canonical form, and 
is easily accomplished here using the system of constraints. We demonstrate. 

The objective function of the example is 

f(xi,X2,X3,X4) =X\ —X2 + 2x3 —5X4 

and the system of constraints in canonical form with basic variables x\ and X2, from 
(3.2.2), is 

X\ -\- 5X3 — 5X4 — 5 

X2 + 5*3 + §*4 = 1 

From these equations, it is obvious that the value of the objective function / at 
any point (xi,X2,X3,X4) satisfying the constraints can be given by 

x\—X2 + 2x3 — 5*4 = [5 — 5X3 + 5X4] — [l — 5X3 — 1*4] + 2x3 — 5x4 

= 5X3 — |x4 + 4 

Thus on this system of constraints, the problem of minimizing / is equivalent to the 
problem of minimizing the function 5X3 — |x4 + 4. With this new function our goal 
of expressing the function to be optimized in terms of only the nonbasic variables is 
attained. 

Through these operations we have replaced the linear programming problem of 
(3.2.1) with the following equivalent linear programming problem. 

Minimize 5X3 — 5X4 + 4 
subject to 
x\ + 5X3 — 5X4 = 5 

X2 + 3X3 + | x 4 = 1 

Xi,X2,X3,X4 > 0 

This problem is said to be in canonical form with basic variables x\ and X2-

Definition 3.2.2. The standard linear programming problem is in canonical form 
with a distinguished set of basic variables if: 

(a) The system of constraints is in canonical form with this distinguished set of 
basic variables. 

(b) The associated basic solution is feasible. 
(c) The objective function is expressed in terms of only the nonbasic variables. 

If the first two conditions of this definition are satisfied for a linear programming 
problem, the system of constraints can be used, as in the above example, to eliminate 
the basic variables from the objective function. While organizing and maintaining a 
problem in canonical form, we will abuse the language somewhat and always speak 
of one fixed objective function. Certainly in the above example the function x\ — 
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X2 + 2x3 ~ 5x4 does not equal the function |x3 — |*4 + 4. However, the problems 
of optimizing these functions on the given constraint set are equivalent, that is, the 
functions have the same minimum value, and the sets of feasible solutions on which 
this common optimal value is attained are the same. It is this equivalency that we 
have in mind when we say, for example, that the objective function is now given by 
fx3-5X4+4. 

The question of feasibility of a basic solution can be stated geometrically using 
the column vectors associated with the coefficient matrix of the system of equations. 
We demonstrate. 

Example 3.2.3. The system of constraints for the linear programming problem of 
(3.2.1) can be expressed in vector form as follows: 

X\ 

Thus the system of two equations and four variables is equivalent to the problem of 

1 
0 + X2 

1 
3 

+ X3 
2 
1 

+X4 
1 
8 = 

6 
3 

expressing the vector 

1 

as a linear combination of the vectors 
1 
0 ' 

1 
3 ' 

2 
1 , and 

Moreover, for our purposes, we are restricted to solutions with nonnegative 

coordinates. 
Suppose now we wish to determine geometrically if x\ and x% can serve as basic 

variables for a basic feasible solution. If so, the nonbasic variables X3 and X4 will 
equal zero, and the resulting vector equation reduces to 

Using the notation 

xi 

i ( i ) 

1 
0 + X2 

1 
3 = 

6 
3 

X\,X2 > 0 

,A® and b -

these vectors in K2 are sketched in Figure 3.1. 
Now the set of points of the form x\A^> for x\ > 0 is the line ray emanating 

from the origin in R2 in the direction of A^\ and similarly for the points X2A^ 
with X2 > 0. The set of points of the form x\A^ + X2Ä^2\ x\ and X2 > 0, can be 
determined using the usual rule for addition of vectors. This region (the convex cone 
of A'1' and A'2') is illustrated in Figure 3.2. Since b lies in this region, a solution to 
the system of equations with x\ and X2 nonnegative and X3 and X4 equal to 0 must 
exist. This solution is the point (5,1,0,0) found previously. 

To extend these ideas, let A ^ and AW . From the graph in Figure 

3.3 we see that b cannot be expressed as a sum of the form xjA^2' +X4A" withx2 and 
X4 > 0. Thus X2 and X4 cannot serve as basic variables for a basic feasible solution. 
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Figure 3.2 

(Recall, the associated basic solution is (0,9,0, —3).) Furthermore, it can be seen that 
any other pair of variables can serve as basic variables for a basic feasible solution. 
Note also that b is a multiple of A^3' alone. Thus in any basic feasible solution with 
XT, as a basic variable, only the X3 coordinate will be nonzero. Indeed, pivoting at 
the 1x3 term in the second equation in the constraints of (3.2.1) yields the equivalent 
system 

x\ — 5x2 — 15x4 = 0 
3X2 + *3 + 8x4 — 3 

This system is in canonical form with basic variables x\ andx3, and the associated 
basic (feasible) solution is (0,0,3,0), with the basic variablexi equal to zero. Abasic 
solution with some basic variables equal to zero is said to be degenerate. As we will 
see later when developing the simplex method, theoretical complications arise from 
the possibility of degeneracy. 

The reader may be somewhat puzzled by our earlier remark that, when deter-
mining the minimum of the objective function of a linear programming problem, the 
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Figure 3.3 

basic feasible solutions are the critical points to be considered. Why, when trying to 
minimize a function, should we wish to restrict our attention to only those feasible 
solutions of the constraint set that are basic and therefore have at least n — m zero 
coordinates? For example, in a diet problem with five nutritional requirements and 
15 foods from which to choose, is it possible to find a minimal-cost diet that uses at 
most only 5 of the foods? As we will show in this chapter, the answer to this question 
is "yes." In fact, we will show by an algebraic argument that if the objective func-
tion does have a minimum value, that value is assumed by at least one basic feasible 
solution. 

Actually, the role played by the basic feasible solutions in the resolution of a 
two-variable problem is apparent from the geometry of such a problem. Consider, 
for example, the solution procedure used to solve the blending problem developed in 
Example 2.2.1 on page 10. The problem there was to determine a blend of two feeds 
that minimized costs and met three nutritional requirements. Letting x\ denote the 
amount of Feed 1 and X2 the amount of Feed 2 in a diet, the associated mathematical 
problem was to 

Minimize 10xi +4^2 
subject to 
3xi + 2x2 > 60 
7xi + 2x2 > 84 
3xi + 6x2 > 72 
Xi,X2 > 0 

Putting this into standard form gives the following: 
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Minimize 10xi + 4x2 (3.2.4) 

subject to 

3xy + 2x2 — XT, = 60 

7xi + 2x2 — X4 = 8 4 

3xi + 6x2 — X5 = 72 

Xi,X2,X3,X4,X5 > 0 

The slack variables X3, X4, and X5 measure the surplus amounts of the nutritional 
elements A, B, and C in a given diet. Now the geometric argument based on Fig-
ure 2.5 on page 13 showed that if the linear function had a minimal value, the func-
tion would assume that value at a corner or vertex of the region shaded in Figure 2.3. 
The four vertices of the shaded region in Figure 2.3 are the points (0,42), (6,21), 
(18,3), and (24,0). They occur on the boundaries of the regions defined by the orig-
inal three inequalities, that is, when some of the inequalities are actually equalities 
and the corresponding slack variables therefore equal zero. In fact, the solutions to 
the constraint set in standard form corresponding to these four points are: 

(0,42)^(0,42,24,0,180) 

(6,21) <-► (6,21,0,0,72) 

(18,3) <-► (18,3,0,48,0) 

(24,0) <-> (24,0,12,84,0) 

Note that each of the four points in the right column has two coordinates at zero 
level. These four points are basic feasible solutions to the constraint set in standard 
form. Therefore, if the objective function is bounded below, the minimal value must 
occur at a basic feasible solution. 

This geometrical analysis extends to the general problem, yielding another proof 
that for a linear programming problem, if the set of optimal solution points is not 
empty, the set of basic feasible solutions provides the foundation for this set. How-
ever, we do not use these ideas in the algebraic development which follows, and so 
we will postpone discussion of the geometry of the general problem until Section 
3.9. 

Problem Set 3.2 

1. Solve the following using the pivot operation. 

(a) 3x2 — 3x3 = 15 

Xi + X2 + X3 = 0 

3xi + 5x2 + 3x3 = 4 

(b) 3xi + 2x2 — 7x3 = 1 

xi — 5x2 — 6x3 = —4 
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(c) x\ + 2x2 — 2x4 = 5 
— 3x2 + xj + 4x4 = 2 

2. A system of equations is said to be redundant if one of the equations in the 
system is a linear combination of the other equations. Show by using the pivot 
operation that the following system is redundant. Is this system equivalent to a 
system of equations in canonical form? 

X\ + X2 — 3X3 = 7 
—2xi + X2 + 5x3 = 2 

3X2 ~~ X3 = 16 

3. A system of equations is said to be inconsistent if the system has no solution. 
Show by using the pivot operation that the following systems are inconsistent. 
Is either of these systems equivalent to a system in canonical form? 

(a) x\ + 2x2 = 3 
x\ + 2x2 = 4 

(b) X] + X2 — 3x3 = 7 
—2xi + X2 + 5x3 = 2 

3x2 — XT, = 15 

4. (a) Solve the following system of equations by finding an equivalent system in 
canonical form with basic variables xi and X2-

2xi + X2 — 2x3 = 17 
X] — X3 = 4 

(b) Is this system equivalent to a system in canonical form with basic variables 
xi andx3? 

(c) Interpret these results geometrically. 

5. Suppose a system of equations contains the following terms: 

axi + bxj 
ex i + dx2 

where a, b, c, and d are constants, a^O. 

The system is then replaced with an equivalent system by pivoting at the axi 
term. Show that these four terms become 

b 
X\ + -X2 

a 
( bc\ 

Oxi + Id X2 
V a ) 

The expression d — be I a provides a way of remembering the effect of the pivot 
operation on any term not in the row or column of the pivot term. 
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6. For the linear programming problem of 

Minimizing 5xi + 2x2 + 3x3 + M 
subject to 

X\ + X2 — 2X3 + 3X4 = 2 

—2xi + X3 = 2 

Xl,X2,X3,X4 > 0 

(a) Show geometrically that there can be only two basic feasible solutions to 
the problem. 

(b) Compute these two basic feasible solutions. 
(c) Show that the objective function is bounded below. 
(d) Assume that the minimal value of the objective function is attained at a basic 

feasible solution and determine this minimal value. 

7. Following the outline in Problem 6, complete the problem of Example 3.2.3. 

8. (a) Put the constraint set from the standard form of the blending problem con-
sidered in this section (the problem of (3.2.4)) into canonical form with 
basic variables x\, X2, and X5. The associated basic feasible solution is 
(6,21,0,0,72). 

(b) The objective function for this problem is lOxi +4x2. By eliminating the 
X] and X2 variables by using the equations found in part (a), this function 
can be expressed in terms of only X3 and X4. Verify that the form reduces to 
144 + X3+X4. 

(c) Since we are considering only feasible solutions to the constraint set, using 
part(b), give another proof that the minimal value of the objective function 
is 144. 

9. Prove that the system of equations resulting from a given system by applying 
the pivot operation is equivalent to (has the same solution set as) the original 
system. 

10. Prove that although there may be different ways of driving a system of equations 
into canonical form with a specified set of basic variables, there is a unique basic 
solution associated with this specified set of basic variables. 

11. True or false: A system of equations is equivalent to a system of equations in 
canonical form if and only if the original system has at least one solution. 

12. Construct a linear programming problem with four variables and three equations 
for which there exist degenerate feasible solutions with exactly two nonzero 
coordinates. 

3.3 INTRODUCTION TO THE SIMPLEX METHOD 

In this section the simplex method for solving linear programming problems will be 
introduced. The basic ideas behind the technique will be demonstrated by means 
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of a specific example. The goal of this section is to develop motivation and under-
standing; the theorems related to the simplex method will be proven in subsequent 
sections of this chapter. 

Let us consider the following problem in standard form: 

Minimize ~-4x\ +X2+X3+ 7x4 + 3x$ = z (3.3.1) 

subject to 

—6x1 + X3 — 2x4 + 2x5 = 6 

3*i + X2 — X3 + 8x4 + X5 = 9 

Xl,X2,X3,X4,X5 > 0 

The simplex method can begin only with the problem in canonical form. To put 
the problem into canonical form, we could first arbitrarily select two variables to 
be basic variables and then, by pivoting, attempt to put the system of constraints 
into canonical form with these variables as basic variables, with the hope that the 
associated basic solution would be feasible. Or, because here we have a problem 
with only two constraints, we could determine, using elementary vector geometry, a 
pair of variables that would serve as basic variables for a feasible solution. 

In general, however, finding an initial basic feasible solution to a problem can 
be a major difficulty. This problem will be solved in Section 3.6. For now, assume 
that we know that for the problem at hand, the variables X2 and X3 can serve as basic 
variables for a feasible solution. Pivoting at the 1x3 term of the first equation will put 
the system of constraints into canonical form. This gives 

—6x1 + X3 — 2x4 + 2x5 = 6 (3.3.2) 

—3xi + X2 + 6x4 + 3*5 = 15 

The associated basic solution, (0,15,6,0,0) , is feasible, as promised. Now these 
two equations can be used to eliminate the basic variables X2 and X3 from the expres-
sion for the objective function z, given by 

-4x i +X2+X3+7x4 + 3x5 =z (3.3.3) 

In fact, simply subtracting the two equations in (3.3.2) from the equation in 
(3.3.3) gives 

5xi + 0x2 + 0x3 + 3x4 — 2x5 = z — 21 

Hence the objective function can be given by the form 

5xi + 3x4 — 2x5 + 21 = z 

Thus the problem in canonical form with basic variables X2 and X3 is to 

Minimize z with (3.3.4) 

—6x1 + X3 — 2x4 + 2x5 = 6 

—3xi + X2 + 6x4 + 3x5 = 15 

5xi + 3x4 — 2x5 = —21 +z 
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The objective function has the value 21 at the associated basic feasible solution 
(0,15,6,0,0). Now the key idea behind the simplex method is to move to another 
basic feasible solution that gives a smaller value for z by replacing exactly one basic 
variable from the present set. As we will see, the mechanics for this replacement will 
be provided by the pivot operation. However, what variable from the set of nonbasic 
variables x\, X4, and x$ to insert into the basis, and what basic variable, X2 or X3, to 
replace in order to reduce the value of z are not obvious. 

These questions are answered first by considering the objective function z = 
5xi + 3x4 — 2x5 +21 . In this expression for z, the X5 variable has a negative coef-
ficient. Thus a feasible solution to the constraint set with x\ and X4 still equal to zero, 
but with X5 greater than zero, will give a smaller value for z- This suggests that we 
move X5 into the set of basic variables and attempt to make X5 as large as possible. 

But what basic variable, x\ or X3, should we replace? To answer this question, 
consider the constraint set with the conditions imposed by this situation, that the 
nonbasic variables x\ and X4 equal zero. From (3.3.4) we have 

X3 + 2x5 = 6 
X2 + 3X5 — 15 

Solving for X3 and xi gives 
X3 = 6 — 2x5 (3.3.5) 
X2 = 15 — 3X5 

Clearly, X5 cannot be arbitrarily large. To have a solution to the constraint set with 
x\ = X4 = 0, X2 and X3 must satisfy these equations and would possibly become neg-
ative. In fact, since X2 and X3 must be nonnegative, X5 is restricted by the inequalities 

0 < 6-2x5 and 0 < 1 5 - 3 x 5 

that is, X5 < 3 = I and X5 < 5 — -y. Since X5 must satisfy both these inequalities, the 
maximum possible value for X5 is 3. Letting X5 = 3 and using (3.3.5) to calculate X3 
and X2, we have the feasible solution x\ = X4 = 0, X5 = 3, X3 = 0, and X2 = 6. The 
value of z at this point is 15, six less than the value at the first basic feasible solution. 
At the point (0,6,0,0,3), X2 = 6 and X3 = 0. Thus X3, being at zero level, is the 
variable that should be replaced in the basis, giving X2 and X5 as the basic variables 
for this second solution point. (Note also that at (0,6,0,0,3), X2 andxs are the two 
variables assuming positive values.) 

In fact, by letting X5 equal the minimum of 3 and 5, we are guaranteed that X3 
will assume the value 0, because the minimum value 3 is the bound coming from 
the X3 equation in (3.3.5). To determine the variable to extract from the basis, then, 
we need only determine the basic variable of that equation in the modified constraint 
set (3.3.5) that leads to the minimal bound. And each of these bounds of 3 = | and 
5 = y is the ratio of the constant term in the equation to the coefficient of the X5 
variable. This suggests a simple procedure for determining the variable to extract 
from the basis, a procedure that will be spelled out in detail in the next section. 

The simplex method is the continuation of this process. To proceed, however, the 
problem must be in canonical form with basic variables X2 and X5. To do this, we 
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use the pivot operation. With the system of constraints expressed as in (3.3.4), the 
first equation contains the basic variable X3, which is to be replaced with the variable 
X5. Hence pivoting at the 2x5 term of this equation will put the system of constraints 
into canonical form with basic variables X2 and X5. Moreover, the effect of this pivot 
operation on the third equation in (3.3.4) would be to eliminate the variable X5 from 
that equation also. Then the objective function z would be expressed in terms of only 
the variables x\, X3, and X4. Thus the effect of the pivot operation at the 2x5 term of 
the first equation in (3.3.4) applied to all three equations would be to transform the 
entire problem into the desired canonical form. Pivoting here gives 

—3xi + 3X3 — X4 + X5 = 3 (3.3.6) 

6x1 + X2 — 3X3 + 9X4 = 6 

—xi + X3 + X4 = — 1 5 + z 

Now we proceed exactly as before. The variable x\ has a negative coefficient 
in the expression for the objective function and so should be inserted into the basis. 
Letting X3 = X4 = 0, the constraint set of (3.3.6) becomes 

- 3 x i + x 5 = 3 x5 = 3 + 3xi (3 3 7) 

6xi +X2 = 6 X2 = 6 — 6x1 

Since X2 and X5 must be nonnegative, we have 

0 < 3 + 3x, - l < x i 
0 < 6 - 6 x 1 ° r xi < 1 

The first inequality places no upper bound on xi, so the upper limit for xi is deter-
mined solely by the second inequality, the inequality resulting from the X2 equation 
in (3.3.7). Thus xi should replace X2 in the basis. Letting xi = 1 gives the basic 
feasible solution (1,0,0,0,6) , and the value of the objective function at this point is 
14. 

One lingering question that we have so far avoided is the following: When do 
we know that the minimal value of the objective function has been achieved and the 
process can terminate? Our example will now provide the answer to this question. 

We have seen that a reduced value for z can be determined by using xi and X5 as 
basic variables instead of X2 and X5. Accordingly, we put the system into canonical 
form with these as basic variables by pivoting at the 6x1 term of the second equation 
in (3.3.6). This gives 

3X2 - 3X3 + 3X4 + X5 = 6 

Xl + 5X2 - 3X3 + | x 4 = 1 

5X2 + | x 3 + §x4 = - 1 4 + z 

The objective function is given by z = \x2 + |x3 + 3X4 +14 . In contrast to the two 
previous situations, here the coefficients of the nonbasic variables are all positive. 
This means in fact that the value of the objective function at any feasible solution to 
the constraint set must be at least 14, since all the coordinates of a feasible solution 
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are nonnegative. Thus our process is terminated. The minimal value of the objective 
function can be no less than 14, and this value is attained at the point ( 1,0,0,0,6). 

To summarize, the simplex method begins with the problem in canonical form. 
We move from one basic feasible solution to another by replacing exactly one basic 
variable at each step, with the new basic feasible solution providing a reduced value 
of the objective function (except possibly when there is degeneracy, a complication 
to be discussed later). Consideration of the coefficients of the objective function tells 
us if the minimal value has been achieved and, if not, what variable to insert into the 
basis. Consideration of the modified constraint set tells us what variable to extract 
from the basis. And one simple pivot operation at each step keeps the entire system 
in proper form. 

In the next section, we will make precise the simplex method for the general 
problem and will consider the case where the objective function is not bounded be-
low. (See also Problem 3.) In Section 3.6 a method based on the simplex method for 
determining an initial basic feasible solution will be discussed. 

Problem Set 3.3 

1. Consider the system of equations 

xi +2xA= 8 (3.3.8) 
X2 + 3X4 = 6 

X3 + 6x4 = 18 

The system is in canonical form with basic variables x\, X2, and xj, and the 
associated basic solution is feasible. 

(a) Express the set of solutions to the system in terms of X4, that is, solve for 
x\,X2, andX3 in terms of X4. 

(b) Determine the set of values for the parameter X4 for which the corresponding 
solutions to the system are feasible. 

(c) Let X4 be the largest value in this set. What variable assumes the value zero? 
(d) Suppose we wish to express the system in canonical form with X4 in the 

basis, and such that the associated basic solution is feasible. From (c), what 
variable should be extracted from the basis and become the nonbasic vari-
able? Thus, at what term in (3.3.8) should we pivot? 

(e) Show that pivoting here has the desired effect. 
(f) For each equation in (3.3.8), compute the ratio of the constant term to the 

coefficient of X4. Relate these values to the choice of pivoting term in (d). 

2. Consider the problem of 

Minimizing x\ + X2 + 4x3 + 7x4 

subject to 

X\ + X2 + 5X3 + 2X4 = 8 

2x] + X2 + 8x3 = 14 

Xl,X2,X3,X4 > 0 
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(a) The variables x\ and X2 can serve as basic variables for a basic feasible 
solution. Show that the problem expressed with these as basic variables is 

x\ + 3x3 — 2^4 = 6 
xi + 2x3 + 4x4 = 2 

— X3 + 5X4 = —8 + Z 

(b) Entering X3 into the basis will reduce the value of z. Why? Show that the 
variable to be replaced is x%. 

(c) Perform the pivot operation. Show that the minimal value of the objective 
function is 7 and is achieved at (3,0,1,0). 

3. Use the simplex method to do the following problem. The problem is stated in 
canonical form with basic variables X2 and X3. Notice that at the first step in the 
simplex method, either x\ or X4 can enter the basis. 

Minimize —x\ — 2x4 + x$ 
subject to 

x\ + X3 + 6x4 + 3x5 = 2 
—3xi + X2 + 3x4 + X5 = 3 
Xi,X2,X3,X4,X5 > 0 

4. In the following problem, the objective function does not have a minimum. 
However, the problem is stated in canonical form with basic variables x\ and 
X2, and the simplex method can be initiated. 

Minimize 4x3 ~~ 6x4 
subject to 

X2 — 6x3 + 2X4 = 6 
x\ + 2x3 ~ M — 5 
xi,x2,x3,x4 > 0 

(a) What occurs after the first pivot operation that makes this problem different 
from our other examples? 

(b) Can you prove, using the resulting equations, that the objective function is 
in fact not bounded below? 

3.4 THEORY OF THE SIMPLEX METHOD 

In this section we develop the simplex method for a general linear programming 
problem. To initiate the algorithm, the problem must be in canonical form. In Section 
3.1 we showed that any linear programming problem is equivalent to a problem in 
standard form, and in Section 3.6 we will show how to drive a problem in standard 
form into canonical form. In fact, the technique developed in Section 3.6 will make 
use of the ideas developed in this section. Thus, for the time being, we assume that 
our general problem is in canonical form. 
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Suppose the problem has m constraints and n variables, with the first m variables 
as basic variables. The problem is then: 

Minimize z where (3.4.1) 
x\ + ... + a\^m+\xm+\ H 1- a\nxn = b\ 

+ x2 + ... + a2,m+\xm+\ H h a2nxn = b2 

Xm ~r &m,m+\Xm-\-\ ~r 

^m+1 Xin+1 ~r 

X\ , X2, ■ ■ . , Xfi ^_ *-* 

aij, b{, Cj, and zo are constants and, since the associated basic solution is feasible, 
bi >0,i = l,...,m. 

Example 3.4.1. We wish to minimize z with 

X\ + 2x3 — X4 

X2 — X3 — 5X4 

2X3 + 3X4 

Xi,X2,X3,X4 > 0 

Here we have a problem with m = 2 constraints, n = 4 variables, and in canonical 
form. The associated basic feasible solution is (10,20,0,0), and the value of the 
objective function z at this point is —60. Note that in this particular problem the 
coefficients C3 = 2 and C4 = 3 are nonnegative. Since X3 and X4 are restricted to be 
nonnegative, the smallest value z = 2x3 + 3x4 — 60 can possibly attain is —60, the 
value of the objective function at the (10,20,0,0) solution point. This suggests our 
first theorem. 

Theorem 3.4.1 (optimality criterion). For the linear programming problem of (3.4.1), 
if Cj > 0, j = m + 1,.. . , n, then the minimal value of the objective function is —zo 
and is attained at the point {b\, b2,..., bm, 0, . . . , 0). 

Proof. For any point satisfying the set of constraints, the value of the objective func-
tion is given by z = cm+\xm+\ H h c„x„ — zo- Since any feasible solution to the 
constraints has nonnegative coordinates, the smallest possible value for the sum 
cm+\Xm+\ H 1- c„xn is zero. Thus the minimal possible value for z is —zo, and 
this value is assumed at the point (b\,b2,■ ■ .,bm,0,... ,0). D 

Hence the problem is resolved if all the c/s are nonnegative. Assume now that 
at least one Cj, say cs, is negative. Then we attempt to enter the variable xs into the 
basis. In order to determine what basic variable to replace, we consider the constraint 
set with all the nonbasic variables except x̂  equal to zero. This gives 

Q-mnXn — t?m 

CnXn = Z0 + Z 

= 10 
= 20 
= 60 + z 
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x\+a\sxs = bi x\=b\—a\sxs 

X2 + Ü2SXS = Z?2 X2 = bi - Ü2SXS 

or . (3.4.2) 

Xm ~r amsXs — ®m Xm — &m @msXs 

Example 3.4.2. Here we wish to minimize z with 

X[ + 2X3 — X4 = 10 

xi — *3 — 5x4 = 20 

2x3 — 3x4 = 60 + z 

Xi,X2,X3,X4 > 0 

Except for a change in sign in C4, this is exactly the problem of Example 3.4.1. As 
before, (10,20,0,0) is a feasible solution, and the value of the objective function 
z = 2x3 — 3x4 — 60 at this point is —60. However, here we could reduce the value of 
z if we could find feasible solutions to the constraint set with X4 positive and X3 equal 
to zero, since C4 = — 3 is negative. Setting X3 = 0, the constraints reduce to 

x\— X4 = 10 x\ = 10+ X4 
X2 — 5X4 = 20 X2 = 20 + 5X4 

Note that if we fix X4 at any positive number and then use these two equations to 
solve for x\ and x-i, the resulting values will be positive. Thus all points in the set 

{(xi,X2,0,X4) : X4 > 0,Xi = 10 + X4,X2 = 20 + 5x4} 

are feasible solutions to the system of constraints. But the function z = 2x3 — 3x4 — 60 
is unbounded below on this set. This suggests our next theorem. 

Theorem 3.4.2. For the linear programming problem of (3.4.1), if there is an index 
s, m + 1 < s < n, such that cs < 0 and a,s < Ofor all i = 1,2,. . . , m, then the objective 
function is not bounded below. 

Proof. Assume there is an index s satisfying the conditions of the theorem. Since the 
coefficients a,s are all nonpositive, the m equations of (3.4.2) can be used to find a set 
S of feasible solutions to the constraints with xs assuming arbitrarily large values, the 
original basic variables x\ to xm positive values, and the remaining variables value 
zero. But the objective function is given by the form 

z = cmxm+\ -\ hcsxs H hcnxn — zo, 

and on S, this reduces to z = csxs — zo- Since cs < 0, z is unbounded below on S. D 

Assume now that cs < 0 and that at least one a,5 > 0. Then the argument above 
breaks down, because if ais > 0, the equation x, = fo, — aisxx places a limit on how 
large xs can become. In fact, for x, to remain nonnegative, we must have 0 < b,■ — 
a„xç, that is, xs < bija^ for aiv > 0. Thus our goal now is simply to replace in 
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the basis one of the basic variables x\,... ,xm with the variable xs. Because of the 
term csxs in the expression for the objective function, the value of z at this new basic 
feasible solution hopefully will be reduced. Our one demand on this new basis is that 
the associated basic solution be feasible. Hence the equations of (3.4.2) for which 
ais > 0 restrict our choice of the variable to extract from the basis. Since we must 
have xs < -*- for all i with a,s > 0, the largest possible value for xs is 

f bi 
Min < — : ais > 0 

Suppose this minimum value is attained when i = r. Then letting xs = -£- will give 

xi > 0 for i = 1,.. . , m and, in particular, xr = br — — = 0. Since xr takes on the value 
zero here, it appears that xr is the variable to be replaced in the basis. And since in 
(3.4.1) the rth equation of the constraints isolates xr, the problem can be put into 
canonical form with basic variables x\, ..., xr-\, xr+\, ..., xm, xs by a single pivot 
operation at the arsxs term of the rth equation. Before formally stating and proving 
these results, we give an example. 

Example 3.4.3. Minimize z with 

X\ + 2X4 — 
X2 - Xi, -

X3 + 6x4 — 
— 2X4 + 

Xl,X2,X3,X4,X5 > 0 

The problem is in canonical form with basic variables x\, X2, and xj. The associated 
basic feasible solution is (10,20,18,0,0), and the value of the objective function at 
this point is —60. However, a, = —2 is negative, and so we attempt to reduce the 
value of z by inserting X4 into the basis. Letting X5 = 0, the constraints reduce to 

xi + 2x4 = 10 x\ = 10 — 2x4 
X2 — X4 = 20 or X2 = 20 + X4 
X3 + 6x4 = 18 X3 = 18 — 6x4 

The second equation places no restriction on X4. However, the first requires that 
X4 < Y = 5 and the third that X4 < ^ = 3. The largest possible value for X4 with 
X5 = 0 is the minimum of 3 and 5, that is, 3. Letting X4 = 3 gives X3 = 0. Thus 
X4 should replace X3 in the basis and, since the third equation of the constraints 
isolates X3, pivoting at the 6x4 term of this equation should keep the problem in 
canonical form, but with basic variables x\, X2, and X4. In fact, pivoting here yields 
the following equivalent problem: 

x5 = 10 
5x5 = 20 

12x5 = 18 
3x5 = 60 + z 
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inimize z with 

X\ — | x 3 + 3X5 = 4 
x2 + gx3 - 7x5 = 23 

gx3 + x4 - 2x5 = 3 
|x 3 - x5 = 66 

Xi,X2,X3,X4,X5 > 0 

The problem remains in canonical form, but with basic variables x\, x2, and X4. 
The associated basic solution (4,23,0,3,0) is feasible, and the value of the objective 
function at this point is —66. Although the optimal value of z has not yet been 
attained, we have, as promised, moved to a basic feasible solution yielding a reduced 
value for z while maintaining the problem in canonical form. 

Theorem 3.4.3. In the problem of (3.4.1), assume that there is an index s such that 
cs < 0 and that at least one a,-s > 0, i = 1,.. . , m. Suppose 

br { bi 
— = Min < — : 1 < i < m and a,s > 0 

Then the problem can be put into canonical form with basic variables 

X\ , X 2 , . • • , Xr— \ , Xr+ \ , . . . , X m , Xs. 

The value of the objective function at the associated basic feasible solution is 

, csbr 
-ZQ-\ 

ars 

Proof. Consider the problem of (3.4.1) under the assumptions of the theorem. The 
coefficient ars ^ 0 (it is, in fact, positive), and so the term arsxs of the rth equation 
can be used as the pivot term in the pivot operation applied to the m + 1 equations. 
By pivoting here, the system of constraints will be expressed in canonical form with 
basic variables xi, ...,xr-\,xr+\, ...,xm,xs. The constant terms, b*t say,/= l,...,m, 
on the right side of the equations, become 

b* = bt —-, for i = 1,.. . , m and / ^ r and b* = —- (3.4.3) 

Clearly b* > 0. If ais < 0 then, since br > 0 and ars > 0, b* > bt > 0. If ais > 0 
and / ^ r, by the choice of r, fc,-/a,-s > br/ars, and so b{ > aisbr/ars. Hence b*t > 0. 
Therefore the basic solution associated with these basic variables is feasible. 

Now the objective function is given in (3.4.1) by the form cm+\xm+\ -\ h csxs + 
h cnxn = zo + z. The effect of the pivot operation on this equation will be to 

eliminate the xs term from the equation, producing the equation 

c*xr + c*m+lxm+i H hc*_{xs-i + c*s+lxs+i H hc*nxn =ZQ+Z (3.4.4) 

with ZQ = zo - csbr/ars. 
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Thus the objective function is expressed in terms of only the new nonbasic vari-
ables and the value of this function at the new basic feasible solution is — zo + 
csbr/ars. D 

Notice the result of this pivot operation applied to the system of constraints and 
the objective function. The problem remains in canonical form with the original 
basic variable xr replaced with the variable xs. The value of the objective function at 
this new basic feasible solution is equal to the value — zo a t the original basic feasible 
solution plus the quantity csbr/ars. Since we have assumed that cs < 0 and ars > 0, 
csbr/ars is less than or equal to zero, and is strictly less than zero if br is strictly 
positive. Thus, if br > 0, the pivot operation has left the system in canonical form 
at a basic feasible solution with a smaller value for the objective function. Let us 
assume for the time being that this is always the case, that any basic feasible solution 
to the system of constraints has no basic variable equal to zero. A basic solution 
with some basic variables equal to zero is called a degenerate solution, so we are 
assuming that all basic feasible solutions are nondegenerate. 

Under this nondegeneracy hypothesis, Theorem 3.4.3 states that if at least one 
of the coefficients cj, m + 1 < j < n, is negative, say cs, and if at least one of the 
coefficients a,s, 1 < / < m, is positive, then a specific pivot operation leaves the 
problem in canonical form at a basic feasible solution that gives a reduced value 
for the objective function. Now we can continue. If the new coefficients of the 
objective function are all nonnegative, we are at the minimal value for the objective 
function, as Theorem 3.4.1 applies. If one of these coefficients is negative and if all 
of the coefficients of the associated variable are nonpositive in the constraint set, the 
objective function is unbounded below, as Theorem 3.4.2 applies. Otherwise, we can 
apply Theorem 3.4.3 again, driving to another basic feasible solution with an even 
smaller value for the objective function. Since at each step the value of the objective 
function is reduced (due to the nondegeneracy assumption), there can be no repetition 
of basic feasible solutions. The different values for the objective function guarantee 
that a particular basic feasible solution can appear at most once in the process (see 
Problem 10 of Section 3.2). Now there are at most a finite number of basic solutions, 
as there are only (^) = n ! / [m ! (« — m) ! ] way s of selecting m basic variables from a 
set of n variables. Thus this process must eventually terminate. Either the minimum 
value of the objective function will be reached or the function will be proven to be 
unbounded. 

This is the simplex method, with a proof, using the nondegeneracy hypothesis, 
that the process must terminate after a finite number of steps with either Theorems 
3.4.1 or 3.4.2 applying. The nondegeneracy assumption is quite critical. If some ba-
sic feasible solutions were degenerate, the pivot operation of Theorem 3.4.3 applied 
in a row with £>, = 0 would leave the value of the objective function unchanged. After 
several steps of this, we would have no assurance that basic feasible solutions would 
not reappear, possibly causing the process to cycle indefinitely. In fact, examples of 
cycling have been constructed (see Appendix B). Thus, from a mathematical point 
of view, our proof of convergence of the process is inadequate. In Section 3.8 we 
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will provide a complete proof that, for any linear programming problem, there exists 
a sequence of pivot operations that will drive the problem to completion. 

From a practical point of view, however, a pleasant phenomenon occurs. The 
cliché "whatever can go wrong will go wrong" does not seem to apply. Although 
degeneracy occurs quite frequently in linear programming applications, very rarely 
will cycling occur. Simple rules such as those described below usually are sufficient 
to prevent cycling. The rules are certainly adequate to prevent cycling in the exam-
ples of this text (except, of course, for the example of Appendix B). Moreover, more 
precise rules for the selection of the pivoting term can be given that will guarantee 
that cycling does not occur (see Section 3.8). 

We now summarize the steps of the simplex method, starting with the problem in 
canonical form. 

1. If all Cj > 0, the minimum value of the objective function has been achieved 
(Theorem 3.4.1). 

2. If there exists an s such that cs < 0 and a,s < 0 for all i, the objective function 
is not bounded below (Theorem 3.4.2). 

3. Otherwise, pivot (Theorem 3.4.3). To determine the pivot term: 
(a) Pivot in any column with a negative Cj term. If there are several negative 

Cj's, pivoting in the column with the smallest c; may reduce the total 
number of steps necessary to complete the problem. Assume that we 
pivot in column s. 

(b) To determine the row of the pivot term, find that row, say row r, such that 

— =Min{ — :a;s>ol 
ars I ais J 

Notice that here only those ratios bijais with als > 0 are considered. If 
the minimum of these ratios is attained in several rows, a simple rule such 
as choosing the row with the smallest index can be used to determine the 
pivoting row. 

4. After pivoting, the problem remains in canonical form at a different basic 
feasible solution. Now return to step 1. 

If the problem contains degenerate basic feasible solutions, proceed as above. 
These steps should still be adequate to drive the problem to completion. 

Problem Set 3.4 

1. Complete the problem of Example 3.4.3. 

2. Solve the following using the ideas developed in this section. 

(a) Minimize xj, + x\ subject to 

X\ — X4 = 5 

X2 + 2X3 — 3*4 = 10 

X\,X2,X$,X4 > 0 
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(b) Minimize X3 subject to the constraints of part (a). 
(c) Minimize X3 — X4 subject to the constraints of part (a). 
(d) Minimize X3 — X4 subject to 

x\ — X4 = 5 
X2 + 2X3 = 10 

X\,X2,X3,X4 > 0 

(e) Minimize — xj, +X4 subject to the constraints of part (d). 
(f) Minimize —X3 +X4 subject to 

x\ + XT, — X4 = 0 

X2 + 2X3 = 10 
Xi,X2,X3,X4 > 0 

(g) Minimize —X3 — X4 subject to the constraints of part (f). 

3. Calculate the coefficient c* in (3.4.4) on page 81. Can the variable removed from 
the basis at one step of the pivot operation return to the basis on the next step? 

4. Using the form for the objective function given in (3.4.1) on page 78 and the 
coordinates of the new basic feasible solution given in (3.4.3) on page 81, by 
direct calculation show that the value of the objective function at the new basic 
feasible solution is as stated in Theorem 3.4.3. 

5. Using (3.4.3) on page 81, determine when the pivot operation will go from a 
nondegenerate basic feasible solution to a degenerate basic feasible solution. 

6. Suppose a problem is in canonical form and the associated basic feasible solution 
is degenerate, and x\ is a basic variable with the value zero. The pivot operation 
is performed with the x\ variable extracted from the basis. Describe the new 
basic feasible solution. 

7. In Chapter 2 we saw linear programming problems with multiple optimal so-
lution points. We do, however, have a uniqueness condition for problems in 
canonical form. Show that if a problem is driven to the canonical form in (3.4.1) 
and Cj > 0 for m + 1 < j < n, then the minimal value — zo of the objective func-
tion is attained only at the point (b[,...,bm,0,...,0). 

8. Extend the formulas in the proof of Theorem 3.4.3 expressing the results of the 
pivot operation at the ars term. Show that for any j ^ s, 

i 7̂  r * 

rj ars 

* 
Cj =Cj-

Q,rs 

Csürj 

9. Consider the linear programming problem of (3.4.1). Suppose that the value of 
the function 

z = cm+\xm+\ H I" CnXn — ZQ 
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equals the value of the objective function 

Z = cm+\xm+\ H \~ CnXn — Zo 

in all solutions to the system of constraints of (3.4.1). Prove that 

ZQ = ZQ and c'j = Cj for all j , m + 1 < j <n 

Conclusion. Given a linear programming problem in canonical form with a spec-
ified set of basic variables, the coefficients in the expression for the objective 
function are unique. 

3.5 THE SIMPLEX TABLEAU AND EXAMPLES 

At each step of the simplex method, it is crucial to know only the basic variables and 
the values of the coefficients in the system of equations. To facilitate computation 
of a solution, at each step all we need do is record this information. This suggests a 
notation similar to the detached coefficient notation used for solving linear equations. 
We illustrate with the example of Section 3.3 [see equation (3.3.1)]. The problem, 
expressed in canonical form with basic variables xj and x$, was, as in (3.3.4), to 
minimize z with 

—6xi + *3 — 2^4 + 2x5 = 6 
—3xi + X2 + 6x4 + 3x5 = 15 

5xi + 3x4 — 2x5 = —21 +z 
Xi,X2,X3,X4,X5 > 0 

This information is recorded in tableau form in Table 3.1. 
The initial line of x's in the array simply labels the columns of the tableau with 

the variables of the problem. The first column identifies the basic variables. The 
first two rows correspond to the system of constraints, with the constant terms given 
in the last column. The last row corresponds to the equation defining the objective 
function, with the constant term on the right side of that equation in the last column 
and the z term suppressed from the tableau because it remains fixed throughout the 
simplex method. 

We now apply the simplex method. As noted in Section 3.3, the —2 in the X5 
column of the last row indicates that we should pivot in that column. To determine 
the pivoting row, we compare the ratios bi/ais for a(s > 0, as in Theorem 3.4.3, and 

Table 3.1 

* 3 

X2 

X\ X2 X3 X4 X5 

- 6 0 1 - 2 2 

- 3 1 0 6 3 

5 0 0 3 - 2 

6 

15 

-21 
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Table 3.2 

X3 

X2 

X5 

X2 

X\ X2 X->, X4 X5 

- 6 0 1 - 2 (T) 

- 3 1 0 6 3 

5 0 0 3 - 2 

- 3 0 \ - 1 1 

(?) 1 -§ 9 0 

- 1 0 1 1 0 

6 

15 

-21 

3 

6 

-15 

Table 3.3 

*5 

*1 

0 

1 

0 

\ 

I 
\ 

1 
4 
1 
4 
3 
4 

7 
2 
3 
2 
5 
2 

1 

0 

0 

6 

1 

- 1 4 

find the row in which the minimum is attained. In this case | is less than y and, 
therefore, we should pivot at the 2 in the first row, replacing the basic variable X3 
with the variable x$. The tableau representing the result of this pivot operation can 
be constructed from the present tableau by dividing the first row by 2 and then adding 
multiples of this row to the remaining rows in such a way as to generate zeros in the 
X5 column. We illustrate in Table 3.2, placing this new tableau directly below the 
original tableau. 

The second tableau represents the problem as stated in (3.3.6) on page 75. The 
associated basic feasible solution is (0,6,0,0,3), and the value of the objective func-
tion at this point is the negative of the constant in the lower right-hand corner of the 
tableau,-(-15) = 15. 

Pivoting now at the 6 in the x\ column of the second row gives the tableau of Table 
3.3. Since all the constants in the last row, excluding the —14, are nonnegative, the 
minimum value of the objective function has been attained. This value, —(—14) = 
14, is attained at the basic feasible solution ( 1,0,0,0,6), as can be read from the final 
tableau. 

Hereafter the steps of the simplex method for any example will be recorded using 
this tableau notation. We emphasize that if at any time you are confused or bewil-
dered by a statement based on the tableau presentation of a problem, simply translate 
the information in the tableau back into a clearly stated problem with the system of 
constraints and the objective function defined as usual, that is, "attach back" the vari-
ables. The tableau remains just a notation for a linear programming problem and the 
associated equations. 
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Table 3.4 

X4 

X5 

X6 

X4 

X2 

X6 

x\ 

X2 

X(, 

x\ 

3 

- 1 

2 

- 2 

© 
- 1 

0 

- 5 

1 

0 

0 

0 

X2 

2 

0 
- 2 

- 3 

0 

1 

0 

0 

0 

1 

0 

0 

*3 

0 

4 

5 

- 3 

- 8 

4 

13 

9 
8 
5 

12 
5 

13 

1 

X4 

1 

0 

0 

0 

1 

0 

0 

0 
1 
5 
1 
5 

0 

1 

*5 

0 

1 

0 

0 

- 2 

1 

2 

3 
2 
5 
3 
5 

2 

1 

X6 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

60 

10 

50 

0 

40 

10 

70 

30 

8 

18 

70 

70 

Example 3.5.1. Maximize 2x\ + 3x2 + 3x3 subject to 

3JCI + 2 X 2 < 60 

-x\ + x2 + 4x3 < 10 
2x\ — 2x2 + 5x3 < 50 

*1,*2,*3 > 0 

Introducing three slack variables and putting the problem into standard form gives 
the following: 

Minimize — 2x\ — 3x2 — 3x3 
subject to 
3xi + 2X2 + X4 
—x\ + X2 + 4x3 + %5 
2xi — 2x2 + 5x3 + *6 

Xi,X2,Xs,X4,Xs,X6 > 0 

The system of constraints for this problem is in canonical form with basic variables 
X4, X5, and Xß, the associated basic solution, (0,0,0,60,10,50), is feasible, and the 
objective function is written in terms of the nonbasic variables. Thus the simplex 
method can be initiated. Table 3.4 gives the resulting tableaux. 

Note that the first pivot could have been made in either the first, second, or third 
column. From the last tableau we see that, for the problem as stated in standard 
form, the minimal value of the objective function is —70, and this value is attained at 
the point (8,18,0,0,0,70). Since the original problem was a maximization problem 
with no slack variables, the optimal value for the original objective function is 70 
and is attained at the point (8,18,0). 

= 60 
= 10 
= 50 
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Table 3.5 

X4 

*5 

X4 

X2 

Xl 

x2 

X\ X2 X3 X4 X$ 

1 1 - 2 1 0 

- 3 (T ) 2 0 1 

0 - 2 - 1 0 0 

( Î ) 0 - 4 1 - 1 

- 3 1 2 0 1 

- 6 0 3 0 2 

1 0 — 1 à —i 
0 1 - 1 \ \ 

0 0 - 3 § I 

7 

3 

0 

4 

3 

6 

1 

6 

12 

Example 3.5.2. Maximize 2x2 +*3 subject to 

X\ + X2 — 2X3 < 7 

—3xi + X2 + 2x3 < 3 

X\,X2,X3 > 0 

The standard form of the problem is 

Minimize —2x2 — *3 

subject to 

X] + X2 — 2X3 + X4 = 7 

— 3xi + X2 + 2X3 + *5 = 3 

Xi,X2,X3,X4,X5 > 0 

This problem is in canonical form with basic variables X4 and X5, and the steps of 
the simplex algorithm are displayed in Table 3.5. The three negative entries in the 
third column of the previous tableau indicate that the objective function is unbounded 
below. 

Example 3.5.3. Finally, we consider the problem of 

Minimizing —4xi +X2 + 30x3 — 11*4 ~~ 2x5 + 3x6 

subject to 

—2xi + 6x3 + 2x4 — 3x6 + xj = 20 

^4xi + X2 + 7X3 + X4 — X6 = 1 0 

— 5x3 + 3x4 + X5 — X6 = 6 0 

Xi,X2,X3,X4,X5,X6,X7 > 0 

The system of constraints, as given, is in canonical form with basic variables X7, x2, 
and X5, and the associated basic solution, (0,10,0,0,60,0,20), is feasible. However, 
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Table 3.6 

x7 

X2 

*5 

Xl 

X4 

X5 

X\ 

X4 

*5 

Xl 

XA 

x6 

Xl 

- 2 

- 4 

0 

0 

© 
- 4 

12 

-24 

1 

0 

0 

0 

1 

0 

0 

0 

x2 

0 

1 

0 

0 

- 2 

1 

- 3 

6 
l 
3 
1 
3 

1 

- 2 
7 
24 
1 
12 

1 
4 

0 

*3 

6 

7 

- 5 

13 

- 8 

7 

-26 

55 
4 
3 
5 
3 

-10 

23 
7 
4 
5 
2 
5 
2 

3 

X4 

2 

CD 
3 

- 6 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

*5 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 
1 

24 
5 
12 
1 
4 

2 

x6 

- 3 

- 1 

- 1 

2 

- 1 

- 1 

2 

- 4 
1 
6 
5 
3 

CO 
- 8 

0 

0 

1 

0 

Xl 

1 

0 

0 

0 

1 

0 

0 

0 
1 
6 
2 
3 

- 2 

4 
1 

12 
1 
6 
1 
2 

0 

20 

10 

60 

110 

0 

10 

30 

170 

0 

10 

30 

170 
5 
4 

45 
2 
15 
2 

230 

the expression for the objective function contains the basic variables X2 and X5. By 
subtracting the second equation and adding twice the third equation to the equation 

—4x\-\-X2 + 30X3 — 1 IX4 — 2X5 + 3X6 = Z 

we have 
13X3 — 6x4 + 2X6 = 110 + Z 

Using this expression to define the objective function, the problem is in canonical 
form with basic variables X7, x%, and X5, and the simplex method can be initiated. The 
corresponding tableaux are given in Table 3.6. As can be seen, the minimal value of 
the objective function is —230 and is attained at the point ( | ,0,0, y ,0, y ,0). Note 
the presence of degeneracy in the second and third steps. 

Problem Set 3.5 

1. Each of the following tableaux corresponds to a linear programming problem 
in canonical form with three equality constraints, an objective function to be 
minimized, seven nonnegative variables x\, . . . , X7, and with variables xs,X3,xi 
serving as basic variables. For each, either (i) the solution of the problem can 
be determined from the given tableau or (ii) one or more iterations of the sim-
plex algorithm are necessary to complete the problem. If (i), state the complete 
resolution of the problem; if (ii), determine all valid pivot points for the tableau. 
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x5 

x-i 

X\ 

X] 

0 

0 

1 

0 

X2 

5 

6 

9 

6 

* 3 

0 

1 

0 

0 

XA, 

3 

- 1 

8 

- 4 

*5 

1 

0 

0 

0 

X6 

- 1 

0 

- 3 

2 

*7 

8 

- 6 

4 

3 

39 

10 

88 

-75 + z 

X5 

X3 

x\ 

x\ 

0 

0 

1 

0 

X2 

5 

6 

9 

6 

x3 

0 

1 

0 

0 

x\ 

- 3 

1 

- 8 

4 

* 5 

1 

0 

0 

0 

X6 

- 1 

- 1 

- 3 

2 

* 7 

8 

- 6 

4 

0 

39 

10 

88 

-75 + z 

*5 

X 3 

*1 

*1 

0 

0 

1 

0 

x2 

5 

6 

9 

- 6 

* 3 

0 

1 

0 

0 

xn, 

- 3 

1 

- 8 

0 

X5 

1 

0 

0 

0 

x6 

- 1 

0 

- 3 

0 

x7 

8 

- 6 

4 

3 

3 

2 

0 

- 7 5 + z 

*5 

x-i 

x\ 

x\ 
0 

0 

1 

0 

x2 

5 

6 

9 

- 6 

* 3 

0 

1 

0 

0 

X4 

- 3 

1 

- 8 

0 

x5 

1 

0 

0 

0 

x6 

- 1 

0 

- 3 

- 2 

* 7 

8 

- 6 
4 

3 

3 

2 

1 

-75 +z 

X5 

x3 

x\ 

x\ 

0 

0 

1 

0 

X2 

5 

6 

9 

- 6 

X3 

0 

1 

0 

0 

X4 

- 3 

- 1 

- 8 

0 

X5 

1 

0 

0 

0 

x6 

1 

0 

- 3 

- 2 

Xl 

8 

- 6 

7 

- 3 

60 

30 

50 

-75 +z 

X5 

*3 

x\ 

x\ 
0 

0 

1 

0 

X2 

- 5 

- 6 

9 

6 

* 3 

0 

1 

0 

0 

XA, 

- 3 

- 1 

- 8 

0 

X5 

1 

0 

0 

0 

X6 

- 1 

0 

- 3 

2 

*7 

8 

- 6 

4 

3 

39 

0 

88 

- 7 5 + z 

2. For each of the following, put the problem into canonical form, set up the initial 
tableau, and solve by hand using the simplex method. At most, two pivots should 
be required for each. Along the way, objective functions requiring some initial 
adjustments and unbounded objective functions should be encountered. 



3.5. THE SIMPLEX TABLEAU AND EXAMPLES 91 

(a) Minimize 2x\ + 4x2 — 4x3 + 7x4 

subject to 

8xi — 2x2 + x3 — M < 50 

3xi + 5x2 + 2x4 < 150 

X\ — X2 + 2X3 — 4X4 < 100 

Xi,X2,X3,X4 > 0 

(b) Maximize x\ + 2x2 — *3 

subject to 

x2 + 4x3 < 36 

5xi - 4x2 + 2x3 < 60 

3x] — 2x2 + XJ < 24 

X),X2,X3 > 0 

(c) Minimize —5xi +4x2 +X3 

subject to 

X] + X2 — 3X3 < 8 

2x2 — 2x3 < 7 

—xi — 2x2 + 4x3 £ 6 

•*1,*2,*3 > 0 

(d) Maximize 9x2 + 2x3 — X5 

subject to 

xj — 3x2 — 4x4 + 2x6 = 60 

2x2 — X4 — X5 + 4x6 = ~20 

X2 + X3 + 3X6 = 10 

Xi,X2,X3,X4,X5,X6 > 0 

(e) Maximize xi + 12x2 + 9x3 

subject to 

3xi + 2x2 — 6x3 < 20 

2xi + 6x2 + 3x3 < 30 

6x1 + 2x3 < 16 

X\,X2,X3 > 0 

(f) Min imize X3 — X4 

subject to 

xi — 3x4 + X5 

X2 + 6x4 — 5X5 

X3 — 3X4 + 2X5 

Xi,X2,X3,X4,X5 > 0 

= 1 
= 6 
= 5 
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For the remaining problems, the use of the software LP Assistant, as described in 
Appendix D, is strongly encouraged. The program facilitates considerably the im-
plementation of the simplex method. The user needs to enter a valid initial tableau 
and appropriate pivots points, and needs to recognize a final tableau and interpret the 
results, but the machine completes the arithmetic of each pivot step. 

3. Solve. Maximize x\ — X5 
subject to 
x\ + X4 — 2x$ = 1 

X2 + X4 = 6 

X3 + 2x4 — 3x5 — 4 

XUX2,X3,X4,X5 > 0 

Note that in this example a variable removed from the basis in one step of the 
pivot operation eventually returns to the basis. Compare with Problem 3 of 
Section 3.4. 

4. Solve. Maximize IOX3 + 3x4 
subject to 
x\ + IOX3 + 2x4 = 20 

X2 — X3 + X4 = 12 

Xi,X2,X3,X4 > 0 

(If in your first iteration you put X3 into the basis, you will have an example 
of a variable inserted into the basis in one step of the simplex algorithm being 
removed from the basis in the very next step.) 

5. Consider the problem of Example 3.5.3. The minimum value of the objective 
function is —230 and is attained at ( | ,0,0, y , 0 , -y,0). However, this optimal 
value is attained at other solution points to the system of constraints. 

(a) The previous tableau for the solution to this problem suggests that optimal 
basic feasible solutions exist with either X2 orx7 in the basis. Why? 

(b) Use the previous tableau to determine an optimal basic feasible solution 
withx7 in the basis. 

(c) Find an optimal solution with xj in the basis. 

6. For each of the following, determine two distinct basic feasible solutions at 
which the optimal value of the objective function is attained. 

(a) Maximize Ax\ + 12x2 + 8x3 
subject to 
3xi + 2x2 — 6x3 < 20 
3x! + 6x2 + 4x3 < 30 
X\,X2,X-j > 0 
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(b) Minimize x\ — 3x2 — 6x3 
subject to 
2xi — X2 + XT, + X4 < 60 
3xi + 4x2 + 2x3 — 2x4 < 150 
x\, X2, X3, X4 > 0 

7. Consider the problem of Example 3.5.2. 

(a) Show that any point of the form (t,0, t), for t > 0, is a feasible solution. 

(b) Using this, show that the objective function is unbounded. 

8. Compute the solution to Problem 11 of Section 2.3. 

9. Compute the solution to Problem 7 of Section 2.6. 

10. Compute the solution to Problem 5 of Section 2.6 

3.6 ARTIFICIAL VARIABLES 

As we have seen, many linear programming problems can be put into canonical form 
with little or no effort. For example, the addition of slack variables with positive 
coefficients can provide the basic variables necessary for the initial basic feasible 
solution. On the other hand, the system of constraints for many other problems con-
tains no obvious basic feasible solutions. Problems of this type occur, for example, 
in production models involving output requirements and therefore (>) inequalities in 
the constraint set, such as we saw in Example 2.3.4 on page 24, or in transportation 
problems involving fixed demands and therefore equalities in the constraint set, such 
as in Example 2.4.1 on page 34. In fact, in any application of linear programming to 
a real-world problem, it would be rare to find the original formulation of the problem 
in canonical form. 

What must be developed is a technique for determining an initial basic feasible 
solution for an arbitrary system of equations. This technique must also be capable of 
handling problems having no feasible solution. Such a problem could arise, for ex-
ample, in a model containing an error in formulation or in a complicated production 
model where it is not obvious that the various output requirements can be met with 
the limited resources available. In this section we will introduce such a technique; in 
the next section we will discuss some of the complications that can occur. 

The basic idea behind the method used to find an initial basic feasible solution 
is simple. We introduce into the problem a sufficient number of variables, called 
artificial variables, to put the system of constraints into canonical form with these 
variables as the basic variables. Then we apply the simplex method, not to the objec-
tive function of the original problem, but to a new function defined in such a way that 
its minimal value is attained at a feasible solution to the original problem. Thus the 
method of the previous three sections applied to this new function drives the original 
problem to a basic feasible solution. 

Consider the standard linear programming problem of (3.1.1) of finding a non-
negative solution to the system 
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a\\x\ + anX2 + ... + a\nxn = b\ (3.6.1) 
021*1 + an*! + ■ ■ ■ + a2„x„ = b2 

^ml*l i ^m2*2 ~"r • • • "T &mnXn ~ ^m 

that minimizes the function z = c\X\ + C2X2 + ■ ■ ■ + cnxn. By multiplication of an equa-
tion by (— 1 ) if necessary, we may assume that all the constant terms bi,i= 1,.. . , m, 
are nonnegative. Now introduce into the system of constraints m new variables, x„+\, 
..., x„+m, called artificial variables, one to each equation. The resulting system is 

a\\x\ + a\2x2 + ... + a\nxn + xn+\ = b\ (3.6.2) 

021*1 + ^22*2 + ■ • • + a2nXn + Xn+2 = b2 

®m\X\ T~ ̂ m2*2 i ■ • - H~ amnXn -\- Xm+n = um 

Note that this system is in canonical form with basic variables xn+\, ..., xm+n, and 
that the associated basic solution is feasible, since we have assumed that the fy's are 
nonnegative. 

Now consider the problem of determining the minimal value of the function 
w = xn+\ +xn+2 -\ h xn+m on the set of all nonnegative solutions to the system 
of equations in (3.6.2). Since all variables are nonnegative, w can never be nega-
tive. The function w would assume the value zero at any feasible solution to (3.6.2) 
in which all the artificial variables are at zero level. Thus the simplex method ap-
plied to this function should replace the artificial variables as basic variables with 
the variables from the original problem and will hopefully drive the system in (3.6.2) 
into canonical form with basic variables from the original set XJ, j — 1,... ,n. The 
value of w at the associated basic feasible solution would be zero, its minimal value, 
and the simplex method could then be initiated on the original problem as stated in 
(3.6.1). Furthermore, if the system of constraints in (3.6.1) does have at least one 
feasible solution, the system in (3.6.2) must have feasible solutions in which all the 
artificial variables equal zero. In this case the minimal value of w would be, in fact, 
zero. Thus, when applying the simplex method to the function w, if we reach a step 
at which we can pivot no more but the associated value of w is greater than zero, we 
can conclude that the original problem has no feasible solutions. 

Before we present examples, some remarks of a technical nature are in order. 
First, before the simplex method can be applied to the function w = xn+\ +xn+2 + 

\-xn+m, the problem must be in canonical form. The system of constraints in 
(3.6.2) is in canonical form with the artificial variables as basic variables and the 
associated basic solution is feasible, but the function w is not expressed in terms of 
only the nonbasic variables. To rectify this, we subtract from the equation defining 
w each constraining equation containing an artificial variable. (In the general prob-
lem above, artificial variables have been introduced into every constraint. However, 
this need not always be the case. In some instances, some of the original problem 
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variables may be used in the initial basic variable set. An example will be seen in 
Example 3.6.2 shortly.) 

Second, if the pivot operations dictated by the problem of minimizing w are also 
simultaneously performed on the equation c\X\+ c2x2 H h cnxn = z which defines 
the original objective function, this function will be expressed in terms of nonbasic 
variables at each step. Thus, if an initial basic feasible solution is found for the 
original problem, the simplex method can be initiated immediately on z. Therefore 
we incorporate this z equation into the notation and operations of the problem of 
minimizing w. 

In the sum, the first step in solving the general problem of (3.6.1) is to consider 
the problem of minimizing w with 

(3.6.3) a\\X\ + a\2x2 + .. 

^21*1 + 022*2 + •■ 

am\x\ + am2x2 + .. 
C\X\ + C2X2 + . . 

d\x\ + d2x2 + .. 

. + a\nxn + xn+\ = b\ 
■ + a2nx„ + xn+2 = b2 

■ • ~r G-mn^n ^~ Xm+n = L>m 

. ~T~ CnXn Z 

. + d„Xn = WQ + W 

whered,- = -(aij + a2j-\ \-amJ) and wo = ~{b\ +b2-\ Vbm). 

Example 3.6.1. Consider the problem to 

Minimize 2x\ — 3x2 +X3+X4 (3.6.4) 

subject to 

x\ — 2x2 — 3x3 — 2x4 = 3 

X\ — X2 + 2X3 + X4 = 11 

Xi,X2,X3,X4 > 0 

Introducing artificial variables X5 and Xß, we now instead consider the problem of 
minimizing w where 

x\ — 2x2 ~ 3x3 — 2x4 + *5 = 3 (3.6.5) 

X\ — X2 + 2X3 + X4 + X(, = 11 

2xi — 3x2 + X3 + X4 = z 

X5 + Xß = W 

Xi,X2,X3,X4,X5,X6 > 0 

Subtracting the first two equations from the w equation gives the system 

x\ — 2x2 — 3x3 — 2x4 + X5 = 3 

X\ — X2 + 2X3 + X4 + X6 = 11 

2xi — 3x2 + X3 + X4 = z 

—2x\ + 3x2 + X3 + X4 = — 14 + w 
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Table 3.7 

X5 

X6 

XX 

1 

1 

2 

-2 

X2 

-2 

-1 

-3 

3 

*3 

-3 

2 

1 

1 

X4 

-2 

1 

1 

1 

*5 

1 

0 

0 

0 

X6 

0 

1 

0 

0 

3 

11 

0 

-14 

Table 3.8 

*5 

*6 

x\ 

X6 

x\ 

*3 

x\ 

© 
1 

2 

-2 

1 

0 

0 

0 

1 

0 

0 

0 

XI 

-2 

-1 

-3 

3 

-2 

-1 

-; 

3 
2 
5 

0 

*3 

-3 

2 

1 

1 

-3 

© 
7 

-5 

0 

1 

0 

0 

X4 

-2 

1 

1 

1 

-2 

3 

5 

-3 
l 
5 
3 
5 
4 
5 

0 

*5 

1 

0 

0 

0 

1 

-1 

-2 

2 
2 
5 
1 
5 
3 
5 

1 

X6 

0 

1 

0 

0 

0 

1 

0 

0 
3 
5 
] 
5 
7 
5 

1 

3 

11 

0 

-14 

3 

8 

-6 

-8 
39 
5 
8 
5 
86 
5 

0 

This information can be recorded in tableau form by simply augmenting the no-
tation of the previous section (see Table 3.7). The last row corresponds to the w 
equation, with the w suppressed from the notation. Now the simplex method is ini-
tiated, with the entries in the last row determining the pivoting column at each step. 
The second to last row, the z row, is operated on at each pivot operation but is other-
wise ignored for the time being. Table 3.8 gives the resulting tableaux. 

Thus the minimal value of w is 0, and one point at which this value is attained is 
( y , 0 , | ,0 ,0,0) . Since this point is a solution to the system of constraints in (3.6.5) 
and has as its last two coordinates zero, ( ̂ , 0, | , 0) is a basic feasible solution to the 
system in (3.6.4), and the data for the tableau corresponding to the original problem 
expressed in canonical form with basic variables x\ and xj are contained in the last 
tableau. In fact, translating these data back into equation form gives the following 
system, equivalent to (3.6.4). 

7 1 
X\ — jX2 — 5X4 

\x2 + x3 + |x4 

- §*2 + 3*4 

39 
5 

86 
" 5 
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Table 3.9 

XI 

X 3 

x2 

X\ X2 XT, X4 

1 -I 0 - I 

o CD i i 
o -1 o | 
1 0 7 4 

0 1 5 3 

0 0 2 2 

39 
5 
8 
5 

86 
5 

19 

8 

-14 

The second stage of the problem, the application of the simplex process to the 
problem of minimizing z, can be initiated immediately (Table 3.9). The minimal 
value of zis 14 and is attained at the point (19,8,0,0). 

The above computational procedure can be streamlined somewhat. First, there is 
no need to make a formal break in the tableau notation when passing from the first 
stage of a linear programming problem, the minimization of the w function, to the 
second stage, the minimization of the z function. Once a basic feasible solution to 
the original problem has been found, the w row of the augmented tableau notation 
can be dropped and the problem continued directly using the z row. 

Second, once an artificial variable is extracted from the basis, there is no need to 
reenter it in any future step. To see this, consider the above example after the first 
pivot operation. The data of the first two rows of the second tableau of Table 3.8 
correspond to the following two equations: 

x\ — 2x2 — 3x3 — 2x4 + *5 = 3 (3.6.6) 
X2 + 5X3 + 3X4 — X5 + X6 = 8 

Setting X5, the artificial variable removed from the basis in the first iteration, equal 
to zero yields the system of equations 

x\ — 2x2 — 3x3 — 2x4 = 3 (3.6.7) 
X2 + 5X3 + 3X4 + X6 = 8 

a system equivalent to the constraints of (3.6.5) with X5 = 0, that is, the system of 
equations 

x\ — 2x2 — 3x3 — 2x4 = 3 (3.6.8) 
X\ — X2 + 2X3 + X4 + X6 = 11 

Now the constraints of the original problem (3.6.4) have feasible solutions if and only 
if (3.6.8) has feasible solutions with x^ = 0 if and only if (3.6.7) has feasible solutions 
with X6 = 0. Thus, if (3.6.4) has feasible solutions, the simplex algorithm applied the 
problem of minimizing the function "w" = Xß subject to the constraints of (3.6.7) 
would drive this modified w function to zero using only the variables of (3.6.7). 
(Notice that to apply the algorithm to the function "w" = X(, subject to the constraints 
of (3.6.7), the basic variables of (3.6.7), xj and X6, would first need to be extracted 
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from the expression for the objective function. Thus the second equation of (3.6.7) 
would be subtracted from this expression; the resulting form is exactly that of the 
bottom row of the second tableau of Table 3.8, with X5 set equal to zero.) Hence the 
artificial variable X5 need never return to the basis after the first iteration. As a result, 
in applying the simplex algorithm, it is never necessary to use the information in the 
artificial variable columns of the tableau, and so these data need not be calculated at 
each pivot step. 

Example 3.6.2. Minimize x\ + X2 + X3 = z subject to 

—X\ + 2x2 + JC3 < 1 
-x\ + 2x3 > 4 

X\ — X2 + 2X3 = 4 

*1,.*2,*3 > 0 

Adding two slack variables, the problem in standard form becomes 

Minimize x\ +X2 +X3 = z 
subject to 
—X[ + 2X2 + X3 + X4 = 1 
—X] + 2x3 — *5 = 4 

X\ — X2 + 2X3 = 4 
Xi,X2,X3,X4,X5 > 0 

Note that the X4 variable can serve as a basic variable. Thus it is sufficient to add only 
two artificial variables, say xg and X7, to the problem and at the first stage minimize 
the function w = X(, +X7. The problem is then 

—X\ + 2X2 + X3 + X4 = 1 

—X\ + 2X3 — X5 + X6 = 4 

X\ — X2 + 2X3 + X7 = 4 

Xi + X2 + X3 = Z 

Xß + X-l = W 

Subtracting the second and third equations from the w equation gives the equation 
X2 — 4x3 +X5 = — 8 + w. Now the expression for w does not contain the initial basic 
variables X4, X6, and X7, and the simplex method can be initiated. The resulting 
tableaux are given in Table 3.10. The minimal value for the function w = x^+xj 
is j , and this value is attained at the point ( | ,0 , 5,0,0, | ,0 ) . Therefore we can 
conclude that the original problem has no feasible solution. 

Problem Set 3.6 

Note: Again the use of the LP Assistant software is strongly recommended. The 
program provides easy designation of artificial variables and automatically computes 
the relevant w-function data into the working tableau. 
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Table 3.10 

Xi, 

x6 

x-i 

X3 

x6 

x-i 

X3 

X(, 

XI 

x\ 

-1 

-1 

1 

1 

0 

-1 

1 

® 
2 

-4 

0 

0 

1 

0 

0 

X2 

2 

0 

-1 

1 

1 

2 

-4 

-5 

-1 

9 
l 
3 
7 
3 
5 
3 
7 
3 
7 
3 

*3 

0 
2 

2 

1 

-4 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

X4 

1 

0 

0 

0 

0 

1 

-2 

-2 

-1 

4 
l 
3 
4 
3 
2 
3 
1 
3 
4 
3 

*5 

0 

-1 

0 

0 

1 

0 

1 

0 

0 

1 

0 

-1 

0 

0 

1 

x6 

0 

1 

0 

Xl 

0 

0 

1 

1 

4 

4 

0 

-8 

1 

2 

2 

-1 

-4 
5 
3 
4 
3 
2 
3 
7 
3 
4 

~3 

1. Using the technique described in this section, find solutions with nonnegative 
coordinates to the following systems of equations. 

(a) x\ — X2 = 1 

2xi + X2 — X3 = 3 

(b) x\ + x2 = 1 

2xi + X2 — XT, = 3 

2. Solve the following. 

(a) Minimize 2xi + 2x2 — 5x3 

subject to 

3xi + 2x2 — 4x3 = 7 

xi — X2 + 3x3 = 2 

X\,X2,X3 > 0 

(b) Minimize x\ — 3x3 

subject to 

Xl + 2X2 — X3 < 6 

X] — X2 + 3X3 = 3 

X\,X2,X3 > 0 
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(c) Minimize x\ + X2—X4 

subject to 

Ax\ + X2 + X3 + 4x4 = 8 

x\ — 3x2 + X3 + 2x4 = 16 

Xi,X2,X3,X4 > 0 

(d) Maximize 3xj — X2 

subject to 

X\ — X2 < 3 

2xi < X2 

X\ + X2 > 12 

Xi,X2 > 0 

(e) Maximize x\ + 2x2 + 3x3 + 4x4 

subject to 

x\ + X3 — 4x4 = 2 

X2 — X3 + 3X4 = 9 

X\ + X2 — 2X3 ~ 3X4 = 21 

X],X2,X3,X4 > 0 

(f) Minimize 8x1 — 2x2 —x$ — 6x4 

subject to 

X\ + X2 — X3 + X4 = 12 

- 2 x i + 3x2 + 2x4 = 42 

X],X2,X3,X4 > 0 

(g) Minimize 3xi — X2 + 2x3 + 5x4 + 6x5 

subject to 

12xi — 3x2 + 5x3 — 2x4 + 4x5 = 100 

8x1 - 2x2 - 4x3 + 5x5 = 150 

X],X2,X3,X4,X5 > 0 

3. Using a combination of birdseed mixtures A, B, and C, a blend of minimum 
cost which is at least 20% thistle and 30% corn is desired. Given the data which 
follow, determine the percentages of each of the mixtures in the final blend. 

A 
B 
C 

% Thistle 

25 
0 

10 

% Corn 

40 
30 
15 

Cost (cents/lb) 

57 
13 
20 

4. Consider the tableaux for the first stage of the problem discussed in Example 
3.6.1. The very last row, the w row after the second pivot step in Table 3.8, 
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pivot step to determine both the exiting and entering variables, when there is more 
than one eligible variable, use the variable with the smallest index. 

Although these procedures solve the cycling problem in theory, cycling in prac-
tice is another question. Various factors influencing cycling can be involved in a 
computer implementation of the simplex algorithm, such as roundoff errors, special 
pivoting rules, data scaling, and built-in perturbation techniques; and in fact, some 
linear programming problems have caused cycling in some programmed versions of 
the algorithm (see, e.g., [10]). However, the issue of cycling in practice is just part 
of the broader question of the efficiency of a given solution algorithm being imple-
mented on a particular computer system to resolve the specific class of problems 
under consideration. 

Problem Set 3.8 

1. Prove Lemma 3.8.1. 

2. Prove Lemma 3.8.2. Hint. Consider the effect or noneffect of these pivot opera-
tions on the bi column and the cj row. 

3. Prove Corollary 3.8.1. Note that Theorem 3.8.1 applies only to a problem pre-
sented in canonical form. 

4. True or false: Suppose the simplex method is applied to a linear programming 
problem presented in canonical form and that, at each step, there is at most 
one term that could serve as a pivot term. Then for this problem, cycling is 
impossible. 

5. True or false: Given a linear programming problem with n = m+l and presented 
in canonical form, at most one step in the simplex method is necessary to drive 
the process to termination. 

6. Using Lemma 3.8.2, solve the linear programming problem of: 

(a) Example 3.5.1, but with the constant terms 60, 10, and 50 replaced with 
zeros. 

(b) Example 3.5.2, but with the constant terms 7 and 3 replaced with zeros. 

7. True or false: Given a linear programming problem with all the constant terms 
of the system of constraints equal to zero, either the objective function is un-
bounded or it attains its optimal value at the point zero. 

3.9 LINEAR PROGRAMMING AND CONVEXITY 

In Section 2.2 we considered a linear programming problem involving only two vari-
ables. We were able to graph the set of feasible solutions to the set of constraints 
(Figure 2.3) and, by a geometric argument, show that the optimal value of the linear 
objective function must be attained at a corner or vertex to this solution set. This 
result generalizes, as suggested at the end of Section 3.2. In this section we will 
first define the concept of convexity and show that the solution set to a system of 
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Figure 3.4 

equations and inequalities is convex. Then we will define the concept of a vertex of 
a convex set and relate the basic feasible solutions of a system of constraints to the 
vertices of the solution set to this system. The corollary of the previous section will 
then give directly the generalization of the above result. 

Only the concept of convexity will be used later in the book, and then not until 
Section 8.3 and Chapter 10. We present these ideas here primarily to initiate an 
appreciation of some of the geometry underlying the linear programming problem. 

For two points P and Q in W, the line segment between P and Q is that set of 
points in R" of the form tP + ( 1 - t ) Q for 0 < t < 1 (see Problem 1). A subset S of 
R" is said to be convex if, for any two points of S, the line segment between these 
two points is also in S. 

Example 3.9.1. Of the six subsets of E2 shown in Figure 3.4, each of the three on 
the left is convex, while none of the three on the right is convex. 

Example 3.9.2. Let S = {(x\,x2) G R2 : x\ + x2 > 2}. Then S is convex, a fact 
obvious from a graph of S. To prove this algebraically using only our definitions, take 
any two points P = (pi,p2) and Q = (qi,q2) inS. Thenpi + p2> 2andgi + q2 > 2. 
Take any point 

tP+(l-t)Q=(tpl + (l-t)qi,tp2 + {l-t)q2), wifh0<f < 1 

on the line segment between P and Q. We have 

tp\ +{\-t)q\ +tp2 + (1 -t)q2 = t(p\ +pi) + (1 -0(<7i +12) 

>2t + 2(l-t) 

= 2 

using the fact that t and 1 — t are nonnegative. Thus tP + (1 — t)Q is in S, and we 
have an algebraic proof that S is convex. 

The set of feasible solutions to a linear programming problem is convex, since 
it is the intersection of a collection of hyperplanes and half-spaces. We state these 
results in the following, leaving the proofs of the theorems for the reader. 

Definition 3.9.1. A subset of E" of the form 

X = {(xi,... ,xn) : a\x\ + a2x2 H hanxn = b} 

for constants a\,a2,...,an and b is called a hyperplane. 
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A subset of the form 

X = {(xi,...,x„) :a\x\ + ß2*2-\ \-a„x„ <b} 

for constants a\,a2,...,an and b is called a half-space. 

Theorem 3.9.1. A half-space is convex. 

Theorem 3.9.2. The intersection of two convex sets is convex. 

Corollary 3.9.1. The set of feasible solutions to a linear programming problem is 
convex. 

Intuitively, the corners or vertices of a convex set are those points of the set that 
do not lie on the interior of a line segment contained in the set. This suggests the 
following. 

Definition 3.9.2. A point P of a convex set S is a vertex of S if P is not the midpoint 
of a line segment connecting two other points of S. 

Example 3.9.3. For the three convex figures of Example 3.9.1, the line segment has 
two vertices (the two end points), the triangle has three (the three corners), and the 
home plate has five. 

Theorem 3.9.3. Let S be the set of feasible solutions to the system of constraints of 
a linear programming problem in a standard form. Then any basic feasible solution 
to the problem is a vertex ofS. 

Proof. Let X be a basic feasible solution, and suppose the first m variables are the 
basic variables, with n the total number of variables. Assume X = (P + Q)/2, where 
P= (pi,...,p„) a n d g = (qi,...,q„) are in S. Then 

X = (xi,.. . ,x„,0,... ,0) 

= ~(Pl +q\,---,Pm + qm,Pm+l +qm+\,---,Pn+qn)-

Since all the coordinates of P and Q are nonnegative, 

Pj = qj = 0 for j = m + 1,..., n 

But there is only one basic feasible solution, X, with all these coordinates equal to 
zero (see Problem 10 of Section 3.2). Thus P = Q = X. Hence X is a vertex of S. D 

Corollary 3.9.2. If the objective function of a linear programming problem has a 
finite optimal value, this value is assumed by at least one vertex of the set of feasible 
solutions to the system of constraints. 

Proof. This follows directly from Theorem 3.9.3 and Corollary 3.8.1. D 
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In the simplex algorithm we move from basic feasible solution to basic feasible 
solution by replacing at each step one variable in the basis. From Theorem 3.9.3, 
we see that we are simply moving from vertex to vertex in the convex set of fea-
sible solutions to the system of constraints. In fact, since at each step exactly one 
basic variable is replaced, we are actually moving between adjacent vertices. See 
Problem 10 for a development of these ideas. 

By using the corollary of the previous section in the proof of the above corollary, 
we have made use of the central theorems of this chapter, theorems that have been 
proved algebraically. In fact, the above result can also be proved independently using 
only the theory of convex sets. (See, for example, Problem 11.) This suggests an 
alternative, theoretically sound approach to the linear optimization problem. First, 
compute all the basic feasible solutions to the problem; second, compare the value of 
the objective function at each of these points. As long as we know that the function 
has an optimal value, it must be the optimal value in this set. However, this technique 
is far from practical; if the constraint system has m equations and n unknowns, there 
could be up to (") basic feasible solutions, where 

\mj m\(n — rn)\ 

is the binomial coefficient. For example, 

( 1 5 ] = 3003 and yZ\ = 184,756 

Problem Set 3.9 

1. Suppose P and Q are points in M". Show geometrically that the set tP+ (1 — 
t)Q = Q + t(P — Q), 0 < r < 1, is the line segment connecting P and Q. 

2. Prove Theorem 3.9.1. (Hint. Use Example 3.9.2 as a model.) 

3. Prove Theorem 3.9.2. 

4. Prove Corollary 3.9.1. 

5. Theorems 3.9.1 and 3.9.2 imply immediately that a hyperplane is convex. Why? 

6. True or false: 

(a) The union of two convex sets is convex. 
(b) The complement of a convex set is convex. 

7. True or false: A point P is a vertex of a convex set S if and only if P is not the 
interior point of any line segment in S. (An interior point of a line segment L is 
any point of L other than the two end points.) 

8. Prove that if P and Q are vertices of a convex set S and X = P + t(Q — P) is a 
point of S, then 0 < t < 1. 

9. Consider the general linear programming problem (3.4.1) on page 78. Suppose 
P = (bi,...,bm,0,...,0) and Q = (0,b*2,...,b*m,b*m+v...,0i) are distinct basic 



CHAPTER 4 

DUALITY 

4.1 INTRODUCTION TO DUALITY 

Frequently in mathematics there exist relationships between concepts, systems, or 
problems that are not immediately apparent but, once understood, reap many divi-
dends. For example, consider in calculus the relationship between the integral and 
the derivative expressed in the Fundamental Theorem of Calculus, or in linear al-
gebra, the relationship between linear transformations and matrices. Relationships 
such as these not only can be used for practical or computational purposes, but also 
can provide a unified and coherent theory, so that insights and techniques from one 
system can contribute to the understanding and usefulness of another. 

In this chapter we will develop one such unifying notion, the concept of dual-
ity. For any linear programming problem, the associated dual linear programming 
problem will be defined. In Section 4.3 it will be shown that in certain optimization 
situations, the dual problem arises quite naturally; and in Sections 4.4 and 4.5 im-
portant theoretical results relating the two problems will be developed. In particular, 
in Section 4.4 the fundamental Duality Theorem will be proved. 

The concept of duality plays an important role in the remainder of the text. In 
Section 5.1, we will expand upon the ideas in Sections 4.3 and 4.4 to yield a sensi-
tivity analysis procedure useful in a variety of applications. In Section 5.6 the Dual 
Simplex Algorithm will be developed, and in Section 7.2 the Transportation Problem 
Algorithm, a primal-dual algorithm, will be developed. Later, in Chapter 9, when we 
consider two-person zero-sum games, we will see that the problem of solving such 
a game is equivalent to solving a linear programming problem and its dual problem, 
and that the question of the existence of a solution to these games is answered using 
the Duality Theorem. 

We conclude this section with an example that should provide some motivation 
for the definitions to follow in Section 4.2. 

Example 4.1.1. To obtain favorable bulk rates, a soft ice cream producer negotiates 
6-month contracts in early summer with distant wholesalers for the weekly purchase 
of fixed quantities of cream, skim milk, and chocolate syrup. However, in the fall, 
when the demand for soft ice cream decreases, the producer will be left with a surplus 
of these three quantities. In particular, suppose that in the fall there is weekly 100 
gal of cream unused in the production of the ice cream, 300 gal of skim milk, and 60 
lb of chocolate syrup. 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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To utilize this surplus, the producer bottles and delivers cases of whole and 
chocolate milk to a local school. A case of whole milk uses 1 gal of cream and 
2 gal of skim milk and yields a net gain of $3 (selling price less bottling and delivery 
costs); a case of chocolate milk uses 0.4 gal of cream, 2.5 gal of skim milk, and 0.6 
lb of chocolate syrup and yields a gain of $4. Hoping to maximize the net gain at-
tainable with this surplus, the producer formulates the following linear programming 
problem, with x\ the number of cases of whole milk and X2 the number of cases of 
chocolate milk to be produced each week. 

Maximize 3xi + 4x2 (4.1.1) 
subject to 
xi + 0.4x2 < 100 

2xi + 2.5x2 < 300 
0.6x2 < 60 

xi,x2 > 0 

However, before this problem is solved and contracts are signed with the local 
school, the producer is contacted by the manager of the town dairy. The dairy also 
supplies milk to the local school system and, in fact, strives to be the sole such 
supplier. This would increase the dairy's presence in the town and would also allow 
the dairy some freedom in negotiating prices for the school contract. To accomplish 
this, the manager of the dairy offers to simply buy from the ice cream producer his 
surplus milk and syrup, which the dairy would then use in its own bottling plant. 

The offer intrigues the ice cream producer. It would allow him to focus his com-
pany on the making and selling of ice cream and, if the dairy's offer is financially 
sound, to continue the economical bulk rate contracts with the distant wholesalers. 
But what prices for the surplus ingredients are financially sound to the producer? 

To attempt to answer this question, the dairy manager notes that the only value 
to the producer that the surplus milk and syrup have is in bottling and selling cases 
of whole milk and chocolate milk. In particular, suppose the manager offers the 
producer yi dollars for each gallon of surplus cream, y2 dollars for each gallon of 
skim, and y3 dollars for each pound of chocolate syrup. Then, since the bottling 
and delivery of a case of whole milk requires 1 gal of cream and 2 gal of skim milk 
and yields a gain of $3, the dairy manager realizes that to be competitive, y\ and 
y2 must be set so that y\ +2y2 > 3. Similarly, consideration of the input and gain 
associated with a case of chocolate milk yields the inequality 0.4yi + 2.5y2 + 0.6y3 > 
4. Of course, the dairy manager also wants to keep her total costs down and so, in 
determining these prices, she is led to the following linear programming problem: 

Minimize lOOyi + 300y2 + 60y3 (4.1.2) 
subject to 

vi + 2y2 > 3 
0.4yi + 2.5y2 + 0.6y3 > 4 
yi,y2,y3 > 0 
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The linear programming problem (4.1.2) is the dual of the problem (4.1.1). We 
have been led to these problems by considering the disposal of surplus goods from 
two different but related perspectives. Other examples in which the dual arises quite 
naturally will be discussed in Section 4.3. For the time being, let us note some 
relationships between the two problems (4.1.1) and (4.1.2). (As we will see, these 
relationships constitute the definition of the dual linear programming problem.) 

1. Problem (4.1.2) is a minimization problem with (>) constraints; (4.1.1) is a 
maximization problem with (<) constraints. 

2. The number of nonnegative variables in (4.1.2) equals the number of con-
straints in (4.1.1). (A price was to be set using (4.1.2) for each limited re-
source in (4.1.1).) 

3. The number of constraints in (4.1.2) equals the number of nonnegative vari-
ables in (4.1.1). (The vi,y2,y3 had to compare favorably with each of the two 
processes of (4.1.1).) 

4. (a) The coefficients of the objective function of (4.1.2) are the constant terms 
of the constraints of (4.1.1). 

(b) The constant terms of the constraints of (4.1.2) are the coefficients of the 
objective function of (4.1.1). 

(c) The coefficients of the constraints of (4.1.2) are the coefficients of the 
constraints of (4.1.1), with the rows and columns interchanged (trans-
posed). 

Problem Set 4.1 

The following problems refer to the example of this section. 

1. Solve (4.1.1) graphically. What is the maximum the ice cream producer can earn 
each week with his surplus? 

2. (a) Solve (4.1.2) using the simplex algorithm. 
(b) How much should the dairy manager offer the producer for each gallon of 

cream? Each gallon of skim? Each pound of syrup? 
(c) What is the total amount the dairy manager would be paying the producer 

each week? Would he accept the offer? 

4.2 DEFINITION OF THE DUAL PROBLEM 

The definition of the dual problem will initially be given in terms of a linear pro-
gramming problem expressed in a special form, called the max form of the problem. 
Problems in another special form, a min form, are equally useful. We first define 
these terms. 

Definition 4.2.1. A linear programming problem stated in the following form is said 
to be in max form: 
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Maximize z, = c\X\ + C2X2~\ \-cnxn (4.2.1) 
subject to 
a\\x\ + anX2 + ... + a\nxn < b\ 
a2\X\ + 022^2 + • • • + a2„Xn < 02 

@m\X] i ^rnl^l T • • • T amnXn _ ®m 

X17 X2 , ■ • • , Xfi ^_ U 

Thus the max form of a linear programming problem, called simply the max problem, 
is a maximization problem with nonnegative variables and a system of constraints 
consisting of only (<) inequalities. Note that there are no restrictions on the signs of 
the coefficients a,;, constant terms £>,-, and coefficients Cj. 

Definition 4.2.2. A linear programming problem stated in the following form is said 
to be in min form: 

Minimize z = c\X\ + C2X2 + • • • + cnxn (4.2.2) 
subject to 
a\\x\ + a\2X2 + ••• + a\nxn > b\ 

021*1 + «22*2 + • • . + Cl2nXn > h 

<2ml*l T~ am2X2 i • • • i O-mn^n ^_ &m 

X\,X2,. ■ ■ ,Xn > 0 

The min problem is a minimization problem with nonnegative variables and a system 
of constraints consisting of only (>) inequalities. Again, no restrictions have been 
placed on the signs of the a\j, £>,, and Cj. 

We now define the dual to the max problem (4.2.1). Then we will build on this 
definition to extend the definition of duality to an arbitrary linear programming prob-
lem. As we will see, both the max problem and the min problem (4.2.2) will play 
equal roles in the summarizing definitions. 

Definition 4.2.3. The dual of the max problem (4.2.1) is the following linear pro-
gramming problem: 

Minimize v = b\y\ + b2y2 H h bmym (4.2.3) 
subject to 
a\iy\ + a2\y2 + ••• + am\ym > c\ 
a\iy\ + aiiyi + ••• + am2ym > cn 

a\ny\ + a2„y2 + ••• + amnym > cn 

y\,y2,---,yn > o 
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Thus the dual to the max problem (4.2.1) with m (<) constraints and n nonneg-
ative variables is a minimization problem with m nonnegative variables and n (>) 
constraints. For each i, 1 < i <m, variable y,- of the dual corresponds to the ith con-
straint of the max problem. The coefficients of y,- in the ith column of the constraints 
of (4.2.3) are the coefficients of the ith constraint in (4.2.1). Reciprocally, for each j , 
1 < j <n, the jth constraint in the dual corresponds to the jth variable xj in (4.2.1); 
the coefficients of the variables in the jth constraint in the dual are the coefficients 
of xj in the constraints of (4.2.1). Note also the interchange between the constant 
terms of the constraints and the coefficients of the objective functions for the two 
problems. (Compare the above with the list of relationships given at the end of the 
example of the previous section.) 

Example 4.2.1. The linear programming problem of 

Maximizing 6xj +X2 +4x3 
subject to 
3xi + 7x2 + *3 < 15 
xi — 2x2 + 3x3 < 20 

Xi,X2,X3 > 0 

(4.2.4) 

has as its dual the problem of 

Minimizing 15yi 
subject to 
3yi + y2 > 6 
7yi - 2y2 > 1 

y\ + 3y2 > 4 
yi,y2 > 0 

-20y2 (4.2.5) 

Matrix notation can be used to express any linear programming problem and, in 
particular, the max problem and its dual problem, succinctly. Using (4.2.1), we will 
define the coefficient matrix A and column vectors b, c, and X as follows: 

an 
Û21 

am\ 

an ■ 
an ■ 

ami ■ 

■ a\n 

■ a2„ 

amn 

, b = 

\ bl 1 
b2 

. bm . 

, c = 

C\ 

C2 

. C « . 

, x = 

Xl 

X2 

%n 

Let A' denote the transpose of matrix A, and let c ■ X denote the dot or scalar product 
of the vectors c and X. Then 

A': 

a\\ Ö21 ••• am\ 
a\2 Ö22 • • ■ a„a 

a\n a2n • • • amn 
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and 
c■ X = c\X\ + C2X2-\ hcnxn = c'X = X'c = X c 

The max problem of (4.2.1 ) is simply to maximize z = c ■ X subject to AX < 
b,X > 0, where AX < b means that each component of the column vector AX is 
less than or equal to the corresponding component of the vector b, and X > 0 is 
defined similarly, with 0 in this case being the n-dimensional zero vector. Let Y be 
the m-dimensional column vector (yi,y2,--- ,ym)'- Then the problem of (4.2.3) is to 
minimize v = b-Y subject to A' Y >c,Y> 0. 

In summary, we have the following: 

Max problem: Maximize z = c ■ X subject to AX < b, X > 0 
Dual problem: Minimize v = b ■ Y subject to A'Y >c,Y >0 

To extend the definition of duality to an arbitrary problem, first note that any 
linear programming problem is equivalent to a problem stated in max form. For ex-
ample, we have already seen how a minimization problem can be transformed into 
an equivalent maximization problem and unrestricted variables replaced by variables 
restricted in sign. A constraint involving an equality can be replaced by two inequal-
ities in opposite directions. For example, the set of points (xi,X2) 6 K2 such that 
3*1 + 2x2 = 5 equals the set of {x\,X2) such that 3xi + 2%2 > 5 and 3x\ + 2x2 < 5. 
Finally, the direction of an inequality can be changed by multiplication by (—1). 

With this, the dual to any linear programming problem can be constructed. To 
determine this dual, first express the given problem as an equivalent linear program-
ming problem in max form and then use the above definition. 

As an application, let us determine the dual to the min problem of (4.2.3), the 
dual of (4.2.1). The problem as stated is to minimize b-Y subject to A'Y >c,Y>0. 
Letting — M denote the matrix found by multiplying all the entries of a matrix M by 
(—1), the problem of (4.2.3) is equivalent to the problem of 

Maximizing (-b) ■ Y subject to (-A')Y <-c,Y>0 

But this problem is in max form, and its dual is, using (4.2.6), to 

Minimize (-c) X subject to (-A')'X > -b, X > 0 

Using the fact that for any matrix M, (M')' = M, this problem is equivalent to the 
problem of 

Maximizing c ■ X subject to AX < b, X > 0 

Note that this is precisely the problem of (4.2.1 ). We have proven that the dual of the 
min problem is a max problem and that for any linear programming problem, the dual 
of the dual is the original problem. Hence, repeated application of this operation of 
constructing the dual problem to a given problem does not lead to a chain of distinct 
problems but, instead, cycles after two steps, resulting in exactly two problems, each 
the dual of the other. 
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Example 4.2.2. The linear programming problem of 

Minimizing 12xi + 9x2 — 2x3 

subject to 

8xi + 3x2 + 5x3 > 6 

x\ — 3x3 > ~ 4 

X),X2,x3 > 0 

is in min form, and thus, from the above, we can write immediately that its dual is to 

Maximize 6y\ — Ay 2 

subject to 

8yi + yi < 12 

3yi < 9 
5yi - 3y2 < - 2 

y\,yi > 0 

We consider now the steps involved in the construction of the dual of a problem 
first, having an equality constraint, and second, having an unrestricted variable. 

Example 4.2.3. To determine the dual of the problem of 

Maximizing 6x1 + X2 + 4x3 (4.2.7) 

subject to 

3xi + 7x2 + JC3 < 15 

X) — 2x2 + 3x3 = 20 

•Xl,-*2,*3 > 0 

notice that this is the problem of Example 4.2.1 with the second constraint changed 
to an equality. We replace the equality constraint by two inequalities and multiply 
the resulting (>) inequality by (— 1) to find the equivalent problem in max form of 

Maximizing 6x1 + X2 + 4x3 (4.2.8) 

subject to 

3xi + 7x2 + xj, < 15 

x\ — 2x2 + 3x3 < 20 

—x\ + 2x2 — 3x3 < — 20 

xi ,x2 ,x 3 > 0 

Using variables y\, y2, y3, the dual to (4.2.8) is to 

Minimize 15yi + 20y2 - 20y3 (4.2.9) 

subject to 

3yi + J2 - W > 6 

1y\ - 2y2 + 2y3 > 1 

y\ + 3y2 - 3y3 > 4 

y\,yi,y3 > 0 
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which can be rewritten as 

Minimize 15yi + 20(y2 - y 3 ) (4.2.10) 
subject to 

3yi + {y2-ys) > 6 
7yi - 2(y2-y3) > 1 
yi + 3(y2-y3) > 4 

y\,y2,y3 > o 

which is equivalent to 
Minimize 15vi +20y4 (4.2.11) 
subject to 
3yi + y4 > 6 
7y, - 2y4 > 1 
yi + 3y4 > 4 

yi > 0, y4 unrestricted 

Note that (4.2.11), the dual to (4.2.7), is almost (4.2.5), the dual to (4.2.4). The 
difference is that in (4.2.11), the variable v4 corresponding to the equality constraint 
in (4.2.7) is unrestricted. Clearly, the algebra above generalizes. When defining a 
dual, any variable in the dual corresponding to an equality constraint in the original 
problem is unrestricted in sign. 

Example 4.2.4. To determine the dual of (4.2.11), a problem in min form except for 
an unrestricted variable, we first replace the unrestricted variable with the difference 
of two nonnegative variables (4.2.10), simplify to a problem in min form (4.2.9), 
write the dual (4.2.8), and replace the last two inequalities with the equivalent equal-
ity. This yields (4.2.7), the dual to (4.2.11); and the constraint in the dual generated 
by the unrestricted variable v4 in the original problem is an equality. Again, we 
can generalize. Constraints in a dual corresponding to unrestricted variables in the 
original problem are equality constraints. 

Combining these observations, we summarize the construction of the dual to an 
arbitrary linear programming problem. First, express the problem, using nonnegative 
and unrestricted variables, as either a maximization problem with (<) and equality 
constraints or a minimization problem with (>) and equality constraints. The dual 
can then be immediately formulated. 

The dual to a maximization problem is a minimization problem with (>) and 
equality constraints, and the dual to a minimization problem is a maximization prob-
lem with (<) and equality constraints. In both cases, unrestricted variables in the 
original problem generate equality constraints in the associated dual; and recipro-
cally, equality constraints in the original generate unrestricted variables in the dual 
problem. Table 4.1 summarizes the relationships. 



4.2. DEFINITION OF THE DUAL PROBLEM 129 

Table 4.1 

Max Problem dual Min Problem 

fth (<) inequality 
fth ( = ) constraint 
jth nonnegative variable 
jth unrestricted variable 
Objective function coefficients 
Constant terms of constraints 
Coefficient matrix of 

constraints A 

rth nonnegative variable 
rth unrestricted variable 
jth (>) inequality 
jth ( = ) constraint 
Constant terms of constraints 
Objective function coefficients 
Coefficient matrix of 

constraints A' 

Example 4.2.5. The linear programming problem of 

Minimizing x\ — 2x2 + 3x3 

subject to 

4x\ + 5x2 — 6x3 = 7 

8x1 - 9x2 + 10x3 < 11 

x\ ,X2 > 0, X3 unrestricted 

is equivalent to the problem of 

Minimizing x\ — 2x2 + 3x3 

subject to 

4xi + 5x2 — 6x3 = 7 

-8x1 + 9x2 - 10x3 > - 1 1 

x\ ,X2 > 0, X3 unrestricted 

and therefore has as its dual the problem of 

Maximizing ly\ — 11J2 

subject to 

Ayi - %y2 < 1 

5yi + 9y2 < -2 

—6yi — 10^2 = 3 

y 1 unrestricted, y2 > 0 

Example 4.2.6. The linear programming problem of 

Maximizing 12xi +2x2 

subject to 

8x1 — X2 < 21 

x\ — 6x2 > 13 

3xi — 4x2 = —11 

xi unrestricted, X2 > 0 
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is equivalent to the problem of 

Maximizing 12xj + 2x2 
subject to 
8xi — X2 < 21 
—x\ + 6x2 < —13 
3xi - 4x2 = - H 

x\ unrestricted, X2 > 0 

and therefore has as its dual the problem of 

Minimizing 7Ay\ — 13y2 — Ü B 
subject to 
8yi - yi + 3y3 = 12 
-yi + 6y2 - 4y3 > 2 
y\,)>2 > 0,yi unrestricted 

Problem Set 4.2 

1. Determine the dual of each of the following linear programming problems. 

(a) Maximize 20xi + 30x2 
subject to 
5xi - 4x2 < 100 
-xi + 12x2 < 90 

x2 < 500 
Xi,X2 > 0 

(b) Minimize 4xi — 3x2 
subject to 
6x, + llx2 > -30 
2xi — 7x2 < 50 

x2 < 80 
X] ,X2 > 0 

(c) Maximize —x\ + 2x2 
subject to 
5x] + X2 < 60 
3xi - 8x2 > 10 
xi + 7x2 = 20 

xj ,X2 > 0 
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(d) Minimize 6x1 + 12^2 — 18x3 
subject to 
x\ — 3x2 + 6x3 = 30 

2x] + 8x2 — 16x3 = 70 
x 1 ,X2 > 0, X3 unrestricted 

(e) Maximize x\ — 7x2 + 3x3 
subject to 

2x2 + 5x3 = 20 
8x1 - 3x3 = 40 

x2 + 4x3 > 60 
x\ ,X3 > 0, X2 unrestricted 

(f) Minimize 2yi — 3y2 + 4y3 
subject to 
8V! - y3 = 50 

6̂ 2 + J3 < 60 
yi,y2>0,-l5<y3<0 

(a) Determine the dual to the problem of 
Maximizing xi — 2x2 
subject to 

x2 > 1 
x, < 2 
Xi,X2 > 0 

(b) Rewrite your answer to part (a) as an equivalent maximization problem. 
(c) Compare your response in part (b) to the original problem of part (a). Ob-

servation? 
(d) Show that the following problem is also its own dual. 

Maximizing x\ — 2x2 — 3x3 
subject to 

X2 + 2X3 > 1 
x\ + 3x3 < 2 

2xi — 3x2 = 3 

xi,X2 > 0,X3 unrestricted 

Consider the linear programming problem of Example 4.2.1 of this section. 
(a) Show that the objective function of the dual problem is bounded below. 
(b) Solve the dual problem graphically. 
(c) Solve the maximization problem using the simplex method. Note that the 

optimal values of the objective functions are equal. 
(d) Compare the bottom two entries in the slack variable columns of the last 

simplex tableau of part (c) with the point in part (b) that yielded the minimal 
value. 
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fruit, using two prices: one for a bushel of choice produce and the other 
for regular produce. Considering that the student must convince the grower 
that it is to his advantage to let her supervise the harvest, how should she set 
these three costs? 

5. Consider Problem 11 of Section 2.3. 

(a) Formulate the associated linear programming problem. 
(b) Determine the dual problem. 
(c) Suppose the manager of the electronics firm wants to assess the value of a 

unit of material and a unit of labor in the production and sale of the circuits. 
To do this, she lets $yi and $y2 denote these two values. The circuit for a 
radio requires 2 units of material and 1 unit of labor and sells for $8. The 
manager reasons, therefore, that 2 units of material plus 1 unit of labor must 
be worth at least $8, but could be worth more if these units can be used 
in the production of other types of circuits that are more profitable. Thus 
she sets 2yi +y2 > 8. The manager continues in this manner. Compare 
the resulting problem with the problem determined in part (b). (Note that 
the Duality Theorem guarantees that the optimal values for the problems of 
parts (a) and (b) are equal.) 

4.4 THE DUALITY THEOREM 

In this section we prove the celebrated Duality Theorem. It is generally accepted 
that John von Neumann was the first mathematician to recognize the significance of 
the duality principle in this setting and endeavor to develop a proof of the Duality 
Theorem. 

We start with the max problem of (4.2.1), the problem of maximizing z = c ■ X 
subject to AX <b,X>0. The dual to this problem is to minimize v = b-Y subject 
to AY > c, Y > 0. We will show first that the set of possible values for the objective 
function z of the max problem lies to the left of the set of possible values for the 
function v. Then, with this result, we will prove the Duality Theorem using the 
simplex method and, in particular, Theorem 3.8.1. 

Theorem 4.4.1. Suppose Xo is a feasible solution to the problem of maximizing 
c ■ X subject to AX < b, X > 0 and YQ is a feasible solution to the dual problem of 
minimizing b ■ Y subject to AY > c, Y > 0. Then 

c-X0<b-Y0 

Proof. Since Xo is a feasible solution to the max problem with constraints AX < 
b, where A is an m x n matrix, the m x 1 vector u = b— AX$ > 0. In fact, the m 
components of u are the slack in the m inequalities of AXo < b. Similarly, YQ a 
feasible solution to the dual implies that A'YQ > c, and so the column vector v = 
A'YQ — C of slack in this set of n inequalities also has nonnegative components. Using 
these vectors, we can write 

AXQ = b~u and A'YQ = c + v 
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Now since the product YQ A XQ is a real number, we have YQAXQ = (Y^AXQ)' = 

l xm mxn « x l 

X^'YQ, and so 

Y0'AX0 = Y0'(AX0) = Y0'(b-u) equalsX^4% = *o(^%) = Ag(c + v) 

that is, 

Thus, since u,v,Xo,Yo > 0, 

è-Fo-c-Xo = M-r0 + v-Xo>0 D 

>0 >0 

We state the first corollary below for future reference in Section 4.5. The two 
subsequent corollaries are for immediate use in this section. 

Corollary 4.4.1. IfXo is a feasible solution to the problem of maximizing c ■ X subject 
to AX < b, X > 0 and YQ is a feasible solution to the problem of minimizing A'Y >c, 
Y>0, then 

b-Y0-c-X0 = (b-AX0)-Y0 + {A% ~c)-X0 

Proof. This is the equality statement of the last line of the above proof. D 

Corollary 4.4.2. IfXo and YQ are feasible solutions to the max and min problems, 
respectively, and if c ■ XQ = b • YQ, then the optimal values of the objective functions 
z andv equal this common value; that is, maximum z = c-XQ = b-Yo = minimum v 
and Xo and YQ are optimal solution points for their respective problems. 

Proof. Suppose X\ is any feasible solution to the max problem. Then, from the 
theorem, c • X] <b-Yo, so c-X\ <c-Xo. Thus the maximum value of the function 
z = c ■ X is c ■ Xo- Similarly for the dual problem. D 

Corollary 4.4.3. If the objective function z of the max problem is not bounded above, 
the min problem has no feasible solutions. Similarly, if the objective function v of the 
min problem is not bounded below, the max problem has no feasible solutions. 

The proof of Corollary 4.4.3 is left to the reader (Problem 1). The converse to this 
corollary is false. Examples can be constructed for which neither the max problem 
nor its dual, the min problem, have feasible solutions (see Problem 2). 

Theorem 4.4.2 (Duality Theorem). Suppose either the problem of 

Maximizing z = c-X subject to AX <b,X>0 

or the problem of 

Minimizing v — b-Y subject to A'Y >c, Y > 0 
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has a finite optimal solution. Then so does the other problem, and the optimal values 
of the objective functions are equal, that is, 

Maxz = Minv 

Proof. Assume first that the max problem has a finite optimal solution. Thus we 
assume the existence of an XQ such that AXQ < b, XQ > 0 and, for any other X with 
AX < b, X > 0, we have c-X< c-X0. 

Now the solution to the min problem will be found by applying the simplex 
method to the max problem. To do this, we first write the max problem in standard 
form by adding m slack variables xj, n + 1 < j <n + m, and multiply the objective 
function by — 1. This gives the problem of 

Minimizing — c\X\ — c^xi cnxn = — z (4.4.1) 
subject to 
a\\x\ + ai2*2 + •■• + a\nxn + x„+1 = b\ 
Ü2\X\ + 022*2 + • • • + a2nXn + Xn+2 = i>2 

am\X\ -\- am2X2 T ... + amnxn -t- xm^.n = om 

Xj > 0,1 < j <n + m 

We now assume in our proof that the constants b-t, 1 < ; < m, are nonnegative. If this 
is the case, the above problem is in canonical form with basic variables ;t„+i, x„+2> 

the associated basic solution is feasible, and the simplex method can 
be initiated directly commencing with the second stage. 

(Recall that in Section 4.2 when the max and min problems were defined, no 
restrictions were placed on the constants. Thus, with this assumption, our proof 
loses some generality. The extension of the proof to the general case is developed in 
Problem 8.) 

From Theorem 3.8.1, we know that there is a finite sequence of pivot operations 
driving the problem of (4.4.1) to the optimal value of the objective function. The 
initial tableaux for such a sequence would have a form such as 

xn+\ 
xn+2 

Xn+m 

X\ 

au 

Ö21 

0-m\ 

~C\ 

x2 

a\2 

Û22 

am2 

~c2 . 

Xfi 

a\n 

fl2n 

@mn 

-c„ 

xn+\ 
1 
0 

0 
0 

0 
1 

0 

Xn+m 

l 
0 

h 
b2 

bm 

0 

and the final tableau would assume the form 

X\ X2 . . . Xn Xn+\ . . . Xn+m 

r\ r2 ... rn. ^ . . . sm c-X0 



4.4. THE DUALITY THEOREM 141 

Since our concern will be with only the bottom row of this last tableau, we have 
used the symbols rj, 1 < j: < n and s,, 1 < i < m to denote the numbers appearing 
in these positions and have left the other positions of the tableau blank. Since this 
tableau represents the final step of the simplex process in the problem of (4.4.1), we 
have rj > 0 and s; > 0 for 1 < j < n, 1 < / < m, and the minimum of — z is — c ■ XQ. 

Let YQ be the column vector {s\ ,s2, ■ ■ ■ ,SmY- We will show that 
(a) Y0 > 0 
(b) A% > c 
(c) b-Y0 = c-X0 

As has already been mentioned, YQ > 0. To show (b) and (c), consider the equa-
tion represented by the bottom row of the final tableau: 

r\x\ H Yrnxn+S]_xn+\ -\ Vsmxn+m =c-X0+ (-z) 

This equation represents the result of all the pivot operations on the initial equation 
for the objective function 

-c\x\ - c2x2 cnxn = 0 + (-z) 

And, at each pivot step, some linear combination of the original constraining equa-
tions was added to this equation for the objective function. Thus there exist m con-
stants, ti, 1 <i<m, such that when the (m + 1) equations 

h(anxi + ai2x2 + ... + a\nxn + xn+\ = b{) 
t2(a2\xl + a22x2 + ... + a2nxn + xn+2 = b2) 

*m\&m\X\ i &m2X2 ~r • • • ~r ClmnXn -|- Xm+n = OmJ 

{-C]X\ - C2X2 - . . . - CnXn = -z) 

are added together, the result is the equation 

r\xi H hrnxn + sixn+1 -\ hsmxn+m =c-X0 + (-z) 

Comparing the coefficients of the slack variables, we see that s, = /, for 1 < i < m. 
Using this result and comparing the coefficients of x\, we have 

sian +s2a2\ -\ Ysmam\ — c\ = r\ > 0 

and so 
sian +s2a2i H \-smami >c\ 

Similarly, comparing the coefficients of Xj for any j , 1 < j < n, we have 

s\a\j + s2a2j H hsmamj ~Cj = r/ > 0 

and so 
siaij + s2a2j H hsmamj > Cj 
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Thus 
A'Y0 > c 

To show (c), consider the constant terms in the above equations. We must have 

sibi +s2b2 H \-smbm = c-X0 

that is, 
b-Y0 = c-X0 

Since Fo > 0 and A'YQ > c, the point Fo is a feasible solution to the min problem. 
The value of the objective function v at Yo, b ■ YQ, is equal to the value of the objective 
function z at XQ. Thus, from Corollary 4.4.2, the minimal value of v is b ■ YQ, so the 
optimal values of both problems are equal. 

Finally, suppose that we know initially that it is the min problem that has the finite 
optimal solution. But in Section 4.2 it was shown that this problem is equivalent to 
a problem expressed in max form. Thus we can apply what we have already proved 
to this equivalent problem and conclude that the dual to the min problem, the max 
problem, has the same optimal solution. D 

Corollary 4.4.4. If both the max and min problems have feasible solutions, then both 
objective functions have optimal solutions and Maxz = Min v. 

Proof. Since both problems have feasible solutions, it follows from Theorem 4.4.1 
that the objective function z is bounded above and the objective function v is bounded 
below. From Corollary 3.8.1, both objective functions attain their optimal values and, 
from the Duality Theorem, these optimal values must be equal. D 

In summary, we have shown that there are exactly four different categories into 
which solutions to the max and min problems can fall. 

1. Both problems have feasible solutions. Then the sets of possible values for 
the objective functions z and v relate on the real line as follows: 

Z = c-X | v = b-Y 

I 
optimal value for both 

2. The objective function z is unbounded above and the min problem has no 
feasible solutions. 

3. The objective function v is unbounded below and the max problem has no 
feasible solutions. 

4. Both problems have no feasible solutions. 

The following example demonstrates an important application of the duality the-
orem. 
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Example 4.4.1. Suppose we apply the simplex algorithm to the problem of 

Maximizing —5xi + 18^2 + 6x3 — X4 (4.4.2) 
subject to 

2xi — X3 + 3x4 < 20 
X2 — 2X3 — X4 < 30 

-3xi + 6x2 + 3x3 + 4x4 < 24 
Xj,X2,X3,X4 > 0 

and the resulting final tableau suggests a maximum value of 112 for the objective 
function attained at the point (10,9,0,0) (and an optimal solution point of (2,0,3) 
for the dual). We can now easily check the accuracy of our calculations. 

First, is the point (10,9,0,0) a feasible solution to (4.4.2), and is the value of 
the objective function at this point 112? (It might be hoped that this part of the test 
procedure is already standard practice.) 

Second, consider the dual to (4.4.2) 

Minimize 20yi + 30y2 + 24y3 

subject to 
2ji - 3y3 > - 5 

y2 + 6y3 > 18 

-y\ - 2j2 + 3y3 > 6 
3yi - yi + 4>>3 > - 1 

yuyiM >o 

Now we determine whether the point (2,0,3) is a feasible solution to this problem 
and whether the value of the associated objective function at (2,0,3) is also 112. 

The answers to the above questions are all positive, as the reader may confirm. 
Corollary 4.4.2 guarantees then that we have calculated accurately and that our pro-
posed optimal value and solution points are correct. The Duality Theorem guarantees 
that this test procedure is always available. 

From the proof of the Duality Theorem, we know that when the simplex algo-
rithm is applied to a maximization problem with (<) constraints, the entries in the 
bottom row of the final tableau in the slack variable columns give the optimal solu-
tion point to the corresponding dual minimization problem. (We had already seen an 
example of this in the tableau solution of the maximization problem of (4.3.2), the 
dual problem constructed in Example 4.3.1.) The following example exploits this 
result. 
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Example 4.4.2. Consider the linear programming problem of 

Minimizing 20xi + 15x2 + 54x3 
subject to 
x\ — 2x2 + 6x3 > 30 

X2 + 2X3 > 6 
2xi — 3*3 > —5 
X\ — X2 > 18 

Xj,X2,X3 > 0 

To solve this problem using the simplex method, we would first add 4 slack variables, 
then 3 artificial variables (the slack variable in the third constraint could serve as a 
basic variable), and use the full two stages of the algorithm on the resulting problem 
of 4 constraints and 10 variables. However, the dual to this problem is to 

Maximize 30y\ + 63*2 — 5j3 + I8V4 
subject to 

V! + 2y3 + y4 < 20 
-2yi + y2 - y4 < 15 

6yi + 2j2 — 3y3 < 54 

y\,yi,y3,y4 > 0 

Applying the simplex algorithm to this dual problem is somewhat easier. Adding 
three slack variables and solving, we have the tableaux of Table 4.3. The maximum 
value of the objective function 30yi + 6j2 — 5j3 +18V4 is 522, and therefore the min-
imum value of the objective function of the original problem also is 522. Moreover, 
from the bottom row of the final tableau, we see that the point (18,0,3) is an optimal 
solution point to the original problem. (Of course, the application of the simplex 
algorithm to the dual of the minimization problem is facilitated here by the fact that 
the coefficients in the original objective function, 20, 15, and 54, are all nonnegative. 
If this had not been the case, computing the solution to the dual with the simplex 
algorithm would also have required the use of artificial variables.) 

These observations suggest a general question. If we solve any linear program-
ming problem with a finite optimal solution using the simplex algorithm, can we 
always find in the final tableau an optimal solution point to the dual? We address this 
issue in the following examples, considering first the resolution of a minimization 
problem. 

Example 4.4.3. Consider the problem of Example 4.3.1 of 

Minimizing 10xi +4x2 
subject to 
3xi + 2x2 > 60 
7xi + 2x2 > 84 
3xi + 6x2 > 72 
Xj,X2 > 0 
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Table 4.3 

^5 

>'6 

yi 

ys 

J6 

>'i 

y\ 

ye 

y\ 

J 4 

ye 

yi 

y\ 

l 

- 2 

© 
-30 

0 

0 

1 

0 

0 

0 

1 

0 

1 

- 4 

3 

6 

J 2 

0 

1 

2 

- 6 
l 
3 
5 
3 
1 
3 

4 
1 
3 
4 
3 

Q) 
- 2 

0 

0 

1 

0 

J 3 

2 

0 

- 3 

5 
5 
2 

- 1 
1 
2 

- 1 0 
5 
2 
3 
2 
1 
2 

35 

2 
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2 
3 
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32 
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- 1 
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0 

0 

0 

1 

0 

0 

0 

ys 

l 

0 

0 

0 

1 

0 

0 

0 

1 

1 

0 

18 

1 

1 

0 

18 

y6 

0 

l 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

yi 

0 

0 

1 

0 
1 
6 
1 
3 
1 
6 

5 
l 
6 
1 
6 
1 
6 

2 

0 
l 
2 
1 
2 

3 

20 

15 

54 

0 

11 

33 

9 

270 

11 

44 

9 

468 

20 

8 

27 

522 

Table 4.4 

x6 

x-i 

xg 

*5 

X\ 

X2 

X\ 

3 

7 

3 

10 

- 1 3 

0 

1 

0 

0 

XI 

2 

2 

6 

4 

-10 

0 

0 

1 

0 

x3 

- 1 

0 

0 

0 

1 
9 
2 
1 
4 
7 
8 

1 

X4 

0 

- 1 

0 

0 

1 
3 
2 
1 
4 
3 
8 

1 

X5 

0 

0 

- 1 

0 

1 

1 

0 

0 

0 

X6 

1 

0 

0 

0 

0 
9 
2 
1 
4 
7 
8 

- 1 

x1 

0 

1 

0 

0 

0 
3 
2 
1 
4 
3 
8 

- 1 

x& 

0 

0 

1 

0 

0 

- 1 

0 

0 

0 

60 

84 

72 

0 

-216 

72 

6 

21 

-144 

Subtracting three slack variables, adding three artificial variables, and then using the 
simplex algorithm yields the initial and final tableaux of Table 4.4. 

We know from Example 4.3.1 that the optimal solution point for the correspond-
ing dual maximization problem is yi = 1, yj = 1, ^3 = 0. Note that these values 
are precisely the numbers in the bottom row of the final tableau in the slack variable 
columns for the first, second, and third constraints, respectively. 
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This is always the case when starting with a minimization problem with (>) con-
straints: a solution point to the dual is given in the bottom row of the final tableau 
in the slack variable columns. A proof of this fact is called for in Problem 11. The 
proof essentially duplicates the proof in the Duality Theorem, with some minor ad-
justments (here, for example, Sj = —tj, 1 < j < m). 

These results can be generalized. In a final tableau presenting the optimal value 
and an optimal solution point for a linear programming problem, the values of the 
variables in an optimal solution point to the dual for those variables that correspond 
to inequalities in the original problem are found in the bottom row of the final tableau 
in the associated slack variable columns. 

Example 4.4.4. The dual to the problem of 

Maximizing 3xi +X2 — X3 

subject to 

X\ + X2 + 5X3 + X4 < 200 

—x\ + 2x3 > 20 

2x2 — X3 + 5x4 > 50 

Xi,X2,X3,X4 > 0 

is the problem of 

Minimizing 200yi — 20y2 — 50}>3 

subject to 

y\ + yi > 3 

y\ - 2y3 > 1 

5y\ - 2y2 + y3 > - 1 

yi - 5y3 > 0 

yi,y2,y3 > o 

The initial and final tableau resolution of the maximization problem is in Table 4.5. 
The dual variables y\, y2, and 3̂3 correspond to the first, second, and third in-

equalities, with slack variables X5, x^, and xj, respectively, of the original problem. 
Thus an optimal solution point to the dual is y\ = 1, j2 = 3, y3 = 0. This is easy to 
verify. Note that the point (1,3,0) satisfies the dual constraints and has the required 
optimal value of 140 at the objective function. 

The last two examples in this section contain equality constraints in the original 
problem and thus unrestricted variables in the dual. 

Example 4.4.5. The problem of 

Maximizing 3xi + 5x2 + 9x3 

subject to 

4xi + 12x2 + 15x3 = 900 

-xi + 2x2 + 3x3 = 120 

^1,^2,^3 > 0 
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Table 4.5 

x5 

x& 

Xg 

x-, 

X3 

x2 

x\ 

1 

- 1 

0 

- 3 

1 
15 
2 
1 
2 
7 
2 

1 

X2 

1 

0 

2 

- 1 

- 2 

0 

0 

1 

0 

X3 

5 

2 

- 1 

1 

- 1 

0 

1 

0 

0 

*4 

1 

0 

5 

0 

- 5 

- 3 

0 

1 

1 

X5 

1 

0 

0 

0 

0 

2 

0 

1 

1 

x6 

0 

- 1 

0 

0 

1 
11 
■2 

1 
2 
5 
2 

3 

*7 

0 

0 

- 1 

0 

1 

1 

0 

0 

0 

*8 

0 

1 

0 

0 

0 
11 
2 
1 
2 
5 
2 

- 3 

Xg 

0 

0 

1 

0 

0 

- 1 

0 

0 

0 

200 

20 

50 

0 

-70 

240 

10 

150 

140 

Table 4.6 

X4 

*5 

X\ 

X3 

X\ 

4 

- 1 

- 3 

- 3 

1 

0 

0 

X2 

12 

2 

- 5 

-14 
2 
9 

20 
27 
7 
3 

*3 

15 

3 

- 9 

- 1 8 

0 

1 

0 

X4 

1 

0 

0 

0 
1 
9 
1 

27 
2 
3 

*5 

0 

1 

0 

0 
5 
9 

4 
27 

1 
3 

900 

120 

0 

-1020 
100 
3 

460 
9 

560 

with the dual problem of 

Minimizing 900yi + 120v2 
subject to 

fyi - y2 > 3 
12ji + 2y2 > 5 
15yi + 3y2 > 9 
yi,y>2 unrestricted 

has a maximum value of 560 and an optimal solution point of (-^p,0., ^p) , as seen 
in what we'll refer to as the reduced tableaux resolution of the problem in Table 4.6, 
where only the first and last tableaux are displayed. The unrestricted variables y\ and 
j2 of the dual correspond to the two equalities in the constraints of the maximization 
problem, and to initiate the simplex algorithm for this problem, artificial variables 
needed to be introduced. As the reader may have guessed, these artificial variable 
columns provide the data for the optimal solution point of the dual. Indeed, the 
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required value for the dual objective function of 560 is attained at the point (§, —5), 
a feasible solution point to the dual, as the reader may confirm. 

In general, when solving a maximization problem containing equality constraints, 
the coordinates of the unrestricted dual variables at an optimal solution point to the 
dual are in the bottom row of the final tableau resolution of the maximization problem 
in the corresponding artificial variable columns. Problem 12 addresses the proof of 
this statement. 

However, when solving a minimization problem containing equality constraints, 
a sign change adjustment is necessary when determining an optimal solution point to 
the dual. The value of each unrestricted variable in the optimal solution point to the 
dual is the negative of the entry in the bottom row of the associated artificial variable 
column. (Why this difference, one might ask? But note that the situations are not 
identical. For example, our algorithm has been designed for minimization problems; 
for such a problem, the coefficients of the objective function are entered directly 
into the initial tableau. To adapt the algorithm to a maximization problem, the cor-
responding minimization problem is considered, which necessitates an initial sign 
change in the objective function coefficients when entered into the initial tableau.) 

Example 4.4.6. The reduced tableaux resolution for the problem of 

Minimizing z = 16xi + 32x2 + 12x3 
subject to 
Xi + 5X2 + *3 > 2 

4xi + 4x2 — 2x3 = 1 
xi,x2,x3 > 0 

is in Table 4.7. We have Min z = 14 attained at (0, j%, j ^ ) . The dual problem is to 

Table 4.7 

X5 

x6 

X3 

x2 

X\ 

1 

4 

16 

-5 
8 
7 
3 
7 

16 

X2 

5 

4 

32 

-9 

0 

1 

0 

X3 

1 

-2 

12 

1 

1 

0 

0 

X4 

-1 

0 

0 

1 
2 
7 
1 
7 

8 

*5 

1 

0 

0 

0 
2 
7 
1 
7 

-8 

x6 

0 

1 

0 

0 
5 
14 
1 
14 
2 

2 

1 

0 

-3 
3 
14 
5 
14 

-14 
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Maximize v = 2y\ + J 2 

subject to 

yi + 4y2 < 16 
5yx + 4y2 < 32 

y\ - 2yi < 12 

y\ > 0, y2 unrestricted 

From the final tableau, the point y\ = 8 (using the slack variable X4 column) and 
j2 = — (2) = —2 (using the artificial variable x^ column) is an optimal solution point 
of the dual, as the reader may easily verify. 

Problem Set 4.4 

1. Prove Corollary 4.4.3. 

2. Show that both the following linear programming problem and its dual do not 
have any feasible solutions. 

Maximize x\ 

subject to 

*i — *2 < 1 

—Xy + Xj < —2 

X\,X2 > 0 

3. Consider the linear programming problem of 

Maximizing 4x\ + 10x2 — 3^3 + 2x4 

subject to 

3xi — 2x2 + 7x3 + X4 < 26 

xi + 6x2 — X3 + 5x4 < 30 

—4xi + 8x2 — 2x3 — X4 < 10 

Xj,X2,X3,X4 > 0 

(a) Show that ( f , f ,0,0) is a feasible solution to this problem. Compute the 
value of the objective function at this point. 

(b) Write out the dual problem. Show that (j^, j ^ , 0 ) is a feasible solution to 
this problem. What is the value of the objective function of the dual at this 
point? 

(c) Using Corollary 4.4.2, what can you conclude? 

4. Verify that ( 0 , 5 | , 8 5 , 5) is an optimal solution point to the problem of 
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Minimizing 7x\ + 11x2 — 3x3 — *4 

subject to 

2xj + 2x2 — X3 — 3x4 > 2 

—X\ + 5X2 — 2X3 + X4 > 12 

x\ — 4x2 + 3x3 + 5x4 > 4 

Xi,X2,X3,X4 > 0 

a n d ( 3 | , 2 , l ± ) is an optimal solution point to the dual. 

5. Verify that (0,3,2±,0, i f ) is an optimal solution point to the problem of 

Maximizing 3xi + 2x2 + 5x3 ~ 2x4 +*s 

subject to 

4x] + X2 — X3 + 2x4 + 4X5 < 6 

3xi + 3X2 + 2X3 — X4 — X5 < 12 

X\ — 2X2 + 5X3 — X4 + X5 < 6 

Xl,X2,X3,X4,X5 > 0 

and that ( | , 1, | ) is an optimal solution point to the dual. 

6. Consider the problem of 

Minimizing z = 13*1 + 15x2 + 12x3 + 8x4 

subject to 

4xi + 8x2 — 5x3 + 3x4 = 32 

3xi — 2x2 + 6x3 — X4 > 3 

Xi,X2,X3,X4 > 0 

Determine which of the following points are feasible solutions to this min 
problem: (9,0,2,2), ( 4 , 1 , - 1 , 1 ) , and (5,1,1,3). 
Evaluate the function z at those points in part (a) that are feasible solutions 
to the problem. 
Write out the dual to the min problem. 
Determine which of the following points are feasible solutions to this dual 
problem: ( - 1 , 1 ) , (0,2), and (1,3). 
Evaluate the dual objective function at those points in part (d) that are fea-
sible solutions to the problem. 
Using the information above, and only this information, what can you say 
about the minimum value of z? 

7. Solve the following by applying the simplex algorithm to the dual: 

150 

150 

150 

150 

150 

150 
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Minimize 8x1 + 13.*2 + 20x3 
subject to 

3xi + 2x2 + X3 > 2 
X\ — X2 + 2X3 > 4 

2X2 + 2X3 > — 1 
—2x\ + 3x2 > 0 

4xi - *3 > - 2 
Xi,X2,X3 > 0 

8. Generalization of the proof of the Duality Theorem. Suppose some of the con-
stant terms bj in (4.4.1) are negative. By rearranging the constraining equations 
if necessary, assume that b{ < 0 for 1 < i < k and bi > 0 for k+ 1 < i < m. Then, 
to apply the simplex method to (4.4.1), the first k equations must be multiplied 
by (—1), resulting in all nonnegative terms in the right column. However, now 
an initial basic feasible solution may not be apparent; if not, artificial variables 
must be introduced and the simplex method initiated at stage one. Thus the 
initial tableau would look something like the following: 

x\ 
-an . 

- « * l ■ 

öjt+1,1 ■ 

<Zm,l • 

- C l . 

Xfi Xn+\ 

. - f l l „ - 1 . 

• -akn 0 . 
• ak+l,n 0 • 

@m,n U 

. -cn 0 . 

Xn+k 
. 0 

. - 1 

. 0 

. 0 

. 0 

xn+k+\ 
0 . 

0 . 
1 . 

0 . 
0 . 

Xn-\-m 

. 0 

. 0 

. 0 

. 1 

. 0 

Art. 
1 

0 . 
0 . 

0 . 

Wars. 
.. 0 

.. 1 

.. 0 

.. 0 

-b\ 

-bk 

bk+\ 

bm 
0 

Since we have assumed that the problem of (4.4.1) has feasible solutions, the 
simplex method initiated on the above tableau will first drive the artificial vari-
ables from the basis and then drive to the optimal value of the objective function. 
Let rj, st, and f, be defined as in the proof of the Duality Theorem for 1 < j <n 
and 1 <i<m. Show that the proof given there can be extended to this case, with 
the only difference being that here s, = —f(- for 1 < i < k. 

9. Show that the r / s as defined in the proof of the Duality Theorem measure the 
slack in the constraints of the dual problem at the io = («i ,^2, ■ • -,sn)' solution 
point. 

10. The simplex algorithm has been used to resolve the following problems, and the 
corresponding initial and final tableaux are given (with the w row omitted). For 
each, construct the dual, determine an optimal solution point to the dual using 
the data from the tableaux, and verify that your solution point is feasible and 
optimal. 
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(a) Minimize lOOxi + 150x2 

subject to 

2xi + x2 > 13 

6xi — 9x2 < 2 

7xi — 8x2 > 5 

xi ,x 2 > 0 

x6 

X4 

XI 

x5 

x\ 

x2 

x\ 

2 

6 

7 

100 

0 

1 

0 

0 

*2 

1 

-9 

-8 

150 

0 

0 

1 

0 

X3 

-1 

0 

0 

0 
5 
8 
3 
8 
1 
4 

75 

X4 

0 

1 

0 

0 
23 
24 
1 
24 
1 
12 
25 
3 

X5 

0 

0 

-1 

0 

1 

0 

0 

0 

x6 

1 

0 

0 

0 
5 
8 
3 
8 
1 
4 

-75 

x-i 

0 

0 

1 

0 

-1 

0 

0 

0 

13 

2 

5 

0 
121 
24 
119 
24 
37 
12 

2875 
3 

(b) Maximize 3xi — 4x2 + 5x3 

subject to 

4xi — X2 + 6x3 < 9 

xi + 2x2 — xj, = 54 

*1,*2,*3 > 0 

x4 

X5 

x\ 

x2 

X\ 

4 

1 

-3 

1 

0 

0 

Xl 

-1 

2 

4 

0 

1 

0 

x3 

6 

-1 

-5 
11 
9 
10 
9 
28 
9 

X4 

1 

0 

0 
2 
9 
1 
9 
10 
9 

*5 

0 

1 

0 
1 
9 
4 
9 
13 
9 

9 

54 

0 

8 

23 

-68 

(c) Minimize —2xj + 5x2 + 9x3 

subject to 

2X2 + 5X3 > 1 

3xi — X2 — X3 < 6 

2xi — 4x2 + *3 = 3 

Xl,X2,X3 > 0 
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x6 

x5 

XI 

* 3 

X2 

x\ 

x\ 

0 

3 

2 

- 2 

0 

0 

1 

0 

X2 

2 

- 1 

- 4 

5 

0 

1 

0 

0 

X3 

5 

- 1 

1 

9 

1 

0 

0 

0 

X4 

- 1 

0 

0 

0 
1 
6 

1 
12 

1 
12 

7 
4 

X5 

0 

1 

0 

0 
1 

15 

1 
6 

11 
30 

1 
2 

X6 

1 

0 

0 

0 
l 
6 

1 
12 

1 
12 

7 
4 

* 7 

0 

0 

1 

0 
1 

10 

l 
4 

1 
20 

1 
4 

1 

6 

3 

0 
1 

15 
1 
3 

32 
15 

2 

(d) Minimize lOxi + 20x2 + 15x3 + 21x4 + 5x5 

subject to 
7xi — 10x2 + 8x3 — 5x4 + 3x5 = 730 
3xi + X2 + 4x3 — 2x4 — xs = 350 
Xl,X2,X3,X4,X5 > 0 

x6 

Xl 

x\ 

X3 

x\ 

1 

3 

10 

1 

0 

0 

x2 

-10 

1 

20 

-12 
37 
4 

5 
4 

X3 

8 

4 

15 

0 

1 

0 

X4 

- 5 

2 

21 

- 9 
29 
4 

9 
4 

x5 

3 

- 1 

5 

5 

- 4 

15 

x6 

1 

0 

0 

1 
3 
4 

5 
4 

*7 

0 

1 

0 

- 2 
7 
4 

25 
4 

730 

350 

0 

30 

65 

-1275 

(e) Maximize lOxi — 12x2 + 11*3 
subject to 
6x1 - 7x2 + 8x3 = 90 
-x i + 3x3 > 42 
Xi,X2.X3 > 0 

* 5 

X6 

X3 

X2 

x\ 

6 

- 1 

-10 
1 
3 

26 
21 

25 
21 

x2 

-1 

0 

12 

0 

1 

0 

X3 

8 

3 

-11 

1 

0 

0 

X4 

0 

- 1 

0 
1 
3 

8 
21 

19 
21 

* 5 

1 

0 

0 

0 
1 
7 

12 
7 

X6 

0 

1 

0 
1 
3 

8 
21 

19 
21 

90 

42 

0 

14 
22 
7 

814 
7 
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11. (a) Consider the linear programming problem of 

Minimizing c\X\ + C2X2 -\ h cnxn 

subject to 
an.*i + «12*2 + ... + a\nx„ > b\ 

021*1 + 022*2 + • • • + Û2A > t>2 

am\x\ + am2X2 + ... + amnxn > bm 

Xi,X2,...,Xn > 0 

Assume that bt >0,l<i<m, and that the problem has a finite optimal 
solution. To find this solution, suppose the simplex method is used, first 
adding m slack variables to the problem (each with coefficient (—1)) and 
then m artificial variables. Let si,S2,..-,sm denote the m entries in the bot-
tom row of the final tableau in the m slack variable columns. Show that 
(si,S2, ..., sm) is an optimal solution point to the dual, modeling your proof 
on the proof of the Duality Theorem. 

(b) Show that the above result also follows from Problem 8. 

12. Consider the linear programming problem of 

Maximizing c\x\ + C2X2 H V Cn*n 
subject to 

a\\x\ + ... + a\„x„ < b\ 

akxx\ + ... + aknxn < bk 

ßfc+i,i*i + ••• + ak+\nxn = bjc+i 

®m\X\ ~r • • • ~r ^mn^n = ^m 

Xl,X2,...,X„ > 0 

Assume that bi > 0 for 1 < i < m. Suppose k slack variables and m — k artificial 
variables are added to the problem and the simplex algorithm is applied, driving 
to a finite optimal solution. Denote by s,-, 1 < i < m, the entries in the bottom 
row (the z row) of the final tableau in the slack variable (1 <i<k) and artificial 
variable (£+1 < i<m) columns. Show that (s\,S2,- ■■ ,sm) is an optimal solution 
point to the dual. 

4.5 THE COMPLEMENTARY SLACKNESS THEOREM 

In this section we discuss the Complementary Slackness Theorem. The theorem 
relates optimal solution points of a linear programming problem and its dual. The 
theorem will not be needed in any further theoretical developments in the text. How-
ever, the relationships prescribed by the theorem are certainly interesting and useful, 
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and will be referred to occasionally in the problem sets and in the development of 
the transportation problem algorithm in Chapter 7. Those readers who continue their 
studies in linear programming at a more advanced level may well encounter comple-
mentary slackness again. 

In Example 4.4.1 of the previous section, it was verified that the point (10,9,0,0) 
is an optimal solution point to the problem of 

Maximizing f(x\ ,X2,X3,X4) = —5x\ + 18x2 + 6x3 —X4 (4.5.1) 
subject to 

2*i — X3 + 3x4 < 20 
X2 — 2X3 ~■ X4 < 30 

-3xi + 6x2 + 3x3 + 4x4 < 24 
Xi,X2,X3,X4 > 0 

and the point (2,0,3) is an optimal solution point to the dual, 

Minimize g(y, ,y2,y3) = 20yi + 30y2 + 24y3 (4.5.2) 
subject to 
2yi - 3y3 > - 5 

y2 + 6y3 > 18 
-y i - 2y2 + 3y3 > 6 
3yi - yi + 4y3 > - 1 

yi,y2,y3 > 0 

Since (10,9,0,0) is an optimal solution to (4.5.1), it certainly satisfies the constraints 
of (4.5.1). In fact, evaluating the three constraints at this point, we find slack of 0, 
21, and 0 at the first, second, and third inequalities, respectively. Now the three 
dual variables y\,y2,ys of (4.5.2) correspond to these three constraints; and note that 
where there is positive slack in the constraints of (4.5.1) at the point (10,9,0,0), the 
value of the corresponding dual variable at the optimal solution point (2,0,3) is 0. 

Conversely, evaluating the four constraints of (4.5.2) at (2,0,3) yields slack of 0, 
0, 1, and 19. Again, for each inequality at which the slack is positive, the value of 
the corresponding dual variable at the optimal solution point (10,9,0,0) is 0. 

These results are guaranteed by the Complementary Slackness Theorem. More-
over, the converse is also true. In terms of (4.5.1) and (4.5.2), this means that if X* 
and Y* are feasible solutions to (4.5.1) and (4.5.2), respectively, and satisfy the com-
plementary slackness conditions described, they are optimal solution points to their 
respective problems. 

The statement and proof of the general theorem follow. 

Theorem 4.5.1 (Complementary Slackness Theorem). Suppose X* = (x\,... ,x*) is 
a feasible solution to the problem of 

Maximizing c -X subject to AX < b,X > 0 (4.5.3) 
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and Y* = (y\,.-. ,y*m) is a feasible solution to the dual problem of 

Minimizing b ■ Y subject to A'Y >C,Y>0 (4.5.4) 

Then X* and Y* are optimal solution points to their respective problems if and only 
if for each i, 1 < i <m, either 

(slack in the ith constraint of (4.5.3) evaluated at X*) = bi — \^aijx) = 0 
j 

or 
y*=0 

and, for each j , I < j <n, either 

(slack in the jth constraint of (4.5.4) evaluated at Y*) = Na(/.y,* — cj = 0 
i 

or 
x*j=0 

Proof. Corollary 4.4.1 says it all, essentially. Since X* is a feasible solution to the 
max problem (4.5.3) and Y* is a feasible solution to the min problem (4.5.4), from 
the corollary we have 

b-Y*-c-X* = (b-AX*)-Y* + (A'Y*-c)-X* 

If X* and Y* satisfy the complementary slackness hypothesis, then for each i, with 
1 < i < n, the product 

y*[bi-Y/jaijXj)=0 

that is, each multiplication in the dot product (b — AX') ■ Y* equals 0, and so (b — 
AX') ■ Y* = 0. Similarly, from complementary slackness, (AT* -c) -X* = 0 . Thus 
b ■ Y* = c-X*, and so, from Corollary 4.4.2, X* and Y* are optimal solution points 
for their respective problems. 

Conversely, if X* and Y* are optimal solution points for their respective problems, 
we have 

0 = b ■ Y* ~ c ■ X* = (b - AX*) ■ Y* + (A'Y* -c)-X* 

But each dot product on the right side of the equation consists of a sum of prod-
ucts of nonnegative numbers, and so each dot product is nonnegative. Hence both 
(b - AX*) ■ Y* = 0 and (A'Y* ~ c) -X* = 0, that is, the points X* and Y* satisfy the 
complementary slackness conditions. D 
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Example 4.5.1. The problem of 

Minimizing 12;q + 5x2 + 10^3 (4.5.5) 
subject to 

X\ — Xj + 2X3 > 

^ 3 x j + X2 + 4X3 > 

—X] + 2X2 + 3X3 > 

2xi — 3x2 > 

7xi — X2 — 5X3 > 

Xi,X2,X3 > 0 

10 
- 9 

1 
- 2 
34 

has (7,0,3) as an optimal solution point. To determine an optimal solution point to 
the dual, 

Maximize lOyi - 9y2 +y3 - 2y4 + 34y5 (4.5.6) 
subject to 

y\ - 3y2 - J3 + 2y4 + 7y5 < 12 
-y\ + yi + 2y3 - 3y4 - y5 < 5 
2yi + 4y2 + 3y3 - 5y5 < 10 

yuy2,y3,y4,y5 > 0 

we can use complementary slackness. Evaluating the inequalities of (4.5.5) at the 
point (7,0,3), we find positive slack in the first, third, and fourth constraints (and 
zero slack in the other two). Thus any optimal solution Y* = (ylty^y^y^yl) t 0 

(4.5.6) must have y\ = y"^ = y*4 = 0. And the first and third components of (7,0,3) 
positive implies that Y* must yield zero slack in the first and third constraints of 
(4.5.6). Hence Y* = (0 ,^ ,0 ,0 ,^ ) and 

-3yî + 7y* = 12 2 5 (4 5 7) 
4y* - 5y| = 10 ' 

The (unique) solution to (4.5.7) is y*2 = 10, y*5 = 6, and so Y* = (0,10,0,0,6) is an 
(and the only) optimal solution point to (4.5.6). (In fact, the existence of this feasible 
solution to (4.5.6) satisfying complementary slackness now certifies the optimality 
of (7,0,3).) 

Example 4.5.2. Suppose it is claimed that the point (3,0,1,0) is an optimal solution 
to the problem of 

Maximizing 9xi + 3x2 + 5x3 + 22x4 (4.5.8) 
subject to 
2xi — X2 + 2x3 + 6x4 < 8 
5xi + 3x2 + *3 + 2x4 < 16 
4xi + X2 — X3 + 3x4 < 12 
Xi,X2,X3,X4 > 0 

We can use complementary slackness to attempt to ratify the claim. First, we verify 
that (3,0,1,0) is a feasible solution to (4.5.8), noting that the point yields zero slack 
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in the first two constraints of (4.5.8) and positive slack in the third. Now consider the 
dual. 

Minimize 8yi + 16y2 + 12y3 (4.5.9) 
subject to 
2yi + 5y2 + 4y3 > 9 
-y\ + 3>>2 + j3 > 3 
2ji + y2 - y-i > 5 
6ji + 2y2 + 3j3 > 22 

3'i,)'2,3'3 > 0 

If (4.5.8) has a finite optimal solution, so does (4.5.9), and any optimal solution 
point Y* — {y\,y2,y"Ç) must satisfy the complementary slackness conditions with 
(3,0,1,0). Thus, }>3=0, and 

2y\ + 5y*2 = 9 
2y\ + y*2 = 5 

yielding Y* = (2,1,0). But this point is not a feasible solution to (4.5.9), as the reader 
may verify. Hence (3,0,1,0) cannot be an optimal solution to (4.5.8). 

Problem Set 4.5 
1. Consider the linear programming problem of 

Maximizing x\ + 2x2 

subject to 
2x\ + x2 < 3 
x\ + 2x2 < 3 

xi,x2 > 0 

(a) Determine the dual problem. 
(b) Show that X* = (1,1) and Y* = (0,1) are optimal solutions for the original 

and dual problems, respectively, by using the Complementary Slackness 
Theorem. 

(c) Note that at these solution points, both >>j and the slack in the corresponding 
first constraint of the max problem are zero. 

2. Consider the linear programming problem of 

Maximizing 2x\ + 2x2 
subject to 
X\ + X3 + X4 < 1 

X2 + X3 — X4 < 1 

Xl + X2 + 2X3 < 3 

Xi,X2,X3,X4 > 0 
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(a) Determine the dual problem. 
(b) Show that X* = (1,1,0,0) and Y* = (1,1,1) are feasible solutions to the 

original and dual problems, respectively. 
(c) Show that for this pair of solutions, for each j , x*= > 0 implies that the slack 

in the corresponding dual constraint is zero. 
(d) Show that Y* is not an optimal solution to the dual. 
(e) Does this contradict the Complementary Slackness Theorem? 

3. Prove or disprove each of the following, using complementary slackness. 

(a) ( 1,1,0,0) is an optimal solution point to the maximization problem of Prob-
lem 2. 

(b) (0,4,0,2) is an optimal solution point to (4.5.8) on page 157. 
(c) (3,0,1,0,5) is an optimal solution point to the problem of 

Maximizing 5x\ + 16x2 — 4x3 ~M +1*5 

subject to 

8xi — 2x2 + 3x3 — 2x5 < 18 

2xi + 4x2 — 7x3 + 3x4 + *5 < 4 

X\ + 3X2 + X$ — X4 + 2X5 < 14 

Xl,X2,X3,X4,X5 > 0 

(d) ( 1,0,1,0) is an optimal solution point to the problem of 

Minimizing 5xj + 8x2 + 4x3 + 2x4 

subject to 

x\ + 2x2 — X3 + X4 > 0 

2xi + 3x2 + X3 — X4 > 3 

Xi,X2,X3,X4 > 0 

(e) (0,3,12) is an optimal solution point to the problem of 

Minimizing 2yi — 5j2 — 3y3 

subject to 

- 3 y j - 6y2 + 2y3 > 6 

y\ + 3y2 + V3 > 20 

4yi + 7y2 - 3y3 > - 1 5 

y\,y2,y3 > o 

(f) (0,3,0,0,4) is an optimal solution point to the problem of 

Maximizing 5xi + 4x2 + 8x3 + 9x4 + 15xs 

subject to 

Xi + X2 + 2X3 + X4 + 2X5 < H 

X] — 2X2 ~ X3 + 2X4 + 3X5 < 6 

Xl,X2,X3,X4,X5 > 0 



Solutions to Selected Problems 

Problem Set 2.2 

5. There is no change in the optimal solution; all the points of the shaded region in 
Figure 2.3 satisfy the inequality 4x + 2y> 40. 

7. (a) See Example 5.1.1 on page 161. 
(b) There is no change in the optimal diet if | < the ratio of the cost of Feed 1 

to Feed 2 < ^. 

11. Let Xj denote the amount in pounds of Mineral i used in the production of 100 lb 
of paint. The problem: 

Minimize 4xi + 7.5x2 + 3%3 
subject to 

0.06x2 + 0.07x3 > 5 
0.05xi + 0.08x2 > 3 
0.30xi + 0.30x2 + 0.25x3 > 26 
0.20xi + 0.10x2 + 0.16x3 < 15 

Xi + X2 + X3 = 100 

*1,-X2,*3 > 0 

Problem Set 2.3 

1. See Example 8.1.1 on page 299. 

3. (a) The function to be maximized does not accurately measure profit when less 
than 2000 lb of aluminum is used. 

(b) The function to be maximized does not accurately measure profit when less 
than 1500 lb of aluminum is used. 

(c) The first constraint forces the use of at least 1500 lb of aluminum. 

5. Replace the function / in (2.3.1) with 

/(xi,X2,X3,X4) =690xi +545x2 + 1020x3+785x4 

- 3(35xi + 45x2 + 70x3 - 2100) 

- 2(55xi + 42x2 + 90x4 - 1800) 

6. Let X6 > 0 denote the amount in pounds of Raw Material A purchased and mod-
ify the problem of (2.3.2) as follows. Replace the function g with 

g(xi,X2,X3,X4,X5,X6) = 3 0 x s + 6 9 0 x i + 5 4 5 x 2 + 1020X3+785X4 + 4X6 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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and the second constraint with 

160*! + 100x2 + 200x3 + 75x4 < 8000 + x6 

9. The maximum profit is $54, attained by making 108 dozen muffins and no 
brownies. 

12. See Example 4.3.2 on page 134. 

13. See Problem 4 of Section 4.3 on page 137. 

17. Let C, T, B, P, and K denote the number of acres planted of corn, tomatoes, 
beans, peas, and carrots, respectively; U the number of acres of unused land; 
L the hours of labor employed; and M the amount of money borrowed. The 
problem: 

Maximize (60 - 20)C + 8007 + 1455 +185P + 250K - 7.25L - W - 0.03M 
subject to 

C + T+B+P+K+U =100 
5C + 1207 + 25B + 35P + 40K + 2U =L 

20C + 2007 + 55ß + 40P + 15K + 9U + 3.25L < 3000 +M 
0 < L < 3600, 0 < M < 12000 
C,T,B,P,K,U>0 

Problem Set 2.4 

2. (a) See Example 4.3.3 on page 135. 

3. Let Xij denote the number of cases shipped from Plant i to Outlet j and x,6 the 
number of surplus cases at Plant i, 1 < i < 3, 1 < j < 5. The problem: 

Minimize 6.2xn + 5 . 1 X B +IO.IX14+ 8x15 

+6.5X21 + 10.5X22+4.3X23 + 11.3X24 + 6.5X25 

+6.3X31 + 9X32 + IO.8X34 

— 120xi6 — H0X26 — 114X36 

subject to 

£5=1 * U = 4000 (xi2 = 0) 

£";=1x2,. = 2000 

£5=1*3; = 3000 (X33=X35=0) 

YM=IXU = 1000> 1200,3000,400,2200 (; = 1,2,3,4,5, respectively) 

xu > 0 

Problem Set 2.5 

1. Equalities would force each D, to be at least 1000. 
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4. For month i (i = 1, Aug.; i = 2, Sept.; i = 3, Oct.), let 

Ri(Vi) = number of refrigerators (ovens) bought 

Si(W{) = number of refrigerators (ovens) sold 

Ti(Xi) = number of refrigerators (ovens) stored 

The problem: 

Minimize 90SY + 11QS2 + 105S3 + 200Wi + 250W2 + 240W3 

-(60Rl + 65R2 + 68fl3 + 150V\ + 175V2 + 200V3) 

-7(Tl+T2+Xi+X2) 

subject to 

25+Ri=Si+Ti Vi=Wi+Xi 

Ti+R2 = S2 + T2 Xl+V2=W2+X2 

T2+R3=S3 X2+V3=W3 

Ti+Xi <45,T2+X2<45 

0<R{<65 0<Vt<35 

0<Si< 100 0 < W,: < 55 

Ri^TiMMXi^O 

Problem Set 3.1 

1. (a) x\ — 4,x2 = 12,X3 = 0,X4 = —1 
(b) Any point (xi,x2,x3,x'4,x'l,X5,xe) of the form (1,3,5,2 +A,A,3,15) where 

A > 0 

3. (a) Minimize—3xi+2x2 
subject to 
5xi + 2X2 — 3X3 + M + X5 = 7 

3X2 — 4X3 + x6 = 6 
X\ + X3 — X4 — Xi = 11 

x\,...,xj > 0 

(b) Minimize — xl
2 + x3 — Xj' + x4 — x4' 

subject to 
X\ + X2 — X5 = 6 

X2 T X^ X3 X4 -r X4 -f~ X(y = 1 

5x, + 6x2 + 7x3 - 7x" - 8x4 + 8x4' - x7 = 2 

X{, X21X^ j X3 , X^, X^, X5 j X^, X7 ̂  U 
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(d) Minimize -6xj + 2x2 - 2x% - 9x3 - 300 
subject to 
2xi — 6x2 + 6x2 — X3 + X4 

Xi + X2 — X2 + 9X3 + *5 

X\ + X6 

x2 — x2 

X3 

Xi,X2,X/
2,X3,X4,X5,X6,X7,X8 > 0 

4. (a) {(0,0,A,0):A> 11} 
(b) {(5,0,6,0)} 
(c) 0 

- x-i 

= 100 
= 200 
= 50 
= -60 

- X8 = 5 

Problem Set 3.2 
1. (a) (1,2,-3) 

(b) Arbitrarily selecting x\ and X2 to use as basic variables, two pivot steps yield 
the following equivalent system: 

Thus the solution set is 

Xl 

X2 + YjXj, = 

17X3 

13 
17 
3 
17 

{(-T7 + Î7^'Ï7 - Ï 7 ^>^ ) : ^ e R l 

2. The system is equivalent to various systems of equations in canonical form. For 
example, an equivalent system with basic variables x\ and X3 is the system 

xi - 8x2 = -41 

—3x2 +X3 = —16 

4. (a) 

x2 = 9 

Xi - X 3 = 4 

(b) No 
(c) b = (17,4)' can be expressed as a linear combination of A^ = (2, 1)' and 

A^ = (1,0)', but not as a linear combination of AO andA^3' = ( - 2 , - 1 ) ' 

6. (b) (0,6,2,0) and (0,0,2,2) 

(d) The minimum value of the objective function is 8, attained at (0,0,2,2) 

7. M i n / = i5 attained a t ( f ,0,0, §) 
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Problem Set 3.3 

1. (a) X] = 8 — 2x4,X2 — 6 — 3x4,xj — 18 — 6x4 
(b) 0 < x4 < 2 
(c) x2 

(d) We should extract X2 from the basis; therefore, pivot at the 3x4 term of the 
second equation. Pivoting here yields: 

(e) x\ — 1*2 = 4 

5X2 + X4 = 2 

— 2x2 + X3 = 6 
The associated basic solution, (4,0,6,2), is feasible. 

(f) The minimum of | , f, and ^ is f, attained with the data from the second 
equation. 

4. Pivoting at the 2x4 term of the first constraint yields the equivalent problem of 
minimizing z with 

5X2 — 3x3 + X4 = 3 

x\ + 5X2 — X3 = 8 

3x2 - 14x3 = 18 + z 

Xi,X2,X3,X4 > 0 

The expression for z suggests putting X3 into the basis, but there is no positive X3 
coefficient in the constraints. In fact, from this representation of the constraints, 
we see that the set of feasible solutions contains the set 

{(8+x3,0,x3,3 + 3x 3 ) :*3>0} 

What happens to z on this set? 

Problem Set 3.4 

1. Minz = - 6 7 1 attained at (0, f ,0, ^ , f ) 

2. (a) Minz = 0 attained at (5,10,0,0). No pivots necessary. 
(b) Minz = 0 attained at (5,10,0,0). No pivots necessary. 
(c) Unbounded objective function. 
(d) Unbounded objective function. 
(e) Minz = - 5 attained at (5,0,5,0) 
(f) Minz = 0 attained at (0,10,0,0). One pivot necessary. 
(g) Unbounded objective function. No pivots necessary. 

5. When the Min{è,-/a,-,s : als > 0} is attained in more than one row. 

Problem Set 3.5 

2. (a) Minz = - 2 0 0 attained at (0,0,50,0) 
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(c) Unbounded objective function 

(d) Maxz = 90 attained at (250,10,0,40,0,0) 

3. See Example D.l on page 427. 

5. (a) In the final tableau, c\ = 0 and at least one a*2 > 0. Thus X2 can be inserted 
into the basis. Similarly forx7. 

(b) (0,0,0,25,0,15,15) 
(c) (10,30,0,20,0,0,0) 

8. Maximum income is $7020, attained by producing 240 radios, 85 televisions, 
and 0 stereos. 

Problem Set 3.6 

1. (a) Applying the simplex algorithm to the problem of 

Minimizing w — XA, + X5 
subject to 

X\ - X2 + X4 = 1 

2x\ + X2 — X3 + ^ 5 = 3 

Xi,X2,X3,X4,X5 > 0 

generates the solution point ( | , | , 0 ) to the original system. 

2. (a) Minz = \ attained at (0, ̂ , ^ ) 
(b) Minz = —^ attained at (0, ̂ , ^ ) . (Only one artificial variable required.) 
(c) No feasible solutions. 

4. The row corresponds to the expression for the function w = x^+x^ in terms of 
the nonbasic variables for that tableau, namely, X2, X4, x$, and X&. 

6. Follows from the definition of w and from Problem 9 of Section 3.4 on page 84. 

8. Minimal cost is $1950 attained by using Process 2 for | hr and Process 3 for | 
hr. 

Problem Set 3.7 

3. (a) Minz = 50 attained at (50,0,0,0). No redundant equations. 
(c) Minz = — I attained at (0,0, | , | ) . One redundant equation. 
(d) Maxz = —6 attained at (0,1,2,0). No redundant equations. 

4. True. If any artificial variables remained in the basis, they would be at zero level. 
The elimination of these variables from the basis would lead to a degenerate 
solution to the original system. 

Problem Set 3.8 

6. (a) Changing the constant-term column entries to 0 in the tableaux of Table 3.4, 
we have Maxz = 0 attained at (0,0,0). 
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(b) From the modified tableaux of Table 3.5, the objective function is unbounded. 

Problem Set 4.1 

1. Maximum gain is $475, attained at (25,100). 

2. (a) Minimum cost is $475, attained at (0, |,-j^). 

Problem Set 4.2 

1. (a) Minimize 100y, + 90y2 + 500j3 

subject to 

5yi - n > 20 
-4yi + \2y2 + y3 > 30 

yi,y2,y3 > o 

(b) Maximize -30yi - 50y2 - 80y3 

subject to 
6ji - 2y2 < 4 

1 lyi + lyi - yi < - 3 

y\,y2,y3 > o 

(c) Minimize 60yi — 10j2 + 20^3 
subject to 

5y\ - 3̂ 2 + w > - l 
y\ + 8̂ 2 + 7y3 > 2 

yi,3'2 > 0, )>3 unrestricted 

(f) Maximize 50xi — 70x2 — 15*3 
subject to 
4xi < 1 

2x2 > 1 
—X\ — X2 + X3 > 4 

x\ unrestricted, X2,x3 > 0, 

3. (b) Mine-F is 411, attained at ( | , | ) . 
(c) Maxc-X is 4 l | , attained at (^ ,0 , ^ ) . 

Problem Set 4.5 

3. (a) (1,1,0,0) optimal; complementary slackness generates (2,2,0), a feasible 
solution to the dual. 

(b) (0,4,0,2) optimal; complementary slackness generates (3,2,0), a feasible 
solution to the dual. 
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