DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI M.Phil./Ph.D. Mathematics Course Work Supplementary Examination, 2022 MATH21-R07: CONVEX AND NONSMOOTH ANALYSIS

Time: 3 hor	ırs Maximum Marks: 70	
Instruction ings.	ns: \bullet Attempt any five questions. All symbols have their usual mean-	
^	and and a second of the second	
	If C is a convex set in \mathbb{R}^n prove that its interior is a convex set. If S is a compact set in \mathbb{R}^n prove that its convex hull coS is a compact set. Give an example of a closed set whose convex hull is not closed.	[5 Marks] [5 Marks]
(c)	Define the closed convex hull of a nonempty set S in \mathbb{R}^n . Prove that the closed convex hull of a set is the closure of the convex hull of that set.	[4 Marks]
$\begin{pmatrix} 2 \end{pmatrix}$ (a)	Let $A : \mathbb{R}^n \to \mathbb{R}^m$ be an affine mapping and C be a convex set in \mathbb{R}^n . Prove that $\operatorname{ri}[A(C)] = A[\operatorname{ri} C]$.	[5 Marks]
) (b)	Prove that a closed convex set $C \subseteq \mathbb{R}^n$ is compact if and only if $C_{\infty} = \{0\}.$	[5 Marks]
(c)	Let C_1 and C_2 be two nonempty convex sets in \mathbb{R}^n such that $\operatorname{ri}(C_1 \cap C_2) \neq \emptyset$. Prove that $\operatorname{cl}(C_1 \cap C_2) = \operatorname{cl}C_1 \cap \operatorname{cl}C_2$.	[4 Marks]
/	Let F be a face of a closed convex set $C \subseteq \mathbb{R}^n$. Prove that any extreme point of F is an extreme point of C . If $x \in F$ is an extreme point of C then is x an extreme point of F ? Justify.	[6 Marks]
(b)	Prove that every $x \in \mathbb{R}^n$ of norm 1 is an extreme point of $B(0, 1)$.	[4 Marks]
$\sqrt{(c)}$	Let $C \subseteq \mathbb{R}^n$ be a closed convex set. For all $x, y \in \mathbb{R}^n$ prove that $\ p_C(x) - p_C(y)\ ^2 \leq \langle p_C(x) - p_C(y), x - y \rangle.$	[4 Marks]
	Let $C \subseteq \mathbb{R}^n$ be a a nonempty convex set $(C \neq \mathbb{R}^n)$ and x be a boundary point of C . Prove that there exists a hyperplane supporting C at x .	[6 Marks]
(b)	Let K be a convex cone in \mathbb{R}^n with polar K° . Prove that the polar of K° is the closure of K.	[4 Marks]
(c)	Prove that the tangent cone to a closed convex set is closed.	[4 Marks]
(8) (a)	Let $C \subseteq \mathbb{R}^n$ be a nonempty convex set. Prove that a function $f: C \to \mathbb{R}$ is strongly convex on C if and only if $f - \frac{c}{2} \ .\ ^2$ is convex on C .	[5 Marks]
(b)	Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a function not identially equal to $+\infty$. Prove that the function f is convex if and only if its epigraph is a convex set in $\mathbb{R}^n \times \mathbb{R}$.	[5 Marks]
(c)	Let C_1 and C_2 be two nonempty closed convex sets in \mathbb{R}^n . For $x \in C_1 \cap C_2$ prove that $T_{C_1 \cap C_2}(x) \subseteq T_{C_1}(x) \cap T_{C_2}(x)$.	[4 Marks]

MATH21-R07:Convex and Nonsmooth Analysis - 2-	
(6) (a) Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a convex function not identially equal to + ∞ and $x' \in \mathrm{ri} \ \mathrm{dom} f$. Prove that $\mathrm{cl} f(x) = \lim_{t \downarrow 0} f(x + t(x' - x)).$	[5 Marks]
(b) Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a symmetric linear operator. Prove that the quadratic function $f(x) = \frac{1}{2} \langle Ax, x \rangle$ is a convex function.	[5 Marks]
(c) Define infimal convolution of two functions $f_1, f_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$. Find the infiml convolution of the functions $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ defined as $f_1(x) = x^2$ and $f_2(x) = x$, respectively.	[4 Marks]
(a) Define subdifferential of a convex function $f : \mathbb{R}^n \to \mathbb{R}$ in two different ways. Prove that the two definitions are equivalent.	[6 Marks]
(b) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Prove that a vector $s \in \mathbb{R}^n$ is a subgradient of f at x if and only if $(s, -1) \in \mathbb{R}^n \times \mathbb{R}$ is normal to epi f at $(x, f(x))$.	[4 Marks]
(c) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Prove that for all $x_1, x_2 \in \mathbb{R}^n$, $\langle s_2 - s_1, x_2 - x_1 \rangle \ge 0, \forall s_i \in \partial f(x_i), i = 1, 2.$	[4 Marks]